当前位置:文档之家› 800MHzCDMA系统对900MHzGSM系统的干扰分析

800MHzCDMA系统对900MHzGSM系统的干扰分析

800MHzCDMA系统对900MHzGSM系统的干扰分析
800MHzCDMA系统对900MHzGSM系统的干扰分析

多系统萎缩最佳治疗法是什么-多系统萎缩吃什么药

如对您有帮助,可购买打赏,谢谢多系统萎缩最佳治疗法是什么 导语:多系统萎缩,这是什么病?我想,很多人都是不知道的吧。也是,一般我们正常情况下,除了那些常见的疾病之外,多很多的一些疾病都是不知道的 多系统萎缩,这是什么病?我想,很多人都是不知道的吧。也是,一般我们正常情况下,除了那些常见的疾病之外,多很多的一些疾病都是不知道的有的可以说是连听都没有听说过呢。不过,随着经济的飞速发展,越来越多的人学会资源共享,很多疾病我们都是可以从网上了解到的呢。下面就为大家介绍介绍这多系统萎缩的最佳治疗法吧。 多系统萎缩(multiple system atrophy,MSA)是成年期发病、散发性的神经系统变性疾病,临床表现为不同程度的自主神经功能障碍、对左旋多巴类药物反应不良的帕金森综合征、小脑性共济失调和锥体束征等症状。由于在起病时累及这三个系统的先后不同,所以造成的临床表现各不相同。但随着疾病的发展,最终出现这三个系统全部损害的病理表现和临床表现。国外流行病学调查显示50岁以上人群中MSA的年发病率约为3/10万,中国尚无完整的流行病学资料。 多系统萎缩的病情缓慢发展进行,若不尽早治疗,患者也将会承受更多的痛苦,而且延误了治疗时间,治疗的难度也会更大。下面我们来看看治疗多系统萎缩的有效方法有哪些呢? 多系统萎缩的治疗: .综合治疗:可给予多巴胺替代治疗、单胺氧化酶-B抑制剂或多巴胺受体激动剂,但大多数患者反应不佳,或疗效只能维持短时间。 .对症治疗:控制感染;对发生夜间呼吸暂停等症状者,设法改善通气,严重患者可行气管切开手术。 .其他:维生素E、三磷腺苷(ATP)、胞磷胆碱(胞二磷胆碱)、毒扁豆预防疾病常识分享,对您有帮助可购买打赏

TD-LTE干扰分析、排查及解决措施(1001)--经典

TD-LTE干扰分析、排查及解决措施(1001)--经典

江西TD-LTE干扰分析进展及排除思路 目录 一、背景 (3) 二、TDD-LTE系统间干扰情况 (3) 三、干扰分类 (5) 3.1阻塞干扰 (5) 3.2杂散干扰 (9) 3.3GSM900二次谐波/互调干扰 (12) 3.4系统自身器件干扰 (14) 3.5外部干扰 (16) 四、排查方法 (17) 4.1资源准备 (17) 4.2数据采集 (18) 4.3制作RB干扰曲线分布图 (18) 4.4现场排查方法 (19) 五、江西LTE现网情况 (20) 5.1各地市干扰统计情况 (20) 5.2各地市干扰分布情况 (20) 六、新余现场干扰排查整治 (22) 6.1干扰样本站点信息 (23) 6.2样本站点案例 (24) 七、九江FDD干扰专题 (37) 7.1九江现网情况 (37) 7.2干扰样本点信息 (38) 7.3受干扰站点与电信FDD站点分布情况 (39) 7.4九江彭泽县FDD干扰排查 (39) 7.5抽样排查处理 (40) 7.6电信FDD干扰解决建议 (46) 八、后续计划 (46)

一、背景 ●使用频率:工信部批准电信和联通混合组网试点开展,随着1875~1880MHz保护带推移至1880~1885MHz,不排除电信不加滤波器提前使用1880频段; ●设备能力:我司早期采购设备抗阻塞能力不满足559号文要求导致TDS升级TDD的部分双模站点现网使用存在阻塞干扰; ●工程施工:现场施工问题导致各制式/系统间隔离度不够带来的干扰。 二、TDD-LTE系统间干扰情况 TD-LTE频 段容易受到的干扰

最新tdlte干扰分析、排查及解决措施(1001)经典资料

江西TD-LTE干扰分析进展及排除思路 目录 一、背景 (2) 二、TDD-LTE系统间干扰情况 (2) 三、干扰分类 (3) 3.1阻塞干扰 (3) 3.2杂散干扰 (5) 3.3GSM900二次谐波/互调干扰 (6) 3.4系统自身器件干扰 (8) 3.5外部干扰 (9) 四、排查方法 (9) 4.1资源准备 (9) 4.2数据采集 (10) 4.3制作RB干扰曲线分布图 (10) 4.4现场排查方法 (10) 五、江西LTE现网情况 (11) 5.1各地市干扰统计情况 (11) 5.2各地市干扰分布情况 (11) 六、新余现场干扰排查整治 (13) 6.1干扰样本站点信息 (14) 6.2样本站点案例 (14) 七、九江FDD干扰专题 (24) 7.1九江现网情况 (24) 7.2干扰样本点信息 (25) 7.3受干扰站点与电信FDD站点分布情况 (26) 7.4九江彭泽县FDD干扰排查 (26) 7.5抽样排查处理 (27) 7.6电信FDD干扰解决建议 (32) 八、后续计划 (33)

一、背景 ●使用频率:工信部批准电信和联通混合组网试点开展,随着1875~1880MHz保护带 推移至1880~1885MHz,不排除电信不加滤波器提前使用1880频段; ●设备能力:我司早期采购设备抗阻塞能力不满足559号文要求导致TDS升级TDD的 部分双模站点现网使用存在阻塞干扰; ●工程施工:现场施工问题导致各制式/系统间隔离度不够带来的干扰。 二、TDD-LTE系统间干扰情况

