当前位置:文档之家› 基于贝叶斯网络动态推理的信息融合方法探讨

基于贝叶斯网络动态推理的信息融合方法探讨

基于贝叶斯网络动态推理的信息融合方法探讨
基于贝叶斯网络动态推理的信息融合方法探讨

浅谈贝叶斯方法

浅谈贝叶斯方法 随着MCMC(马尔可夫链蒙特卡尔理论Markov chain Monte Carlo)的深入研究,贝叶斯(T.Bayes(1702~1761))统计已成为当今国际统计科学研究的热点。翻阅近几年国内外统计学方面的杂志,特别是美国统计学会的JASA(Journal of the American Statistical Association) 、英国皇家学会的统计杂志JRSS(Journal of the Royal Statistical Society)[1]等,几乎每期都有“贝叶斯统计”的论文。贝叶斯统计的应用范围很广,如计算机科学中的“统计模式识别”、勘探专家所采用的概率推理、计量经济中的贝叶斯推断、经济理论中的贝叶斯模型等。托马斯·贝叶斯在18世纪上半叶群雄争霸的欧洲学术界可谓是个重要人物,他首先将归纳推理法应用于概率论,并创立了贝叶斯统计理论,对于统计决策函数、统计推理、统计估算等作出了贡献。贝叶斯所采用的许多概率术语被沿用至今。他的两篇遗作于逝世前4个月,寄给好友普莱斯(R.Price,1723~1791)分别于1764年、1765年刊于英国皇家学会的《哲学学报》。正是在第一篇题为“机会学说中的一个问题的解”(An essay towards solving a problem in the doctrine of chance)的论文中,贝叶斯创立了逆概率思想。统计学家巴纳德赞誉其为“科学史上最著名的论文之一”。 一、第一部分中给出了7个定义。 定义1 给定事件组,若其中一个事件发生,而其他事件不发生,则称这些事件互不相容。 定义2若两个事件不能同时发生,且每次试验必有一个发生,则称这些事件相互对立。

如何使用贝叶斯网络工具箱

如何使用贝叶斯网络工具箱 2004-1-7版 翻译:By 斑斑(QQ:23920620) 联系方式:banban23920620@https://www.doczj.com/doc/fc1807780.html, 安装 安装Matlab源码 安装C源码 有用的Matlab提示 创建你的第一个贝叶斯网络 手工创建一个模型 从一个文件加载一个模型 使用GUI创建一个模型 推断 处理边缘分布 处理联合分布 虚拟证据 最或然率解释 条件概率分布 列表(多项式)节点 Noisy-or节点 其它(噪音)确定性节点 Softmax(多项式 分对数)节点 神经网络节点 根节点 高斯节点 广义线性模型节点 分类 / 回归树节点 其它连续分布 CPD类型摘要 模型举例 高斯混合模型 PCA、ICA等 专家系统的混合 专家系统的分等级混合 QMR 条件高斯模型 其它混合模型

参数学习 从一个文件里加载数据 从完整的数据中进行最大似然参数估计 先验参数 从完整的数据中(连续)更新贝叶斯参数 数据缺失情况下的最大似然参数估计(EM算法) 参数类型 结构学习 穷举搜索 K2算法 爬山算法 MCMC 主动学习 结构上的EM算法 肉眼观察学习好的图形结构 基于约束的方法 推断函数 联合树 消元法 全局推断方法 快速打分 置信传播 采样(蒙特卡洛法) 推断函数摘要 影响图 / 制定决策 DBNs、HMMs、Kalman滤波器等等

安装 安装Matlab代码 1.下载FullBNT.zip文件。 2.解压文件。 3.编辑"FullBNT/BNT/add_BNT_to_path.m"让它包含正确的工作路径。 4.BNT_HOME = 'FullBNT的工作路径'; 5.打开Matlab。 6.运行BNT需要Matlab版本在V5.2以上。 7.转到BNT的文件夹例如在windows下,键入 8.>> cd C:\kpmurphy\matlab\FullBNT\BNT 9.键入"add_BNT_to_path",执行这个命令。添加路径。添加所有的文件夹在Matlab的路 径下。 10.键入"test_BNT",看看运行是否正常,这时可能产生一些数字和一些警告信息。(你可 以忽视它)但是没有错误信息。 11.仍有问题?你是否编辑了文件?仔细检查上面的步骤。

比较简单的贝叶斯网络总结

贝叶斯网络 贝叶斯网络是一系列变量的联合概率分布的图形表示。 一般包含两个部分,一个就是贝叶斯网络结构图,这是一个有向无环图(DAG),其中图中的每个节点代表相应的变量,节点之间的连接关系代表了贝叶斯网络的条件独立语义。另一部分,就是节点和节点之间的条件概率表(CPT),也就是一系列的概率值。如果一个贝叶斯网络提供了足够的条件概率值,足以计算任何给定的联合概率,我们就称,它是可计算的,即可推理的。 3.5.1 贝叶斯网络基础 首先从一个具体的实例(医疗诊断的例子)来说明贝叶斯网络的构造。 假设: 命题S(moker):该患者是一个吸烟者 命题C(oal Miner):该患者是一个煤矿矿井工人 命题L(ung Cancer):他患了肺癌 命题E(mphysema):他患了肺气肿 命题S对命题L和命题E有因果影响,而C对E也有因果影响。 命题之间的关系可以描绘成如右图所示的因果关系网。 因此,贝叶斯网有时也叫因果网,因为可以将连接结点的弧认为是表达了直接的因果关系。 图3-5 贝叶斯网络的实例 图中表达了贝叶斯网的两个要素:其一为贝叶斯网的结构,也就是各节点的继承关系,其二就是条件概率表CPT。若一个贝叶斯网可计算,则这两个条件缺一不可。 贝叶斯网由一个有向无环图(DAG)及描述顶点之间的概率表组成。其中每个顶点对应一个随机变量。这个图表达了分布的一系列有条件独立属性:在给定了父亲节点的状态后,每个变量与它在图中的非继承节点在概率上是独立的。该图抓住了概率分布的定性结构,并被开发来做高效推理和决策。 贝叶斯网络能表示任意概率分布的同时,它们为这些能用简单结构表示的分布提供了可计算优势。 假设对于顶点xi,其双亲节点集为Pai,每个变量xi的条件概率P(xi|Pai)。则顶点集合X={x1,x2,…,xn}的联合概率分布可如下计算: 。 双亲结点。该结点得上一代结点。

