当前位置:文档之家› 线形设计

线形设计

线形设计
线形设计

第1章 线形设计

1.1 平曲线的计算

平曲线包括直线、圆曲线和缓和曲线。

直线设计要求:直线的运用应注意同地形与环境相协调,《规范》规定:当设计速度≥60㎞/h 时,同向曲线间的直线最小长度以不小于设计速度(以㎞/h 计)的6倍为宜,反向曲线间直线最小长度以不小于设计速度的两倍为宜。

圆曲线设计要求:在选用圆曲线半径时,最大半径值一般不应超过10000米,在地形条件许可时,就力求使半径尽可能接近不设超高最小半径,在一般情况下或地形有所限制时,应尽量采用大于一般最小半径,只有在地形特别困难不得已时,方可采用极限最小半径。设计速度为80km/h 时,一般最小半径为400m ,极限最小半径为250m 。

缓和曲线设计要求:缓和曲线是设置在直线与圆同线之间或半径相差较大的两个转向相同的园曲线之间的一种曲率连续变化的曲线,其作用是使曲率连续变化,离心加速度、超高横坡度及加宽逐渐变化,便于行车平稳。二级公路设计速度为80km/h 时,缓和曲线长度最小值为70m 。

设计确定平曲线的原则

1.在条件允许的情况下尽量使用大的曲线半径(R<10000m )。

2.一般情况下使用极限半径的4~8倍或超高为2~4%的原曲线半径值,即390~1500m 为宜。

3.从现行设计要求方面考虑,曲线长度按最小值5~8倍。

4.地形受限时曲线半径应该尽量大于一般最小半径。

5.从视觉连续性角度,缓和曲线长度与平曲线半径间应有如下关系

9

s R

L R ≤≤。 缓和曲线

缓和曲线的最小长度一般应满足以下几方面:

(1)离心加速度变化率不过大: m 4.023m 800

80036.0036.03

33min

,====R V R a v L s s (2)控制超高附加纵坡不过陡: m m P

i B L s 0.567150

16

.000.57min ,=?=?=

(3)控制行驶时间不过短:m m V t V vt L s 67.662

.1802.16.3min ,===== (4)按视觉条件计算:m m L s 9.8889

8009R min ,===

故该二级级公路的缓和曲线最小长度为90米。

特殊线形设计方法

基本型:按直线-回旋线-圆曲线-回旋线-直线的顺序组合,为了使线形连续协调,宜将回旋线-圆曲线-回旋线的长度比设计成1:1:1;当半径较大,平曲线较长时,也可以将回旋线-圆曲线-回旋线的长度比设计成1:2:1等组合形式。

计算对于交点(JD 2K1+590.640) ,α=13o40′26″ , R=800m ,m Ls 200= 1) 曲线内移值 P

P=R

Ls 242

-3

4

2384R

Ls =0.422m 2) 总切线长T

q=2Ls -2

3240R Ls =44.995m

T=(R+P)tg

2

α

+q=140.96m 3) 曲线总长

L h = R α

180

π

+Ls=280.83m

4) 外距E

E=(R+P) sec

2

α

-R=6.15m 5) 校正值J

J=2T-L=1.09m

各主点桩号的计算

已知: JD 2桩号为:K1+590.640; 计算:

直缓点桩号为 ZH=JD-T=K1+449.680; 缓圆点桩号为 HY=ZH+Ls=K1+539.680; 曲中点桩号为 QZ=ZH+2

L =K1+590.695;

圆缓点桩号为 YH=QZ+

2

L =K1+640.510; 缓直点桩号为 HZ=YH+Ls=K1+730.510。

JD=QZ+

2

J

= K1+590.640 (计算无误) 校正后的交点与原来的交点相符。

1.2 竖曲线的计算

纵坡设计要求:设计速度为80km/h 时,最大纵坡为5%。最小纵坡应不小于0.3%(一般情况下以采取不小于0.5%为宜)。设计速度为80km/h 时,纵坡坡长最小值为200m 。

表 1-1 竖曲线的纵坡要求

设计速度 纵坡坡度 最大坡长 80km/h 3%

1100m 4% 900m 5%

700m

表 1-2 竖曲线半径要求

设计速度 线形 半径一般值

半径极限值

曲线最小长度

80km/h

凸形 4500m 3000m 70m 凹形

3000m

2000m

70m

1.2.1 竖曲线要素的计算 已知:

第1变坡点:K2+150,高程:105.119m, 竖曲线半径R 1=10000m ,i 1=0.50%, i 2=0.50%,为凸形曲线;

第2变坡点:K3+650,高程:97.869m,竖曲线半径R 2=10000m ,i 1=0.50%, i 2=0.50%,为凹形曲线;

计算得: 竖曲线一:

10.001212<-=-=i i w ,为凸形曲线,曲线长

m w R L 00.1001.00100001211=?=?=;切线长m L T 0.0502

1

1==

;外距m R T E 25.1021

2

11==。

竖曲线二:

同理求得:曲线长切线长L 2=100.00m ;T 2=50.00m,外距E 2= 0.125m 。 1.2.2 竖曲线要点桩号及高程的计算 竖曲线一:

起点桩号= K2+150-T 1=K2+100.000; 终点桩号= K2+150+T 1=K2+200.000;

竖曲线一起点设计高程=105.119-T 1×i 1=104.869m ; 竖曲线一终点设计高程=105.119—T 1×i 2=104.869m 。

竖曲线二:

起点桩号=K3+650—T 2=K3+600.000; 终点桩号= K3+650+T 2=K3+700.000;

竖曲线二起点设计高程=97.869+T 2×i 1=98.119m ; 竖曲线二终点设计高程= 97.869+T 2×i 1=98.119m 。

路基

路基是公路的重要组成部分,它是按照路线位置和一定技术要求修筑的带状构造物,承受由路面传来的荷载,必须具有足够的强度、刚度、稳定性和耐久性,中期设计在公路设计中占有重要的地位。

1.路基宽度

公路等级为二级公路,车道数为6车道,车速为h km 80,6车道的路基宽度

一般值为32m,,本设计路基设计宽取32m 或42m,设计车道宽度为3.75m ,得总车道宽度为3.75×6=22.5m ,土路肩的宽度为0.75×2=1.5m ,绿化带的宽度为4.0m 或2.0m 。

2.路拱坡度

沥青混凝土及水泥混凝土路拱坡度均为1~2%,故取路拱坡度为1.5%;路肩横向坡度一般应较路面横向坡度大,故取路肩横向坡度为 2.0%,路拱坡度采用双向坡面,由路中央向两侧倾斜。

3边坡的确定

路基边坡坡度对路基稳定性十分重要,确定路基边坡坡度是路基设计的重要任务。其大小取决于边坡的土质,岩石的性质及水文地质条件等自然因素和边坡的高度。一般路基的边坡坡度可根据多年实践经验和设计规范推荐的数值采用。

路堤边坡

一般路堤的边坡度可根据填料种类和边坡高度按规定坡度选用,路堤边坡坡度超高时,单独设计,陡坡上路基填方可采用砌石。

路堑边坡

土质路堑边坡应根据边坡高度,土的密实程度,地下水和地面水的情况,土的成因和生成时代等因素选定。岩石路堑边坡,一般根据地质构造与岩石特性对照相似工程的成功经验选顶边坡坡率

3.护坡道

当路肩边缘与路侧取土坑底的高差小于或等于2m 时,取土坑内侧坡顶可与路坡脚位相衔接,并采用路堤边坡坡度,当高差大于2m 时,应设置宽1m 的护坡道;当高差大于6m 时,应设置宽2m 的护坡道。

4.边沟设计

边沟横断面一般采用梯形,梯形边沟内侧边坡为1:1.0~1:1.5,外侧边坡

与挖方边坡坡度相同。少雨浅挖地段的土质边沟可采用三角形横断面,其内侧边坡宜采用1:2~1:3,外侧边坡坡度与挖方边坡坡度相同。本设计路段地处平原微丘区,故宜采用梯形边沟,且底宽为0.5m,深0.5m,内侧边坡坡度为1:1。

5.路基高度的确定

路基的填挖高度,是在路线纵断面设计时综合考虑路线纵坡要求,路基稳定性和工程经济等因素确定。从路基的强度和稳定性要求出发,路基上部土层应处于干燥或中湿状态,路基高度应根据临界高度并结合公路沿线具体条件和排水及防护措施确定路基的最小填土高度。路基横断面设计是在横断面测量所得的数据点绘到横断面上,按纵断面设计确定的填高度和平曲线上的超高,加宽值逐桩绘出路基横断面设计图,并计算的填挖中桩高度,填方面积和挖方面积分别标注于横断面图上。

填、挖方面积的计算方法

填挖面积的计算方法包括积距法、几何图形法、混合法、求积仪法,本设计采用积距法。

图3-1 横断面计算图

如图每隔1cm量出高度累计相加由于比例尺为1:200结果乘以4得到填挖方面最后把结果减去(填方)或加上(挖方)路面结构层面积即得该断面的填挖方面积,对于半填半挖路段,填挖面积应该分别写出。