上行干扰影响 干扰对TD-LTE上行性能影响如下表: 三、干扰分类 根据射频特性和频谱关系分析出F 频段TD-LTE 基站会受到电信与联通FDD-LTE、DCS1800、GSM900 和PHS基站的干扰,按照干扰类型又分为阻塞干扰、杂散干扰、谐波/互调干扰等。 注:F 频段TD-LTE 终端也会对DCS1800 终端造成干扰。经分析由于DCS 终端抗阻塞能力较强且终端间相对位置随机性较大,因此干扰强度不高。 3.1 阻塞干扰(注:全频段干扰) 由于TD-LTE 基站接收滤波器的非理想性,在接收有用信号的同时,还将接收到来自邻频的1800-1880MHz 频段基站的发射信号,造成TD-LTE 基站接收机灵敏度损失,严重时甚至将无法工作,称为阻塞干扰。 DCS1800、友商FDD-LTE均工作在以上频段中,可能F 频段TD-LTE 基站的抗阻塞能力不足时,将产生严重的阻塞干扰。 (注: 阻塞干扰:问题出在我们接收机滤波器性能不好,没有滤除掉带外强干扰信号,导致接收机性能下降,出现阻塞干扰 杂散干扰:问题出在对方发射机滤波器性能上,干扰信号落到我们接收机频带内,造成杂散干扰) 阻塞干扰示意图

多系统萎缩模板

姓名: 顾龙保病区: 14 床号: 11 ID号: 10320290 第 1 次入院记录 姓名:顾龙保部职别:南京市白下区御河新村1-606 性别:男入院日期:2008年3月18日 年龄: 57岁病史采取日期: 2008年3月18日 婚否:已病史记录日期: 2008年3月18日 籍贯:江苏病史陈述者:患者本人及家属 民族:汉族可靠程度:可靠 主诉:行走不稳4年 现病史:患者4年前无明显诱因出现双下肢无力,行走、骑车不稳,易摔倒,说话缓慢、含糊不清呈吟诗样,去“上海华山医院”就诊,诊断为:“小脑萎缩”,给予口服活血化瘀药物治疗,症状未缓解。其后间断治疗,病情逐渐加重,并逐渐出现手足活动能力下降,写字不整齐,影响日常生活,曾行“丹参、银杏”等药物治疗,效果不佳。2月前不慎摔倒,静息休息一月后出现行走困难,下楼需要扶手,喝水呛咳,无吞咽困难。为求进一步治疗来我院就诊,门诊以“多系统萎缩”收入我科。起病后患者饮食、精神可,无畏寒、发热,无头痛、呕吐。体重无明显下降。大便干燥,需要开塞露治疗,小便等待,细长。平素出汗较多,睡眠可,鼾声较前变调。 过去史:既往体健,否认高血压、糖尿病、慢性咳嗽病史。否认结核、肝炎等传染病史,否认有手术、外伤、输血史。否认青霉素、磺胺等药物过敏史,预防接种史不详。 个人史:出生于原籍,无疫区、牧区接触史,否认特殊化学物质、放射性物质、毒物接触史,已婚,有1子,爱人及儿子体健。 家族史:家族中无遗传病史。 体格检查 体温:36.4℃脉搏:76次/分呼吸:20次/分血压:120/80mmHg 发育正常,营养中等,痛苦面容,神清清,语语言欠流利,扶入病室,自动体位,查体合作。全身皮肤粘膜无黄染及出血,无蜘蛛痣,全身浅表淋巴结未触及。头颅无畸形、压痛及伤痕。五官端正。眉毛无脱落,眼睑无水肿,巩膜无黄染,双侧瞳孔等大同圆,眼球活动度正常,对光反射灵敏。耳廓无畸形,外耳道无分泌物,乳突无压痛。鼻

多系统合路干扰分析

多系统合路的干扰分析 1、主题简单解读 多系统:运营商多,制式多。中国移动GSM900,DCS1800,TD;中国联通GSM900,DCS1800,WCDMA;中国电信CDMA800,CDMA2000,另外还有WLAN等等。 合路:由于多运营商、多制式、多频段,出于施工协调、美观、成本等方面的考虑,合路应运而生。 ?一次布放,施工简单; ?美观; ?综合造价低廉,共用天馈分布,减少重复建设; ?系统可扩展性强,升级改造周期短。 一般合路,有合路器方式,还有POI方式,也就是Point Of Interface,多系统合路平台,以及两种方式的混合使用。对于合路系统较少的中小规模场景(如:酒店宾馆、写字楼、住宅楼等),可以采用多系统频段合路器来共用室内覆盖系统;对于合路系统较多的复杂场景(如:地铁、机场、大型场馆等),建议采用POI构建的室内覆盖系统。 干扰:合路有好处有必要,但是合路后,就难免产生一些干扰信号,或者不同频率间也会相互干扰。 2、干扰的分类 系统间的干扰主要分为以下的三类: 1)杂散干扰 杂散干扰就是一个系统的发射频段外的杂散发射落入到了另一个系统的接收频段内而可能造成的干扰,(图)杂散干扰对系统最直接的一个影响就是降低了系统的接收灵敏度。 2)接收机阻塞