贝叶斯网络

贝叶斯网络 一.简介 贝叶斯网络又称信度网络,是Bayes方法的扩展,目前不确定知识表达和推理领域最有效的理论模型之一。从1988年由Pearl提出后,已知成为近几年来研究的热点.。一个贝叶斯网络是一个有向无环图(Directed Acyclic Graph,DAG),由代表变量节点及连接这些节点有向边构成。节点代表随机变量,节点间的有向边代表了节点间的互相关系(由父节点指向其后代节点),用条件概率进行表达关系强度,没有父节点的用先验概率进行信息表达。节点变量可以是任何问题的抽象,如:测试值,观测现象,意见征询等。适用于表达和分析不确定性和概率性的事件,应用于有条件地依赖多种控制因素的决策,可以从不完全、不精确或不确定的知识或信息中做出推理。 二. 贝叶斯网络建造 贝叶斯网络的建造是一个复杂的任务,需要知识工程师和领域专家的参与。在实际中可能是反复交叉进行而不断完善的。面向设备故障诊断应用的贝叶斯网络的建造所需要的信息来自多种渠道,如设备手册,生产过程,测试过程,维修资料以及专家经验等。首先将设备故障分为各个相互独立且完全包含的类别(各故障类别至少应该具有可以区分的界限),然后对各个故障类别分别建造贝叶斯网络模型,需要注意的是诊断模型只在发生故障时启动,因此无需对设备正常状态建模。通常设备故障由一个或几个原因造成的,这些原因又可能由一个或几个更低层次的原因造成。建立起网络的节点关系后,还需要进行概率估计。具体方法是假设在某故障原

因出现的情况下,估计该故障原因的各个节点的条件概率,这种局部化概率估计的方法可以大大提高效率。 三. 贝叶斯网络有如下特性 1. 贝叶斯网络本身是一种不定性因果关联模型。贝叶斯网络与其他决策模型不同,它本身是将多元知识图解可视化的一种概率知识表达与推理模型,更为贴切地蕴含了网络节点变量之间的因果关系及条件相关关系。 2. 贝叶斯网络具有强大的不确定性问题处理能力。贝叶斯网络用条件概率表达各个信息要素之间的相关关系,能在有限的,不完整的,不确定的信息条件下进行学习和推理。 3. 贝叶斯网络能有效地进行多源信息表达与融合。贝叶斯网络可将故障诊断与维修决策相关的各种信息纳入网络结构中,按节点的方式统一进行处理,能有效地按信息的相关关系进行融合。 目前对于贝叶斯网络推理研究中提出了多种近似推理算法,主要分为两大类:基于仿真方法和基于搜索的方法。在故障诊断领域里就我们水电仿真而言,往往故障概率很小,所以一般采用搜索推理算法较适合。就一个实例而言,首先要分析使用那种算法模型: a.)如果该实例节点信度网络是简单的有向图结构,它的节点数目少的情况下,采用贝叶斯网络的精确推理,它包含多树传播算法,团树传播算法,图约减算法,针对实例事件进行选择恰当的算法; b.)如果是该实例所画出节点图形结构复杂且节点数目多,我们可采用近似推理算法去研究,具体实施起来最好能把复杂庞大的网络进行化简,然后在与精确推理相结合来考虑。

浅谈风险决策中的贝叶斯方法.

科技信息2008年第33期 SCIENCE &TECHNOLOGY INFORMATION 所谓决策, 就是决策者为了解决当前或未来可能遇到的各种问题,在若干可供选择的行动方案中,选择一个在某种意义下的最佳方案的过程。决策的正确与否会给企业带来收益或损失。因此,决策者应学会合理的决策分析,避免产生重大损失。由于决策环境中存在大量不确定因素和统计信息的不充分,决策必然带有某种程度的风险。可利用的信息是减少风险的有力手段。一般而言,信息越充分,决策环境的不确定性越小,风险也越小。 贝叶斯统计方法的基本思想就是要充分利用模型信息(假设的数学模型)、数据信息(抽样信息)和先验信息(经验资料),将先验分布和抽样分布整合成后验分布,以后验分布为决策的出发点。如果有新的信息(数据),则更新后验分布,实现递归决策方案。本研究通过实例,详细讨论了风险决策中如何利用贝叶斯公式有效整合相关信息,选择最优策略,并就最优决策进行解释。 1. 贝叶斯决策模型 每个风险决策问题都包括三个要素:自然状态(各种自然状态形成状态集)、决策者采取的行动(构成行动集)、决策者采取某个行动的后果(用收益或损失函数描述)。从这三个要素出发,可以得到不同的风险情景空间。 在通常决策问题中,决策者对自然界(或社会)会积累很多的经验和资料,这些先验信息虽不足以确定自然界(或社会)会出现什么状态,但在很多场合可以在状态集上给出一个先验分布。从中得知各种状态出现的概率估计。这种先验信息在做决策时可以使用,即依据先验概率分布及期望值准则进行最优方案的选择。由于先验概率有较强的主观色彩,不能完全反映客观规律,为了更好地进行决策,就必须进一步补充新信息,取得新数据,从而修正先验概率,得到后验概率。后验概率是根据概率论中贝叶斯公式进行计算,所以称这种决策为贝叶斯决策模型。 2. 实例