横断面设计步骤

1.根据外业横断面测量资料点绘横断地面线。

2.根据路线及路基资料,将横断面的填挖值及有关资料(如路基宽度、加宽值、超高横坡、缓和段长度、平曲线半径等)抄于相应桩号的断面上。

3.根据地质调查资料,示出土石界限、设计边坡度,并确定边沟形状和尺寸。

4.绘横断面设计线,又叫“戴帽子”。设计线应包括路基边沟、边坡、截水沟、加固及防护工程、护坡道、碎落台、视距台等,在弯道上的断面还应示出超

高、加宽等。一般直线上的断面可不示出路拱坡度。

5.计算横断面面积(含填、挖方面积),计算土石方数量。

超高设计

为抵消车辆在曲线路线上行驶时所产生的离心力,将路面做成外侧高于

内侧的单向横坡的形式,这就是曲线上的超高。合理的设置超高,可以全部

或部分抵消离心力,提高汽车行驶在曲线上的稳定性与舒适性。当汽车等速

行驶时,圆曲线上所产生的离心力是常数,而在回旋线上行驶则因回旋线曲

率是变化的,其离心力也是变化的。因此,超高横坡度在圆曲线上应是与圆

曲线半径相适应的全超高,在缓和曲线上应是逐渐变化的超高。

在公路工程施工中,路面的超高横坡及正常路拱横坡是不便于用坡度值

来控制,而是用路中线及路基,路面边缘相对于路基设计高程的相对高差来

控制的。因此,在设计中为便于施工,应计算出路线上任意位置的路基设计

高程与路肩及路中线的高差。所谓超高值就是指设置超高后路中线,路面边

缘及路肩边缘等计算点与路基设计高程的高差。

1.加宽

当半径小于等于250m时,为了保证车的安全,曲线段上的正常宽度应做适当的加宽,半径大于250时不加宽。

2.超高

二级公路设计时速为80km/h时,当平曲线半径小于1500m时为让汽车在曲线上行驶时能够获得一个指向曲线圆心的横向分力,以克服离心力对行车的影响应设置超高。

本设计中超高的设置方法采用的是绕中线旋转的方法,超高的形成过程包括提肩阶段、双坡阶段和旋转阶段。

本公路为整体式路基,路拱为1.5%,土路肩为2.0%。

3.超高值的计算

路基设计调和一般是指路肩边缘的高程,在超高设置段路基及中线的填、挖高度内改变,因此在该段应对超高值进行计算。

下面是计算各超高缓和段上各断面的超高值,公式摘录如下:

表3.2 绕路面中线旋转超高值计算公式

因为R>250m.所以不设加宽,只设超高。在桩号(K1+449.680—K1+730.510)内设计超高:

L S =90m V=80Km/h R=800m 查得i

b

=3.0%

B=3×3.75=11.25m ,L

S =2×12×0.015×200=72m,L

C

< L

S

取L

C

=90m

x 0 = 2 i

G

/ (i

G

+i

b

)×L

C

=90×3.0%/4.5%m=60m

1)圆曲线的全超高断面

h

内= b

J

i

J

+ B/2i

G

- (b

J

+b

x

+ B/2) i

b =-0.176

h 外= b J i J + B/2i G + (b J +b x + B/2) i b =0.544

/2c j j b B

h b i i =+==0.184

2) 超高缓和段超高值计算: (1)双坡断面 桩号为K1+500

//()cx j j j x G h b i b b i =-+

=0.00375

h 外= b J (i J -i G )+x/x 0 (B+2b J ) i G

=0.364

/

2

cx j j G B h b i i =+=0.184

x 0 = 2 i G / (i G +i b )=75×3.0%/4.5%m=50m (2)旋转断面 桩号为K1+520

h= b J i J + B/2i G - (b J +b x + B/2) i x =-0.048

h 外= b J i J + B/2i G - (b J + B/2) i x =0.314

/

2

cx j j G B h b i i =+=0.184

式中:B —行车道宽度(m )

bj — 路肩宽度(m ) b —圆曲线的加宽值(m ) bx —X 距离处的路基加宽值(m ) b i —超高横坡度 G i —路拱横坡度

j i —路肩横坡度

0x —与路拱同坡度的单向超高点至超高缓和段起点的距离(m )

x —超高缓和段中任意一点至超高缓和段起点的距离(m ) 4.超高设计图的绘制

按比例绘制一条水平基线,代表路中心线,并认为基线路面横坡是为零。

绘制两侧路面边缘线,路边缘线离开基线的距离,代表横坡度的大小。

标注路面路肩横坡度,以前进方向右侧斜的路拱横向坡度为正,向左倾斜为负。

排水系统的设计原则

1.一般规定

(1)二级公路路基路面排水应进行综合设计,使各种排水设施形成一个功能齐全,排水能力强的完整排水系统。

(2)路基排水设计应与农田水利建设规划相配合,防止冲毁农田或危害农田水利设施,当路基占用灌溉沟渠时,应予恢复,并采取必要的防渗措施。

(3)公路穿过村镇居民区时,排水设计应与现有供、排水设施及建设规划相协调。

(4)排水困难地段可通过提高路基或采取降低地下水位、设置隔离层等措施,使路基处于干燥、中湿状态。

2.地质情况

本段处在干燥或中湿状态,路基排水基本顺畅,但也出现挖方及矮路堤,在大部分地区及挖方路段需设置边沟,当排水量大时应进行流量计算,在小半径曲线设置超高的地段,边沟宜加深。

边沟纵坡应与路线纵坡一致,但本路线全线地面起伏很大,且横断面高差很大,在许多路段无法满足此项要求。在路基两侧设置边沟,一般情况下挖方路基和填土高度小于1.0m的路堤应设置边沟,边沟最大纵坡为3%,最小纵坡为0.3%。在一些地线横向排水好的路堤也可不设边沟。

全线横向排水基本良好,路基受地下水影响小,不需全线设置边沟,路线左侧高,右侧低,右侧需设边沟的地段少一些。纵向排水全部按设置3m护坡道的情况选择,挖方路段选路基边坡坡脚以外2米。边沟出口必须设在横向排水良好或涵洞的地段使边沟汇集来的水能顺畅的排向路基范围以外,以保持路基处在干燥或中湿状态。

各种排水设施的设计应尽量少占农田,并与水利规划和土地使用相配合进行综合规划,排水口应尽可能引接至天然河沟,以减少桥涵工程,不宜直接注入农田。应采取就地取材,因地制宜的原则。在路基两侧设置边沟,一般情况下挖方路基和填土高度小于1.0m的路堤应设置边沟,边沟采用梯形,边沟的底宽为0.5m, 深度为0.5m, 内侧边坡采用1:1.0,外侧边坡为1:1.0。边沟最大纵坡为3.0%,最小纵坡为0.3%。在一些地线横向排水好的路堤也可不设边沟。纸上定线在地形

图上示出排水沟渠的平面位置。涵洞与路正交,纵坡度最大为2%,涵管直径为1.50m。

横断面的绘出

横断面设计一般比例为1:200, 在横断面图上,按纵断面设计确定的填挖高度和平面设计的超高,根据标准规定的路基宽度,绘出其路基横断面设计图,并标出填挖的高度路基宽度,计算出填方面积(At),挖方面积(Aw),并分别标注于图上.。

土石方的调配

2.4.1调配要求

1.土石方调配应按先横向后纵向的次序进行。

2.纵向调运的最远距离一般应小于经济运距(按费用经济计算的纵向调运的最大限度距离叫经济运距)。

3.土石方调运的方向应考虑桥涵位置和路线纵坡对施工运输的影响,一般情况下,不跨越深沟和少做上坡调运。

4.借方、弃土方应与借土还田,整地建田相结合,尽量少占田地,减少对农业的影响,对于取土和弃土地点应事先同地方商量。

5.不同性质的土石应分别调配。

回头曲线路段的土石调运,要优先考虑上下线的竖向调运。

2.4.2调配方法

土石方调配方法有多种,如累积曲线法、调配图法、表格调配法等,由于表格调配法不需单独绘图,直接在土石方表上调配,具有方法简单,调配清晰的优点,是目前生产上广泛采用的方法。

表格调配法又可有逐桩调运和分段调运两种方式。一般采用分段调用。

表格调配法的方法步骤如下:

1.准备工作

调配前先要对土石方计算进行复核,确认无误后方可进行。调配前应将可能影响调配的桥涵位置、陡坡、深沟、借土位置、弃土位置等条件表于表旁,借调配时考虑。

2.横向调运

即计算本桩利用、填缺、挖余,以石代土时填入土方栏,并用符号区分。

3.纵向调运

确定经济运距

根据填缺、挖余情况结合调运条件拟定调配方案,确定调运方向和调运起讫点,并用箭头表示。

计算调运数量和运距

调配的运距是指计价运距,就是调运挖方中心到填方中心的距离见区免费运距

4.计算借方数量、废方数量和总运量:

借方数量=填缺—纵向调入本桩的数量

废方数量=挖余—纵向调出本桩的数量

总运量=纵向调运量+废方调运量+借方调运量

5.复核

横向调运复核:

填方=本桩利用+填缺

挖方=本桩利用+挖余

纵向调运复核:

填缺=纵向调运方+借方

挖余+纵向调运方+废方

总调运量复核:

挖方+借方=填方+借方

以上复核一般是按逐页小计进行的,最后应按每公里合计复核。

6.计算计价土石方:

计价土石方=挖方数量+借方数量

第5章水泥混凝土路面设计

5.1交通量计算:

根据我国的《公路自然区划标准》(JTJ013-86),现拟改建一条二级公路,双向6车道,设计基准期为20年,交通量年平均增长率为7.0%,路基土为粘性土。

计算设计日通过的标准轴载作用次数

注:1-1表示单轴单轮组,1-2表示单轴双轮组,3-2表示三轴双轮组。

小于40KN的单轴和小于80KN的双轴略去不计;

方向分配系数采用0.5,因为是双向6车道,即单向3车道,所以车道分配系数取0.7(0.6-1.8)。故有:设计车道的年平均日货车交通量(ADTT)N s=2668.997×0.5×0.7=934.149

5.2 交通参数分析

5.2.1 累计标准轴次计算: 使用年限内的累计标准轴次为

()[]

()[

]

)

(.1451421539.07

0.0365107.01934.149365

1120

次=??-+?=?-+=

η

γ

γt

s e N N

5.2.2 交通等级划分:

由规范交通分级知,累计作用次数在106-2×107之间,所以交通等级为重交通;水泥混凝土路面设计使用年限20年,车轮轮迹横向分布系数η=0.39。(由《水泥混凝土路面设计规范》中表 A.2.2,对二级公路行车道宽大于7m ,η为0.34—0.39)。

5.3 路面结构方案设计

现在按设计要求,由表得,相应于安全等级三级的变异水平等级为中级。根据二级公路重交通等级和中级变异水平等级,查表,面层厚度h 取0.22-0.25m 之间。根据路基干湿类型,设计多种方案,并进行方案比选如下:

确定路基干湿类型:

路段路基干湿类型:公路自然区划为Ⅱ5,地下水位10~15米以下,粗估路面厚度约为0.5m 左右,则路槽底面距地下水位高为:Ho=10m -3.5-0.5m=6.0m 。查参考书目[2]P19页表1-9可知,H 0大于临界高度1H ,故该路段路基干湿类型属干燥。

方案一:参考《公路水泥混凝土路面设计规范》(JTG D40—2002)

1、初拟路面结构:

初拟普通混凝土面层,厚度为m h 22.0=;

基层选用水泥稳定粒料(沥青用量一般为5%),厚m h 18.01=;设置

m h 15.02=的低剂量无机结合料稳定土垫层。普通混凝土板的平面尺寸为宽

4.5m ,长

5.0m 。纵缝为设拉杆平缝,横缝为设传力杆的假缝。

2、材料参数的确定:

(1)混凝土路面设计弯拉强度与弯拉弹性模量:

本设计为普通混凝土路面为重型交通,查规范得:弯拉强度的标准值

r f 0.5=Mpa ,相应的弯拉弹性模量标准值为31=c E Gpa 。 (2)土基的回弹模量:

路基属于中湿状态,可选用路基土基的回弹模量值:MPa E 0.030= (3)基层和半刚性垫层的回弹模量:

基层选用低剂量无机结合料稳定土,回弹模量取:6001=E Mpa(600-900)

垫层选用水泥稳定粒料,回弹模量取:13002=E Mpa(1300-1700) (4)基层顶面的当量回弹模量和计算回弹模量:

根据土基状态拟定的基层、垫层结构类型和厚度,参照《公路水泥混凝

土路面设计规范》(JTG D40—2002)中,按式(B.1.5)计算基层顶面当量回弹模量如下:

)(101315

.018.015.060018.013002

22

22

2

212

2

2121MPa h h E h E h E x =+?+?=++=

1

2

2112213

223

11)11(4)(1212-++++=h E h E h h h E h E D x

)

(2.57)15.0600118.013001(4)15.018.0(1215.06001218.013001233m MN ?=?+?++?+?=- )(231.01013/2.5712/1233m E D h x x x =?== 4.29303101351.1122.651.1122.645.045

.00=???????????

???-?=???

????

????

? ??-=--E

E a x

792.003101344.1144.1155

.055

.00

=?

?

?

???-=???

? ??-=--E

E b x

)(16503101303312.04.2933

/10.7923

/10

0MPa E

E E ah E x

b x t =?

?

?

?????=???

? ??=

普通混凝土面层的相对刚度半径按(B.1.3-2)计算为:

)(677.0165/3100022.0537.0/537.033m E E h r t c =??==

3、荷载疲劳应力计算:

按式(B.1.3),标准轴载在临界荷位处产生的荷载应力计算为

)(259.122.0677.0077.0077.026.026.0MPa h r ps =??==--σ

因纵缝为设拉杆平缝,接缝传荷能力的应力折减系数可稍大,取87.0=r k 。考虑设计基准期内荷载应力累计疲劳作用的疲劳应力系数

()421.25451421.1

057

.0===n

e f N k 。根据公路等级,由表B.1.2,考虑偏载和动载

等因素对路面疲劳损坏影响的综合系数20.1=c k 。

按式(B.1.2),荷载疲劳应力计算为

)(3.182259.12.1421.287.0MPa k k k ps c f r pr =???==σσ

4、温度疲劳应力分析:

查表3.0 .8,可选取最大温度梯度Tg =88(℃/m )。 取板长m l .05=,7.39677.0/.05/==r l

由图B.2.2可查普通混凝土板厚m h 22.0=,17.0=x B 。按式(B.2.2),最大温度梯度时混凝土板的温度翘曲应力计算为:

)(2.1371.02

8

822.0310001012

5MPa B hT E x g

c c tm =?????==

-ασ,c α混凝土

线膨胀系数。

温度疲劳应力系数t k 按式(B.2.3)计算为

0.532041.00.52.13828.02.130.5323..1=????????-??? ???=???

?????-???? ??=b f a f k c r tm tm r t σσ, 其中a,b,c 为回归系数:本项目在河南,为区,分别取0.828,0.041,1.323。

再由式(B2.1)计算温度疲劳应力为

)(1.132.13532.0MPa k tm t tr =?==σσ

由表3.0.1,二级公路的安全等级为三级,相应于三级安全等级的变异水平等级为中级,目标可靠度为%85。再据查得的目标可靠度和变异水平等级,查表3.0.3,,确定可靠度系数13.108.1-=r γ,取为1.13

按式(3.0.3)

MPa f MPa r tr pr r 0.5873.4)1.133.182(13.1)(=≤=+?=+σσγ

综上所述,所选的普通混凝土面层厚度m h 22.0=可以承受设计基准期内荷载应力和温度应力的综合疲劳作用。

路面防冻厚度计算:

对于季节性冰冻地区应验算路面总厚度(水泥混凝土路面厚度+路面其它结构层厚度)是否满足最小防冻厚度的要求。若不满足,则应增加防冻层补足或增加垫层厚度使路面总厚度达到最小防冻厚度的要求。

已知当地中湿路面最小防冻厚度为41cm 干燥地段:22+18+15=55>41cm,满足要求。

第6章 沥青混凝土路面设计

6.1 据交通量确定累计标准轴次

据《公路沥青路面设计规范》(JTG D50-2006)计算累计标准轴次Ne 。 6.1.1 交通参数

公路等级:二级公路 路面等级:沥青混凝土高级路面 设计年限: 12年 交通量年平均增长率: 7.0% 车道特征:双向6车道 车道系数:取中值0.35 1.轴载分析

路面设计以双轴组单轴载100KN 作为标准轴载

1) 以设计弯沉值为指标及验算沥青层底拉应力中累计当量轴次。 a) 轴载换算

轴载换算采用如下的计算公式:35

.4211?

?

?

??=∑

=P P N C C N i i K

I (5.

