当前位置:文档之家› 生物质热解制备生物油的经济性分析

生物质热解制备生物油的经济性分析

生物质热解制备生物油的经济性分析
生物质热解制备生物油的经济性分析

山西师范大学本科毕业论文

生物质热解制备生物油的经济性分析

作者:

院系:

专业:

年级:

学号:

指导教师:

答辩日期:

致谢

光阴似箭,岁月如梭,不知不觉我即将走完大学生涯的第四个年头,回想这一路走来的日子,父母的疼爱关心,老师的悉心教诲,朋友的支持帮助一直陪伴着我,让我渐渐长大,也慢慢走向成熟。

首先,我要衷心感谢一直以来给予我无私帮助和关爱的老师们,特别是我的导师,班主任老师、专业课老师,学院老师,党政办老师。谢谢你们这四年以来对我的关心和照顾,从你们身上,我学会了如何学习,如何工作,如何做人。

其次,我还要真诚地谢谢在我的学习和生活中给予关怀和帮助的同学和学姐,在这四年当中,你们给予了我很多帮助,在我的学习工作生活各个方面,你们给我提出了很多宝贵的建议,我的成长同样离不开你们。

再次,我还要认真地谢谢我身边所有的朋友和同学,你们对我的关心、帮助和支持是我不断前进的动力之一,我的大学生活因为有你们而更加精彩。

最后,我要感谢我的父母及家人,没有人比你们更爱我,你们对我的关爱让我深深感受到了生活的美好,谢谢你们一直以来给予我的理解、鼓励和支持,你们是我不断取得进步的永恒动力。

目录

本科毕业论文 (1)

致谢 (2)

中文内容摘要 (3)

Abstract (3)

一概述 (5)

二原料收集和预处理 (5)

2.1收集原料 (5)

2.2预处理 (6)

2.21 新工艺的应用 (6)

2.22 生物反应器 (6)

三热解液化转化过程经济性分析、产品的市场分析 (7)

3.1热解工艺方案 (7)

3.11 热解液化规模 (7)

3.12 经济性分析的财务评价参数 (7)

3.13 秸秆收集半径计算 (8)

3.2技术经济性分析 (8)

3. 12 热解液化工厂投资估算 (8)

3.13 热解液化工厂财务评价 (9)

3.14 生物油生产成本分析 (10)

四综合分析 (13)

参考文献 (14)

生物质热解制备生物油的经济性分析

【内容摘要】如今人类临着巨大的环境与能源压力。生物质因具有一定的广泛性、可

再生性、低污染性、广泛分布性以及总量十分丰富而受到越来越多的关注。本文主要针对秸秆气化发电、气化供气、直燃发电以及热解液化这四种目前主要的生物质能利用技术展开经济性分析。通过比较发现,在各种生物质能利用技术中,热解液化制取生物油是非常有前景的,如果要想将生物油投入应用而获得良好的经济效益必须提高生物油的品质。本文中通过对生物质热解制备生物油的经济分析为以后生物质热解的预处理技术研究提供了基础的参考依据。

【关键词】生物油;生物质;热解液化

Abstract

N owadays human face tremendous environmental and energy pressure. Biomass for has certain universality, reproducibility, less pollution, widely distributed sex and total amount is very rich and receiving more and more attention. This article mainly aims at straw gasification power generation, gasification combustion gas, electricity and pyrolysis liquefaction straight the four current main biomass utilization technology analysis on economy. By comparison, in various biomass utilization technology, biological oil producing pyrolysis liquefaction is extremely foreground, if you want to put into application biological oil won good economic benefit must improve the quality of biological oil. This article through to bionass power plant pyrolysis of preparation for economic analysis of biological oil after the biomass pyrolytic preconditioning technique provides the basis for the research of the reference.

Key words:Biological oil; Biomass; Pyrolytic liquefaction

一、概述

能源是国民经济和社会发展的重要物质基础,是人类赖以生存和发展的重要保障。当今的能源主要来自于化石燃料,随着人口的增长和人类物质、文化生活水平的普遍提高,人类对能源的需求呈现急速增长的趋势,同时化石能源储量有限且具有不可再生性,化石能源日益枯竭。生物质能是通过太阳能转化而来的,在动、植物和微生物等有机物中都蕴藏着生物质能。生物质能资源是一种无害的能源,在地球上的生物质能资源较为丰富。生物质能通常包括工业废弃物及动物粪便和油料植物、木材、森林废弃物、水生植物、农业废弃物等。

我国是一个农业大国, 生物质资源最主要的组成部分是农业废弃物,它们分布不

集中, 如果将它们转化成生物质油或者化学化工原料, 也可以大大减小因储存或者运

输带来的困难. 因此合理开发利用生物质不仅可为新的能源和化工原料的开发利用建

立技术基础, 发展新的能源和化学工业, 以实现可持续发展, 同时对解决我国农村、农业和农民问题, 具有十分重要的意义[1]

我国的农作物秸秆资源丰富,秸秆来源主要为玉米、小麦和稻谷。据统计,2009

年全国产生各种秸秆近7亿吨,相当于标准煤3亿吨。在农村,秸秆主要用于生活燃料、饲料、肥料和工业原料。据不完全统计,约有14%的秸秆被做肥还田,25.0%的秸秆被用作饲料, 3.2%的秸秆被用作工业原料.除此之外,约57.8%的秸秆可以作为能源使用,其中近2亿吨的秸秆被我国农民在自家炉灶内用来直接燃烧取暖做饭。90年代以来由于农民生活水平的提高和农村经济的发展,农民的观念和生活方式发生了变化,农民已有条件和能力大量使用煤、石油、液化气等能源,秸秆不再是农民能源消费的惟一选择,大量剩余秸秆被遗弃在田间地头,有些地区甚至将剩余秸秆在田间地头焚烧,既污染环境,又浪费资源。此现象在我国许多地区已成为社会普遍关注的焦点问题之一,解决这一问题的关键在于开发秸秆高效高附加值利用的新途径。

本文通过对生物质热解制备生物油的试验,进行经济学的可行性分析,对生物质热解研究和市场开拓提供数据参考。

二.原料收集和预处理

2.1 收集原料

生物质原料可以是能源植物,也可以是农林废弃物。能源植物产生的生物油产量与热值均比较高,但是目前还没有找到很合适热解的能量高且生长速度快的能源作物,今后可以运用各种植物育种技术,开展更广泛的能源植物育种研究,为发展生物质能源提供技术和物种支持[2]。

在我国东北的农业大省,吉林省某市,交通便利,玉米秸秆收购平均价格为250元/吨(含水率≥50),因水分含量越少,价格越高,运费每吨500元(地区内运输,不跨区域),人工费120/天,按照250元/t计算,生物质原料发电消耗为2kg/kWh,原料成本达到0.50元/kWh,发电成本较高,考虑人工工资、自身电力消耗、维修费用、管理费用、设备折旧费等,发电成本达到了0.62元/kWh,在国家可再生能源政策的支持下,吉林省生物质电力上网价格为0.53元/kWh,因此将生物燃气用于发电运行利润微薄。然而,通过综合利用技术,发电所带来的副产品蒸汽和生物质炭,为企业带来更好的经济收益。在发电保本运行的情况下,按照规模5.0MW/h 的实验工程计算,每年运行6000h,消耗原料10000t,可得到1500生物质炭,按照目前的市场价格,炭售价为1000元/t,