贝叶斯网络工具箱使用

matlab贝叶斯网络工具箱使用 2010-12-18 02:16:44| 分类:默认分类| 标签:bnet 节点叶斯matlab cpd |字号大中小订阅 生成上面的简单贝叶斯网络,需要设定以下几个指标:节点,有向边和CPT表。 给定节点序,则只需给定无向边,节点序自然给出方向。 以下是matlab命令: N = 4; %给出节点数 dag = false(N,N); %初始化邻接矩阵为全假,表示无边图C = 1; S = 2; R = 3; W = 4; %给出节点序 dag(C,[R,S])=true; %给出有向边C-R,C-S dag([R,S],W)=true; %给出有向边R-W,S-W discrete_nodes = 1:N; %给各节点标号 node_sizes = 2*ones(1,N); %设定每个节点只有两个值 bnet = mk_bnet(dag, node_sizes); %定义贝叶斯网络bnet %bnet结构定义之后,接下来需要设定其参数。 bnet.CPD{C} = tabular_CPD(bnet, C, [0.5 0.5]); bnet.CPD{R} = tabular_CPD(bnet, R, [0.8 0.2 0.2 0.8]); bnet.CPD{S} = tabular_CPD(bnet, S, [0.5 0.9 0.5 0.1]); bnet.CPD{W} = tabular_CPD(bnet, W, [1 0.1 0.1 0.01 0 0.9 0.9 0.99]); 至此完成了手工输入一个简单的贝叶斯网络的全过程。 要画结构图的话可以输入如下命令: G=bnet.dag; draw_graph(G); 得到:

贝叶斯网络

贝叶斯网络 2007-12-27 15:13 贝叶斯网络 贝叶斯网络亦称信念网络(Belief Network),于1985 年由Judea Pearl 首先提出。它是一种模拟人类推理过程中因果关系的不确定性处理模型,其网络拓朴结构是一个有向无环图(DAG)。它的节点用随机变量或命题来标识,认为有直接关系的命题或变量则用弧来连接。例如,假设结点E 直接影响到结点H,即E→H,则建立结点E 到结点H 的有向弧(E,H),权值(即连接强度)用条件概率P(H/E)来表示,如图所示: 一般来说,有 n 个命题 x1,x2,,xn 之间相互关系的一般知识可用联合概率分布来描述。但是,这样处理使得问题过于复杂。Pearl 认为人类在推理过程中,知识并不是以联合概率分布形表现的,而是以变量之间的相关性和条件相关性表现的,即可以用条件概率表示。如 例如,对如图所示的 6 个节点的贝叶斯网络,有 一旦命题之间的相关性由有向弧表示,条件概率由弧的权值来表示,则命题之间静态结构关系的有关知识就表示出来了。当获取某个新的证据事实时,要对每个命题的可能取值加以综合考查,进而对每个结点定义一个信任度,记作 Bel(x)。可规定 Bel(x) = P(x=xi / D) 来表示当前所具有的所有事实和证据 D 条件下,命题 x 取值为 xi 的可信任程度,然后再基于 Bel 计算的证据和事实下各命题

的可信任程度。 团队作战目标选择 在 Robocode 中,特别在团队作战中。战场上同时存在很多机器人,在你附近的机器人有可能是队友,也有可能是敌人。如何从这些复杂的信息中选择目标机器人,是团队作战的一大问题,当然我们可以人工做一些简单的判断,但是战场的信息是变化的,人工假定的条件并不是都能成立,所以让机器人能自我选择,自我推理出最优目标才是可行之首。而贝叶斯网络在处理概率问题上面有很大的优势。首先,贝叶斯网络在联合概率方面有一个紧凑的表示法,这样比较容易根据一些事例搜索到可能的目标。另一方面,目标选择很容易通过贝叶斯网络建立起模型,而这种模型能依据每个输入变量直接影响到目标选择。 贝叶斯网络是一个具有概率分布的有向弧段(DAG)。它是由节点和有向弧段组成的。节点代表事件或变量,弧段代表节点之间的因果关系或概率关系,而弧段是有向的,不构成回路。下图所示为一个简单的贝叶斯网络模型。它有 5 个节 点和 5 个弧段组成。图中没有输入的 A1 节 点称为根节点,一段弧的起始节点称为其末节点的母节点,而后者称为前者的子节点。 简单的贝叶斯网络模型 贝叶斯网络能够利用简明的图形方式定性地表示事件之间复杂的因果关系或概率关系,在给定某些先验信息后,还可以定量地表示这些关系。网络的拓扑结构通常是根据具体的研究对象和问题来确定的。目前贝叶斯网络的研究热点之一就是如何通过学习自动确定和优化网络的拓扑结构。 变量 由上面贝叶斯网络模型要想得到理想的目标机器人,我们就必须知道需要哪些输入变量。如果想得到最好的结果,就要求我们在 Robocode 中每一个可知的数据块都要模拟为变量。但是如果这样做,在贝叶斯网络结束计算时,我们会得到一个很庞大的完整概率表,而维护如此庞大的概率表将会花费我们很多的系统资源和计算时间。所以在开始之前我们必须要选择最重要的变量输入。这样从比赛中得到的关于敌人的一些有用信息有可能不会出现在贝叶斯网络之内,比如速

贝叶斯统计方法研究

贝叶斯方法 贝叶斯分类器是一种比较有潜力的数据挖掘工具,它本质上是一种分类手段,但是它的优势不仅仅在于高分类准确率,更重要的是,它会通过训练集学习一个因果关系图(有向无环图)。如在医学领域,贝叶斯分类器可以辅助医生判断病情,并给出各症状影响关系,这样医生就可以有重点的分析病情给出更全面的诊断。进一步来说,在面对未知问题的情况下,可以从该因果关系图入手分析,而贝叶斯分类器此时充当的是一种辅助分析问题领域的工具。如果我们能够提出一种准确率很高的分类模型,那么无论是辅助诊疗还是辅助分析的作用都会非常大甚至起主导作用,可见贝叶斯分类器的研究是非常有意义的。 与五花八门的贝叶斯分类器构造方法相比,其工作原理就相对简单很多。我们甚至可以把它归结为一个如下所示的公式: 选取其中后验概率最大的,即分类结果,可用如下公式表示