阻塞干扰,就是各系统信号及其频率组合成分,落在各系统中某基站接收机所接收的信道带宽之外,却仍然能进入该基站接收机,当此干扰大于相关标准中所规定的干扰电平时,就会引起接收机接收灵敏度的下降,恶化接收机的性能。 3)系统间互调干扰 互调干扰是指两个或以上不同的频率作用于非线性电路或器件时,频率之间相互作用所产生的新频率落入接收机的频段内所产生的干扰。通信系统中的无源器件的线性度一般优于有源器件,但也可能产生互调干扰。 互调干扰的常见形式及影响最大的是三阶互调干扰,可能产生干扰的频率组合有2f1-f2、2f1-f3、2f2-f1、2f2-f3、2f3-f1、2f3-f2、f1+f2-f3、f1-f2+f3、f2+f3-f1。这些频率组合可归纳为2f-f2(一型互调)及f1+f2-f3(二型互调)两种类型。互调干扰集中在各系统的下行输出,在进行合路时的互调产物上,主要表现为三阶互调干扰。如果互调产物落在其中某一个系统的上行接收频段内,从而对该系统基站的接收灵敏度造成一定的影响。 3、我国移动通信系统频谱划分 根据信息产业部相关频率规划的规定,目前我国移动通信系统频谱划分具体如下所示:表一各系统间的工作频段 系统制式上行频率 (MHz) 下行频率(MHz)备注 GSM900 890~915 935~960 移动 (MHz) 联通 (MHz)890-909 935-954 909-915 954-960 GSM1800 1710~1755 1805~1850 移动联通1710~1725 1805~1820 1745~1755 1840~1850 CDMA800 825~835 870~880 电信PHS 1900~1920 退网 TD-SCDMA 2010~2025(B频段) 1880~1900(A频段-已逐渐使用) 1900~1920(A频段-PHS退网后用) 移动 CDMA 1920~1935 2110~2125 电信

LTE干扰处理

LTE干扰处理_ 王楠 一、TD-L TE干扰概述 1.TD-LTE频段分析 目前TD-LTE主要使用三个频段,F、D、E。

2.TD-LTE内外干扰分析 1)内部干扰 交叉时隙干扰:上下行时隙干扰 远距离同频干扰:站A和站B间距>GP传播距离 GPS失步:失步基站与周围基站上下行收发不一致,相互干扰 小区间同频干扰:同PCI同mod3 设备故障:RRU故障;天馈故障 2)外部干扰 同频干扰:杂散干扰,互调干扰,谐波干扰 异频干扰:阻塞干扰

3)干扰表现 上行底噪≥=105db ping包延时大于正常小区,或无法ping成功KPI:切换、接通、掉线 4)外部干扰分频段分析

①F频点干扰状况 ?DCS1800阻塞干扰:16~30dB底噪抬升,UL吞吐量损失严重,甚至无法建立连 接 ?DCS1800杂散干扰:5dB的底噪抬升, UL吞吐量损失约10% ?DCS1800互调干扰:8~16dB的底噪抬升, UL吞吐量损失超过30% ?GSM900谐波干扰:约5dB的底噪抬升 ?PHS杂散:一般情况下轻微干扰,严重时TD-S或TD-L无法建立连接

②E频段干扰状况 ?E频段和Wifi相隔30MHz,比较近,且Wifi不遵循3GPP协议,射频指标比较差?普通室分系统下,80dB的合路器基本可以消除干扰,两者频率越远,受到的影响 越小。 ?外挂情况下,空间隔离需1m以上 ③D频段干扰状况 ?从频谱状况来说,存有各运营商TD-LTE间的干扰、与雷达间、射频天文、北斗、 Wifi以及MMDS、Wimax间的干扰 ?MMDS和WiMAX对D频段的同频干扰,可使底噪抬升20dB以上,严重时更会 导致TD-LTE业务无法建立连接

POI系统设计之多频合路干扰分析篇

POI系统设计之多频合路干扰分析篇 基配事业部产品研发部

本文目录 目录 一、P OI系统在室分系统中的应用场景及功能介绍; (3) 二、多频合路干扰分析 (5) 2.1、杂散干扰(介绍及其计算); (7) 2.2、阻塞干扰(介绍及其计算); (9) 2.3、互调干扰(介绍及其计算); (11) 三、天线系统和空间隔离(介绍及其计算); (14) 四、P OI设计中杂散干扰的考量; (16) 4.1室分各系统设计参数列表 (18) 4.2国内通信制式的常见干扰举例; (19) 4.3POI系统的分合缆设计特点; (22) 五、P OI系统干扰设计之工程案例举例; (24) 附表1:基站系统发射机隔离度列表; (30) 附表2:有源设备(直放站)杂散辐射规范要求列表; (36) 附表3:阻塞指标列表; (40) 附表4:共站址天线隔离度计算软件; (42) 附表5:互调计算工具以主流互调测试仪表介绍;; (42)

一、P OI系统在室分系统中的应用场景及功能介绍; 多系统接入平台(POI:Point Of Interface) 背景:室内分布系统合路建设随着近年来通信、电子技术以及相关工业的发展变得可行并且成熟。 ●在天线方面,宽频天线的应用使得一副天线就可以满足多个系统不同频段的信号覆 盖。 ●在机房使用方面,同时,由于微电子技术的长足发展、通信设备小型化,基站所占 的机房面积也大大减小,一个大机房就可以满足多家运营商几套设备的布放。 ●在射频和微波技术方面,目前采用的基于高Q多腔滤波器技术的POI合路平台, 能满足目前多系统合路建设的需要。 POI作为多种通信系统和多个区域的分布系统之间的界面,是在多系统信号分合路过程中的关键部分。 功能及作用:在室内覆盖系统中,POI的应用将避免错综复杂的走线,避免天花板上安装多个全向天线,避免了电梯井道内布放多个板状天线、多根同轴电缆;在地铁隧道覆盖系统中,采用POI之后,多系统信号可以共用一根泄漏电缆进行传输、覆盖,显著的减小了运营商的投资、降低了施工难度。 各路收发信机信号都通过独立的端口接入POI,混合后输出到相应分布系统的端口;同时将来自不同区域分布系统端口的信号混合后,再按需要分别送到信号源的上行端口。POI 是各通信系统汇集点,同时也是矛盾的焦点,好的POI设备不仅要求能够合路多系统信号而且要能够解决多系统合路带来的诸多问题,并且能够有简单的接口界面,有效的监控和可升级性,为解决室内空间资源的问题起到积极作用。

关于LTE干扰处理

关于LTE干扰处理 一、TD-L TE干扰概述 1.TD-LTE频段分析 目前TD-LTE主要使用三个频段,F、D、E。

2.TD-LTE内外干扰分析 1)内部干扰 ?交叉时隙干扰:上下行时隙干扰 ?远距离同频干扰:站A和站B间距>GP传播距离 ?GPS失步:失步基站与周围基站上下行收发不一致,相互干扰?小区间同频干扰:同PCI同mod3 ?设备故障:RRU故障;天馈故障 2)外部干扰 ?同频干扰:杂散干扰,互调干扰,谐波干扰 ?异频干扰:阻塞干扰