共收入150万元/a,具有较好的经济效益,以弥补发电的利润不足。

2.2 预处理

预处理包括干燥和粉碎。原料中的水分是生物油中水分的主要来源之一 ,因而干燥生物质能有效降低生物油中水分含量,从而改善生物油的粘度、pH 值、稳定性和存储期。应用时可选小于1mm的生物质作为制油原料。生物质热解液化是指生物质原料(通常需经过干燥和粉碎)在隔绝氧气或有少量氧气的条件下,通过高加热速率、短停留时间及适当的裂解温度使生物质裂解为焦炭和气体,气体分离出灰分后再经过冷凝可以收集到生物油的过程[3]。在此工艺过程中,原料干燥是为了减少原料中的水分被带到生物油中,一般要求原料的含水量低于10%。减小原料颗粒的尺寸,可以提高升温速率,不同的反应器对颗粒大小的要求也不同。热解过程必须严格控制温度(500~600 ℃)、加热速率、热传递速率和停留时间,使生物质在短时间内快速热解为蒸气;对热解蒸气进行快速和彻底地分离,避免炭和灰份催化产生二次反应导致生物油的不稳定,并保证生物油的产率。除需要严格控制反应条件外,热解液化还要避免生物油中的重组分冷凝造成的堵塞[4-5]。

2.21.新工艺的应用为提高生物质的热转化率和生物油的产率,研究人员近年来开发了混合热解、催化热解、微波热解、等离子体热解等新的热解工艺。

2.22生物反应器生物质快速热解液化技术的核心是反应器,它的类型和加热方式决定最终的产物分布。反应器按物质的受热方式可分为三类:机械接触式反应器、间接式反应器、混合式反应器。目前,针对第一类型和第三类型反应器开展的研究工作相对较多,这些反应器的成本较低且宜大型化,能在工业中投入使用。代表性的反应器有加拿大Ensyn 工程师协会的上流式循环流化床反应器(Upflow circulating fluidbed reactor)、美国乔治亚技术研究所(the GeorginTechnique Research Institute,GTRI)的引流式反应器(Entrained flow reactor);美国国家可再生能源实验室(NREL)的涡流反应器(Vortex reactor);荷兰Ttwente 大学反应器工程小组及生物质技术集团(BTG)的旋转锥反应器(Rotating cone reactor)和加拿大Laval 大学的生物质真空多炉床反应器(Multiple hearth reactor)等反应器,它们具有加热速率快、反应温度中等和气体停留时间短等特征。

表1 列出了几种国外常用的热解液化装置和上海交通大学(SJTU)及中科院广州能源研究所(GIEC)自行研制的生物质热解液化装置的性能[6,7,8]。国内装置对原料粒径要求比国外装置的要高,同时生物油产率低于国外装置,尚需缩小与国外的差距。

表1 几种热解液化装置的性能对比

三.热解液化转化过程经济性分析、产品的市场分析

3.1 热解工艺方案

生物质热解液化有三种产物,即生物油、燃气和炭粉,表1所列为它们的产率、热值和用途。

但由于热解过程需要能量,故通常要将利用价值较低的某种副产物作为热解自身所用的燃料使用,故自热式热解液化工艺实际朝外输出的热解产品一般只有两种,即:生物油和燃气,或生物油和炭粉。

鉴于燃气使用需要铺设管网和走村串户,故选择生物质热解液化产业化工艺方案时,建议优先考虑将燃气用于为热解自身提供热源。

3.1.1 热解液化规模

一般而言,设备规模越大、效益越好,但对秸秆热解液化设备则不尽然,因为规模越大,保证秸秆常年供应的难度也越大,因而秸秆原料成本也就越大。因此,生物质(秸秆)热解液化设备定型规模应该在规模效益与原料成本之间寻找最佳平衡点。

根据经验和现阶段我国多数农村地区的社会发展水平,生物质(秸秆)热解液化定型设备的处理能力一般以1000~2000kg/h为宜。

3.1.2 经济性分析的财务评价参数

生物质热解液化技术经济性分析所用的财务评价基本参数主要有固定资产、运行费用、收益和税收。其中运行费用主要包括原料成本、维修费用、人员工资,财务费用和税收等。项目寿命期由于技术成熟程度不同取10年或15年折旧期。主要经济评价指标有:财务内部收益率IRR,投资回收期Pt,财务净现值NPV。

财务内部收益率IRR 就是资金流入现值总额与资金流出现值总额相等、净现值等于

零时的

折现率。

投资回收期Pt是指以项目的净收益抵偿全部投资所需要的时间。

动态投资收回收期=[累计折现值开始出现正值的年数-1]+上年累计折现值的绝对值/当年净现金流量的折现值。

财务净现值( NPV )是指按行业的基准收益率或设定的折现率,将项目计算期内各年净现金流量折现到建设期的现值之和它是考察项目在计算期内盈利能力的动态评价指标。

净现值=∑(各期现金流入量*贴现系数)-∑(各期现金流出量*贴现系数)。

3.1.3秸秆收集半径计算

秸秆收集半径:收集半径R与收集量A之间存在如下关系:

收集量=收集面积×耕地面积占土地面积的比例×单位面积秸秆产量×秸秆收集系数×秸秆可利用系数,(k1*πR2)a*k2*k3 = A 。

由综合系数 k = k1*k2*k3 ,有:k *α*πR2= A。

单位面积秸秆的产量a=0.4763,综合系数k=0.8(吉林省的相关参数值) 。

3.2 技术经济性分析

3.2.1 热解液化工厂投资估算

表2为生物质热解液化设备定型并批量生产后,开办速度1000kg/小时生物质(秸秆)原料的热解工厂的投资估算:总投资约为480万元,其中热解液化设备300万元、辅助设备80万元、土建50万元、配套实施50万元。

开办每小时处理1000kg生物质(秸秆)原料的热解工厂大约需要占地10亩,由于到土地一般都具有升值效应,故估算投资时没有将土地成本考虑在内。

值得注意的是,在此处投资估算中,辅助设备、土建和配套实施是按工业企业设计标准考虑的,若因陋就简的话,这三部分的投资可以减少50万元。

表2 热解液化工厂投资估算单位:万元

生物质热解技术研究现状及其进展

能源研究与信息 第17卷第4期 Energy Research and Information Vol. 17 No. 4 2001 文章编号 1008-8857(2001)04-0210-07 生物质热解技术研究现状及其进展 李伍刚,李瑞阳,郁鸿凌,徐开义 (上海理工大学上海 200093)  摘要生物质热解技术是把低能量密度生物质转化为高能量密度气、液、固产物的 一种新型生物质能利用技术。其中液体产物具有便于运输、储存等优点,可替代燃料 油用于发电、供暖系统以及可代替矿物油提炼某些重要的化学物质。介绍了国内外对 这一技术的各种研究及其进展,并简要介绍了上海理工大学独立研制开发的生物质闪 速液化实验装置。 关键词生物质热解; 生物油 中图法分类号 TK6文献标识码A 1 引言 能源是人类生存与发展的前提和基础,从远古时代原始人钻木取火到近代以蒸汽机为代表的工业革命,人类文明的每一跨越和进步都与所用能源种类及其利用方式紧密相连。目前人类赖以生存和进行经济建设的一次能源主要是矿物能源(煤、石油、天然气、核能等)。矿物能源的使用隐藏着两个严重问题,其一:根据目前的全球能耗量和矿物能源已探明的储量,煤、石油、天然气、核燃料可使用年限分别为220、40、60和260年[1],从长远来看人类必将面临能源危机。其二:矿物能源对环境有巨大破坏作用,矿物能源燃烧产生大量CO2、SO x、NO x等气体。CO2属温室效应气体,会造成全球变暖及臭氧层破坏。NO x、SO x等有害气体会直接对环境、设备和人体健康构成危害。故此,作为有重要长远意义和战略意义的技术储备,寻求清洁的可再生能源及其利用技术,已成为全球有识之士的共识,受到各国政府和研究机构的广泛关注。 生物质是一种清洁的可再生能源,生物质快速热解技术是生物质利用的重要途径,所谓热解就是利用热能打断大分子量有机物、碳氢化合物的分子键,使之转变为含碳原子数目较少的低分子量物质的过程。生物质热解是生物质在完全缺氧条件下,产生液体(生物油)、气体(可燃气)、固体(焦碳)三种产物的生物质热降解过程。 收稿日期:2001-6-10 基金项目:上海市重点学科建设资助项目 作者简介:李伍刚(1974-),男,上海理工大学热能工程专业硕士研究生。