1) 式中: N —标准轴载当量轴次,次/日

i n —被换算车辆的各级轴载作用次数,次/日 P —标准轴载,KN

i p —被换算车辆的各级轴载,KN K —被换算车辆的类型数

1c —轴载系数,)1(2.111-+=m c ,m 是轴数。当轴间距离

大于3m 时,按单独的一个轴载计算;当轴间距离小于3m 时,应考虑轴数系数。

2c :轮组系数,单轮组为6.4,双轮组为1,四轮组为0.38。 轴载换算结果见表:

表轴载换算结果

平面线形设计要点

1.平面线形设计要点:①平面线形应直捷,连续,顺适,并与地形,地物相适应,与周围环境相协调②保持平面线 形均衡与连贯③注意与纵断面设计想协调④平曲线应有足够的长度⑤避免连续急转线形 视觉分析概念:从视觉心理出发,对道路的空间线形及其与周围自然景观和沿线建筑的协调等进行研究分析,以保持视觉的连续性,使行车具有足够的舒适感和安全感的综合设计成为视觉分析 2平、纵线形组合的基本要求:①直线与直坡线.直线与凸形竖曲线.平曲线与直坡线是常用的组合形式/②平曲线与竖曲线宜相互重合.且平曲线应稍长于竖曲线③要保持平曲线与竖曲线大小均衡④要选择适合的合成坡度 3.平、纵线形设计中应避免的组合:①避免竖曲线的顶,底部插入小半径的平曲线②避免将小半径的平曲线起初点设在或接近竖曲线的顶部或底部③避免使竖曲线顶底部与反向平曲线的拐点重合④避免小半径的竖曲线与缓和曲线重合⑤避免在长直线设置陡坡或长度短,半径小的竖曲线⑥避免出现驼峰,暗凹,跳跃等使驾驶员视线中断的线形 4.越岭区路线,沿河区路线和平原区路线的布线要点沿溪线定义:沿溪线是沿着河,溪岸布置的路线 越岭线的定义:沿分水岭一侧山坡上山脊,在适当地点穿过垭口,再沿另一侧山坡下降的路线,称为越岭线. 5.平原区路线:①正确处理道路与农业的关系②合理考虑路线与城镇的联系③处理好路线与桥位的关系④注意土壤水文条件⑤正确处理新旧路的关系⑥尽量靠近建筑材料产地 6.沿河区路线:①河岸选择②高度选择③桥位选择路线跨越主河的桥位选择:①在“s”形河段腰部跨河,以争取桥轴线与河流成较大交角②河湾附近选择有利位置跨越注意河湾水流过桥的影响,采取相应的防护措施③在与路线接近平行的顺直河段上跨河.桥头引道难以舒顺,应尽量避免④不可避免时应设置斜桥,修改桥头线形或布置一段弯桥.桥头曲线要争取较大半径.以利行车/ 7.路线跨支流的桥位选择:①从支河沟口直跨②绕进支沟上游跨越.. 越岭区路线:①垭口选择选择:1垭口高低2垭口位置3垭口两侧地形和地质条件②过岭标高的选择:1垭口及两侧的地形2垭口的地质条件3结合施工及国防考虑③展现布局的步骤:1全面观察,拟定路线走向2试坡布线3分析落实控制点,决定路线布局4详细放坡试定路线. 8.展线系数:路线长度与直线距离之比①自然展线:是以适合的纵坡,顺着自然地形,绕山嘴,侧沟来延展距离,克服高差的布线形式②回头展线:是路线沿着山坡一侧延展,选择合适地点,用回头曲线作为方向相反的回头后在回头后在山坡的布线方式③螺旋展现:是当路线收到限制,需要在某处集中提高或降低某一高度才能充分利用前后有利地形或位置,而采用的螺旋状展线方式.一般多在山脊利用山包盘旋,以隧道跨线.

城市道路设计简答题汇总

1.城市道路有哪些不同功能组成部分。 车行道、路侧带、分隔带、交叉口和交通广场、停车场和公交停靠站台、道路雨水排水系统、其他设施如渠化交通岛等。 2. 2.城市道路网规划有哪些要求。1)满足城市道路交通运输要求;2)满足城市用地布 局要求;3)满足各种市政工程管线布置的要求。 3. 3.城市道路有哪些功能?1)交通设施功能;2)公用空间功能;3)防灾救灾功 能;4)形成城市平面结构功能。 4. 4.中间带有何作用?1)将上、下行机动车流分开,减少交通阻力,提高行车安全 及通行能力;2)作为设置交通标志牌及其它交通管理设施的场所;3)种植花草灌木或设置防眩网,可防止对向车辆灯光炫目,还起到美化环境的作用;4)设于分隔带两侧的路缘带,可引导驾驶员视线,提高行车的安全性和舒适性。 5. 5.行人安全设施有哪几种?人行过街地道、人行天桥、交叉口护栏与人行道护栏、 人行横道。 6. 6.雨水管渠系统布置的原则。1)充分利用地形,就近排入天然水体2)尽量避 免设置雨水泵站3)结合城市规划布置雨水管道4)合理布置出水口5)城市中靠近山麓建设的中心区、居住区、工业区,除了应设雨水管道外,尚应考虑在设计地区周围或设计区以外适当距离设置排洪沟,以拦截汇水区以内排泄下来的洪水,使之排入天然水体,避免洪水的损害 7.7.平面设计的原则有哪些? 1)道路平面位置应按城市总体规划网布设; 2)道路平面线形 设计应与地形、地质、水文等结合起来进行,并符合各类各级道路的技术指标; 3)道路平面设计应处理好直线与平曲线的衔接,合理地设置缓和曲线、超高、加宽等,合理地确定行车视距并予以适当的保证措施; 4)应根据道路类别、等级,合理地设置交叉口等; 5)平面线性标准需分期实施时,应满足近期使用要求,兼顾远期发展,使远期工程尽可能减少对前期工程的废弃。 8.8.试述人行横道的设置应考虑哪几个方面的要求。 1)人行横道应与行人自然流向一致, 否则将导致行人在人行横道以外的地方横过车行道,不利于交通安全。 2)人行横道应尽量与车行道垂直,行人过街距离短,使行人尽快地通过交叉口,符合行人过街的心理要求。 3)人行横道尽量靠近交叉口,以缩小交叉口的面积,使车辆尽快通过交叉口,减少车辆在交叉口内的通行时间。 4)人行横道设置在驾驶员容易看清的位置,标线应醒目。 9.城市道路网结构形式有哪些,简要分析它们的优缺点以及适用范围。 有方格网式、放射环式、自由式。 1)方格网式路网 优点:交通分散,灵活性大。 缺点:道路功能不易明确,交叉口多,对角线方向的交通不便。适用于中小城市。 2)放射环式路网 优点:有利于市中心区与各分区、郊区、市区外围相邻各区之间的联系;道路功能明确。 缺点:容易将个方向交通引至市中心,造成市中心交通过于集中;交通灵活性不如方格网式路网。适用于大、特大城市 3)自由式路网 优点:不拘一格,充分结合自然地形,线性生动活泼,对环境和景观破坏较少,可节约工程造价。 缺点:绕行距离较大,不规则街坊多,建筑用地较分散。适用于山区、丘陵地区的城市。

道路平面线形设计

Ch3 道路平面线形设计 【本章主要内容】 §3-1 平面线形概述 §3-2 直线 §3-3 圆曲线 §3-4 缓和曲线(3h) §3-5 平面线形的组合与衔接 §3-6 行车视距 §3-7 道路平面设计成果 【本章学习要求】 掌握平面线型的基本组成要素:直线、圆曲线、缓和曲线的设计标准、影响因素及确定方法、要素计算;行车视距的种类及保证;平面设计的设计成果;了解平面线型的组合设计。 本章重点:缓和曲线设计与计算、平面设计注意事项,难点:缓和曲线。

§3-1 道路平面线形概述 基本要求:掌握平面线形的概念,平面线形三要素, 了解汽车行驶轨迹对道路线形的要求。 重点:平面线形的概念。 难点:平面线形三要素。 1 平面线形的概念 平面线形—道路中线在平面上的水平投影,反映道路的走向。 2 平面线形三要素 2.1 汽车行驶轨迹 大量的观测和研究表明,行驶中的汽车,其导向抡旋转面与车身纵轴之间的关系对应的行驶轨迹为: 1) 角度为0时,汽车的行驶轨迹为直线; 2) 角度不变时,汽车的行驶轨迹为圆曲线; 3) 角度匀速变化时,汽车的行驶轨迹为缓和曲线。 行驶中的汽车,其轨迹在几何性质上有以下特征: 1)轨迹是连续和圆滑的; 2)曲率是连续的; 3)曲率的变化是连续的。 直线一圆曲线一直线符合第(1)条规律 直一缓一圆一缓一直符合第(1)、(2)条规律 整条高次抛物线可能符合全部规律,但计算困难,测设麻烦。 2.2平面线形要素 直线、圆曲线、缓和曲线称为平面线形的三要素。

§3-2 直线 基本要求:了解直线的使用特点和适用条件;掌握直线的设计标准及计算。重点:直线的设计标准。 难点:路线方位角、转角的计算。 1 直线的特点 1.1 以最短的矩离连接两目的地; 1.2 线形简单,容易测绘; 1.3 长直线,行车安全性差; 1.4 山区、丘陵区难与地形与周围环境协调。 2 设计标准 2.1直线最大长度 1)限制理由 2)直线最大长度:20V。 2.2直线最小长度L min 1)同向曲线间的L min:6V。 其中直线很短时,形成所谓的“断背曲线”。 2)反向曲线间的L min:2V。 考虑其超高和加宽缓和的需要,以及驾驶人员的操作方便。 3 直线的运用 3.1适用条件 1)路线完全不受地形、地物限制的平原区或山间的开阔谷地; 2)市镇及其近郊或规划耕区等; 3)长大桥梁、高架桥、隧道等路段; 4)平面交叉口附近,为争取较好的行车和通视条件; 5)双车道公路提供超车的路段。 3.2注意问题 1)不宜过长; 2)长直线上纵坡不宜过大; 3)长直线尽头不得设置小半径平曲线; 4)不宜过短。 4 直线的表达式(★补充) 已知直线上两点的坐标(X1,Y1)(X2,Y2)则直线的数学表达式为:Y-Y1 X-X1 Y2-Y1 X2-X1 两点间的直线长度:L=[(X1-X2)2+(Y1-Y2)2 ]1/2