3)干扰表现 上行底噪≥=105db ping包延时大于正常小区,或无法ping成功KPI:切换、接通、掉线 4)外部干扰分频段分析

①F频点干扰状况 ?DCS1800阻塞干扰:16~30dB底噪抬升,UL吞吐量损失严重,甚至无法建立连 接 ?DCS1800杂散干扰:5dB的底噪抬升, UL吞吐量损失约10% ?DCS1800互调干扰:8~16dB的底噪抬升, UL吞吐量损失超过30% ?GSM900谐波干扰:约5dB的底噪抬升 ?PHS杂散:一般情况下轻微干扰,严重时TD-S或TD-L无法建立连接

②E频段干扰状况 ?E频段和Wifi相隔30MHz,比较近,且Wifi不遵循3GPP协议,射频指标比较差?普通室分系统下,80dB的合路器基本可以消除干扰,两者频率越远,受到的影响 越小。 ?外挂情况下,空间隔离需1m以上 ③D频段干扰状况 ?从频谱状况来说,存有各运营商TD-LTE间的干扰、与雷达间、射频天文、北斗、 Wifi以及MMDS、Wimax间的干扰 ?MMDS和WiMAX对D频段的同频干扰,可使底噪抬升20dB以上,严重时更会 导致TD-LTE业务无法建立连接

多系统萎缩,多系统萎缩的症状,多系统萎缩治疗【专业知识】

多系统萎缩,多系统萎缩的症状,多系统萎缩治疗【专业知识】 疾病简介 多系统萎缩(multiple system atrophy,MSA)是由Graham和Oppenheimer于1969年首次命名的一组原因不明的散发性成年起病的进行性神经系统变性疾病,主要累及锥体外系、小脑、自主神经、脑干和脊髓。本综合征累及多系统,包括纹状体黑质系及橄榄脑桥小脑系,脊髓自主神经中枢乃至脊髓前角、侧索及周围神经系统。临床上表现为帕金森综合征,小脑、自主神经、锥体束等功能障碍的不同组合,故临床上可归纳为3个综合征:主要表现为锥体外系统功能障碍的纹状体黑质变性(SND),主要表现为自主神经功能障碍的Shy-Drager综合征(SDS)和主要表现为共济失调的散发性橄榄脑桥小脑萎缩(OPCA)。实际上,这些疾病之间常常难以截然划分。Graham和Oppenheimer总结文献中具有类似临床症状和体征的病例,提出这3个综合征是不同作者对神经系统一个独立的变性疾病的分别描述和命名,它们之间仅存在着受累部位和严重程度的差异,在临床上表现有某一系统的症状出现较早,或者受累严重,其他系统症状出现较晚,或者受累程度相对较轻。神经病理学检查结果证实各个系统受累的程度与临床表现的特征是完全一致的。目前,在MEDLINE数据库中,散发型OPCA、SDS和SND均归类在MSA中。 疾病病因 一、发病原因 MSA的病因不明。目前涉及的有脂质过氧化损伤、酶代谢异常、慢病毒感染、神经元凋亡、少突胶质细胞胞质内包涵体等,导致的进行性神经系统多系统变性。 二、发病机制 1.少突胶质细胞胞质内包涵体

少突胶质细胞胞质内包涵体(oligodendroglial cytoplasmic inclusion)是MSA的组织学特点,少突胶质细胞在发病机制 中起重要作用。过去多认为在MSA病理改变中,神经元变性、脱失是原发性的,是病理改变的基础,而脱髓鞘是继发性的。自发现少突胶质细胞胞质内包涵体以来,有些作者对MSA的发病机制提出了新的观点,认为少突胶质细胞在发病过程中起着与神经元变性同样重要的作用,理由是银染和免疫组化显示少突胶质细胞的细胞内异常改变比神经元本身的改变更明显,更具特征。Nakazato Yoichi等观察到的少突胶质细胞胞质内包涵体的分布部位和密度与疾病变性的严重程度一致。但也有作者认为少突胶质细胞胞质内包涵体数量的多少与MSA病变的严重程度无明显相关性。Papp等观察到少突胶质细胞密度较高的部位是在初级运动皮质、锥体和锥体外系统、皮质小脑投射纤维、脑干的自主神经网络中枢。少突胶质细胞的主要功能就是维护有髓纤维髓鞘的完整性,当少突胶质细胞内结构异常时,其功能必然受到影响,这可能是导致髓鞘脱失的重要原因。 2.神经元凋亡有人认为其发病机制 与神经元凋亡有关。神经系统存在两种类型的神经元死亡:坏死和凋亡(apoptosis)。发生凋亡时细胞膜保持着完整性,仅表现为细胞体积变小,细胞器结构和形态均存在,溶酶体成分保存,核染色质浓缩,内源性DNA内切酶激活,使DNA降解产生DNA片段和凋亡小体。 3.酶代谢异常参见橄榄脑桥小脑萎缩。 4.病理改变大体标本可见小脑、脑干和脊髓萎缩、变细;镜下上述特定部位的神经细胞变性脱失,胶质细胞增生和有髓纤维脱髓鞘。病理改变的主要部位在脑桥桥横纤维、脑桥基底部核,延髓下橄榄核、迷走神经背核、蓝斑,小脑中、下脚,小脑齿状核及半球,中脑黑质和基底核的苍白球、尾状核、壳核,脊髓中间外侧柱细胞、前角细胞等部位的神经元丧失和胶质增生;皮质脊髓束变性、鞘脱失。周围神经主要为脱髓鞘病变。 (1)黑质纹状体和蓝斑病变:是导致患者发生帕金森综合征的主要原因,神经元丢失以黑质致密带外侧1/3为著,黑质色素细胞消失;早期出现纹状体的神经元减少,以壳核的后背侧2/3最严重;苍白球广泛受累,蓝斑神经元减少;上述病理改变与特发性帕金森病完全一致。 (2)桥核和小脑蒲肯野细胞病变:临床以OPCA为其突出症状。神经元丢失显著的部位有桥核、小