贝叶斯统计的应用范围很广,如计算机科学中的“统计模式识别”、勘探专家所采用的概率推理、计量经济中的贝叶斯推断、经济理论中的贝叶斯模型等。 上述公式本质上是由两部分构成的:贝叶斯分类模型和贝叶斯公式。下面介绍贝叶斯分类器工作流程: 1.学习训练集,存储计算条件概率所需的属性组合个数。 2.使用中存储的数据,计算构造模型所需的互信息和条件互信息。3.使用种计算的互信息和条件互信息,按照定义的构造规则,逐步构建出贝叶斯分类模型。 4.传入测试实例 .根据贝叶斯分类模型的结构和贝叶斯公式计算后验概率分布。.选取其中后验概率最大的类,即预测结果。 一、第一部分中给出了个定义。 定义给定事件组,若其中一个事件发生,而其他事件不发生,则称这些事件互不相容。 定义若两个事件不能同时发生,且每次试验必有一个发生,则称这些事件相互对立。 定义若定某事件未发生,而其对立事件发生,则称该事件失败

对贝叶斯估计的理解

对贝叶斯定理及其在信号处理中的应用的理解 信号估计中的贝叶斯方法是对贝叶斯定理的应用,要理解贝叶斯估计首先要理解贝叶斯定理。 一、 贝叶斯定理: 1. 贝叶斯定理的简单推导过程 贝叶斯定理就是条件概率公式(贝叶斯公式),所谓条件概率就是在事件A 发生的条件下事件B 发生的概率,常用(/)P B A 表示。一般情况下(/)P B A 与 (/)P A B 是不相等的。容易得到: (/)P B A = ()()P A B P A ,(/)P A B =() () P A B P B 所以 (/)P B A ()P A =(/)P A B ()P B , 对上式变形得贝叶斯公式: (/) P A B =(/)() () P B A P A P B (1) 若',A A 为样本空间的一个划分,可得全概率公式: ()P B =''(/)()(/)()P B A P A P B A P A + 所以(1)式可以改写为: '' (/)() (/)(/)()(/)() P B A P A P A B P B A P A P B A P A = + (2) 如果12n A A A ,,...,为样本空间的一个划分,由(2)式可得条件概率(/)j P A B 1 (/)() (/)(/)() j j j n i i i P B A P A P A B P B A P A == ∑ (3) (3)式就是当样本空间的划分为n 时的贝叶斯公式即贝叶斯定理。我们把其中的()(1,...)i P A i n =称为先验概率,即在B 事件发生之前我们对i A 事件概率的一个判断。(/)j P A B 称为后验概率,即在B 事件发生之后我们对i A 事件概率的重新评估。 2. 贝叶斯公式的事件形式

JAVA贝叶斯网络算法

贝叶斯网络 提纲: 最近工作: B-COURSE工具学习 BNT研究与学习 BNT相关实验及结果 手动建立贝叶斯网及简单推理 参数学习 结构学习 下一步工作安排 最近工作: 1. B-COURSE 工具学习 B-COURSE是一个供教育者和研究者免费使用的web贝叶斯网络工具。主要分为依赖关系建模和分类器模型设计。输入自己的研究数据,就可以利用该工具在线建立模型,并依据建立好的模型进行简单推理。 B-COURSE要求数据格式是ASCII txt格式的离散数据,其中第一行是各种数据属性变量,其余各行则是采集的样本,属性变量值可以是字符串也可以是数据,属性变量之间用制表符分割,缺失属性变量值用空格代替。读入数据后,在进行结构学习前,可以手动的选择需

要考虑的数据属性!生成过程中,可以手动确定模型,确定好模型后,可以选择JAVA playgroud,看到一个java applet程序,可以手动输入相应证据,从而进行简单推理。 B-COURSE的详细使用介绍,可详见 [url]http://b-course.cs.helsinki.fi/obc/[/url]。 B-COURSE工具隐藏了数据处理,算法实现等技术难点,所以对初学者来说,容易上手。但是却不能够针对不同的应用进行自主编程,缺乏灵活性。 2.贝叶斯网工具箱BNT的研究与学习 基于matlab的贝叶斯网络工具箱BNT是kevin p.murphy基于matlab语言开发的关于贝叶斯网络学习的开源软件包,提供了许多贝叶斯网络学习的底层基础函数库,支持多种类型的节点(概率分布)、精确推理和近似推理、参数学习及结构学习、静态模型和动态模型。 贝叶斯网络表示:BNT中使用矩阵方式表示贝叶斯网络,即若节点i到j有一条弧,则对应矩阵中(i,j)值为1,否则为0。 结构学习算法函数:BNT中提供了较为丰富的结构学习函数,都有: 1. 学习树扩展贝叶斯网络结构的TANC算法learn_struct_tan(). 2. 数据完整条件下学习一般贝叶斯网络结构的K2算法 learn_struct_k2()、贪婪搜索GS(greedy search)算法