(整理)道路线形设计第1

道路线形设计第1-4次作业 一、单项选择题(只有一个选项正确,共10道小题) 1. 公路工程两阶段设计是指() (A) 初步设计和技术设计 (B) 初步设计和施工图设计 (C) 技术设计和初步设计 (D) 技术设计和施工图设计 你选择的答案: B [正确] 正确答案:B 解答参考: 2. 关于汽车燃料消耗量,不正确的是() (A) 燃料消耗量与路面的强度和平整度无关 (B) 燃料消耗量与路线海拔高度有关 (C) 燃料消耗量与汽车行驶季节有关 (D) 燃料消耗量与驾驶员的技术有关 正确答案:A 解答参考: 3. 关于附着系数φ ,正确的是() (A) φ与车速无关 (B) 车速越高,φ越高 (C) 车速越高,φ越低 (D) φ与荷载无关 你选择的答案: C [正确] 正确答案:C 解答参考:

4. 在直线和半径为R的圆曲线之间设置一回旋线,其长度为L,参数为A,R、L和A单位均为m,则计算公式正确的是() (A) R+L=A (B) R-L=A (C) R?L=A2 (D) R2/L=A 你选择的答案: D [错误] 正确答案:C 解答参考: 5. 各级公路的最小合成坡度不宜小于() (A) 0.3% (B) 0.5% (C) 0.7% (D) 0.9% 你选择的答案: B [正确] 正确答案:B 解答参考: 6. 选线的第一步工作是() (A) 进行路线平、纵、横综合设计 (B) 确定所有细部控制点 (C) 解决路线的基本走向 (D) 逐段解决局部路线方案 正确答案:C 解答参考: 7. 各级公路都必须保证的视距是() (A) 超车视距 (B) 停车视距 (C) 错车视距 (D) 会车视距 你选择的答案: D [错误] 正确答案:B 解答参考:

平面线形设计大致过程

《公路勘测规范》纸上定线规定: 1.应将有特殊要求或控制的地点,必须避绕的建筑或地质不良地带,地下建筑或管线等标注于地形图上。 2.山岭地区的越岭路线,需进行纵坡控制的地段应在地形图上进行放坡,将放坡点标示于图上。 3.在地形图上选定路线曲线与直线位置,定出交点,计算坐标和偏角,拟定平曲线要素,计算路线连续里程。 4.沿路线中线按一定桩距从图上判读其高程,点绘纵断面图。河堤、铁路、立体交叉等需要重点控制的地段或地点,应实测高程点绘纵断面图,并据以进行纵坡设计。 5.应根据路线中线线位,在地形图上测绘控制性横断面,并按纵坡设计的填挖高度进行横断面设计,作为中线横向检验和计算路基土石方数量的依据。 6.依据纸上定线的线位及实地调查资料,初步确定人工构造物的位置、交角、类型与尺寸。 7.综合检查路线线形设计及有关构造物的配合情况与合理性。线形设计可采用透视图法检验平、纵、横组合情况。 8.纸上定线后,对高填深挖地段、大型桥梁、隧道、立体交叉以及需要特殊控制的地段,应进行实地放线检验、核对,并作为各专业工程勘测调查的依据。 9.所确定的线位应总体配合恰当、工程经济合理、线形连续顺适。对需进行比较的方案,应按上述步骤方法定出线位、计算工程量,进行技术经济比较。 本次实习中三级公路设计车速30km/h,平曲线极限最小半径30m,一般最小半径65m,不设超高最小半径350m,最大纵坡8%,路基宽度7.5m,行车道宽度6.0m,路肩宽度0.75m,路拱横坡度2%,路肩横坡度3% 1.项目——新建项目 2.在新建项目后可直接应用主线平面设计功能进行路线平面设计。 应用cad打开画好的带状地形图设计——主线平面设计。通过拾取可以在图上插入交点。 注意:这时系统只为新建项目建立了一个交点,除了交点名称和交点坐标可输入之外,其他控件都处于不可用状态。

超全道路工程平面线型设计说明

一、道路平面线型概述 一、路线 道路:路基、路面、桥梁、涵洞、隧道和沿线设施构成的三维实体。路线:是指道路中线的空间位置。 平面图:路线在水平面上的投影。 纵断面图:沿道路中线的竖向剖面图,再行展开。 横断面图:道路中线上任意一点的法向切面。 路线设计:确定路线空间位置和各部分几何尺寸。 分解成三步: 路线平面设计:研究道路的基本走向及线形的过程。 路线纵断面设计:研究道路纵坡及坡长的过程。

(二)平面线形要素 行驶中汽车的导向轮与车身纵轴的关系: 现代道路平面线形正是由上述三种基本线形构成的,称为平面线形三要素。 二、直线 一、直线的特点 1.优点: ①距离短,直捷,通视条件好。 ②汽车行驶受力简单,方向明确,驾驶操作简易。 ③便于测设。 2.缺点 ①线形难于与地形相协调 ②过长的直线易使驾驶人感到单调、疲倦,难以目测车间距离。 ③易超速 二. 最大直线长度问题: 《标准》规定:直线的最大与最小长度应有所限制。 德国:20V(m)。 美国:3mile(4.38km)

我国:暂无强制规定 景观有变化≧20V;<3KM 景观单调≦20V 公路线形设计不是在平面线形上尽量多采用直线,或者是必须由连续的曲线所构成,而是必须采用与自然地形相协调的线形。 采用长的直线应注意的问题: 公路线形应与地形相适应,与景观相协调,直线的最大长度应有所限制,当采用长的直线线形时,为弥补景观单调的缺陷,应结合具体情况采取相应的技术措施。 (1)直线上纵坡不宜过大,易导致高速度。 (2)长直线尽头的平曲线,设置标志、增加路面抗滑性能 (3)直线应与大半径凹竖曲线组合,视觉缓和。 (4)植树或设置一定建筑物、雕塑等改善景观。 三、直线的最小长度 直线的长度:前一个曲线终点到下一个曲线起点之间的距离。 YZ(ZH)-ZH(ZY) 之间的距离点击?工程资料免费下载 1.同向曲线间的直线最小长度 同向曲线:指两个转向相同的相邻曲线之间连以直线而形成的平面曲线 《规范》:当V≥60km时,Lmin≧6V; 当V≤40km时,参考执行

城市道路工程-咨询师-关于道路平面线形设计,下列说法不正确的是

在线考试: 在线考试: 1.单选题【本题型共4道题】 1.关于道路平面线形设计,下列说法不正确的是()。 A.各级道路路线不论转角大小,均应设置圆曲线 B.道路平面线形由直线、平曲线组成,平曲线由圆曲线、缓和曲线组成 C.所有道路,当圆曲线半径小于规范中“不设缓和曲线的最小圆曲线半径”时,均需在圆曲线两端设置缓和曲线 D.平面线形分为基本型、S型、C型(卵形)等型式 2.当立交匝道入口和出口(先入后出)间净距小于()时,应设置辅助车道连接入口和出口。 A.400米 B.500米 C.600米 D.800米 3.设计过程中需更改或突破城市道路规划红线时,应()。 A.设计人可自行处理 B.征得国土资源部门的同意并办理调整手续 C.征得业主单位同意

D.征得规划审批部门的同意并办理调整手续 4.城市道路建设项目在申办《建设工程规划许可证》时,所需提供的设计图纸是()。 A.规划方案 B.设计方案 C.初步设计 D.施工图 2.多选题【本题型共1道题】 1.关于交叉口定义,下面哪些说法是正确的()。 A.信号控制交叉口是指用交通信号灯组织指挥相冲突交通流运行次序的平面交叉口 B.让行标志交叉口是指主、次道路相交,用交通标志来组织分配相冲 突交通流的通行时间,规定次要道路车辆必须让主要道路车辆先行的一类交叉口 C.枢纽立交是指位于特大城市、大城市的快速路与快速路、高速公路、 重要主干道相交的重要交通立交节点,能适应相交主线直行车流快速连续行驶、转向车流略减速的交通需求。无平面交叉 D.一般立交是指城市主干道或次干道与城市快速路或高速公路相交, 主、次干道车辆从快、高速路集散的互通式立交。存在平面交叉 3.判断题【本题型共4道题】 1.城市道路建设项目申办《施工许可证》时,需提供施工图设计文件审查合格书。() Y.对

