当前位置:文档之家› 实验 31 用折射极限法测液体的折射率

实验 31 用折射极限法测液体的折射率

实验 31 用折射极限法测液体的折射率
实验 31 用折射极限法测液体的折射率

实验 31 用折射极限法测液体的折射率

折射极限法是测定透明固体和液体折射率的基本方法之一。本实验使用分光计测量,具有便于了解其原理的直观性。在实际测量工作中,为了提高测量速度和准确度,常采用专门的仪器,如阿贝折射计或泼夫里许折射计等。

[学习重点]

1. 掌握用折射极限法测固体和液体折射率的原理和方法;

2. 进一步练习分光计的调整和使用方法;

3. 了解阿贝折射仪的工作原理和结构;

4. 学习用阿贝折射仪测定液体和固体的折射率。

[实验原理]

一.折射极限法测定折射率

光从一种介质进入另一种介质时,其入射角i 的正弦跟折射角r 的正弦之比,被定义为光从介质1进入介质2时的相对折射率n 12,即

(5-31-1) 介质相对于真空的折射率叫做介质的绝对折射率。若以n 1、n 2分别表示介质1和介质2的绝对折射率,则介质2相对介质1的折射率为

n 12 = n 2 / n 1 (5-31-2) 如果介质 1是空气,由于空气的绝对折射率仅为 1.000 28 (20℃时) 则在准确度要求允许的范围内可以认为介质相对于空气的折射率就是介质的绝对折射率。又因物质的折射率与通过物质的光波的波长有关,一般所指的折射率仅是对钠黄光而言,用n D 表示,有时也略去下标D ,泛用n 表示之。本实验测量的就是介质相对于空气的折射率。

为了测量透明固体材料的折射率,可以把样品做成三棱镜,如图5-30-l3所示。入射光经过三棱镜两次折射,出射后改变了原来的方向,由折射定律可知

又由几何关系可知 r 1+r 2 = α (即顶角A )从以上三式消去r 1和r 2得

(5-31-3) 因此,只要测出入射角i 1、出射角i 2和三棱角的顶角α即可算出折射率n 。

但是要测量三个角度,不仅测量和计算比较麻烦,还会带来较大的误差。假如用平行光以90°角入射,角i l 就不必测量了。可是要使平行光束准确地以90°角入射并不好做。如果不r

i n sin sin 12=2211sin sin sin sin i r n r n i ==221212)sin cos (sin sin sin sin 1i i i n ++=ααα图 5-30-13 B C A

用平行光,只要在光源前加一块毛玻璃,使光线向各方散射成为扩展光源,并且使它大致位于AB 的延长线上,同时遮住射向BC 面的光,那么总可以得到以90°角入射的光线。这光线的出射角i 2最小,称折射极限角。从扩展光源射向AB 面的光线,凡入射角小于90°的,其出射角必大于折射极限角。这样,当面对AC 面看出射光时,就会发现在极限角方位有一明暗视场的分界,如图5-31-l 所示。把望远镜叉丝对准明暗视场分界,便可以测定出射的极限方位,再利用自准法测出棱镜面的法线方向,就得到极限角i 2这种方法称折射极限法。

将i 1=90°代入式(5-31-3)折射率的计算简化为

(5-31-4) 在实际测量中常把棱镜顶角磨成 90°,折射率计算公式又可进一步简化为

(5-31-5)

液体的折射率也可以利用折射极限法测量。

在折射率和顶角都已知的棱镜面上, 涂上一薄

层待测液体,再用另一个棱镜或毛玻璃片将液体

夹住,从扩展光源射来的光经过液层进入棱镜再

折射出来。其中一部分光线在通过液体时,传播

方向平行于液体与棱镜的交界面,即掠入射于棱

镜。设液体的折射率为n x ,三棱镜的折射率为n ,

若n x <n ,有

n x sin 90°= n sin r 1

n sin r 2 = sin i 2

根据几何关系α = r 1±r 2 ( “-”号对应α<90°,而r 1>α)从以上三式消去r 1和r 2可得 (5-31-6)

其中“-”号用于 r 1<α,“+”号用于 r 1>α的情况。因n 和α为已知,所以只要测出i 2就可算出n x 如果用直角棱镜,如图5-31-2所,公式简化为

(5-31-7) 图 5-31-2 直角棱镜的折射极限角 222

2sin cos sin sin i i n n x αα -=222sin i n n x -=i 1 r 1 r 2 i 2 n i 1 i 2 图 5-31-1 极限方位有一明暗视场分界 r 2 A B C i 1 r 1 α 2

2sin sin cos 1??

? ??++=ααi n 22sin 1i n +=

二.阿贝折射仪测定物质折射率的光学原理

阿贝折射仪是依据折射极限法的基本原理而设计

的专门用于测定物质折射率的仪器,其原理性光路如

图5-31-3所示。

阿贝折射仪的两个三棱镜都是直角棱镜,一个是

折射棱镜ABC ,另一个是斜面A ˊC ˊ为磨砂面的进

光棱镜。测液体的折射率时,将待测液体放置在折射

棱镜与进光棱镜之间。光通过平面反射镜M 反射后从

进光棱镜的B ˊC ˊ面入射,在A ˊC ˊ面产生漫反射,

使液层内有各种不同角度的入射光。因此,当用阿贝

折射仪的测量望远镜从折射棱镜的另一侧面AB 进行

观察时,可见到半明半暗视场。在实际的折射仪中,望远镜是固定的,通过转动棱镜房倾角来寻找与临界角α0所对应的极限角i 0(i 2)位置。即半明半暗界线。由公式(5-31-6)换算,阿贝折射仪在测量i 0(i 2)的标尺(分度盘)上直接标出了与i 0角对应的折射率值。因此,在测量时不需任何计算就能直接读出待测液体的折射率值。