生物质热解液化制备生物油技术研究进展_路冉冉(精)

第44卷第3期 2010年5月生物质化学工程B iomass Che m ical Eng i n eering V o.l 44N o .3 M ay 2010 生物质热解液化制备生物油技术研究进展 收稿日期:2010-02-03 基金项目:高等学校博士学科点专项科研基金资助(200804251020 作者简介:路冉冉(1987-,女,山东聊城人,硕士生,研究方向为微波生物质热解技术*通讯作者:商辉(1974-,女,河北保定人,副研究员,博士,从事生物能源与微波化学研究;E -m ai:l shangh l@j m sn .co m 。 路冉冉1,商辉1*,李军2 (1.中国石油大学(北京重质油国家重点实验室,北京102249;2.中国石油规划总院,北京100083 摘要:介绍了国内外生物质热解液化工艺、主要反应器及其应用现状;简述了生物质催化热解、生物质与煤共热解液化、微波生物质热解、热等离子体生物质热解几种新型热解工艺;并对目前生物质热解动力学研究进行了总结;对未来生物质热解液化技术的研究进行了展望。 关键词:生物质;热解;液化;生物油 中图分类号:TQ351 文献标识码:A 文章编号:1673-5854(201003-0054-06 Research Progress on Bi o mass Pyr ol ysis Technol ogy f or L i qui d O il Producti on

LU Ran -ran 1,SHANG H u i 1,LI Jun 2 (1.S tate K ey L aboratory of H eavy O il Processing ,China U n i versity of Pe tro leum (Be iji ng,Be iji ng 102249,Ch i na ; 2.Ch i na P etro l eu m Eng i nee ri ng and P l ann i ng Instit ute ,Be iji ng 100083,Chi na Abstrac t :B i om ass li que facti on techno logy,m ai n reactor types for b i om ass pyro lysis and t he ir deve lop m ent status i n do m estic and aboard we re descr i bed .Cata l y ti c py ro l y si s of b i omass ,co -li que facti on o f bio m ass and coa,l m i crowave assi sted pyro l ysis as w ell as ther m a l plas m a b i o m ass pyro l ysis techno l og ies were descri bed ,and t he curren t k i neti cs o f b i om ass pyro lysisw ere su mm ar ized .T he future o f bio m ass li que facti on techno log i es w ere prospected . K ey word s :b i o m ass ;pyrolysis ;lique facti on ;b i o -o il 能源是社会经济发展和人类赖以生存的基础,当前社会的主要能源是化石能源,属不可再生资源。同时,化石能源的迅速消耗造成生态环境不断恶化,排放的温室气体导致全球气候变化,严重威胁人类社会的可持续发展。从能源发展和环境保护角度来看,寻找一种新型可再生的清洁能源已迫在眉 睫[1]。生物质能是以化学能形式储存的太阳能,具有分布广泛、可再生和无污染等特点,它的高效转换和清洁利用受到广泛重视。但是从自然界直接获得的生物质能量密度低,直接利用有很多缺点,如:燃烧效率低,需要寻求更为有效的方式加以 利用。生物质的利用技术主要包括生物转化技术和热化学转化技术,热化学转化包括直接燃烧、气化和热解液化技术,其中热解液化技术将生物质转化成液体生物油加以利用,是开发利用生物质能有效途径之一。该技术所得油品基本上不含硫、氮和金属成分,是一种绿色燃料,生产过程在常压、中温下进行,工艺简单,装置容易小型化,液体产品便于运输和存储。因此,在生物质转化的高新技术中,生物质热解液化技术受到广泛重视[2-6]。

轮胎裂解技术

3 工程分析 3.1 工艺原理简述 本项目的核心工艺为废轮胎的热裂解处理工艺。 轮胎主要由橡胶(包括天然橡胶、合成橡胶)、炭黑及多种有机、无机助剂(包括增塑剂、防老剂、硫磺和氧化锌等)组成。废轮胎的热裂解是指在无氧或缺氧工况及适当的温度下,橡胶中主链具有不饱和键的高分子断裂,产物主要是单体、二聚物和碎片,生成物再聚合为多种烯烃,从而脱出挥发性物质并形成固体炭的过程,其产物主要是燃料油、裂解气等可贮存性能源和炭黑、钢丝,各产物成分随热解方式、热解温度等变化而不同。 裂解方程式如下: (-CH2-CH2-)n n[C+H2+CH4+C2H6+C3H8+C4H10+C5H12+…+C11H24+…C20H42+…] (说明:C5H12~C11H24为汽油馏分,C12H26~C20H42为柴油馏分,C20以上为重油)本项目轮胎热解温度为200~450℃,热解炉采用炉外加热、微负压、贫氧热裂解工艺操作,炉体密闭,在生产过程中确保气体不外泄,提高热裂解效率,同时从根本上消除了生产过程中由于气体外泄而引起的不安全隐患和二次污染。 3.2 生产工艺流程 本项目主要原料为外购的干净废旧轮胎(每条已切成4~5块),无需清洗、破碎、抽钢丝等预处理工序,直接经人工进料进入裂解炉内,进料工段约2小时,每台设备每天进料10t。裂解炉内是一个持续升温的环境,炉体内部在4小时内升温至200~300℃,此时裂解气开始处于稳定生成状态,接下来的5~8小时内温度缓慢爬升,当温度到达450℃时,可认为轮胎裂解已基本完成。裂解过程中产生大量烟气,其成分主要包含重油(液态)、轻油(气态)、裂解气和少量水蒸气等,烟气经管道流入分汽包。在分汽包内,重油(约占废轮胎质量的2%)下沉至渣油罐,通过油泵储存在储油罐内;气态成分经管道进入循环水冷却系统。在管道内冷却后的烟气分为液体和气体,其中气体为裂解气,液体为轻油和水的混合物。液体流入油水分离器,分离出的轻质油分经油泵进入油罐储存,少量含油废水经雾化后喷入裂解炉燃烧室作为燃料使用;裂解气经管道输送至裂解炉燃烧室作为燃料使用。 经过12小时的裂解,除燃料油、裂解气外,裂解炉内还会生成炭黑和钢丝。炉体停止加热后,项目采用空气冷却的方式,通过风机抽风不断带走炉体外壁热量,冷却工段持续时间约8小时。待炉体冷却至45~55℃,操作人员打开进料门上的出钢丝口(1.1m ×1.7m),将缠绕在一起的钢丝整体拖出。由于本项目轮胎进料时为整条轮胎,无切割