城市道路线形设计

城市道路线形设计 1.前言 道路平面设计的主要内容与工作是根据城市的情况规划确定的路线大致走向与位置,在满足车辆行驶与人们出行的技术条件前提下,结合当地地形、地貌、地质和水文条件以及现状地物,因地制宜确定具体的设计和施工方向;挑选合适恰当的平曲线半径,解决转折点处的曲线衔接;要保证必须的行车视距,使路线既要符合科学技术要求,又要经济合理。城市道路线形是由直线和曲线连接而成的空间立体线形形状,即是道路中心线的空间描绘。线形设计不好的话,轻者乘客会感到不舒服,司机行驶感到麻烦,严重的话甚至会影响车辆行驶的安全性,导致造成交通事故频发。究其原因,道路设计规范只能对某些施工硬性的技术指标作出指示,如:对平曲线半径、竖曲线半径、纵坡坡度、坡长等都分别做出了相关规定,而对这些指标之间的组合之下形成的新问题以及特殊性考虑甚少,如果设计人员没有考虑到行驶车辆的安全性,那么,设计出的道路就不会是一条优秀的城市道路。因为优秀的城市线形道路,是车辆安全、迅速、舒适的行驶的首要条件。 2.道路设计中线形设计的组成因素 (1)设计人员在线形设计时除了要考虑规划红线外,还应该综合考虑到原有的建筑、道路桥梁及其他构筑物等对新路设计的影响。在不降低道路的技术标准的前提条件下对上述发生的情况尽可能采取避让、利用以及改造等手法使设计工程量降至最低。

(2)城市道路作为城市景观不可或缺的一部分,又要受到地形、地貌、地物排水和地质条件及水文条件等各项因素的制约影响。因此,在布线时应尽量让所选路线与地形地势相互协调融洽。使它既要融于自然,又要设法利用自然条件,同时还要尽量解决自然中的不利因素和影响。 (3)设计人员在线形设计时还应考虑道路路线内部平面及纵、横断面之间的协调性。它们间的组合合理性是保证道路符合技术标准的重要条件之一,要使之能达到行车快捷方便、安全舒适、便于集散的目的。 3.道路线形设计中的问题分析 3.1 平面线形 (1)小偏角 小偏角特指道路上偏角≤7°的情形。当道路出现小偏角时,平曲线的长度将被看成比实际长度短,这样容易使驾驶员产生急转弯的错觉而急忙操作方向盘,从而造成行车事故,并且偏角越小越明显。事实上,在道路线形中采用小偏角是设计中平面定线经常采用的方法,因为小偏角可以解决许多定线中遇到的困难。这种情况在城市道路设计中非常普遍的存在这。而要取消一个小偏角的话就会多出很多不必要的麻烦,甚至有时还会增加一些不必要的工程量或拆迁,增加费用。所以对于设计速度较低的道路,小偏角的存在对行车安全影响并不是很大,但是对于高速公路这类设计行驶速度比较高的道路来说设置小偏角一定要慎重考虑。

城市道路平面线形设计

第四章城市道路平面设计1 平面设计的内容 平曲线形设计2 3 行车视距 4 城市道路平面线形设计

第一节平面设计的内容—主要任务 道路线形——道路路幅中心线(又称中线)的立体形状。 道路平面线形——道路中线在水平面上的投影形状。 平面设计的主要任务: 1)根据道路网规划确定的道路走向和道路之间的方位关系,以道路中线为准,考虑地形、地物、城市建设用地的影响。 2)根据行车技术要求确定道路用地范围内的平面线形,以及组成这些线形的直线、曲线和它们之间的衔接关系 3)对于小半径曲线,还应当考虑行车视距、路段的加宽和道路超高设置等要求。

第一节平面设计的内容——基本原则 平面设计的原则: 1)遵循城市道路网规划原则; 2)符合各级道路的技术指标原则; 3)处理好直线与平曲线的衔接,科学设置缓和曲线和超高、加宽等,合理行车视距并辅以适当的保护措施原则; 4)根据道路类别、等级、合理设置交叉口、沿线建筑物入口、停车场出入口、分隔带断口、公交停靠站位置等; 5)平面线形标准需分期实施时,应满足近期使用要求,兼顾远期发展,使远期工程尽可能减少对前期工程的废弃。

第一节平面设计的内容—基本要求 平面设计的基本要求: 1)适应汽车行驶轨迹; 汽车行驶轨迹特征——“三个连续”: ◆行车迹线是连续的,任何一点上不出现错头、折点或间断; ◆迹线的曲率是连续的,即在迹线上任何一点不出现两个曲率值; ◆轨迹线的曲率对里程或时间的变化率是连续的,轨迹线上任何一点 不出现两个曲率变化值。 2)合理确定平曲线形三要素 直线—曲率为零;圆曲线—曲率为常数;缓和曲线—曲率为变数

城市道路线形设计

城市道路线形设计-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

城市道路线形设计 1.前言 道路平面设计的主要内容与工作是根据城市的情况规划确定的路线大致走向与位置,在满足车辆行驶与人们出行的技术条件前提下,结合当地地形、地貌、地质和水文条件以及现状地物,因地制宜确定具体的设计和施工方向;挑选合适恰当的平曲线半径,解决转折点处的曲线衔接;要保证必须的行车视距,使路线既要符合科学技术要求,又要经济合理。城市道路线形是由直线和曲线连接而成的空间立体线形形状,即是道路中心线的空间描绘。线形设计不好的话,轻者乘客会感到不舒服,司机行驶感到麻烦,严重的话甚至会影响车辆行驶的安全性,导致造成交通事故频发。究其原因,道路设计规范只能对某些施工硬性的技术指标作出指示,如:对平曲线半径、竖曲线半径、纵坡坡度、坡长等都分别做出了相关规定,而对这些指标之间的组合之下形成的新问题以及特殊性考虑甚少,如果设计人员没有考虑到行驶车辆的安全性,那么,设计出的道路就不会是一条优秀的城市道路。因为优秀的城市线形道路,是车辆安全、迅速、舒适的行驶的首要条件。 2.道路设计中线形设计的组成因素 (1)设计人员在线形设计时除了要考虑规划红线外,还应该综合考虑到原有的建筑、道路桥梁及其他构筑物等对新路设计的影响。在不降低道路的技术标准的前提条件下对上述发生的情况尽可能采取避让、利用以及改造等手法使设计工程量降至最低。

(2)城市道路作为城市景观不可或缺的一部分,又要受到地形、地貌、地物排水和地质条件及水文条件等各项因素的制约影响。因此,在布线时应尽量让所选路线与地形地势相互协调融洽。使它既要融于自然,又要设法利用自然条件,同时还要尽量解决自然中的不利因素和影响。 (3)设计人员在线形设计时还应考虑道路路线内部平面及纵、横断面之间的协调性。它们间的组合合理性是保证道路符合技术标准的重要条件之一,要使之能达到行车快捷方便、安全舒适、便于集散的目的。 3.道路线形设计中的问题分析 平面线形 (1)小偏角 小偏角特指道路上偏角≤7°的情形。当道路出现小偏角时,平曲线的长度将被看成比实际长度短,这样容易使驾驶员产生急转弯的错觉而急忙操作方向盘,从而造成行车事故,并且偏角越小越明显。事实上,在道路线形中采用小偏角是设计中平面定线经常采用的方法,因为小偏角可以解决许多定线中遇到的困难。这种情况在城市道路设计中非常普遍的存在这。而要取消一个小偏角的话就会多出很多不必要的麻烦,甚至有时还会增加一些不必要的工程量或拆迁,增加费用。所以对于设计速度较低的道路,小偏角的存在对行车安全影响并不是很大,但是对于高速公路这类设计行驶速度比较高的道路来说设置小偏角一定要慎重考虑。

公路平面线形设计

关于公路平面线形设计报告 公路线形是指公路平面线形、纵断面线形及其二者相结合的三维空间线形的总称。公路的线形构成了公路的主骨架,是其他组成部分设计、施工全过程的基础。确定公路几何线形时,在考虑地形、地物、土地的合理利用及环境保护因素时,要充分利用公路几何组成部分的合理尺寸和线形组合,从施工、养护、经济、交通运行等角度出发,保证平面、纵断面、横断面的组成相协调。线形的好坏,对交通流的安全具有极其重要的作用,如果公路线形不合理,则会降低公路通行能力,造成运输者时间和经济上的损失,而且更不能容忍的是会诱发大大小小、各种各样的交通事故。 一、平面设计的原则 路线平面设计因该遵循下列原则: 1)平面线形应直捷、连续,并与地形、地物相适应,与周围环境相协调 2)行驶力学上的要求是基本的,视觉和心理上的要求对高速路应尽量满足3)保持平面线形的均衡与连贯 4)应避免连续急弯的线形 5)平曲线应有足够的长度 二、直线形设计方法 1设计方法 在我国公路平面线形设计中,一直是直线形设计方法。使用直线形设计方法进行平面布线设计时,设计人员往往首先综合考虑公路的等级、所经过的区域、路线的走向、控制条件和技术要求。 1)根据地形特征:主要是对山岭重丘区而言,以地形为控制因素,以纵断面线形为主导,综合平面和横断面来安排路线。 2)根据地物特征:主要是对平原微丘区而言,以平面地物障碍为控制因素,以路线平面为主导,结合纵断面和横断面来安排路线。 3)根据地质特征:主要是对不良地质地段和特殊地貌地区而言,以避让和防止不良地质病害为主导,综合平、纵、横来布设路线。