以上所述都是用单色光源时情况。实际测量时,阿贝折射仪常用日光(白光或普通灯光)作为光源,此时望远镜中会看到一条彩色光带,没有清楚的明暗界线。为消除此色散现象,阿贝折射仪的望远镜前面装有消色散的阿米西棱镜组。当有色散之光进入阿米西消色散棱镜组,可通过调节两消色散棱镜的相对位置,而产生一个反向色散抵消原色散之光,使视场彩色光带消失达到黑白分明。这是因为各色光通过消色散棱镜其极限方向都要改变,仅钠黄光通过阿米西棱镜不改变其极限方向。这是由阿米西棱镜特性所决定。所以当色散消除时,各色光都平行,也就是各色光都与钠黄光极限方向重合。视场则仍出现半边白色半边黑色,黑白分界线就是钠黄光的极限i 0之方向。因此,阿贝折射仪所测之折射率仍为n D 。

[仪器介绍]

阿贝折射仪是一种直读式光学仪器,利用它能迅速

而准确地测出待测物质的折射率n x 值,测量范围是

1.3000~1.7000,测量精度为0.0003。

(一)仪器的机械结构

图5-31-4 是阿贝折射仪的外形。底座(1)是

仪器支撑座也是轴承座。在连接两镜筒的支架(5)

上装有圆盘组(3),支架能绕主轴转动,便于操作者

选择适当的工作位置。圆盘组(3)内有扇形齿轮板,

玻璃度盘就固定在齿轮板上。主轴连接棱镜组(13)

与齿轮板,当旋转手轮(2)时,扇形板带动主轴,

而主轴带动棱镜组(13)同时旋转,使明暗分界线位

于视场中央。(4)是小反光镜,(6)是读数镜筒,

(7)是目镜,(8)是望远镜,(9)是刻度校准螺丝, 图 5-31-3 阿贝折射仪光路原理

M 图 5-31-4 阿贝折射仪外形结构

(10)是色散棱镜手轮,(11)是色散值刻度圈,(12)是折射棱镜锁紧扳手,(13)是折射棱镜组,(14)是温差计座,(15)是恒温水接口,(16)是反光镜。

二、仪器的光学系统

阿贝析射仪的光学系统如图5-31-5所示,它是由望远系统和读数系统两部分组成。

(1)望远系统

光线经反射镜(1)反射进入进光棱镜(2)和折射棱镜(3),待测液体放置在这两个棱镜之间。入射光在进光棱镜磨砂面上散射与折射棱镜折射后,进入测量望远镜。首先要通过阿米西棱镜组(4)使原来不平行的色散光变成平行光,再通过望远镜物镜(5)使平行光聚焦,将明暗分界线成像于分划板(6)上,经望远镜目镜(7)放大后而被人眼清晰地观察到。

(2) 读数系统

光线由小反射镜(14)经毛玻璃 (13)照明刻度盘,经转向棱镜(11)及读数镜物镜(10)将刻度成像于读数镜分划板(9)上,再经读数镜目镜(8)放大后成像于观察者眼中。

刻度盘(12)上有两行刻度示值,一行是以日光为光源的条件下的n D 值(从1.3000至

1.7000), 另一行是工业上用来测定固定物质在水溶液中的百分浓度(从0~95%)。

[仪器和器材]

分光计、直角三棱镜、毛玻璃、蒸馏水和酒精、低压钠灯、阿贝折射仪等。

[实验内容与要求]

1.调节分光计并测量三棱镜顶角

先使望远镜聚焦于无穷远,然后调节望远镜光轴与仪器转轴垂直,再调节三棱镜镜面与图 5-31-5 阿贝折射仪的光学系统 1__反射镜 2__进光棱镜 3__折射棱镜 4__阿米西棱镜 5__望远镜目镜 6__望远镜分划板 7__望远镜目镜 8__读数镜目镜 9__读数镜分划板 10__读数镜物镜 11__转向棱镜 12__刻度盘 13__毛玻璃 14__小反射镜 E__待测样品

望远镜光轴垂直,即可开始测量三棱镜的项角。分光计的调节方法,实验37分光计的调整与使用。其中平行光管本实验不使用,所以无须调节。

2.测极限角

(1)先用目测把光路布置好,使光源与棱镜等高,移动整个分光计,同时转动载物台,使棱镜的AB面对准光源,在棱镜角B处轻轻地加一块毛玻璃。这时,观察AC面的出射光,即呈现半明半暗的视场,在望远镜视野中能看到清晰的明暗分界线。

(2)将叉丝对准明暗分界线,记下游标读数。

(3)转动望远镜至三棱镜的法线位置(利用自准法)记下游标读数。

(4)(2)、(3)两步骤重复3 ~ 5次。

3.测液体折射率

在洗净的棱镜面上滴一、二滴蒸馏水,再贴上一片毛玻璃,使水形成均匀薄膜(液体不可过多,以免弄湿测分光计)。调节好望远镜和光源的位置,测i2重复3 ~ 5次。

以同样步骤对酒精进行测量。

4*.用阿贝折射仪测量在室温下的液体与透明固体的折射率

(1)清洗与校准

A.打开棱镜房,用脱脂棉花沾少量无水酒精或丙酮将两棱镜面清洗干净,以免留有污物影响测量精度。

B.用标准玻璃块校准仪器n D的读数。其方法是:先将仪器置于自然光或普通白炽灯前,调节两反光镜,使两镜筒视场明亮;再将标准玻璃块之抛光面上点一滴溴代萘,贴在折射棱镜之抛光面上,标准玻璃块的另一抛光面应对着光源,以接受入射光线。调读数镜筒指示值等于标准玻璃块所标n D值。观察望远镜视场内明暗分界线是否清晰,若有彩带,则转动消色散手轮消除色散;再观察明暗分界线是否在“×”形分划线之交点上,若有偏离,则用附件方孔调节扳手转动示值调节螺钉,使明暗分界线处于“×”形分划线之交点上为止。至此,校准即告完成。在以后的测定过程之中,示值螺钉位置不允许再调动。