贝叶斯网络的建造训练和特性

贝叶斯网络建造 贝叶斯网络的建造是一个复杂的任务,需要知识工程师和领域专家的参与。在实际中可能是反复交叉进行而不断完善的。面向设备故障诊断应用的贝叶斯网络的建造所需要的信息来自多种渠道,如设备手册,生产过程,测试过程,维修资料以及专家经验等。首先将设备故障分为各个相互独立且完全包含的类别(各故障类别至少应该具有可以区分的界限),然后对各个故障类别分别建造贝叶斯网络模型,需要注意的是诊断模型只在发生故障时启动,因此无需对设备正常状态建模。通常设备故障由一个或几个原因造成的,这些原因又可能由一个或几个更低层次的原因造成。建立起网络的节点关系后,还需要进行概率估计。具体方法是假设在某故障原因出现的情况下,估计该故障原因的各个节点的条件概率,这种局部化概率估计的方法可以大大提高效率。 贝叶斯网络训练 使用贝叶斯网络必须知道各个状态之间相关的概率。得到这些参数的过程叫做训练。和训练马尔可夫模型一样,训练贝叶斯网络要用一些已知的数据。比如在训练上面的网络,需要知道一些心血管疾病和吸烟、家族病史等有关的情况。相比马尔可夫链,贝叶斯网络的训练比较复杂,从理论上讲,它是一个NP-complete 问题,也就是说,对于现在的计算机是不可计算的。但是,对于某些应用,这个训练过程可以简化,并在计算上实现。 贝叶斯网络具有如下特性:

1。贝叶斯网络本身是一种不定性因果关联模型。贝叶斯网络与其他决策模型不同,它本身是将多元知识图解可视化的一种概率知识表达与推理模型,更为贴切地蕴含了网络节点变量之间的因果关系及条件相关关系。 2。贝叶斯网络具有强大的不确定性问题处理能力。贝叶斯网络用条件概率表达各个信息要素之间的相关关系,能在有限的,不完整的,不确定的信息条件下进行学习和推理。 3。贝叶斯网络能有效地进行多源信息表达与融合。贝叶斯网络可将故障诊断与维修决策相关的各种信息纳入网络结构中,按节点的方式统一进行处理,能有效地按信息的相关关系进行融合。 目前对于贝叶斯网络推理研究中提出了多种近似推理算法,主要分为两大类:基于仿真方法和基于搜索的方法。在故障诊断领域里就我们水电仿真而言,往往故障概率很小,所以一般采用搜索推理算法较适合。就一个实例而言,首先要分析使用那种算法模型: a.)如果该实例节点信度网络是简单的有向图结构,它的节点数目少的情况下,采用贝叶斯网络的精确推理,它包含多树传播算法,团树传播算法,图约减算法,针对实例事件进行选择恰当的算法; b.)如果是该实例所画出节点图形结构复杂且节点数目多,我们可采用近似推理算法去研究,具体实施起来最好能把复杂庞大的网络进行化简,然后在与精确推理相结合来考虑。 在日常生活中,人们往往进行常识推理,而这种推理通常是不准确的。例如,你看见一个头发潮湿的人走进来,你可能会认为外面下雨了,那你也许错了;如果你在公园里看到一男一女带着一个小孩,你可能会认为他们是一家人,你可能也犯了错误。在工程中,我们也同样需要进行科学合理的推理。但是,工程实际中的问题一般都比较复杂,而且存在着许多不确定性因素。这就给准确推理带来了很大的困难。很早以前,不确定性推理就是人工智能的一个重要研究领域。尽管许多人工智能领域的研究人员引入其它非概率原理,但是他们也认为在常识推理的基础上构建和使用概率方法也是可能的。为了提高推理的准确性,人们引入了概率理论。最早由Judea Pearl于1988年提出的贝叶斯网络(Bayesian Network)实质上就是一种基于概率的不确定性推理网络。它是用来表示变量集合连接概率的图形模型,提供了一种表示因果信息的方法。当时主要用于处理人工智能中的不确定性信息。随后它逐步成为了处理不确定性信息技术的主流,并且在计算机智能科学、工业控制、医疗诊断等领域的许多智能化系统中得到了重要的应用。 贝叶斯理论是处理不确定性信息的重要工具。作为一种基于概率的不确定性推理方法,贝叶斯网络在处理不确定信息的智能化系统中已得到了重要的应用,已成功地用于

案例1 贝叶斯方法

案例1 贝叶斯方法

(一)贝叶斯方法介绍 由贝果叶斯朔因公式,可以解决的推理问题. (|)j P B A 这个概率就是,可由贝叶斯公式给出. 12,,...,n j n B B B A A A B A 假设共有种两两互斥的原因会导致发生.当结果发生时,我们就会追朔发生的原因,需要计算由于原因导致发生的概率是多大?

12(|)(|),(|)...,(|).. j j n B P B A P B A P B A P B A 通常,我们会找那个最有可能发生的原因,也就是找,使得是中最大的一个这个推断方贝叶称之为斯方法法12,,,n B B B S ???: 称为的定义一个划分,若 12(),n i B B B S ??????= 不漏(),.i j ii B B i j =?≠ 不重1 B 2B 3B 4 B S n B

12,,,()0.()0 n i B B B S P B P A ???>>B s aye 设为的一个划分且对有公式:1()(|)(|)()(|)i i i n j j j P B P A B P B A P B P A B ==∑(),(|),1,2,...,. j j j j P B p P A B q j n ===设1q 1B ???S A 1 p 2 p n p 2q n q 2 B n B ()(|)i i P B P B A 先验概率后验概率 1 i i n j j j p q p q =∑=

(1702-1762) · 贝叶斯公式由英国数学家托马斯贝叶斯 提出.不过贝叶斯在世时并没有公开发表这一重大发现.而是他去世后两年才由他的朋友理查德普莱斯整理遗稿时发现并帮助发表的.