生物质快速热解技术

生物质快速热解技术 摘要:生物质能源是可再生能源的重要组成部分,有丰富的资源和低污染的特点,它的开发与利用已成为2l世纪研究的重要课题。本文概述了生物质转化利用的方法,并重点阐述了生物质热化学转化法中的快速热解技术,同时综述了国内外快速热解反应器的现状,以度其产物——生物油的收集与特征分析,并提出了我国在快速热解研究方面应采取的有关措施。 生物质是地球上绿色植物通过光合作用获得的各种有机物质,它是以化学方式储存太阳能,也是以可再生形式储存在生物圈的碳。主要包括林业生物质、农业废弃物、水生植物、能源作物、城市垃圾、有机废水和人、畜粪便等。 据统计,世界每年生物质产量约l460亿吨,其中农村每年的生物质产量就有300亿吨,而生物质的利用却仅占世界能源消耗总量的l4%,发达国家占3%,发展中国家占35%,是继石油、煤炭、天然气等化石能源之后,当今全球第四大能源。但随着化石能源利用中产生诸如“酸雨”、“温室效应”等环境问题的日益突出,以及化石燃料本身可开采量的逐渐减少,生物质能源凭借其是一种环境友好型能源,及其利用中较低的SO、NO产出和CO净排放量为零等优点,引起了越来越多人的关注。 不言而喻,生物质能源将是未来可持续发展能源体系的重要组成部分,无论是从环境,还是从资源方面考虑,研究生物质能源的转化与利用都是一项迫在眉睫的重大课题。 1生物质转化利用方法 1.1生物法或称为微生物法 生物质(主要是农作物秸秆、粪便、有机废水等)在厌氧条件下发酵制得沼气,主要成分是甲烷;糖类、淀粉类原料水解发酵制取酒精。 1.2化学处理法 生物质中的半纤维素在酸l生条件下加热水解获得重要的化工原料糠醛;利用稻壳生产白炭黑等。 1.3热化学转化法 1.3.1热解生物质在隔绝或少量氧气的条件下,热解反应获得气体、固体、液体3类产品。近几十年来国外研究开发了快速热解技术,即生物质瞬间热解制取液体燃料油,其得率高达70%以上,是一种很有开发前景的生物质应用技术。 1.3.2液化分直接液化和间接液化两类,直接液化是生物质在高压设备中,添加适宜的催化剂,反应制得液化油,作为汽车用燃料,或者分离加工成化工用品,这是近年来生物质能利用研究的热点。间接液化是把生物质先气化成气体后,再进一步合成液体产品;或者把生物质中的纤维素、半纤维素水解,然后再发酵制取酒精。 1.3.3气化生物质在较高的温度(700—900℃)下,与气化剂(如空气、氧气或水蒸气)反应得到小分子可燃气体的过程。目前使用最广泛的是空气作气化剂,产生的气体主要作为燃料使用,可用于锅炉、民用炉灶、发电等场合,也可作为合成甲醇、氨的化工原料。气化技术在国外已实现大规模工业化,主要有气化发电技术,目前我国在此方面已基本完成中试与小规模生产,现正走向大型产业化生产阶段。 1.3.4直接燃烧生物质在充足氧气的环境下直接燃烧,把化学能转变为热能。近年来还出现了生物质固化成型技术,通过机械加压的方法将分散、无定形生物质转化为一定形状和密度的固体燃料,然后再燃烧。 热化学转化法可用图1表示:

生物质热解燃料油

生物质热解燃料油制备和精制技术 摘要:能源问题在世界经济中具有战略意义。据预测,地球上可利用的石油将在今后几十年内耗竭,从长远看液体燃料短缺仍将是困扰人类发展的大问题。在此背景下,生物质能作为唯一可转化为液体燃料的可再生资源,正日益受到重视。由生物质转化而来的燃料比较干净,有利于环境保护。同时使用这类燃料也有助于减少温室气体的排放。实际上这也是很多发达国家开发生物质能的主要动力。生物质能是通过光合作用以生物形态储存的太阳能,可作为能源利用的生物质包括林产品下脚料,薪柴,农作物秸秆及城市垃圾中的生物质废弃物等。目前生物质的直接燃烧已不能满足人们对能量的需求,由生物质直接液化制取燃料油将是下世纪有发展潜力的技术,它主要包括生物质的裂解和高压液化两类。此外还可将生物质气化后再由气体产品生产液体燃料,也可将生物质水解后发酵制燃料酒精。 关键词:生物质废弃物热解燃料油制备精制技术可再生 一、生物质燃料油的制备 1. 生物质裂解制燃料油 裂解是在无氧或缺氧条件下,利用热能切断生物质大分子中的化学键,使之转变为低分子物质的过程。裂解中生物质中的碳氢化合物都可转化为能源形式。和焚烧相比,热解温度相对较低,处理装置较小,便于造在原料产地附近。生物废弃物的热解是复杂的化学过程,包含分子键断裂,异构化和小分子的聚合等反应。通过控制反应条件(主要是加热速率,反应气氛,最终温度和反应时间),可得不同的产物分布。据试验,中等温度(500-600℃)下的快速裂解有利与生产液体产品,其收率可达80%。裂解中产生的少量中热值气体可用作系统内部的热源,气体中氮氧化合物的浓度很低,无污染问题。 国际上近来很重视这类技术,除了从能源利用考虑外,还因生物油含有较多的醇类化合物,作汽车用油时不必为提高辛烷值而外加添加剂。其油品基本上不含硫,氮和金属成分,可看作绿色燃料,对环境影响小。 1.1 裂解工艺