LTE室分多系统合路干扰分析与整改措施

LTE室分多系统合路干扰分析与整改措施 中讯邮电咨询设计院有限公司 2014年06月

目次 1干扰问题现象 (3) 2干扰站点比例 (3) 3 干扰问题原因 (3) 3.1互调干扰分析 (3) 3.2互调干扰的影响因素 (6) 3.3功率容量影响分析 (7) 4建议整改措施 (9) 4.1整改目标 (9) 4.2整改方案 (9) 4.3其他工作要求 (9)

LTE室分多系统合路干扰分析与整改措施目前,广东联通1800MHz FDD-LTE室分建设方案大多为合路至原室分系统,开通后出现了WCDMA室分底噪异常抬升的干扰问题,严重影响了现网3G用户。为解决此类问题,广东联通网络建设部特制定《LTE室分多系统合路干扰分析与整改措施》用于指导LTE室分工程建设。 1干扰问题现象 LTE室分合路至原系统激活之后,WCDMA室分RTWP有1-5dB的抬升;LTE模拟下行加载100%后,部分WCDMA室分RTWP有15-20dB的明显抬升。干扰现象如下图所示: LTE室分多系统合路干扰示意图1(D/W/L合路) 2干扰站点比例 前期专项研究工作主要在广州开展,广州FDD规模为560站,其中合路站点共374站,占比66.8%。目前已开通LTE室分168个,其中方案为合路站点111个;存在干扰站点15个,占比13.5%。 广分LTE站点互调干 扰处理进度0512.xlsx 3 干扰问题原因 3.1互调干扰分析 无源互调是射频信号路径中两个或多个射频信号因各种无源器件 (例如天线、电缆或连接器) 的非线性特性引起的混频干扰信号。在大功率、多信道系统中,铁磁材料、异种金属焊接点、金属氧化物接点和松散的射频连接器都会产生信号

LTE干扰

TD-LTE系统干扰分析 随着新技术的不断出现以及移动通信理念的变革,为了把握新一轮的技术浪潮,保持在移动通信领域的领导地位,2004年底3GPP启动了关于3G演进,即LTE的研究与标准化工作。随着LTER8、R9标准的冻结,LTE正日益成为业界的热点。 LTE系统同时定义了频分双工(FrequencyDivisionDuplexing,FDD) 和时分双工(Time Division Duplexing, TDD) 两种方式,但由于无线技术的差异、使用频段的不同以及各个厂家的利益等因素,LTE FDD 支持阵营更加强大,标准化与产业发展都领先于LTE TDD。2007年11月,3GPP RAN1会议通过了27家公司联署的LTE TDD融合帧结构的建议,统一了LTE TDD的两种帧结构。融合后的LTE TDD帧结构是以TD-SCDMA 的帧结构为基础的,这就为TD-SCDMA成功演进到LTE乃至4G标准奠定了基础。 在工信部TD-LTE工作组的领导下,规范制定、MTNet测试和6城市试验网正在紧张有序地进行。随着技术标准不断完善、产业链不断成熟、系统能力不断提高,TD-LTE将很快进入商用时代。 众所周知,干扰是影响网络质量的关键因素之一,对通话质量、掉话、切换、拥塞以及网络的覆盖、容量等均有显著影响。如何降低或消除干扰是TD-LTE网络性能能否充分发挥的重要环节,同时也是网络规划、优化的重要任务之一。 TD-LTE组网干扰分内部干扰和外部干扰,内部干扰包括同频组网干扰和异频干扰,外部干扰又包括系统间干扰及其它随机干扰。本文将重点分析系统内的同频和异频干扰,以及系统间与TD-SCDMA的干扰。 1. 系统内干扰 TD-LTE的组网包括同频和异频两种方式,对于同频组网,整个系统覆盖范围内的所有小区可以使用相同的频带为本小区内的用户提供服务,因此频谱效率高。但是对各子信道之间的正交性有严格的要求,否则会导致干扰。对于异频组网,由于频率的不同产生了一定的隔离度,但是仍然需要进行合理的频率规划,确保网络干扰最小,同时由于受限于频带资源,所以存在着干扰控制与频带使用的平衡问题。 1.1.同频组网 1.1.1. 小区内干扰 由于OFDM的各子信道之间是正交的,这种特点决定了小区内干扰可以通过正交性加以克服。如果由于载波频率和相位的偏移等因素造成子信道间的干扰,可以在物理层通过采用先进的无线信号处理算法使这种干扰降到最低。因此,一般认为OFDMA系统中的小区内干扰很小。 1.1. 2. 小区间干扰 对于小区间的同频干扰,可以采用干扰抑制技术,主要包括干扰随机化、干扰消除和干扰协调。干扰随机化和干扰消除是一种被动的干扰抑制技术,对网络的载干比并无影响。 干扰随机化通过比如加扰、交织,跳频、扩频、动态调度等方式,使系统在时间和频率两个维度的干