(2)测量工作

A.测液体折射率

将两棱镜表面用酒精棉球擦洗干净,在进光棱镜磨砂面上滴上一至二滴待测液体(蒸馏水或酒精)旋紧棱镜锁手柄,使液膜均匀无气泡,并充满视场。旋转手柄(2)使棱镜组转动,这时在望远镜视场中应观察到彩色分界线上下移动。转动阿米西消色散棱镜手轮(10),使视场中除黑白二色外无其它色彩,再将分界线对准“×”形分划线中心。于是读数镜视场右边所指示的刻度值即为待测液体折射率n D之值。

为消除偶然误差,应以同样方法重复取三次样品进行测定,三个读数误差不应大于0.0002,然后取平均值。

B.测固体折射率

此时与校准读数时所采用的方法一样,只用一个折射棱镜。在待测固体抛光面上滴入溴代萘或其它高折射率液体,再贴于折射棱镜上。用上述同样的调节方法测n D,即:转动棱镜房,消去色散,找准极限位置,最后读出待测n D之值。同样须重复三次测量,取其平均值。

C .对测量结果进行分析。

[注意事项]

1.需要特别注意保护直角棱镜和三棱镜,绝对不能在镜面造成刻痕。

2.在每次滴加测试样品前都要擦净镜面,使用完后应将其擦拭干净,严禁使用腐蚀性液体。

[数据处理]

l .三棱镜顶角α的测量数据(表格自己设计)

2. 三棱镜玻璃的折射率测量数据表格

测量次数

1 2 3 4 5 平均 折射光极限位置 游标错

误!未

找到引

用源。

游标错

误!未

找到引

用源。

法线位置 游标错

误!未

找到引

用源。

游标错

误!未

找到引

用源。

i 2角 游标错

误!未

找到引

用源。

游标错

误!未

找到引

用源。

温度 t = ℃

折射率

=??? ??++=2

2sin sin cos 1ααi n

3.水和酒精的折射率

仿照上面的表格记录各项数据,得i2平均值后计算n水和n酒精。

计算出所测折射率的标准不确定度。

4.用阿贝折射仪重测水和酒精的折射率并将其与前面所测的结果进行比较。

[思考题]

1.用折射极限法测液体折射率时,能测出的折射率范围如何?哪些因素决定这个范围?

2.明暗视场的分界线是微弯的还是直的?如果是微弯的,如何解释?是否影响测量结果?

3.用眼睛寻找明暗视场时,眼睛靠近三棱镜容易找些,还是眼睛远离三棱镜容易找些?为什么用眼睛找比用望远镜找来得容易些?

4.阿贝折射仪测量n D对照明光源有无要求?为什么?

超声光栅测液体中的声速 实验报告

实验设计说明书题目:利用超声光栅测液体中的声速 院部:理工科基础教学部 专业班级:物理学(创新实验班)1班 学生姓名:某某某 学号:41106XXX 实验日期: 2013年5月21日

超声光栅测液体中的声速 人耳能听到的声波,其频率在16Hz 到20kHz 范围内。超过20Hz 的机械波称为超声波。光通过受超声波扰动的介质时会发生衍射现象,这种现象称为声光效应。利用声光效应测量超声波在液体中传播速度是声光学领域具有代表性的实验。 一、实验目的 (1)学习声光学实验的设计思想及其基本的观测方法。 (2)测定超声波在液体中的传播速度。 (3)了解超声波的产生方法。 二、 仪器用具 分光计,超声光栅盒,高频振荡器,数字频率计,纳米灯。 三、 实验原理 将某些材料(如石英、铌酸锂或锆钛酸铅陶瓷等)的晶体沿一定方向切割成晶片,在其表面上加以交流电压,在交变电场作用下,晶片会产生与外加电压频率相同的机械振动,这种特性称为晶体的反压电效应。把具有反压电效应的晶片置于液体介质中,当晶片上加的交变电压频率等于晶片的固有频率时,晶片的振动会向周围介质传播出去,就得到了最强的超声波。 正文: 光声效应的发现无疑是物理学两大分支的又一次融合,利用超声光栅测量液体中的声速就是这一物理现象的应用。此次实验的仪器包括超声光栅池、超声仪、分光计、测微目镜以及光源。 由于声波是纵波,所以当超声波在液体(本实验用的是水)传播时,声波的振动会引起液体密度空间分布的周期性变化(如右图),进而导致液体的折射率亦呈周期性分布(如右图)。如果在某一时间t 0,液体密度的空间函数为: ()0s 02sin x t x π ρρρωλ??=+?- ? ?? ? ① 其中,0ρ是液体的静态密度,ρ?是密度的变化幅度,s ω是超声波的角频率,λ是超声波长,x 是超声波的传播方向,也是密度变化的空间方向;此时,折射率 的空间函数为:()0s 02sin n x n n t x πωλ? ?=+?-? ?? ?②,其中0n 为液体的静态折射率

测液体折射率实验报告

实验题目:表面等离激元共振法测液体折射率实验 预习报告与原始数据见纸质报告。 实验步骤: 1.调整分光计,实验部件安装和线路连接已经完成; 2.传感器中心调整 粗调:将微调座放到载物台上,固定好调节架后,在调节架中心放上准星,调节载物台锁紧螺钉使激光光斑至粗调对准处,不断调节平行光管光轴水平调节螺钉与微调座的两颗微调螺钉,使当游标盘转动一圈时,激光光斑一直照在该处; 细调:调节平行光管光轴高低调节螺钉,使激光光斑射在细调对准处,不断调节平行光管与微调座使当转动游标盘一圈时,激光光斑一直射在该处; 中心调节:继续调节平行光管光轴高低调节螺钉,使激光光斑射在准星顶尖处,再次调节使转动游标盘一圈时,激光光斑一直射在顶尖处。 3.测量前准备调节 中心调节完毕后,移去准星,放入敏感元件,将游标盘和刻度盘调节到合适位置;调整敏感元件使光垂直入射至半圆柱棱镜中的镀金属膜上,拧紧游标盘止动螺钉;转动刻度盘使刻度盘0o对准游标盘0o;拧紧转座与刻度盘止动螺钉,松开游标盘止动螺钉,从此刻开始刻度盘始终保持不动,将游标盘转回至刻度盘所示65o位置处锁定,测量前准备调节完毕。