贝叶斯预测方法

贝叶斯预测模型的概述 贝叶斯预测模型是运用贝叶斯统计进行的一种预测。贝叶斯统计不同于一般的统计方法,其不仅利用模型信息和数据信息,而且充分利用先验信息。 托马斯·贝叶斯(Thomas Bayes)的统计预测方法是一种以动态模型为研究对象的时间序列预测方法。在做统计推断时,一般模式是: 先验信息+总体分布信息+样本信息→后验分布信息 可以看出贝叶斯模型不仅利用了前期的数据信息,还加入了决策者的经验和判断等信息,并将客观因素和主观因素结合起来,对异常情况的发生具有较多的灵活性。这里以美国1960—2005年的出口额数据为例,探讨贝叶斯统计预测方法的应用。 Bayes预测模型及其计算步骤 此处使用常均值折扣模型,这种模型应用广泛而且简单,它体现了动态现行模型的许多基本概念和分析特性。 常均值折扣模型 对每一时刻t常均值折模型记为DLM{1,1,V,δ},折扣因子δ,O<δ

推论2:μt的后验分布()~N [m t,C t],其中f t = m t? 1,Q t = R t + V。 由于Rt=Ct-1+Wt=Ct-1/δ,故有W?t = C t? 1(δ? 1? 1) W 其计算步骤为: (1)R t = C?t / δ; (2)Q t = R t + V; (3)A t = R t / Q t; (4)f t? 1 = m t? 1; (5)e t?y t?f t? 1; (6)C t = A t V; (7)m t?m t? 1 + A t e t 计算实例 根据The SAS System for Windows 9.0所编程序,对美国出口额(单位:十亿元)变化进行了预测。选取常均值折扣模型和抛物线回归模型。 美国出口额的预测,预测模型的初始信息为m0=304,Co=72,V=0。Ol,δ=0。8得到的1960—2006年的预测结果。见表2中给出了预测的部分信息(1980—2006年的预测信息)。 通过The SAS System for Windows 9.0软件回归分析得到抛物线预测方程: 表示年份见表3给出了1980-2006年的预测信息。 计算结果分析 对预测结果的准确度采用平均绝对百分误差(MAPE)分析。公式如下: 根据表l和表2对1980-2005年出口额的预测结果可知,常均值折扣模型所得结果的平均绝对百分误差MAPE=8。1745%,而由抛物线回归模型所得结果的平均绝对百分误差为9。5077%。由此可见这组数据中,使用贝叶斯模型预测的结果更为精确。

比较简单的贝叶斯网络总结

比较简单的贝叶斯网络总结

贝叶斯网络 贝叶斯网络是一系列变量的联合概率分布的图形表示。 一般包含两个部分,一个就是贝叶斯网络结构图,这是一个有向无环图(DAG),其中图中的每个节点代表相应的变量,节点之间的连接关系代表了贝叶斯网络的条件独立语义。另一部分,就是节点和节点之间的条件概率表(CPT),也就是一系列的概率值。如果一个贝叶斯网络提供了足够的条件概率值,足以计算任何给定的联合概率,我们就称,它是可计算的,即可推理的。 3.5.1 贝叶斯网络基础 首先从一个具体的实例(医疗诊断的例子)来说明贝叶斯网络的构造。 假设: 命题S(moker):该患者是一个吸烟者 命题C(oal Miner):该患者是一个煤矿矿井工人 命题L(ung Cancer):他患了肺癌 命题E(mphysema):他患了肺气肿

这两个条件缺一不可。 贝叶斯网由一个有向无环图(DAG)及描述顶点之间的概率表组成。其中每个顶点对应一个随机变量。这个图表达了分布的一系列有条件独立属性:在给定了父亲节点的状态后,每个变量与它在图中的非继承节点在概率上是独立的。该图抓住了概率分布的定性结构,并被开发来做高效推理和决策。 贝叶斯网络能表示任意概率分布的同时,它们为这些能用简单结构表示的分布提供了可计算优势。 假设对于顶点xi,其双亲节点集为Pai,每个变量xi的条件概率P(xi|Pai)。则顶点集合X={x1,x2,…,xn}的联合概率分布可如下计算: 。 双亲结点。该结点得上一代结点。 该等式暗示了早先给定的图结构有条件独立语义。它说明贝叶斯网络所表示的联合分布作为一些单独的局部交互作用模型的结果具有因式分解的表示形式。

贝叶斯网络结构学习及其应用研究_黄解军

收稿日期:2004-01-23。 项目来源:国家自然科学基金资助项目(60175022)。 第29卷第4期2004年4月武汉大学学报#信息科学版 Geomatics and Information Science of Wuhan U niversity V ol.29No.4Apr.2004 文章编号:1671-8860(2004)04-0315-04文献标识码:A 贝叶斯网络结构学习及其应用研究 黄解军1 万幼川1 潘和平 1 (1 武汉大学遥感信息工程学院,武汉市珞喻路129号,430079) 摘 要:阐述了贝叶斯网络结构学习的内容与方法,提出一种基于条件独立性(CI)测试的启发式算法。从完全潜在图出发,融入专家知识和先验常识,有效地减少网络结构的搜索空间,通过变量之间的CI 测试,将全连接无向图修剪成最优的潜在图,近似于有向无环图的无向版。通过汽车故障诊断实例,验证了该算法的可行性与有效性。 关键词:贝叶斯网络;结构学习;条件独立性;概率推理;图论中图法分类号:T P18;T P311 贝叶斯网络学习是贝叶斯网络的重要研究内容,也是贝叶斯网络构建中的关键环节,大体分为结构学习和参数学习两个部分。由于网络结构的空间分布随着变量的数目和每个变量的状态数量呈指数级增长,因此,结构学习是一个NP 难题。为了克服在构建网络结构中计算和搜索的复杂性,许多学者进行了大量的探索性工作[1~5]。至今虽然出现了许多成熟的学习算法,但由于网络结构空间的不连续性、结构搜索和参数学习的复杂性、数据的不完备性等特点,每种算法都存在一定的局限性。本文提出了一种新算法,不仅可以有效地减少网络结构的搜索空间,提高结构学习的效率,而且可避免收敛到次优网络模型的问题。 1 贝叶斯网络结构学习的基本理论 1.1 贝叶斯网络结构学习的内容 贝叶斯网络又称为信念网络、概率网络或因果网络[6] 。它主要由两部分构成:1有向无环图(directed acyclic graph,DAG),即网络结构,包括节点集和节点之间的有向边,每个节点代表一个变量,有向边代表变量之间的依赖关系;o反映变量之间关联性的局部概率分布集,即概率参数,通常称为条件概率表(conditional probability table,CPT),概率值表示变量之间的关联强度或置信度。贝叶斯网络结构是对变量之间的关系描 述,在具体问题领域,内部的变量关系形成相对稳定的结构和状态。这种结构的固有属性确保了结构学习的可行性,也为结构学习提供了基本思路。贝叶斯网络结构学习是一个网络优化的过程,其目标是寻找一种最简约的网络结构来表达数据集中变量之间的关系。对于一个给定问题,学习贝叶斯网络结构首先要定义变量及其构成,确定变量所有可能存在的状态或权植。同时,要考虑先验知识的融合、评估函数的选择和不完备数据的影响等因素。 1.2 贝叶斯网络结构学习的方法 近10年来,贝叶斯网络的学习理论和应用取得了较大的进展。目前,贝叶斯网络结构学习的方法通常分为两大类:1基于搜索与评分的方法,运用评分函数对网络模型进行评价。通常是给定一个初始结构(或空结构),逐步增加或删减连接边,改进网络模型,从而搜索和选择出一个与样本数据拟合得最好的结构。根据不同的评分准则,学习算法可分为基于贝叶斯方法的算法[3,7]、基于最大熵的算法[8]和基于最小描述长度的算法[1,2]。o基于依赖关系分析的方法,节点之间依赖关系的判断通过条件独立性(CI )测试来实现,文献[9,10]描述的算法属于该类算法。前者在DAG 复杂的情况下,学习效率更高,但不能得到一个最优的模型;后者在数据集的概率分布与DAG 同构的条件下,通常获得近似最优的模型[11],