多系统萎缩的症状有哪些

多系统萎缩的症状有哪些 多系统萎缩有三大主征,即小脑症状、锥体外系症状、自主神经症状。其中89%出现帕金森综合征,78%出现自主神经功能衰竭, 50%出现小脑性共济失调。最常处的组合为帕金森综合征并自主神经功能衰竭或小脑性共济失调并自主神经功能衰竭。此外,相当部分可有锥体束征、脑干损害、认知功能障碍等。 多系统萎缩症状特点为:隐性起病,缓慢进展,逐渐加重。由单一系统向多系统发展,各组症状可先后出现,又互相重叠和组合。SND和OPCA较易演变为MSA。临床表现与病理学所见相分离。病理所见病变累及范围往往较临床所见为广,这种分离现象除复杂的代偿机制外,还可能与临床检查粗疏或临床表现滞后干病理损害有关。 1、纹状体黑质变性。 包括单纯型及混合型两种。 (1)单纯型SND:以帕金森综合征为惟一临床表现,临床上极易误诊为特发性帕金森病。 (2)混合型SND:除帕金森综合征表现外,还可出现小脑和自主神经功能损害的症状和体征。小脑功能障碍多出现于病程4~5年时,有时小脑症状可被帕金森综合征的症状所掩盖。性功能障碍出现最早,而排尿障碍则是最重要的自主神经功能障碍。其他症状尚有锥体束征,构音障碍、呼吸节律异常、睡眠呼吸暂停等,呼吸喘鸣是SND的特征性临床表现。37%的患者可出现肢体远端刺激敏感性肌阵挛,部分患者会聚不良或不能,向上、向下和水平凝视受限,睑痉挛,提睑抑制等眼部症状,可有肢体远端振动觉、关节位置觉减退和感觉异常。个别患者有偏身颤搐和舞蹈病。 2、特发性直立性低血压综合征。 多于中年后发病,男性多于女性,起病隐匿,病程7~8年,特征性临床表现是进行性自主神经功能异常,直立性低血压是最突出的症状,卧位血压正常,站立时收缩压下降20~40mmHg或以上,一般无心率改变。早期症状轻,直立时出现头晕、眼花,下肢软。较重者站立不稳,眩晕,严重者直立即发生晕厥,需长期卧床男性多以阳萎为首发症状,女性患者多以闭经或直立性眩晕或晕厥为首发症状。经2~3年逐渐出现小脑损害症状,再经2~4年,出现锥体外系损害症状。最常见的死亡原因是吸入性肺炎和心律失常。 3、共济失调的散发性橄榄脑桥小脑萎缩。 多为散发性病例,又称Dejcrine—Thomas综合征。部分病例呈家族性发病,为常染色体显性遗传,称为家族性OPCA。成年起病,缓慢进展,生要表现小脑性共济失调和脑干功能受损,随病程进展,逐渐出现PDS、自主神经损害症状、锥体束征,构音障碍、肌阵挛、痴呆,少数有眼肌瘫痪,慢眼球运动可能是OPCA特征性表现。

多系统合路系统分析

1多系统合路系统分析 1.1多系统合路类型 单个运营商多网合路系统,如:GSM/TD-SCDMA/WLAN,一般新建室内覆盖站点和原GSM 室内覆盖站点改造需要考虑的共站的互干扰情况。因为这类系统所需要接入的系统相对较少,互干扰情况相对简单,可以采用多网合路器直接进行合路。 多个运营商多网合路系统,如:GSM/CDMA/PHS/WCDMA/TD-SCDMA/WLAN,特殊建设的室内覆盖站点如:会馆、地铁、机场等室内覆盖的重点和热点区域,由于环境限制,众多室内覆盖系统一并建设难以解决天线间互相干扰与有效覆盖等问题,同时这类系统所需要接入的系统相对较多,各系统间的互干扰比较复杂,可以采用多网合路器或者是POI系统进行合路。 1.2多系统合路互干扰分析 多网合路系统共用基于系统间互干扰理论分析以及验证,干扰分为干扰源产生加性噪声干扰、引起被干扰接收机的阻塞和互调干扰。解决干扰的措施是降低干扰源的功率、采用隔离的方法。常用的隔离方法是空间隔离和增加滤波器隔离。系统应用中,采用MCI(POI)平台进行合路,达到多系统间隔离度的目的。MCI(POI)由电桥和合路器组成,电桥进行制式系统的合路,合路器进行异系统的合路。 1.2.1 互干扰的类型 下图为接收机原理图。 图1接收机原理图 系统干扰的总体理解就是干扰源对被干扰接收机产生的干扰。干扰从理论上来讲大致可以分为四类: ?加性噪声干扰:干扰源在被干扰接收机工作频段产生的噪声,包括干扰源的杂散、 噪底、发射互调产物等,使被干扰接收机的信噪比恶化。 ?交调干扰:当多个强信号同时进入接收机时,在接收机前端非线性电路作用下产生

交调产物,交调产物频率落入接收机有用频带内造成的干扰,称为接收机交调干扰。 交调干扰主要由三阶交调引起。 ?阻塞干扰:接收微弱的有用信号时,带外的强信号同时进入接收机引起饱和失真所 造成的干扰,称为阻塞干扰。 ?ACS邻道干扰:在接收机第一邻频存在的强干扰信号,由于滤波器残余、倒易混频 和通道非线性等原因,引起的接收机性能恶化,称为邻道干扰。 1.2.2 互干扰解决措施 解决干扰的措施是降低干扰源的功率和采用隔离的方法,常用的隔离方法是空间隔离和增加滤波器隔离。 ●降低干扰源的功率,使得两个系统不产生干扰 ●空间隔离,对解决加性噪声干扰和接收机阻塞以及互调干扰都是有效的。隔离的大 小取决于各个干扰需要的最大隔离度 ●对于加性干扰,可以在发射机端增加滤波器,抑制杂散、噪底以及发射互调产物, 降低干扰。 ●对于接收机阻塞、交调干扰,可以在被干扰系统端增加滤波器,抑制带外强信号的 功率,降低干扰。 ●对于接收互调干扰,可以通过网络优化,避免三阶互调产物落入被干扰频段。 室内分布系统间干扰的研究需要考虑干扰源系统和被干扰系统是否同属于一个运营商,这对于系统间干扰解决方法的选取有非常重要的意义,涉及到运营商间协调、工程难度和建设成本等多个问题,以下将据此进行分类描述。 1.2.2.1 干扰源与被干扰系统属于同一个运营商 干扰源与被干扰系统属于同一个运营商的情况下,如果原有覆盖系统所使用无源器件的工作频段包括了新系统的工作频段,则可以采用合路器隔离的方法消除干扰,充分利用原有网络资源,以便经济、快速的完成网络建设;如果原有覆盖系统不能满足新系统的工作频段要求,则需要更换其中的窄带器件,在进行合路器隔离的方法消除干扰,简略图如下: 图2两系统基站共室内分布系统示意 被干扰基站和干扰源基站共室内分布时,为降低网络建设成本,通常采用共天馈的方式,实际上是通过特定的合路器器件将两系统进行信号合并和干扰隔离的,合路器中包含两个滤