生物质热裂解

生物质热裂解制取液体燃料技术的发展 摘要:对生物质热裂解技术进行了系统的研究,阐述了其基本技术要求和发展现状,并将现有的生物质热裂解反应器进行分类,分析了相应的优势与不足。最后评估了生物质热裂解制取液体燃料技术的经济和社会效益,结果表明它具有广泛的应用前景。 关键词:生物质;热裂解;生物油;反应器 1生物质热裂解制取液体燃料的意义 当今社会面临着环境与发展的双重压力,面对常规能源资源的有限性和人类对能源需求的不断扩大[1],能源格局的更新、新能源的开发和利用越来越值得人们的关注。同时石油以其便于运输、加工和利用,且单位热值高和污染相对煤炭少等优点成为常规商业用能中的重要一员,油气在商业用能中的比重在一定程度上也反映出某个国家的能源利用效率水平及环境保护程度。随着我国经济的迅速发展,油气等高品质能源在我国的消费将逐渐增加,而我国的石油资源人均拥有量却相对很少。另外随着农村经济发展和农民生活水平的提高,农村对于优质燃料的需求日益迫切,传统能源利用方式已经难以满足农村现代化需求,尤其是对柴油的需求,因此积极开发代用液体燃料是一种行之有效的措施。 化石燃料的过度开采和大量使用导致了环境污染指数的增长,20世纪以来化石燃料燃烧利用过程中排放的大量SO2、NOx和氯氟烃等污染物破坏了生态环境,由于CO2排放造成的“温室效应”也逐渐显露出对气候和生态的负面效应。 生物质是一种清洁的低碳燃料,其含硫和含氮量均较低,同时灰分份额也很小,所以燃烧后SO2、NOx和灰尘排放量比化石燃料要小得多,是一种清洁燃料。生物质的利用过程中没有增加大气中CO2的含量,这对于缓解日益严重的“温室效应”有着特殊的意义。为了兼顾经济增长和环境保护,生物质能的开发和利用已越来越受到重视和关注。 生物质能的利用目前在工业化的发达国家仅占能源消耗的3%,广大发展中国家中生物质能占了35%,从而使得生物质能在世界能源消耗中仅占了14%。联合国环境发展会议指出到2050年,生物质能有潜力可以供给当时世界能源消耗中的50%。然而目前大部分生物质被直接作为燃料燃烧,利用水平低,浪费严重,且污染环境,所以充分合理开发使用生物质这种资源丰富的能源,改善我国尤其农村的能源利用环境,加大生物质能源的高品位利用具有重要意义。 生物质快速热裂解制取生物油是目前世界上生物质能研究开发的前沿技术,该技术能以连续的工艺和工厂化的生产方式将以木屑等林业加工废弃物为主的生物质转化为高品位的易储存、易运输、能量密度高且使用方便的液体燃料—生物油,其不仅可以直接用于现有锅炉和燃气透平等设备的燃烧,而且可通过进一步加工改性为柴油或汽油而用作动力燃料,此外还可以从中提取具有商业价值的化工产品,目前已经商业化的应用有提取食物添加剂[2],当然通过一些加工还可能提取一些特殊的化学成分用于调药剂和农业化肥等当前石油资源匮乏及油价飞升,而木屑等林业加工废弃物得不到高品位利用,同时速生林培植技术又较为成熟,因此开展生物质快速热裂解制取生物油技术的研究在21世纪具有特别重要的意义。上世纪末,该技术研究在欧美国家即得到了高度重视,已开发出了不同类型的热裂解技术,而我国由于在该技术领域的研究涉及较少使得这一工作尚处于起步阶段。 2生物质热裂解制取液体燃料的技术 2.1生物质热解制油的一般原则 生物质热裂解生成的液体产物通常被称为生物油、热裂解油或生物原油,其可分为快速热裂解工艺产生的一次生物油或通过常规热裂解及气化工艺产生的二次油,两者在一些方面

生物质快速热裂解工艺及其影响因素

Ξ 生物质快速热裂解工艺及其影响因素 黑龙江省人民政府农村能源办公室 潘丽娜 摘 要 介绍了目前生物质快速热裂解的工艺及其影响因素,表明了生物质快速热裂解工艺及技术是目前生物质能利用各种方式中很有前途的利用方式。以小型流化床为例着重介绍了生物质快速裂解装置组成及设备工作原理,并分析了影响生物质快速热裂解过程及产物的主要因素,分析表明,温度是影响热裂解过程中最主要因素。 关键词 生物质快速热裂解 应用 工艺类型 装置组成 影响因素 中图分类号:Q941 文献标识码:A 文章编号:1009—3230(2004)02—0007—02 0 前言 生物质是一种潜在的能源资源,是人类未来能源和化学原料的重要来源,生物质资源包括:农作物秸秆,柴薪、水生植物、油料作物和各种有机废弃物。在我国农村能源消费中生物质占70%。而在我国生物质能利用技术的研究和开发较晚,农村能源中的生物质的很大部分都以直接燃烧的形式利用,这种利用方式不仅能源利用率低,平均热效率不到25%,而且燃烧带来的大量烟雾给空气造成严重的污染。 1 生物质热裂解概念及其基本原理 111 生物质热裂解的概念 生物质热裂解(热分解)是指在隔绝空气或只通入少量空气的条件下,使生物质受热而发生分解的过程。生物质发生热裂解时将生物质分解成3种产物:气体(不可冷凝的挥分份)、液体(可冷凝的挥发份)和固体(炭)。 2 生物质热裂解的工艺 流化床快速热裂解的工艺流程较为简单,结合图1所示流程图对其工艺流程加以分析:上线为生物质颗粒一定的速率进入流化床反应器,在反应器内与高温的砂子流化充分接触,高温发生热裂解反应,反应生成的固体小颗粒随气流向上流入旋转分离器,在旋风分离器中因离心力,器壁摩擦力,以及小颗粒自身的重力作用下落入旋风分离器底部的集炭箱中,并收集。下线为气相流,空气经压缩机打入贫氧发生器,再经反应得贫氧气体充当载气,在压力的作用下,载气先通入螺旋进料器以保持进料器系统有一个足够的送风压力以保证预料顺利进入反应器,两路气体在床内一起流化砂子和原料混合物,经热裂解之后生成的气体与载气一起通过旋风分离器分离,从旋风分离器流出的气体在金属冷凝器,球型玻璃管冷凝可液化的气体,之后,剩余的气体由转子流量计再经过滤器进入收集装置。 3 生物质快速热裂解工艺主要影响因素分析 不同的工艺类型对产物及产物的比例有着重要的影响,不同的反应条件对热裂解的过程和产物亦有不同的影响。就目前的研究而言,总的讲来,影响热裂解的主要因素包括化学和物理两大方面。化学因素包括一系列复杂的一次反应和二次化学反应;物理因素主要是反应过程中的传热、传质以及原料的物理特性等。在具体的操作方面表现为:温度、升温速率、物料特征以及反应的滞留时间和压力等等。 311 滞留时间的影响 滞留时间在生物质快速热裂解反应中有生物质颗粒的固相滞留时间和气相滞留时间之分,而 7 2004年第2期(总第86期) 应用能源技术 Ξ收稿日期:2004—01— 21

生物质热解技术

生物质压缩成型技术 1 压缩成型原理 生物质主要有纤维素、半纤维素和木质素组成。木质素为光合作用形成的天然聚合体,具有复杂的三维结构,属于高分子化合物,它在植物中的含量一般为15%~30%。木质素不是晶体,没有熔点但有软化点,当温度为70-110℃时开始软化,木质素有一定的黏度;在200-300℃呈熔融状、黏度高,此时施加一定的压力,增强分子间的内聚力,可将它与纤维素紧密粘接并与相邻颗粒互相黏结,使植物体变得致密均匀,体积大幅度减少,密度显著增加,当取消外部压力后,由于非弹性的纤维分子之间相互缠绕,一般不能恢复原来的结构和形状。在冷却以后强度增加,成为成型燃料。压缩时如果对生物质原料进行加热,有利于减少成型时的挤压力。 对于木质素含量较低的原料,在压缩成型过程中,可掺入少量的黏结剂,使成型燃料保持给定形状。当加入黏结剂时,原料颗粒表面会形成吸附层,颗粒之间产生引力,使生物质粒子之间形成连锁的结构。这种成型方法所需的压力较小,可供选择的黏结剂包括黏土、淀粉、糖蜜、植物油和造纸黑液等。 2 压缩成型生产工艺 压缩成型技术按生产工艺分为黏结成型、压缩颗粒燃料和热压缩成型工艺,可制成棒状、块状、颗粒状等各种成型燃料。 生物质—-干燥—-粉碎—-调湿—-成型—-冷却—-成型燃料 主要操作步骤如下: (1)干燥 生物质的含水率在20%-40%之间,一般通过滚筒干燥机进行烘干,将原料