贝叶斯公式的经验之谈

贝叶斯公式的经验之谈 一、综述 在日常生活中,我们会遇到许多由因求果的问题,也会遇到许多由果溯因的问题。比如某种传染疾病已经出现.寻找传染源;机械发生了故障,寻找故障源就是典型的南果溯因问题等。在一定条件下,这类由果溯因问题可通过贝叶斯公式来求解。以下从几个的例子来说明贝叶斯公式的应用。 文【1】主要应用贝叶斯公式的简单情形,从“疾病诊断”,“说谎了吗”,“企业资质评判”,“诉讼”四个方面讨论其具体应用。文【2】用市场预测的实例,介绍了贝叶斯公式在市场预测中的应用。贝叶斯市场预测能对信息的价值是否需要采集新的信息做出科学的判断。文【3】、文【4】介绍贝叶斯过滤技术的工作原理及技术原理,讨论了邮件过滤模块,通过分析研究该模块中垃圾邮件关键词的统计概率分布,提出了基于贝叶斯概率模型的邮件过滤算法,并对该算法的合理性和复杂度进行了分析。可以根据垃圾邮件内容的特征,建立贝叶斯概率模型,计算出一封邮件是垃圾邮件的概率,从而判断其是否为垃圾邮件。文【5】基于贝叶斯公式中概率统计的重要性与在日常生活中应用的广泛性,概述了贝叶斯统计的基本思想及其与其他统计学派的争论,并对作为贝叶斯统计基石的贝叶斯公式进行了归纳。 二.内容 1.疾病诊断. 资料显示, 某项艾滋病血液检测的灵敏度( 即真有病的人检查为阳性) 为95%, 而对没有得病的人,种检测的准确率( 即没有病的人检查为阴性) 为99%. 美国是一个艾滋病比较流行的国家, 估计大约有千分之一的人患有这种病. 为了能 有效地控制、减缓艾滋病的传播, 几年前有人建议对申请新婚登记的新婚夫妇进行这种血液检查. 该计划提出后, 征询专家意见, 遭到专家的强烈反对, 计划 没有被通过.

(翻译)嵌入式贝叶斯网络在人脸识别中的应用

嵌入式贝叶斯网络在人脸识别中的应用 Ara V Nefian 英特尔公司 微处理器研究实验室 Santa Clara ,CA 95052 ara.nefian @ https://www.doczj.com/doc/fc1807780.html, 摘要:本文所介绍的嵌入式贝叶斯网络(EBN)是嵌入式隐马尔可夫模型的一种概括,嵌入式隐马尔可夫模型最初应用于人脸和字符识别。一个EBN 递归的被定义为一个层次结构,在这个结构里,“双亲”层节点在嵌入式贝叶斯网络或者描述“孩子”层各节点的观察序列的条件下是一个贝叶斯网络。在嵌入式贝叶斯网络下,可以建立复杂的N 维数据,在保护他们的灵活性和局部尺度不变性的同时避免复杂的贝叶斯网络。在本文中,我们提出了嵌入式贝叶斯网络在人脸识别上的一种应用,并且描述了该方法与特征脸方法以及嵌入式隐马尔可夫模型方法相比的完善之处。 1、 简介: 本文介绍的动机是需要实际的统计模型与n 维的依赖,特别是依赖使用二维图像分析。而隐马尔可夫模型(HMM)是非常成功的应用于语音识别或手势识别,在这个模型里,随着时间的推移数据依赖于一维,相当于一个N 维隐马尔可夫模型已被证明是不切实际的,由于其复杂性会随着数据的大小而成倍增长[1]。对于图像识别,特别是人脸识别[2],其数据本质上是二维的,基于采用主成分分析([3],[4]),线性判别分析([5]),神经网络([6],[7]),和匹配追踪方法的模板与早期的几何特征表现相比有了改进。然而,这些方法不能概括在尺度,方向,或面部表情方面的广泛差异。近年来,几种近似二维隐马尔可夫模型与实际计算模型的方法被研究了,诸如伪二维隐马尔可夫模型或嵌入式隐马尔可夫模型应用于字符识别[1]或人脸识别[10],[11]。这些模型在相当大的程度上降低了早期基于隐马尔可夫模型的人脸识别方法的错误率[11]。在文献[12]中,Jia 和 Gray 制定了一个有效的近似于隐马尔可夫模型的训练和识别的方法,并将其应用于文本图像分析。本文介绍了一个系列嵌入式贝叶斯网络(EBN )并研究它们的人脸识别性能。嵌入式贝叶斯网络通过允许每一个隐马尔可夫模型被任意的贝叶斯网络所代替来概括嵌入式隐马尔可夫模型。本文主要介绍在动态贝叶斯网络如HMM 或耦合HMMs 基础上建立的一系列嵌入式贝叶斯网络,并将他们的人脸识别性能与现有的一些方法相比较。 2、 耦合隐马尔可夫模型 耦合隐马尔可夫模型(CHMM )可以被视为一个HMMs 的集合,一个数据流集合,其中每个HMM 在时间t 时的离散型节点受所有相关HMMs 在时间t-1时的离散型节点的影响。图1显示了一个CHMM ,其中正方形代表隐藏的离散节点而环形代表连续观测节点。用C 表示一个CHMM 通道的数量,并用i =[il,..,,ic]表示状态向量,描述通道1处隐藏节点的状 态,…,在一个特定时间t 的实例。(C 是耦合隐马尔可夫模型(CHMM )的一个通道,i = [i l ,….,i c ]是描述在通道1……C 隐藏节点的状态的状态向量,1q [,...]C t t t q q 代表一个特定的时间例如t 时状态。)耦合隐马尔可夫模型的要素有 ,在通道c 里的状态i c 的初始状态概率;