4.测量读数 保持刻度盘和游标盘不动,转动望远镜支臂,观察功率计读数,记录其中的最大读数;保持刻度盘不动,移动游标盘从66o到88o,入射角没增加1o,记录功率计最大读数。 5.数据表格与数据处理 (1)数据表格自拟; (2)画出相对光强与入射角的关系曲线图; (3)比较不同溶液的共振角有何差异。 实验样本: 本实验采用样本为:纯净水;无水乙醇;水:乙醇=1:1的乙醇溶液。 实验数据: 1.纯净水 角度(°)666768697071 角度(°)72737475767778相对光强243273376480554581641653角度(°)7980818283848586相对光强700705713733741741758765角度(°)8788

利用牛顿环测液体折射率实验报告[1]

利用牛顿环测液体的折射率 实验者:姜晨彬 同组实验者:朱欣 指导教师:夏老师 (A09港航 090304134 655162) 【摘要】本文结合牛顿环干涉原理测量空气折射率的方法,阐述了测量液体折射率的实验原理,并研究出了具体的测量方法,最后对水的折射率进行了测量,并得出了较为准确的测量结果。 【关键词】牛顿环 空气 蒸馏水 干涉 折射率 一、引言 牛顿环是一种典型的等厚薄膜干涉现象,能充分显示光的波动性。本文通过研究对比空气和水在牛顿环里发生的干涉现象,更新了液体折射率的测试方法,使牛顿环的应用更加丰富,开拓了物理实验的新视野。 二、设计原理 当以波长为x 的钠黄光垂直照射到平凸透镜上时,由液体膜上,下表面反射光的光程差以及干涉相消。 即暗纹条件: )1......)(2,1,0(2/)12(2/2=+=+=n n ne λλδ 式中e 为某一暗纹中心,所在处的液体膜厚度,k 为干涉级次。 利用图中的几何关系,可得:R r e 2/2 = (r 为条纹半径),代入(1)式,有 ......)2,1,0(2/)12(2//2=+=+=n n R nr λλδ (2) 则暗纹半径......)2,1,0(/==n k nR r k λ (3) 若取暗纹观察,则第m ,k 级对应的暗环半径的平方 n mR r m /2 λ= (4) k nR r n /2 λ= (5) 两式相减得平凸透镜的曲率半径)/()(2 2n m n r r R n m --= (6) 观察牛顿环时我们也将会发现牛顿环中心由于形变,灰尘,水等的影响,中心不是一点,而是一个不甚清晰的暗或亮的圆斑。目因而圆心不易确定。故常取暗环的直径替换。进而有 λ)(4/)(2 2n m n D D R n m --= (7) 同理对于空气膜。则有λ)(4/2 '2'n m D D R n m --= (8) 式(7)与式(8)相比,可得:)/()(2 22'2'n m n m D D D D n --= (9) 由(9)式可知,只要测出同一装置(相同的平凸透镜和平面的玻璃板)下的空气膜和液体膜的条纹直径,即可求出液体的折射率。

用掠入射法测定三棱镜和液体的折射率(1)

大学物理实验设计性实验 实 验 报 告 实验题目: 液体折射率的测定 浙江农林大林 物理实验室 实验日期:2012 年5 月29日 班 级: 姓 名: 学 号: 指导教师:

液体(水)的折射率测定 实验目的: 1.温习分光仪的结构,并掌握分光仪调节和使用方法 2. 学习用掠入射法测定三棱镜和待测液体的折射率 实验仪器 分光仪,钠光灯,毛玻璃,待测液体(水),三棱镜 实验原理: 1.分光仪的调节 (1)目测粗调 目测调节望远镜光轴﹑平行光管光轴﹑载物台平面,三者大致垂直于分光中心旋转轴。目测是重要的一部,是进一步细调的基础,可以缩短调整时间。 (2)望远镜的调焦,使之能接受平行光,调节步骤如下: 1.目测调焦 2.物镜调焦 (3)调节望远镜光轴及载物台面垂直于仪器中心转轴。 2.调节载物台下G2或G3两螺钉之一,使此h 缩短为h /2,在调节望远镜倾度调节螺钉,使十字反射像与十字叉丝重合。 3.旋转载物台,用“各半”调节法使另一反射面的十字反射像与“上十字叉丝”重合,这需要2,3两步反复调整数次,要细心,耐心。 4.将载物台转动90°后放在载物台,调节载物台下螺钉G1,使十字反射像与上十字叉丝重合。 2.用掠入射法测三棱镜的折射率 掠入射法测三棱镜折射率的原理如图23-1所示。按照图23-1摆好实验仪器,用扩展光钠光灯源(用钠光灯照亮的毛玻璃)照明该棱镜的折射面AB ,用望远镜对棱镜的另一个折射面AC 进行观测。在AB 界面上图中光线a 、b 、c 的入射角依次增大,而c 光线为掠入线(入射角为?90),对应的折射角为临界角,用望远镜看到的视场是半明半暗的,中间有明显的明暗分界线整体移动分光计或刻度盘使钠光灯大体位于AB 光学面的延长线上,用眼睛在出射光的方向找到一个明暗相间的分界线,再将望远镜转至该方位—望远镜看到的视场是半明半暗的,中间有明显的明暗分界线,使竖直“+”字叉丝对准明暗相间的分界线,将刻度盘固定记下左右游标读数1i 和2i 。记下转动望远镜AC 面的法线位置,记下两游标读数3i 和4i ,从而可求光线经过三棱镜的最小出射角i 。在棱镜中再也不可能有折射角大于c i 的光线。在AC 界面上,出射光a 、b 、c 的出射角依次减小,以c 光的入射角为?90,出射角'i 为最小,