在直线形设计方法中,直线用来控制路线的走向和方位,是路线的主体,在路线布置和设计过程中起主导作用。而圆曲线和缓和曲线只是充当直线的配角,在整个路线中只是起导线交点线形和行车过渡的作用。 2设计思路 该法的具体设计思路分平原微丘区和山岭重丘区两种情况。 1)当路线不受纵坡限制时,定线主要考虑的是平面和横断面。其要点是:以点定线,以线交点。以点定线即在整个路线控制点间综合各方面因素加密小控制点,再根据这些控制点大致穿出路线导线的方法;以线交点即在己定小控制点的基础上结合路线标准和前后路线条件,穿出直线并延长交出交点。在这种不考虑放坡的情况下,直线形设计方法的具体设计思路大致可分加密控制点、穿线交点、调整交点和曲线计算和敷设四个步骤。 2)当路线布设在山岭重丘区时,就不可避免的会受到纵坡限制,定线需考虑平面和横断面。同时,路线纵坡坡度、坡长也是设计必须考虑的重要因素。在这种考虑放坡的情况下,直线形设计方法的具体设计思路大致可分段安排路线、放坡、修正导向线、以点定线,以线交点、调整交点和曲线计算和敷设六个步骤。 三、曲线形设计方法 设计方法 曲线形的具体设计方法有多种,曲线形设计方法总的设计思路大致相同,归纳起来可分为五步实施:确定控制点、采用曲线形式形成线形骨架、确定合理的线形参数、曲线计算和调整以及绘制平面线位图。 1)确定控制点:根据路线的走向、地形地物和环境的约束条件以及线形布设的标准和技术要求,在现场或纸上确定一系列线位控制点,粗略定出路线所要经过的大致位置。 2)采用曲线形式形成线形骨架:在地形图上绘制若干直线段和圆弧段,或者选择拟合曲线来控制路线的总体线位,形成路线的基本线形骨架。 3)确定合理的线形参数:反复设计拟定各线形要素之间的位置关系和参数值,或反复拟定拟合函数的参数值,确定最为合适的拟合曲线,直到满足规范和控制位置的要求,认为是理想线位为止。

《城市道路设计》期末考试题库及答案

《城市道路设计》期末考试题库及答案 一、填空题: 1.交通标志分为和两大类。 2.城市道路网规划的基本要求有满足城市道路交通运输需求、和满足各种市政工程管 线布置的要求。 3.城市道路网规划方案的评价应从技术性能、和社会环境影响。 4.现代道路平面线形的三要素为直线、圆曲线和。 5.道路工程一般划分为、、三大类型。 6.道路设计年限包括和。 7. 是描述交通流的运行条件及汽车驾驶者和乘客感觉的一种质量测定标准。 8.城市道路网规划评价原则是、、。 9.城市快速路是指在城市内修建的由、、等组成的供机动车辆快速通行的道路系统。 10.城市快速路横断面分为和。 11.环道一般采用、、三种车道。 12.城市道路网规划方案的评价应该从、和三个方面着手。 13.出入口间距的组成类型有、、、。 14.平交路口从交通组织管理形式上区分为三大类:、、。 15.道路照明以满足、和三项技术指标为标准。 16.交通信号控制的范围分为、、三种。 17.城市道路雨水排水系统的类型分为、、。 18.交通标志三要素有、、。 19.雨水口可分为、和三种形式。 20.变速车道分为和两种。 21.排水制度分为和两种。 22.城市公共交通站点分为、和三种类型。 23.照明系统的布置方式有、、、。 二、单选题: 1.既是城市交通的起点又是交通的终端的城市道路类型 [ ] A.城市快速路 B.城市主干路 C.城市次干路 D.城市支路 2.一般在城市市区和建筑密度较大,交通频繁地区,均采用 [ ] A.明沟系统 B.人工疏导系统 C.暗管系统 D.混合式系统 3.交通标志三要素中,颜色在选择时,主要考虑了人的 [ ] A.生理效果 B.习惯思维 C.心理效果 D.舒适依赖感 4.超高横坡为3%,纵坡为4%,那么合成坡度为 [ ] A.1% B.3% C.5% D.7% 5.下列情况可考虑设计集散车道的是 [ ] A.通过车道交通量大 B.两个以上出口分流岛端部相距很远 C.三个以上出口分流岛端部相距很远 D.所需的交织长度能得到保证 6.某十字交叉口的红灯20秒,黄灯3秒,绿灯15秒,该交叉口的信号周期为 [ ] A.20秒 B.41秒 C.15秒 D.38秒 7.在环形平面交叉中,中心岛不宜采用的形状是 [ ] A.圆形 B.长方形 C.椭圆形 D.卵形 8.下列不属于主线横面的是 [ ] A.车行道 B.路缘带 C.分车带 D.路旁建筑物

平、纵线形组合设计原则与要求

平、纵线形组合设计道路的线形状况是指道路的平面和纵断面所组成的立体形状。 线形设计首先从路线规划开始,然后按照选线、平面线形设计、纵断面线形设计和平纵线形组合设计的过程进行,最终展现在驾驶员面前的平、纵、横三者组合的立体线形,特别是平、纵线形的组合对立体线形的优劣起着至关重要的作用。 平、纵线形组合设计是指在满足汽车动力学和力学要求的前提下,研究如何满足视觉和心理方面的连续、舒适,与周围环境的协调和良好的排水条件。 特别在高等级公路的设计中必须注重平、纵线形的合理组合。 (一)组合原则平面与纵断面组合应遵循如下设计原则: 1.应能在视觉上自然地诱导驾驶员的视线,并保持视觉的连续性; 2.平面与纵断面线形的技术指标应大小均衡,不要悬殊太大,它不仅影响线形的平顺性,而且与工程费用密切相关,任何单一提高某方面的技术指标都是毫无意义的。 3.选择组合得当的合成坡度,以利于路面排水和安全行车; 4.应注意线形与自然环境和景观的配合与协调,以减轻驾驶员的疲劳和紧张程度。 特别是在路堑地段,要注意路堑边坡的美化设计。 (二)组合方式 1.平曲线与竖曲线组合a平曲线和竖曲线两者在一般情况下应相互重合,且平曲线应稍长于竖曲线如图所示,宜将竖曲线的起终点,放在平曲线的缓和段内;这种立体线形不仅能起到诱导视线的作用,而且可取得平顺和流畅的效果。 b平曲线与竖曲线大小应保持均衡,其中一方大而平缓时,另一方切忌不能形成多而小。

平、竖曲线几何要素要大体平衡、匀称、协调,不要把过缓与过急、过长与过短的平曲线和竖曲线组合在一起。 c当平曲线半径和竖曲线半径都很小时,平曲线和竖曲线两者不宜重叠,或必须增大平、竖曲线半径。 d凸形竖曲线的顶部或凹形竖曲线的底部不得插入小半径的平曲线,也不得与反向平曲线拐点相重合,以免失去引导驾驶员视线的作用,使驾驶员操作失误,引起交通事故。 2.平面直线与纵断面的组合a平面的长直线与纵面直坡段相配合,对双车道公路能提供超车方便,在平坦地区易于地形相适应,行车单调,驾驶员易疲劳。 b从美学的观点上,平面的直线与一个大半径的凸形竖曲线配合为好,与一个凹形竖曲线相配和次之;c在直线中较短距离内两次以上的变坡会形成反复凹凸的“驼峰”和“凹陷”,使线形视觉效果既不美观也不连续。 因此,只要路线有起有伏,就不要采用长直线,最好使平面路线形随纵坡的变化略加转折,并把平、竖曲线合理地组合。 尽量避免驾驶员一眼能看到路线方向转折两次以上或纵坡起伏三次以上。 d使用时应避免: ①平面长直线配纵面长坡;②平面直线上短距离内纵面多次变坡;③在平面直线段内不能插入短的竖曲线;④在平面长直线上设置陡坡及竖曲线长度短、半径小的凹形竖曲线;⑤在平面直线上的纵断面线形出现驼峰、凹暗、跳跃等使驾驶员视觉中断的线形。 三、线形组合特征及注意问题平面长直线与纵断面长坡段组合 1、线形单调、枯燥,在行车过程景观无变化,容易使司机产生疲劳; 2、驾驶易超速行驶,超车频繁;

道路线形设计

浅谈道路线形的设计 摘要:道路线形的设计不仅要与周围的环境相适应,而且要注意曲线之间的相互配合。在道路线形的设计中,有很多种组合方式,而好的线形设计,应起到保证线形连续、行驶安全、美观、与环境适应的重要作用。下面我们就这些方面进行详细地说明。 关键词:道路线形、线形设计、道路设计、线形 abstract: the design of road alignment should not only with the surrounding environment, but also to pay attention to curve interaction between. in the design of road alignment, have a variety of combination method, and good alignment design, should have to ensure that the linear continuous, driving safety, beautiful, and environment to adapt to the important role. below we on these aspects in detail. keywords: road alignment, alignment design, road design, line 中图分类号:u412.37文献标识码:a文章编号: 1道路线形设计一般原则 1.1道路线形应与地形相适应,与周围环境相协调。 道路不是白纸上画出来的!道路是在已有自然条件的基础上建设的人工构造物! 掌握的原则:

城市道路平面交叉口设计形式与选择

城市道路平面交叉口设计形式与选择 1、道路与道路交叉可分为平面交叉和立体交叉。交叉形式应根据道路网规划、相交道路等级及有关技术、经济和环境效益的分析合理确定。 2、平面交叉口应按交通组织方式分类: 1.平A类:信号交叉控制 平A1类:交通信号控制,进出口道展宽交叉口; 平A2类:交通信号控制,进出口道不展宽交叉口; 2.平B类:无信号控制交叉口 平B1类:之支路只准右转同行的交叉口; 平B2类:减速让行或停车让行标志管制交叉口; 平B3类:全无管制交叉口 3.平C类:环形交叉口 关于平面交叉口的选用类型应符合下表, 3、交叉口的形式 平面交叉口的形式设计得合理与否,直接影响到投资和使用价值,所以应切合实际地考虑远期的需要和近期的可能两方面因素,选择合理的方案。 平面交叉口的形式取决于道路网的规划和周围建筑的情况,以及交通量、交通性质和交通组织。 常见的几何形状有: 十字形环行交叉T形极其演变而来的X形Y形 错位交叉多路交叉畸形交叉 T形平面交叉口:T形交叉口是指交角为75~105的三路相交。 T形交叉口适用于主次道路的交叉,主要道路应设在直行方向。

Y形平面交叉口:Y形交叉口为三路相交直行方向的交角小于75或大于105的交叉口; Y形交叉口在交角较小的时候交通不利,而且锐角街口处的视线条件不好。 十字形平面交叉口 四条道路相交交叉口,交角为75~105. 十字形交叉口形式简单,交通组织方便,街角建筑易于处理,使用范围广,是最基本的交叉口形式 (1)简易十字交叉口:设计车速不高,交通量不大的三四公路或一般城市道路相交的十字交叉,可采用简易十字交叉 (2)设附加车道的十字交叉口:主要公路的设计速度为80km/h,次要公路为县乡公路或三四级公路且转弯交通量不大的十字交叉口。

道路线形设计

道路线形设计 总序:道路是一条三维空间的带状构造物,几何尺寸描述了道路的空间形态,人们习惯把路线在水平面上的投影称作路线的平面,其是中间位置的一条线一般成为道路的中线,沿中线竖直剖切再行展开则是路线的纵断面,中线上任意一点的法向切面是道路在该点的横断面。路线几何设计是指确定路线空间位置的工作,一般把它分解为路线平面设计、路线纵断面设计和横断面设计,这三者是相互关联的,既要分别进行,又要综合考虑,特别是现代道路许多新的技术要求更是需要进行三维的协调设计。 关键词:道路;设计;平面线形;缓和曲线;纵断面;横断面 道路运输是主要运输方式之一,按其使用特点分为公路、城市道路、厂矿道路、林区道路及乡村道路等。公路的基本服务对象是汽车,因此要保证汽车在公路上行驶必须安全、迅速、经济和舒适,公路路线要满足下列要求: 1.保证汽车在道路上行驶的稳定性,稳定性对减轻驾驶员的劳动强度,增加乘客的安全感和舒适程度,减少装载物的损坏等具有重要意义。 2.保证行车畅通,达到安全迅速的目的,必须要有足够的路面宽度来满足交通量的要求及通行能力需要,在平面和纵面有足够的行车视距。此外,还应尽可能减少平面交叉以及增加交通安全措施,才能达到安全、迅速行驶的目的。 3.对公路的平、纵、断面要有合理布局,这是根据公路等级和其使用任务和功能,合理利用地形,正确运用技术标准,保证路线的整体协调,做到平面舒适纵坡均衡和横面合理;线性组合协调,尽量避免穿过地质不良地区,做到技术上可行,经济上合理。 4.满足行车舒适要求,汽车的营运对象是人和货物,如何保证人的出游安全和舒适以及货物运输不受到损坏,是路线几何设计的重要指标之一。 平面线形设计应合理地组合线形单元,找出行驶安全、舒适而又经济的路线。

道路线形设计浅析

龙源期刊网 https://www.doczj.com/doc/fb2698982.html, 道路线形设计浅析 作者:贾奎 来源:《城市建设理论研究》2013年第05期 摘要:道路的线形是由直线与曲线连接而成的空间立体的线形形状,也是体现道路中心线的空间描绘。道路线形设计的好坏会直接影响驾驶者和乘客的视觉感受,甚至会影响车辆行驶的安全性,严重时会造成交通事故,进而威胁人们的生命安全。究其原因,是因为设计者只把汽车行驶作为了道路设计的根本,只重视平面线形和纵断面线形设计,而忽略了道路线形对驾驶者和乘客的心理及生理的影响。因此,怎样更好的、合理的设计道路线形对保证行驶中的人身安全和减少交通事故的发生显得尤为重要。本文就通过线形设计中应注意的几个关键问题做简单地探讨。 关键词:道路线形设计;交通安全;解决措施 Abstract: the road line by line and curve is connected to space three-dimensional geometric shape, is also a way to show the road centerline space describe. The road alignment design is good or bad will directly influence the driver and passenger's visual feeling, and even affect the safety of vehicle, will cause serious traffic accident, and then threat people's life safety. The reason is that the designer only cars as the way of design basis, only to take the horizontal alignment and profile geometric design, and ignore the road alignment for driver and passenger's psychological and physiological effect. Therefore, how to better, reasonable design road line to ensure the personal safety and reduce the driving traffic accident is particularly important. This article through the geometric design should pay attention to several key problems discussed simply. Keywords: road alignment design; Traffic safety; solutions. 中图分类号:U412.37文献标识码:A 文章编号:2095-2104(2013) 引言 交通运输作为联系国民经济发展的重要纽带,其发展速度十分迅速,在经济发展中的促进作用越来越突出。道路线形设计是否合理是直接影响道路运行和交通安全的根本性问题。因此道路线形不仅要符合汽车行驶的要求,还要符合驾驶人员和乘客的心理和生理要求,在保证这些的基础上,还要保证道路线形指标的均衡性、一致性和线形的连续性,以此来满足汽车在行驶过程中舒适、安全的需要。 一、道路线形设计的内容 1道路线形设计的基本内容

道路平、纵线形组合设计

一、视觉分析 1.视觉分析的意义 道路设计除应考虑自然条件、汽车行驶力学的要求外,还要考虑驾驶人员的心理和视觉上的反应。视觉是连接道路与汽车的重要媒介。 从视觉心理出发,对道路的空间线形及其与周围自然景观和沿线建筑的协调等进行研究分析,以保持视觉的连续性,使行车具有足够的舒适感和安全感的综合设计称为视觉分析。 2.视觉与车速的动态规律 驾驶员的视觉判断能力与车速密切相关,车速越高,其关注前方越远,视野越窄。 3.视觉评价方法 所谓线形状况是指道路平面和纵面线形所组成的立体形状,在汽车快速行驶中给驾驶员提供的连续不断的视觉印象。评价方法主要有三位动态模拟技术和透视图法。 透视图是按照汽车在道路上的行驶位置,根据线形的几何状况确定视轴方向以及由车速确定的视轴长度,利用坐标透视的原理绘制的。通过透视图,可以看出立体线形是否顺适,是否有易产生判断错误或茫然的地方,路旁障碍是否妨碍视线等。 二、道路平、纵线形组合设计 (一)设计原则 1.视觉上自然引导驾驶员视线,保持连续性; 2.平、纵线形技术指标大、小均衡; 3.得当的合成坡度; 4.与环境的配合、协调。

(二)线形组合的形式 平纵线形有以下六种组合形式 1.平面上为直线,纵面也是直线—构成具有恒等坡度的直线; 2.平面上为直线,纵面上是凹形竖曲线—构成凹下去的直线; 3.平面上为直线,纵面上是凸形竖曲线—构成凸起的直线; 4.平面上为曲线,纵面上为直线—构成具有恒等坡度的平曲线; 5.平面上为曲线,纵面上为凹形竖曲线—构成凹下去的平曲线; 6.平面上为曲线,纵面上为凸形竖曲线—构成凸起的平曲线。 (三)平曲线与竖曲线组合的基本要求 1.平曲线与竖曲线应相互重合,且平曲线应稍长于竖曲线; 这种组合是使平曲线和竖曲线对应,最好使竖曲线的起终点分别放在平曲线的两个缓和曲线内,即所谓的“平包竖”。如图4-12所示。对于等级较高的道路应尽量做到这种组合,并使平、竖曲线半径都大一些才显得协调,特别是凹形竖曲线处车速较高,二者半径更应大一

相关主题
文本预览
相关文档 最新文档