tdlte系统干扰解决方案

烽火科技TD-LTE系统干扰分析 烽火科技李翔周勇 随着新技术的不断出现以及移动通信理念的变革,为了把握新一轮的技术浪潮,保持在移动通信领域的领导地位,2004年底3GPP启动了关于3G演进,即LTE的研究与标准化工作。随着LTE R8、R9标准的冻结,LTE正日益成为业界的热点。 LTE系统同时定义了频分双工(Frequency Division Duplexing, FDD) 和时分双工(Time Division Duplexing, TDD) 两种方式,但由于无线技术的差异、使用频段的不同以及各个厂家的利益等因素,LTE FDD支持阵营更加强大,标准化与产业发展都领先于LTE TDD。2007年11月,3GPP RAN1会议通过了27家公司联署的LTE TDD融合帧结构的建议,统一了LTE TDD的两种帧结构。融合后的LTE TDD帧结构是以TD-SCDMA的帧结构为基础的,这就为TD-SCDMA成功演进到LTE乃至4G标准奠定了基础。 在工信部TD-LTE工作组的领导下,规范制定、MTNet测试和6城市试验网正在紧张有序地进行。随着技术标准不断完善、产业链不断成熟、系统能力不断提高,TD-LTE将很快进入商用时代。 众所周知,干扰是影响网络质量的关键因素之一,对通话质量、掉话、切换、拥塞以及网络的覆盖、容量等均有显著影响。如何降低或消除干扰是TD-LTE网络性能能否充分发挥的重要环节,同时也是网络规划、优化的重要任务之一。 TD-LTE组网干扰分内部干扰和外部干扰,内部干扰包括同频组网干扰和异频干扰,外部干扰又包括系统间干扰及其它随机干扰。本文将重点分析系统内的同频和异频干扰,以及系统间与TD-SCDMA的干扰。 1.系统内干扰 TD-LTE的组网包括同频和异频两种方式,对于同频组网,整个系统覆盖范围内的所有小区可以使用相同的频带为本小区内的用户提供服务,因此频谱效率高。但是对各子信道之间的正交性有严格的要求,否则会导致干扰。对于异频组网,由于频率的不同产生了一定的隔离度,但是仍然需要进行合理的频率规划,确保网络干扰最小,同时由于受限于频带资源,所以存在着干扰控制与频带使用的平衡问题。

多系统萎缩

多系统萎缩临床诊治进展(综述) 2015-02-03 15:35 来源:丁香园作者:幸福的味道 字体大小 -|+ 多系统萎缩(MSA)是一种相对少见的中枢神经系统退行性疾病,其症状多样,临床容易误诊,且目前尚无有效的治疗方法。近期NEJM杂志发表了一篇综述,回顾了MSA的临床诊治进展。 流行病学 多系统萎缩(MSA)是一种罕见病。平均发病率约为0.6-0.7/10万人年,患病率约为3.4-4.9/10万人,在40岁以上人群中这一数值增加至7.8/10万人。帕金森综合征亚型(P-MSA)与小脑亚型(C-MSA)患者比例约为2:1-4:1。患者通常在60岁以后发病,无性别差异,发病后平均生存期为6-10年,极少患者生存期可超过15年。 病因、病理及病理机制 尚未明确环境因素可导致MSA,但与帕金森病(PD)类似,吸烟、喝酒为可能的保护性因素。一般认为MSA是一种散发性疾病,然而近期研究显示遗传因素在MSA发病过程中发挥了一定作用。可能参与MSA发病的基因包括:编码辅酶Q10的基因COQ2、SHC2、SNCA 等,其可发生不同类型的突变,但这些结果仍待进一步研究证实。 MSA患者尸检可见不同程度的橄榄体脑桥小脑萎缩以及纹状体黑质变性;此外,神经变性还会累及中枢性自主神经系统,长期病程中还会出现额叶萎缩。蛋白性少突胶质细胞胞浆包涵体(也称Papp-Lantos小体)是MSA最主要的组织学标志物,包涵体的密度反映了MSA 患者脑内神经变性的严重程度,其主要组成成分为错误折叠的α突触核蛋白,因此,MSA 也被认为是一种少突胶质细胞α突触核蛋白病。 大量临床前和尸检研究均提示少突胶质细胞病变是MSA最主要的发病机制。正常情况下维持髓鞘完整性的主要成分p25α进入少突胶质细胞胞体内可能发生于α突触核蛋白聚集之前,随后才出现少突胶质细胞肿胀以及α突触核蛋白过表达,形成胞浆包涵体。包涵体形成后反过来影响神经元功能,并释放α突触核蛋白进入细胞间隙内,导致形成神经元性的胞浆包涵体。这种朊病毒样的α突触核蛋白传播方式最终导致患者多系统受累。 临床表现 与PD类似,大约有20%-75%的MSA患者会出现运动前期症状,包括性功能障碍、尿急、尿失禁或尿潴留、体位性低血压、吸气性喘鸣以及快速眼动期睡眠障碍等非运动症状。 1、运动症状

TD-LTE干扰排查

TD-L TE干扰及分析处理 TD-LTE干扰及分析处理 (1) 一、概述 (2) 二、干扰的基本原理 (3) 1、杂散干扰 (3) 2、阻塞干扰 (3) 3、交调干扰 (4) 4、三阶交调干扰 (4) 三、干扰影响程度 (4) 四、干扰分析及处理 (4) 阻塞干扰 (5) 互调干扰 (6) 杂散干扰 (8) 外部干扰 (11) 网内干扰 (13) 混合干扰分析和整治 (15) 五、小结 (15)