牛顿环测液体折射率实验报告

牛顿环测液体折射率实 验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

利用牛顿环测液体的折射率 【摘要】本文结合牛顿环干涉原理测量空气折射率的方法,阐述了测量液体折射率的实验原理,并研究出了具体的测量方法,最后对水的折射率进行了测量,并得出了较为准确的测量结果。 一、实验目的: 牛顿环是一种典型的等厚薄膜干涉现象,能充分显示光的波动性。本文通过研究对比空气和水在牛顿环里发生的干涉现象,更新了液体折射率的测试方法,使牛顿环的应用更加丰富,开拓了物理实验的新视野。 二、设计原理 当以波长为x 的钠黄光垂直照射到平凸透镜上时,由液体膜上,下表面反射光的光程差以及干涉相消。 即暗纹条件: 式中e 为某一暗纹中心,所在处的液体膜厚度,k 为干涉级次。 利用图中的几何关系,可得:R r e 2/2= (r 为条纹半径),代入(1)式,有 ......)2,1,0(2/)12(2//2=+=+=n n R nr λλδ (2) 则暗纹半径......)2,1,0(/==n k nR r k λ (3) 若取暗纹观察,则第m ,k 级对应的暗环半径的平方 n mR r m /2λ= (4) k nR r n /2λ= (5) 两式相减得平凸透镜的曲率半径)/()(22n m n r r R n m --= (6)

观察牛顿环时我们也将会发现牛顿环中心由于形变,灰尘,水等的影响,中心不是一点,而是一个不甚清晰的暗或亮的圆斑。目因而圆心不易确定。故常取暗环的直径替 换。进而有λ)(4/)(22n m n D D R n m --= (7) 同理对于空气膜。则有λ)(4/2'2'n m D D R n m --= (8) 式(7)与式(8)相比,可得:)/()(222'2'n m n m D D D D n --= (9) 由(9)式可知,只要测出同一装置(相同的平凸透镜和平面的玻璃板)下的空气膜和液体膜的条纹直径,即可求出液体的折射率。 三、设计方案 1.调整实验装置 将牛顿环装置放在毛玻璃上。点燃钠光灯,调节显微镜前面的透光反射镜的角度,与水平面成045的角度,这样从目镜中看到明亮的光场旋转目镜旋钮,使分化板上的十字线位于目镜的交线上,即从目镜中看到清晰地十字线。缓慢转动手轮,使显微镜自下而上缓慢上移,直到从目镜中看到清晰地干涉图样,并使相与交叉丝无视差。略微移动牛顿环装置,使显微镜十字叉丝位于牛顿环中心。 2.实验操作 将牛顿环装置的凸透镜和平板玻璃拆开,用滴管在平板玻璃上滴一层待测液体,然后压上凸透镜。由于液体有表面张力,能够充满凸透镜和平板玻璃之间的空间。则现在凸透镜和平板玻璃之间形成了液体膜。将此装置放到显微镜的载物台上,调节手轮,使显微镜由低到高缓慢移动,直至在目镜中看到清晰地干涉条纹为止。由于液体膜压得不会很均匀。故在视场中的某个地方会出现一小块空气膜,其干涉花样如上面右图所示。 四、实验结果与分析 数据记录

阿贝折射仪测介质折射率

实验阿贝折射仪测介质折射率 折射率是透明材料的一个重要光学常数。测定透明材料折射率的方法很多,如全反射法和最小偏向角法,最小偏向角法具有测量精度高、被测折射率的大小不受限制、不需要已知折射率的标准试件而能直接测出被测材料的折射率等优点。但是,被测材料要制成棱镜,而且对棱镜的技术条件要求高,不便快速测量。全反射法具有测量方便快捷,对环境要求不高,不需要单色光源等特点。然而,因全反射法属于比较测量,故其测量准确度不高(大约Δn=3×10-4),被测材料的折射率的大小受到限制(约为1.3~1.7),且对固体材料还需制成试件。尽管如此,在一些精度要求不高的测量中,全反射法仍被广泛使用。 阿贝折射仪就是根据全反射原理制成的一种专门用于测量透明或半透明液体和固体折射率及色散率的仪器,它还可用来测量糖溶液的含糖浓度。它是石油化工、光学仪器、食品工业等有关工厂、科研机构及学校的常用仪器。 【实验目的】 1.加深对全反射原理的理解,掌握应用方法。 2.了解阿贝折射仪的结构和测量原理,熟悉其使用方法。 3.通过对葡萄糖溶液折射率的测定确定其浓度。 【实验仪器】 WAY阿贝折射仪、标准玻璃块一块,折射率液(溴代萘)一瓶,待测液(自来水,酒精,糖溶液)、滴管、脱脂棉及擦镜纸 【实验原理】 一、仪器描述 阿贝折射仪是测量物质折射率的专用仪器,它能快速而准确地测出透明、半透明液体或固体材料的折射率(测量范围一般为1.4-1.7),它还可以与恒温、测温装置连用,测定折射率与温度的变化关系。 阿贝折射仪的光学系统由望远系统和读数系统组成,如图1所示。 望远系统。光线进入进光棱镜1与折射棱镜2之间有一微小均匀的间隙,被测液体就放在此空隙内。当光线(自然光或白炽灯)射入进光棱镜1时便在磨砂面上

大学物理实验设计性实验液体折射率测定

评分:大学物理实验设计性实验实验报告 实验题目:液体折射率测定 班级: 姓名:学号: 指导教师:

《液体的折射率测定》实验提要 实验课题及任务 《液体的折射率测定》实验课题任务方案一:光从一种介质进入另一种介质时会发生折射现象,当入射击角为某一极值(掠射)时,会产生一特殊的光学现象,能同时看到有折射光和无折射光的现象,就可以实现液体折射率的测量。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《液体的折射率测定》的整体方案,内容包括:(写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤),然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,按书写科学论文的要求写出完整的实验报告。 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解 仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶测量5组数据,。 ⑷应该用什么方法处理数据,说明原因。 ⑸实验结果用标准形式表达,即用不确定度来表征测量结果的可信赖程度。 实验仪器 分光仪、钠光灯、毛玻璃与待测液体 实验提示 掠入射法测介质折射率的原理如图示3-1所示。将待测介质加工成三棱镜,用扩展光源(用钠光灯照光的大毛玻璃)照明该棱镜的折射面AB,用望远镜对棱镜的另一个折射面AC进行观测。在AB界面上图中光线a、b、c的入射角依次增大,而c光线 i。在棱镜中再也不可能有折射角为掠入线(入射角为 90),对应的折射角为临界角 c i的光线。在AC界面上,出射光a、b、c的出射角依次减小,以c光线的出射角大于 c 'i为最小。因此,用望远镜看到的视场是半明半暗的,中间有明显的明暗分界线。证