的含水率降低至8%-10%。如果原料太干,压缩过程中颗粒表面的炭化和龟裂有可能会引起自燃;而原料水分过高时,加热过程中产生的水蒸气就不能顺利排出,会增加体积,降低机械强度。 (2)粉碎 木屑及稻壳等原料的粒度较小,经筛选后可直接使用。而秸秆类原料则需通过粉碎机进行粉碎处理,通常使用锤片式粉碎机,粉碎的粒度由成型燃料的尺寸和成型工艺所决定。 (3)调湿 加入一定量的水分后,可以使原料表面覆盖薄薄的一层液体,增加黏结力,便于压缩成型。 (4)成型 生物质通过压缩成型,一般不使用添加剂,此时木质素充当了黏合剂。生物质压缩成型的设备一般分为螺旋挤压式、活塞冲压式和换模滚压成型。 螺旋挤压机源于日本,是目前国内比较常见的技术,生产的成型燃料为棒状,直径50-70mm。将已经粉碎的生物质通过螺旋推进器连续不断推向锥形成型筒的前端,挤压成型。因为生产过程是连续进行的,所以成型燃料的质量比较均匀,外表面在挤压过程中发生炭化,容易点燃。但是,由于螺杆处在较高温度和压力下工作,螺杆与物料始终处于摩擦状态,导致压缩区螺纹的磨损非常严重。当螺杆磨损到一定程度,螺杆与出料筒失去尺寸配合,原料就无法完成成型。因此,压缩区螺纹的磨损决定了螺杆的使用寿命,螺杆使用寿命成为生物质压缩成型技术实用化决定性因素。对螺杆磨损,由于受工艺技术的制约,目前没有从根本上解决问题,平均寿命仅为60-80h。

生物质热裂解液化技术

第六章生物质热裂解液化技术 第1节生物质热裂解原理 1.1 概念 ⑴生物质热裂解 生物质通过热化学转换,生成液体生物油、可燃气体和固体生物质炭3类物质的过程。 控制热裂解条件(反应温度、升温速率、添加助剂等)可以得到不同热裂解产品。 ⑵生物质热裂解液化 是在中温(500~650℃)、高加热速率(104~105℃/s)和极短停留时间(小于2s)的条件下,将生物质直接热解,产物再迅速淬冷(通常在0.5s内急冷到350℃以下),使中间液态产物分子在进一步断裂生成气体之前冷凝,从而得到液态的生物油。 生物油产率可高达70%~80%(质量分数)。气体产率随温度和加热速率的升高及停留时间的延长而增加;较低的温度和加热速率导致物料炭化,生物质炭产率增加。 生物质热裂解液化技术最大的优点在于生物油易于存储和运输,不存在产品就地消费的问题。 1.3生物质热裂解原理分析 (一)反应进程分析 生物质的热裂解(慢速)大致分为4个阶段: ⑴脱水阶段(室温~150℃):物料中水分子受热蒸发,物料化学组分几乎不变 ⑵预热裂解阶段(150~300℃):物料热分解反应比较明显,化学组成开始发生变化。半纤维素等不稳定成分分解成CO、CO2和少量醋酸等物质。

⑶固化分解阶段(300~600℃):物料发生复杂的物理、化学反应,是热裂解的主要阶段。物料中的各种物质相应析出,生成的液体产物中含有醋酸、木焦油和甲醇,气体产物中有CO、CO2、H2、CH4等。物料虽然达到着火点,但由于缺氧而不能燃烧,不能出现气相火焰. ⑷炭化阶段:C—H、C—O键进一步断裂,排出残留在木炭中的挥发物质,随着深层挥发物向外层的扩散,最终形成生物炭。 以上几个阶段是连续的,不能截然分开。快速裂解的反应过程与此基本相同,只是所有反应在极短的时间内完成,原料快速产生热裂解产物,因为迅速淬冷,使初始产物来不及进一步降解成不冷凝的小分子气体,从而增加了液态产物生物油。 (二)热解过程中生物质成分分析 ⑴生物质中主要成分及其分解产物 生物质主要由纤维素、半纤维素和木质素3种主要组成物,及一些可溶于极性或弱极性溶剂的提取物。3种组份常被假设独立进行热分解,半纤维素主要在225~350℃分解,纤维素主要在325~375℃分解,木质素在250~500℃分解。 纤维素是β-D-葡萄糖通过C1—C4苷键连接起来的链状高分子化合物,半纤维素是脱水糖基的聚合物。当温度高于500℃,纤维素和半纤维素将挥发成气体并形成少量炭; 木质素是具有芳香族特性的、非结晶性的、具有三维空间结构的高聚物。木质素隔绝空气高温分解可得到木炭、焦油、木醋酸和气体产物。产品的得率取决于木质素的化学组成、反应最终温度、加热速度和设备结构等。木质素的稳定性较高,热分解温度是350~450℃,而木材开始强烈热分解的温度是280~290℃。木质素中的芳香族成分受热时分解比较慢,主要形成炭。 热分解时形成的主要气体成分为:CO29.6%,CO50.9%,甲烷37.5%,乙烯和其它饱和碳氢化合物2.0%;液体提取物主要有萜烯、脂肪酸、芳香物和挥发性油组成。 ⑵纤维素分解过程与途径 纤维素是多数生物质最主要的组成物(在木材中平均占43%)同时组成相对简单,因此被广泛用作生物质热裂解基础研究的实验原料。 ①纤维素受热分解,聚合度下降,甚至发生炭化反应或石墨化反应,这个过程大致分为4个阶段: 第1阶段:25~150℃,纤维素的物理吸附水解吸; 第2阶段:150~240℃,纤维素大分子中某些葡萄糖开始脱水; 第3阶段:240~400℃,葡萄糖苷键开始断裂,一些碳氧和碳碳键也开始断裂,并产生一些新的产物和低分子的挥发性化合物; 第4阶段:400℃以上,纤维素大分子的残余部分进行芳环化,逐步形成石墨结构。 纤维素的石墨化可用于制备耐高温的石墨纤维材料。 ②纤维素分解途径 最广泛接受的纤维素热分解反应途径模式见图1:

生物质热解技术

生物质热解技术 按温度,升温速率,固定停留时间(反应时间)和颗粒大小等实验条件可将热解分为炭化(慢热解),快速热解和气化。由于液体产物的诸多优点和随之而来的人们对其研究兴趣的日益高涨,对液体产物收率相对较高的快速热解技术的研究和应用越来越受到人们的重视。快速热解过程在几秒或更短的时间内完成。所以,化学反应,传热传质以及相变现象都起重要作用。关键问题是使生物质颗粒只在极短的时间内处于较低温度(此种低温利于生成焦炭),然后一直处于热解过程最优温度。要达到此目的的一种方法是使用小生物质颗粒(应用于流化床反应器),另一种方法是通过热源直接与生物质颗粒表面接触达到快速传热(这一方法应用于生物质烧蚀热解技术中)。由众多实验研究得知,较低的加热温度和较长气体停留时间会有利于炭的生成,高温和较长停留时间会增加生物质转化为气体的量,中温和短停留时间对液体产物增加最有利。 秸秆发电商品化前景分析 解决浪费性生物质能资源的唯一出路在于商品化。生物质能秸秆发电技术,不仅为农村提供更多电力,更有意义的是将使生物质能资源的商品化成为可能,一方面农民可通过出售秸秆获得更多的收入;另一方面过去农村使用直接燃烧秸秆的方式进行炊事,要为秸秆的收集、运输、储存以及在直接燃烧时花费大量的时间和劳力。如果能使用秸秆发电,农村使用更多的商品能源,农民将获得更多的时间从事生产性劳动,以尽早脱贫致富。因此,将秸秆发电进行能源方式转化,是一件利国利民的好事。 1 生物质能秸秆发电的工艺流程 农作物秸秆在很久以前就开始作为燃料,直至1973年第一次石油危机时丹麦开始研究利用秸秆作为发电燃料。在这个领域丹麦BWE公司是世界领先者,第一家秸秆燃烧发电厂于1998年投入运行(Haslev,5Mw)。此后,BWE公司在西欧设计并建造了大量的生物发电厂,其中最大的发电厂是英国的Elyan发电厂,装机容量为38Mw。 1.1 秸秆的处理、输送和燃烧 发电厂内建设两个独立的秸秆仓库。每个仓库都有大门,运输货车可从大门驶入,然后停在地磅上称重,秸秆同时要测试含水量。任何一包秸秆的含水量超过25%,则为不合格。在欧洲的发电厂中,这项测试由安装在自动起重机上的红外传感器来实现。在国内,可以手动将探测器插入每一个秸秆捆中测试水分,该探测器能存储99组测量值,测量完所有秸秆捆之后,测量结果可以存入连接至地磅的计算机。然后使用叉车卸货,并将运输货车的空车重量输入计算机。计算机可根据前后的重量以及含水量计算出秸秆的净重。 货车卸货时,叉车将秸秆包放入预先确定的位置;在仓库的另一端,叉车将秸秆包放在进料输送机上;进料输送机有一个缓冲台,可保艚崭?分钟;秸秆从进料台通过带密封闸门(防火)的进料输送机传送至进料系统;秸秆包被推压到两个立式螺杆上,通过螺杆的旋转扯碎秸秆,然后将秸秆传