基于贝叶斯网络

基于贝叶斯网络 的大坝病害诊断研究 徐耀张利民贾金生 中国水利水电科学研究院 中国大坝协会 1香港科技大学

研究背景 截止2007年,全国病险水库座占所有水库数目有37000座,占所有水库数目(85000)的43%。(Chen 2007) 病险水库安全水库 上述病险水库大坝一般为三类坝,抗御洪水标准低,或工程有严重安全隐患不能按设计正常运行或工程有严重安全隐患,不能按设计正常运行。需要解决两个问题 需要解决两个问题: 诊断病害,查找原因;提出合适的除险加固措施2 提出合适的除险加固措施。

大坝病害 坝体-基础结构的病害: 渗流病害 渗流病害; 结构病害(变形、稳定等); … 辅助结构的病害: 1)多样性;2)相关性。 溢洪道病害; 涵管病害; … 大坝病害多样性及相关性的特征要求我们对病险大3 坝进行系统全局的病害诊断。

贝叶斯网络 贝叶斯网络定义为一个由若干变量(节点)构成的有其中变量(节点)之间的关系强度用向无环图,其中变量(节点)之间的关系强度用条件概率表达。(Pearl 1988) A 因果关系图 B + ?P(A) & P(B); P(C|A)P(C|B)P(C|A B)概率表 1 2 C ?P(C|A), P(C|B), P(C|A, B).?节点A,B,C代表变量; ?箭头1,2代表因果关系;?定量评价各个原因可能性;敏感性分析找出重要因子;应用 4 ? A,B称为父节点,C称为子节点. ?敏感性分析找出重要因子; ? 动态分析更新结果.

研究目标 建立一个基于贝叶斯网络的病险大坝病建立个基于贝叶斯网络的病险大坝病害诊断系统: 基于数据库的大坝病害的群体性诊断 基于数据库的大坝病害的群体性诊断;某一特定大坝病害的个体化诊断。 某特定大坝病害的个体化诊断。 5

Promedas—贝叶斯网络在医学诊断中的应用

Promedas—贝叶斯网络在医学诊断中的应用1. 综述 现代的医学诊断是一个非常复杂的过程,要求具备患者准确的资料,以及对医学著作深刻的理解,还有多年的临床经验。这样的情况尤其适用在内科诊断中,因为它涵盖了一个巨大范围的诊断门类。而且也因此使得内科诊断成为了一个需要专攻的学科。 诊断是一个过程。通过这个过程,医生为病人的症状寻找拥有最佳解释的病因。这个研究的过程是一个连续的过程,即病人的症状会指示医生对其进行一些初步的检查。基于这些初步检查的结果,一个关于可能的病因的试探性的假设形成了。这个过程可能会在若干个循环中推进,直到病人被以充分的确定性来做了诊断,而且其症状的病因也被建立起来。 诊断过程的一个很重要的部分是标准化诊断的形式。这里有若干的规则来限制:依据病人的症状以及检验的结果,什么样的检查应该被执行,它们的顺序应该是什么样的。这些规则形成了一个决策树,其节点是诊断的中间过程;依据当前诊断的结果,其枝干指向额外的检查。这些规则是由每个国家的一个医学专家委员会制定的。 在平时遇到的大部分诊断里,上面提到的指南已经足以准确的指导我们做出正确的诊断。对于这种“一般”的情形,一个“决策支持系统”是没有必要的。在10%~20%的案例中,进行诊断的过程是很困难的。因为对于正确的诊断结果的不确定性,以及对下一步进行什么检查的不确定性,不同的医生在不同的诊断过程中做出的决策是不一样的,而且缺乏“推理”。在这些案例中,通常一个专攻此类疾病的专家或者详细描述此类疾病的著作将会被咨询。对于这种困难的情形,基于计算机的决策支持系统可以作为一个可供选择的信息来源。而且,这样一个由计算机提供帮助的决策支持系统在指出其他一些原来可能被忽略的疾病方面是有帮助的。它可能就此导致一个被提高的,更加理性的诊断过程,并且更见高效和廉价。

相关主题
文本预览
相关文档 最新文档