油脂中折射率的测定

项目二 油脂中折射率的测定 1实验目的及要求 (1)理解阿贝折光仪测定油脂折射率的原理。 (2)掌握阿贝折光仪的使用和测定方法。 2 测定意义: 油脂的折射率与油脂的组成和结构密切相关,可用来鉴别油脂 的种类和纯度。 油脂中脂肪酸的分子质量越大,不饱和程度越高,其折射率就越大。 油脂中若含有共轭双键和羟基的脂肪酸,其折射率也会偏高。 3 测定原理 (1) 折射现象和折光率 当一束光从一种各向同性的介质m 进入另一种各向同性的介质M 时,不仅光速会发生改变,如果传播方向不垂直于界面,还会发生折射现象,如图1所示。 图1 光在不同介质中的折射 光速在真空中的速度(v 真空)与某一介质中的速度(v 介质)之比定义为该介质的折光率,它等于入射角α与折射角β的正弦之比,即: βαλsin sin v ==介质真空v n t 在测定折光率时,一般光线都是从空气中射入介质中,除精密工作以外,通常都是以空气作为真空标准状态,故常以空气中测得的折光率作为某介质的折光率,即:

β αλsin sin v ==介质空气v n t 物质的折光率随入射光的波长λ、测定时的温度t 及物质的结构等因素而变化,所以,在测定折射率时必须注明所用的光线和温度。 当λ、t 一定时,物质的折光率是一个常数。例如 3611.120=D n 表示入射光波长为钠光D 线(λ=589.3nm ),温度为20℃时,介质的折光率为1.3611。 由于光在任何介质中的速度均小于它在真空中的速度,因此,所有介质的折光率都大于1,即入射角大于折射角。 阿贝尔折光仪测定液体介质折光率的原理 阿贝尔折光仪是根据临界折射现象设计的,如图2所示。 图2 阿贝折光仪的临界折射 入射角 ?=?90i 时,折射角i β最大,称临界折射角。如果从0?到90?(i ?)都有单色光入射,那么从到临界角i β也有折射光。换言之,在临界角i β以内的区域均有光线通过,该区是亮的,而在临界角以外的区域,由于折射光线消失而设有光线通过,故该区是暗的,两区将有一条明暗分界线,有分界线的位置可测出临界角i β。 当i i ββα==?,90时,i i n t ββλsin 1sin 90sin ==? (3) 仪器结构 图(3)是一种典型的阿贝折光仪的结构示意图,图 (4)是它的外形图(辅助棱镜呈开启状态)。

大学物理实验报告系列之空气折射率的测定

【实验名称】 空气折射率的测定 【实验目的】 1、了解空气折射率与压强的关系; 2、进一步熟悉迈克尔逊干涉仪的使用规范; 【实验仪器】 迈克尔逊干涉仪(动镜:100mm ;定镜:加长);压力测定仪;空气室(L=95mm );气囊(1个);橡胶管(导气管2根) 【实验原理】 1、等倾(薄膜)干涉 根据实验7“迈克尔逊干涉仪调节和使用”可知,(如图1所示)两束光到达O 点形成的光程差δ为: δ=2L 2 -2L 1 =2(L 2 -L 1 ) 若在L2臂上加一个为L 的气室,如图2所示,则光程差为: δ=2(L 2 -L )+2n L -2L 1 δ=2(L 2 -L 1 )+2(n-1)L (2) 保持空间距离L 2 、L 1 、L 不变,折射率n 变化时,则δ 随之变化,即条纹级别也随之变 化。(根据光的干涉明暗条纹形成条件,当光程差δ=kλ时为明纹。)以明纹为例有 δ1 =2(L 2 -L 1 )+2(n 1 -1)L =k 1 λ δ2 =2(L 2 -L 1 )+2(n 2 -1)L =k 2 λ 令:Δn =n 2-n 1,m =(k 2-k 1),将上两式相减得折射率变化与条纹数目变化关系式。 2ΔnL=mλ (3) 2、折射率与压强的关系 若气室内压强由大气压p b 变到0时,折射率由n 变化到1,屏上某点(观察屏的中心O 点)条纹变化数为m b ,即 n-1=m b λ/2L (4) 通常在温度处于15℃~30℃范围内,空气折射率可用下式求得: 设从压强p b 变成真空时,条纹变化数为m b ;从压强p 1变成真空时,条纹变化数为m 1;从压强p 2变成真空时,条纹变化数为m 2;则有 根据等比性质,整理得 将(4)、(5)整理得 式中p b 为标况下大气压强,将p 2→p 1时,压强变化记为Δp (=p 1-p 2),条纹变化记为m (=m 1-m 2),则有 3、测量公式

利用牛顿环和分光计原理测折射率

利用牛顿环和分光计原理测液体折射率 项目主持人: 作者单位: 指导教师: XX学院 XX年XX月

目录 目录 (2) 摘要 (3) 牛顿环和分光计测折射率实验仪器,目的 (3) 牛顿环测折射率实验原理 (3) 分光计测折射率实验原理 (4) 牛顿环测折射率实验内容 (6) 分光计测折射率实验内容 (7) 牛顿环测折射率实验数据 (9) 分光计测折射率实验数据 (10) 牛顿环与分光计测折射率实验比较 (12)