热解在城市生活垃圾处理中的应用:进展与展望

热解在城市生活垃圾处理中的应用:进展与展望 平帆 (浙江大学环境与资源学院农业资源与环境,杭州 310058) 摘要:热解是目前城市生活垃圾(MSW)处理处置中,相比于焚烧更为环保节能的处理技术。本文综述了近年来研究与应用中涉及的MSW热解技术与反应器,并对其终产物和环境影响进行简单比较。具体而言,总结反应温度、热耗率(HR)和滞留时间等运行参数对于热解过程与其终产物的影响;并归纳比较近年来理论研究与实际应用中的热解技术和反应器。由此得出结论:单一的热解技术或者反应器的确能实现MSW的高效处理,但其清洁环保程度有待商榷。本文最后对各项MSW热解技术与反应器的应用前景作总体评估与展望。 关键词:城市生活垃圾;热解技术;反应器;热解终产物 Review on pyrolysis technologies for municipal solid waste: progress and prospect Ping FAN (College of Environment & Resource Science of Zhejiang University, Hangzhou, Zhejiang 310058, China) Abstract:Pyrolysis has been proved to be amore attractive and sustainable compared to incineration for municipal solid waste (MSW)disposal. This review demonstrates the state-of-the-art ofMSW pyrolysis regarding to its technologies, reactors, products and environmental impacts. To be specific, the influence of important operating parameters such as temperature, heating rate(HR) and residence time in the reaction zone on the pyrolysis behaviors and products is summed up; thenthe technologies and reactors referred in literatures and scale-up plants are shown and assessed. Based on these information, we concluded the single pyrolysis process is an effective waste-to-energyconvertor except for its emission of pollutant. Finally,the prospects of various pyrolysis technologies to dealing with MSW are examined and suggested. Key words:municipal solid waste, pyrolysis technology, reactor, pyrolysis products 1.引言 城市生活垃圾(MSW)的处理处置是目前各国最为关心的问题之一。热解(Pyrolysis)是实现MSW资源化利用,获得多种高附加值终产物(如石油燃料或者沥青等)的创新性废弃物处理处置方法(Malkow, 2004)。相比与传统焚烧,热解能在减少氮氧化物(NO x)和硫氧化物(SO x)排放的同时,获得清洁且利用率较高的固、液、气态能源产品。 热解是指在缺氧条件下,将废弃物置于反应器中经高温降解或裂解,得到可再生利用的终产物(如炭、石蜡、柴油、汽油或燃气等)。对于热解反应器运行参数或环境条件的优化,可使终产物中的木炭或气液态燃料的品质得到提升。因此,热解反应器亦被称之为高效的废弃物-能源转化器。与大规模(以千吨为单位)的传统焚烧发电厂相比,热解厂的规模可根据日处理量与辐射城市面积而灵活调整。近年来,由于城市周边焚烧发电厂

生物质热解技术的研究及应用展望

生物质热解技术应用及展望 摘要:概述了生物质热解技术的原理及反应过程,介绍了热解工艺类型及热解产物类型,并对对生物质热解技术的发展前景进行了展望。 关键词:生物质;热解;热解工艺;热解产物 Application and prospects of biomass pyrolysis technology Zhao Shibin (Shijiazhuang Tiedao University,Shijiazhuang ,050043,China) Abstract: This article mainly discusses the principle of biomass pyrolysis technology and reaction process, pyrolysis types and analysis the products of it, and the rightness of biomass pyrolysis technology development foreground is prospected. Key words: biomass; pyrolysis; pyrolysis process; pyrolysis products 0 前言 人类世界正在面临着前所未有的能源危机。当前,人类社会所需要的能源主要来自矿物燃料,包括煤炭、石油、天然气等,但是这些资源正在逐步日益耗尽,其储量已难以在满足未来的发展需要。因此,开发和找寻新的可替代能源的任务迫在眉睫。生物质能源属于一种可再生能源,而且来源丰富,可以作为满足未来发展的一种重要的可再生能源。通过生物质能转换技术可高效地利用生物质能源,且其开发转化技术较容易实现,既可利用生物质能的热能效应又可以将简单的热效应充分转化为化学能等高品位的能源,生物质热解技术便为这种转换提供了技术保障。 生物质热解技术是指在无氧或低氧的条件下,将由高分子组成的生物质在高温下加热,通过热化学反应使之裂解为低分子化合物的技术方法。生物质热解的燃料能源转化率可达95.5%,最大限度的将生物质能量转化为能源产品,从而物尽其用,同时,热解也是燃烧和气化必不可少的初始阶段。 1 热解技术原理及反应过程 1.1 生物质热解原理 生物质在热解过程是一系列复杂的化学、物理反应,包括一系列的能量传递和物质传递。生物质通常是木材、竹材、灌木、野草、秸秆等天然有机材料的统称,其主要化学成分是纤维素、半纤维素和木质素。研究表明,3种组份常被假设独立进行热分解,纤维素在52℃时开始热解,随着温度的升高,热解反应速度加快,到350~370℃时,分解为低分子产物;半纤维素结构上带有支链,主要在225~325℃分解,比纤维素更易热分解,其热解机理与纤维素相似;木质素是具有芳香族特性的、非结晶性的、具有三维空间 结构的高聚物,主要在200~325℃分解[]1 。 在生物质热解过程中,热量首先传递到颗粒表面,再由表面传到颗粒内部。热解过程由外至内逐层进行,生物质颗粒被加热的成分迅速裂解成木炭和挥发分。其中,挥发分由可冷凝气体和不可冷凝气体组成,可冷凝气体经过快速冷凝可以得到生物油。一次裂解反应生成生物质炭、一次生物油和不可冷凝气体。在多孔隙生物质颗粒内部的挥发分将进一步裂解,形成不可冷凝气体和热稳定的二次生物油。同时,当挥发 分气体离开生物颗粒时,还将穿越周围的气相组分,在这里进一步裂化分解,称为二次裂解反应[]2 。生物 质热解过程最终形成生物油、不可冷凝气体和生物质。