一、概述 对于移动通信网络,保证业务质量的前提是使用干净的频谱,即该频段没有被其他系统使用或干扰。否则,会使受干扰系统的性能以及终端用户感受都会产生较大的负面影响。 随着4G LTE基站的逐步建设,目前已形成了2/3/4G基站共存的局面,系统间干扰的概率也大幅提升,在目前已建设的基站总,已发现大量的TD-LTE基站受到干扰。这些干扰主要包括2/3G小区对TD-LTE小区的阻塞、互调和杂散干扰,此外还有其他无线电设备,如手机信号屏蔽器带来的外部同频干扰,具体如下表: TD-LTE各频段上行容易受到的干扰 从上表可以看出,由于F频段与干扰源系统的频率比较接近,因此F频段受到的干扰最多。

二、干扰的基本原理 1、杂散干扰 由于发射机中的功放、混频器和滤波器等器件的非线性,会在工作频带以外很宽的范围内产生辐射信号分量, 若落在被干扰系统接收机的工作频带内时,会抬高了接收机的底噪,从而减低了接收灵敏度。 2、阻塞干扰 当输入信号为小信号,输出与输入成线性关系,当有用信号和强干扰一起加入接收机,系统工作在饱和区,输入输出不再是线性关系。 阻塞干扰是指当强的干扰信号与有用信号同时加入接收机时,强干扰会使接收机链路的非线性器件饱和,产生非线性失真。

多系统萎缩

多系统萎缩 多系统萎缩( Multiple systeM atrophy,MSA)是一组成年期发病、散发性的神经系统变性疾病,临床表现为不同程度的自主神经功能障碍、对左旋多巴类药物反应不良的帕金森综合征、小脑性共济失调和锥体束征等症状。 由于在起病时累及这三个系统的先后不同,所以造成的临床表现各不相同。但随着疾病的发展,最终出现这三个系统全部损害的病理和临床表现。国外流行病学调查显示50岁以上人群中MSA的年发病率约为3/10万,中国尚无完整的流行病学资料。

一、病因 病因不清。目前认为MSA的发病机制可能有两条途径:一.是原发性少突胶质细胞病变假说,即先出现以a-突触核蛋白( a-synuclein)阳性包涵体为特征的少突胶质细胞变性,导致神经元髓鞘变性脱失,激活小胶质细胞,诱发氧化应激,进而导致神经元变性死亡;二是神经元本身ɑ-突触核蛋白异常聚集,造成神经元变性死亡。a-突触共核蛋白异常聚集的原因尚未明确,可与遗传易感性和环境因索有关 二、MSA患者很少有家族史,全基因组单核苷酸多态性关联分析显示,a-突触核蛋白基rs11931074、rs3857059和rs3822086位点多态性可增加MSA您病风险。其他候选基因括M 蛋白基因( MAPT) Parkin基因等。环境四素的作用不十分明确,有研究提示职业、生活习惯如有机溶剂、塑料单体和重金属接触、从事农业正作)可能增加MSA的发病风险。这些危险因素尚未完全实。 MSA的病理学标志是在神经胶质细胞质内发现嗜酸性包涵体,其他特征性病理学发现还有神经元丢失和胶质细胞增生。病变主要累及纹状体一黑质系统、橄榄一脑桥一小脑系统

多系统合路干扰分析

多系统合路干扰分析 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

多系统合路的干扰分析 1、主题简单解读 多系统:运营商多,制式多。中国移动GSM900,DCS1800,TD;中国联通GSM900, DCS1800,WCDMA;中国电信CDMA800,CDMA2000,另外还有WLAN等等。 合路:由于多运营商、多制式、多频段,出于施工协调、美观、成本等方面的考虑,合路应运而生。 一次布放,施工简单; 美观; 综合造价低廉,共用天馈分布,减少重复建设; 系统可扩展性强,升级改造周期短。 一般合路,有合路器方式,还有POI方式,也就是Point Of Interface,多系统合路平台,以及两种方式的混合使用。对于合路系统较少的中小规模场景(如:酒店宾馆、写字楼、住宅楼等),可以采用多系统频段合路器来共用室内覆盖系统;对于合路系统较多的复杂场景(如:地铁、机场、大型场馆等),建议采用POI构建的室内覆盖系统。 干扰:合路有好处有必要,但是合路后,就难免产生一些干扰信号,或者不同频率间也会相互干扰。 2、干扰的分类 系统间的干扰主要分为以下的三类: 1)杂散干扰 杂散干扰就是一个系统的发射频段外的杂散发射落入到了另一个系统的接收频段内而可能造成的干扰,(图)杂散干扰对系统最直接的一个影响就是降低了系统的接收灵敏度。 2)接收机阻塞

阻塞干扰,就是各系统信号及其频率组合成分,落在各系统中某基站接收机所接收的信道带宽之外,却仍然能进入该基站接收机,当此干扰大于相关标准中所规定的干扰电平时,就会引起接收机接收灵敏度的下降,恶化接收机的性能。 3)系统间互调干扰 互调干扰是指两个或以上不同的频率作用于非线性电路或器件时,频率之间相互作用所产生的新频率落入接收机的频段内所产生的干扰。通信系统中的无源器件的线性度一般优于有源器件,但也可能产生互调干扰。 互调干扰的常见形式及影响最大的是三阶互调干扰,可能产生干扰的频率组合有 2f1-f2、2f1-f3、2f2-f1、2f2-f3、2f3-f1、2f3-f2、f1+f2-f3、f1-f2+f3、f2+f3-f1。这些频率组合可归纳为2f-f2(一型互调)及f1+f2-f3(二型互调)两种类型。互调干扰集中在各系统的下行输出,在进行合路时的互调产物上,主要表现为三阶互调干扰。如果互调产物落在其中某一个系统的上行接收频段内,从而对该系统基站的接收灵敏度造成一定的影响。 根据信息产业部相关频率规划的规定,目前我国移动通信系统频谱划分具体如下所 示:表一各系统间的工作频段

相关主题
相关文档 最新文档