摘要 本文结合牛顿环实验,分光计实验,阐述了测量液体折射率的实验原理,并研究出了具体的测量方法,最后对水的折射率进行了测量,并得出了较为准确的测量结果。 关键词:牛顿环、分光计、折射率、等厚干涉、三棱镜、液体、极限角 【实验仪器】 牛顿环实验:JCD3型读数显微镜,牛顿环,钠光灯,凸透镜(包括三爪式透镜夹和固定滑座),水。 分光计实验: JJY型分光计一台、平面镜、三棱镜两个、钠灯一个、水和酒精。【实验目的】 1、利用牛顿环的干涉原理测量水的折射率。 2、利用分光计的折射原理测量水(酒精)的折射率。 【实验原理】 牛顿环实验 一个曲率半径相当大的平凸透镜与另一平面玻璃,如图1所示装置,在两玻璃面之间,便形成了很薄的类似劈尖的空气层。单色光源发出的光,经过透镜变成一束平行光,再经倾斜45°的半透明平面镜反射后,垂直地照射到平凸透镜的表面上。入射光在空气薄层的上下两表面反射后,其中一部分穿过平面镜M,进入显微镜T。在显微镜中可以观察到以O点为中心的环形干涉条纹,如图2所示,称为牛顿环。 66 2

图1 图2 前期我们做了牛顿环实验,可知一些基本原理。 由图1可知,光程差&=2e+ 5.89310m λ- =?/2 由图可知R^2=r^2+(R-e )^2 当e<

分光计实验报告

分光计实验报告 【实验目的】 1、了解分光计的结构和工作原理 2、掌握分光计的调整要求和调整方法,并用它来测量三棱镜的顶角和最小偏向角。 3、学会用最小偏向角法测棱镜材料折射率 【实验仪器】 分光计,双面平面镜,汞灯光源、读数用放大镜等。 【实验原理】 1、调整分光计: (1)调整望远镜: a目镜调焦:清楚的看到分划板刻度线。 b调整望远镜对平行光聚焦:分划板调到物镜焦平面上。 c调整望远镜光轴垂直主轴:当镜面与望远镜光轴垂直时,反射象落在上十字线中心,平面镜旋转180°后,另一镜面的反射象仍落在原处。 (2)调整平行光管发出平行光并垂直仪器主轴:将被照明的狭缝调到平行光管物镜焦面上,物镜将出射平行光。 2、三棱镜最小偏向角原理 介质的折射率可以用很多方法测定,在分光计上 用最小偏向角法测定玻璃的折射率,可以达到较高的 精度。这种方法需要将待测材料磨成一个三棱镜。如 果测液体的折射率,可用表面平行的玻璃板做一个中 间空的三棱镜,充入待测的液体,可用类似的方法进 行测量。 当平行的单色光,入射到三棱镜的AB面,经折射 后由另一面AC射出,如图7.1.2-8所示。入射光线LD 和AB面法线的夹角i称为入射角,出射光ER和AC 面法线的夹角i’称为出射角,入射光和出射光的夹角 δ称为偏向角。 可以证明,当光线对称通过三棱镜,即入射角i0等于出射角i0’时,入射光和出射光之间的夹角最小,称为最小偏向角δmin。由图7.1.2-8可知: δ=(i-r)+(i’-r’)(6-2) A=r+r’(6-3) 可得:δ=(i+i’)-A (6-4)

三棱镜顶角A 是固定的,δ随i 和i’而变化,此外出射角i’也随入射角i 而变化,所以偏向角 δ仅是i 的函数.在实验中可观察到,当i 变化时,δ有一极小值,称为最小偏向角. 令 0=di d δ ,由式(6-4)得 1' -=di di (6-5) 再利用式(6-3)和折射定律 ,sin sin r n i = 'sin 'sin r n i = (6-6) 得到 r n i i r n di dr dr dr dr di di di cos cos )1('cos 'cos ''''? -?=??= ' 'csc csc 'sin 1cos sin 1'cos 2 2 2 2222 2 22r tg n r r tg n r r n r r n r --= --- = ' )1(1)1(12 2 22r tg n r tg n -+-+- = (6-7) 由式(6-5)可得:')1(1)1(12222r tg n r tg n -+=-+ 'tgr tgr = 因为r 和r’都小于90°,所以有r =r ’ 代入式(5)可得i =i'。 因此,偏向角δ取极小值极值的条件为: r =r ’ 或 i =i' (6-8) 显然,这时单色光线对称通过三棱镜,最小偏向角为δmin ,这时由式(6-4)可得: δmin =2i –A )(21 min A i += δ 由式(6-3)可得: A =2r 2 A r = 由折射定律式(6-6),可得三棱镜对该单色光的折射率n 为 2 sin )(21 sin sin sin min A A r i n += =δ (6-9) 由式(6-9)可知,只要测出三棱镜顶角A 和对该波长的入射光的最小偏向角δmin ,就可以计算出三棱镜玻璃对该波长的入射光的折射率。顶角A 和对该波长的最小偏向角δmin 用分光计测定。 折射率是光波波长的函数,对棱镜来说,随着波长的增大,折射率n 则减少,如果是复色光入射,由于三棱镜的作用,入射光中不同颜色的光射出时将沿不同的方向传播,这就是棱镜的色散现象。 【实验内容】

用掠入射法测液体的折射率

用掠入射法测液体的折射率 班级:学号:姓名:联系方式: 实验时间: 摘要:分光计是一种精确测量入射光和出射光之间偏转角度的典型光学仪器,用测量精度较高的掠入射法测液体的折射率,先测出三棱镜的顶角及其折射率,从而进一步求出液体的折射率。 关键词:分光计、掠入射法、折射率 一、引言: 折射率为一光学常数,是反映透明介质材料光学性质的一个重要参数。在生产和科学研究中往往需要测定一些固体和液体的折射率。测定透明材料折射率的方法很多,最小偏向角法和掠入射法是比较常用的两种方法。最小偏向角法具有测量精度高、所测折射率的大小不受限制等优点。但是,被测材料要制成棱镜,而且对棱镜的技术条件要求高、不便快速测量。掠入射法虽然测量精度较底、被测折射率的大小受到限制,对于固体材料也需要制成试件,但是,掠入射法具有操作方便迅速、环境条件要求底等优点。 二、实验任务: 1.调节分光仪使其满足测量条件。 2.用掠入射法测量出透明液体的折射率。 三、实验仪器 JJY型分光仪计一台(本实验不提供平面镜),三棱镜一个,钠灯一个,黑玻璃一块,水槽一个,水。 四、实验原理 1.分光仪的调节 (1)目测粗调目测调节望远镜光轴﹑平行光管光轴﹑载物台平面,三者大致垂直于分光中心旋转轴。 (2)望远镜的调焦,使之能接受平行光,调节步骤如下: ①目测调焦。先通电照明,再旋转目镜调节手轮,调整目镜与分划线相对位置,使叉丝与小十字变清晰为止。 ②物镜调焦。将载物台紧贴台基,置平面镜于台上,使平面镜放置时,与平面与载物台下螺钉G2,G3连线垂直,再使望远镜光轴大致垂直平面镜,再调望远镜倾度调节螺钉,左右转动载物台,使之能看到十字反射像,然后松开调焦锁紧螺母,前后调节目镜镜筒并调节分划板与物镜相对位置,是小十字及其反射镜皆十分清晰为止,最后消除视差—微调目镜系统,眼睛左右移动时,小十字反射像与叉丝无相对位移。