生物质热解制取生物油的研究进展

生物质热解制取生物油的研究进展 生物质热解制取生物油的研究进展 摘要:文章介绍了国内外生物质热解的发展现状与趋势,概述了我国生物质热解制取生物油的潜力。文章对生物质热解制取生物油进行了展望,并指出了生物质热解制取生物油的发展战略。 关键词:生物质热解生物油 一、引言 维持现代文明社会正常运转的主要能源来自石油、煤和天然气。然而,这些化石燃料的广泛使用造成了严重环境污染和温室效应。为了保护环境,实现温室气体减排,缓解能源供需的紧张状况,世界各国均在加紧开发包括生物质能在内的各种可再生能源。 我国农林废弃资源丰富,直接燃烧对环境污染大。利用生物质热解技术原理可以将麦秸秆、玉米杆、谷壳等废气生物质转化为生物油。生物油是一种褐色液体,热值约为15MJ/kg,能够用于工业锅炉或窑炉燃烧供热,也可用于涡轮机或透平中燃烧发电。生物油经过品质提升后(如催化加氢、催化裂解和气化-费托合成),可以转化为汽油或柴油。该文主要对生物质热解液化研究进展进行介绍,综述了这类可再生资源的利用现状、潜力及今后发展的方向。 二、国内外生物质热解研究现状 20 世纪70年代的石油危机,世界各国纷纷寻求可替代化石能源的可再生能源,“生物质”渐渐引起人们的注意,因此对生物质的研究由此开始,尤其是对生物质热解的研究更是引起广大研究者的重视。上世纪80年代早期,北美首先开展了热解技术的研究工作。此后,世界各国先后建立了多种热解装置和相关工艺路线,力图实现热解技术的产业化。 生物质快速热解技术是生物质利用的重要途径,许多研究者用闪解来增加热解的液体产物和气体产物。任铮伟等[1]在最大进料速率为5kg/h的快速裂解流化床内进行了快速热解生物质制取液体燃料 的研究。反应在常压和420~525℃温度范围内进行,以木屑为原料,

重油热解

2 实验装置与流程 重油快速热解反应在小型流化床反应装置上进行,实验流程如图2-1所示。原料油由油泵抽出送经预热炉加热到预定温度,从下部进入流化床反应器与加热好的高温催化剂接触进行催化裂解反应。反应油气在反应器扩大段内经过过滤器与催化剂分离,进入冷凝器将气体产物冷凝分离,经气液分离器后,液体产物被收集,气体产物进入湿式流量计,测量体积,然后进入集气袋,留作取样分析。 整个反应系统可分为进样系统,反应系统,分离系统,测量分析系统四部分。 1.进样系统 包括一台自加热双通道柱塞式计量泵、原料油瓶、储水瓶和两台电子天平。通过调节计量泵改变反应的水油比,进常压渣油时要边加热边输送,防止渣油冷凝堵塞管路。 2.反应系统 包括流化床反应器、预热炉、加热炉、热电偶等。反应器是反应系统的核心,为了保证流化床内的流化状态,在反应器底端设置不锈钢分布板。反应器中心是一端封闭的热电偶盲管,内置测量反应管芯温度的热电偶,测温点处于加热炉的恒温区域内,以保证反应温度的准确性。反应器出口设有200目丝网过滤器,防止磨损的石油焦被气流带出反应器。预热炉与加热炉是反应的热源,为了保证流化床内的反应温度均匀温度,加热炉采用四段控温加热,分别由四个温度控制器控制并指示温度,通过对加热炉四段温度的调节,可以保证在反应器中重油裂解反应所需热量。

图2-1 重油快速裂解反应流程图 1.柱塞式计量泵 2.气瓶 3.预热炉 4.电加热炉 5.流化床反应器 6.热电偶 7.冷凝器 8.气液分离器9.电子天平10.湿式流量计11.集气袋12.气相色谱仪 Fig 2-1 Reaction flowsheet of heavy oil fast cracking 1.pluger meter ring pump 2.gas bottle 3.preheating furnace 4.electric heating furnace 5.fluidized reator 6. thermocouple 7.condensator 8.gas-liquid separator 9.electronical balance 10.water-sealed flowmeter 11.gas collection bag 12. Gas chromatograhy 3.分离系统 包括冷凝器、气液分离器两部分。裂解产生的高温油气先经过水冷,将温度降至常温,液相冷凝在气液分离器底部,气体产品从分离器顶部排出,进入后续测量分析系统。 4.测量分析系统 包括气相色谱仪、湿式流量计、电子天平。气相色谱仪用来分析气体产物的组成,其中,氢火焰检测器分析可燃组分,热导检测器分析氢气、一氧化碳和二氧化碳。湿式流量计用来测量气相产物的体积。电子天平用来称量反应过程中,反应中进入反应系统的水和原料油的质量,以及反应后液体产物的质量。 2.1.3 实验步骤与数据处理方法 2.1. 3.1 实验步骤

第十章 生物质热解技术

第十章生物质热解技术 1 概述 热化学转化技术包括燃烧、气化、热解以及直接液化,转化技术与产物的相互关系见图10-1。热化学转化技术初级产物可以是某种形式的能量携带物,如,木炭(固态)、生物油(液态)或生物质燃气(气态),或者是能量。这些产物可以被不同的实用技术所使用,也可通过附加过程将其转化为二次能源加以利用。 图10-1 热化学转化技术与产物的相互关系 生物质热解、气化和直接液化技术都是以获得高品位的液体或者气体燃料以及化工制品为目的,由于生物质与煤炭具有相似性,它们最初来源于煤化工(包括煤的干馏、气化和液化)。本章中主要围绕热解展开。 1.1生物质热解概念 热解(Pyrolysis又称裂解或者热裂解)是指在隔绝空气或者通入少量空气的条件下,利用热能切断生物质大分子中的化学键,使之转变成为低分子物质的过程。可用于热解的生物质的种类非常广泛,包括农业生产废弃物及农林产品加工业废弃物、薪柴和城市固体废物等。 关于热解最经典的定义源于斯坦福研究所的J. Jones提出的,他的热解定义为“在不向反应器内通入氧、水蒸气或加热的一氧化碳的条件下,通过间接加热使寒潭有机物发生热化学分解,生成燃料(气体、液体和固体)的过程”。他认为通过部分燃烧热解产物来直接提供热解所需热量的情况,严格地讲不应该称为部分燃烧或缺氧燃烧。他还提出将严格意义上的热解和部分燃烧或缺氧燃烧引起的气化、液化等热化学过程统称为PTGL(Pyrolysis,Thermal Gasification or Liquification)过程。 生物质由纤维素、半纤维素和木质素三种主要组分组成,纤维素是β-D-葡萄糖通过C1-C4苷键联结起来的链状高分子化合物,半纤维素是脱水糖基的聚合物,当温度高于500℃时,纤维素和半纤维素将挥发成气体并形成少量的炭。木质素是具有芳香族特性的,非结晶性的,具有三度空间结构的高聚物。由于木质素中的芳香族成分受热时分解较慢,因而主要形成炭。此外,生物质还含有提取物,主要由萜烯、脂肪酸、芳香物和挥发性油组成,这些提取物在有机和无机溶剂中是可溶的。三种成分的含量茚生物质原料的不同而变化,生物质热裂解产

相关主题
文本预览
相关文档 最新文档