迈克尔逊干涉仪测量空气折射率实验报告

测量空气折射率实验报告 一、 实验目的: 1.进一步了解光的干涉现象及其形成条件,掌握迈克耳孙干涉光路的原理和调节方法。 2.利用迈克耳孙干涉光路测量常温下空气的折射率。 二、 实验仪器: 迈克耳孙干涉仪、气室组件、激光器、光阑。 三、 实验原理: 迈克尔逊干涉仪光路示意图如图1所示。其中,G 为平板玻璃,称为分束镜,它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。 M1、M2为互相垂直的平面反射镜,M1、M2镜面与分束镜G 均成450角; M1可以移动,M2固定。2 M '表示M2对G 金属膜的虚像。 从光源S 发出的一束光,在分束镜G 的半反射面上被分成反射光束1和透射光束2。光束1从G 反射出后投向M1镜,反射回来再穿过G ;光束2投向M2镜,经M2镜反射回来再通过G 膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 由图1可知,迈克尔逊干涉仪中,当光束垂直入射至M1、M2镜时,两束光的光程差δ为 )(22211L n L n -=δ (1) 式中,1n 和2n 分别是路程1L 、2L 上介质的折射率。 M 2M 图1 迈克尔逊干涉仪光路示意图

设单色光在真空中的波长为λ,当 ,3 ,2 ,1 ,0 ,==K K λδ (2) 时干涉相长,相应地在接收屏中心的总光强为极大。由式(1)知,两束相 干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。 当1L 支路上介质折射率改变1n ?时,因光程的相应改变而引起的干涉条纹的 变化数为N 。由(1)式和(2)式可知 1 12L N n λ = ? (3) 例如:取nm 0.633=λ和mm L 1001=,若条纹变化10=N ,则可以测得 0003.0=?n 。可见,测出接收屏上某一处干涉条纹的变化数N ,就能测出光路 中折射率的微小变化。 正常状态(Pa P C t 501001325.1,15?==)下,空气对在真空中波长为 nm 0.633的光的折射率00027652.1=n ,它与真空折射率之差为 410765.2)1(-?=-n 。用一般方法不易测出这个折射率差,而用干涉法能很方便地测量,且准确度高。 四、 实验装置: 实验装置如图2所示。用He-Ne 激光作光源(He-Ne 激光的真空波长为 nm 0.633=λ),并附加小孔光栏H 及扩束镜T 。扩束镜T 可以使激光束扩束。小孔光栏H 是为调节光束使之垂直入射在M1、M2镜上时用的。另外,为了测量空气折射率,在一支光路中加入一个玻璃气室,其长度为L 。气压表用来测量气室内气压。在O 处用毛玻璃作接收屏,在它上面可看到干涉条纹。 图2 测量空气折射率实验装置示意图 气压表

用分光计测棱镜玻璃的折射率

课 题 用分光计测棱镜玻璃的折射率 教 学 目 的 1、使学生了解分光计的结构和原理,学会调节和使用分光计的方法。 2、使学生掌握测量棱镜顶角和最小偏向角的方法。 3、用最小偏向角法计算棱镜玻璃的折射率。 重 难 点 1、分光计的调节 2、最小偏向角的测量 教 学 方 法 讲授、讨论、实验演示相结合 学 时 4个学时 一、前言 分光计是一种精确测量光线偏转角度的光学仪器,常用来测量广波的波长、棱镜 的色散率等。分光计比较精密,调整部件较多,是一种具有代表性的基本光学仪器, 熟练掌握分光计的调整和使用,对一般光学仪器具有普遍的参考和指导作用。 折射率是介质材料光学性质的重要参量,测量的方法也很多,本实验通过测量三 棱镜的顶角和最小偏向角来求出棱镜玻璃的折射率。 二、实验仪器 JJY 型分光计,6.3V/220V 变压器,手持照明放大镜,双面镜、三棱镜、低压汞 灯及电源。 三、实验原理 三棱镜是分光仪器中的色散元件,其主截面是等腰三 角形,如图1所示,光线以入射角1i 投射到棱镜AB 面 上,经棱镜两次折射后,以2i 角从AC 面射出,出射光 线与入射光线的夹角δ称为偏向角。δ的大小随入射角1i 而改变。可以证明,当12i i =时,偏向角为极小值min δ称为棱镜的最小偏向角。它与棱镜的顶角 A 和折射率n 之间有如下关系: 四、实验内容及步骤 图1 光线在三棱镜中的折射

1、调节分光计 (1)调节的要求 分光计的调节要达到“三垂直”的几何要求和“三聚焦”的物理要求。“三垂直”是 指载物台平面、望远镜的主光轴、平行光管的主光轴必须与分光计主轴垂直。“三聚 焦”是指叉丝对目镜聚焦,即在目镜中能看到清晰的叉丝的像;望远镜对无穷远聚焦 即平面镜返回清晰的绿十字的像;狭缝对平行光管物镜聚焦,即在望远镜中看到清晰 的狭缝像。 (2)调节的步骤 ①参照图2,简要的介绍分光计的基本构造以及各部件的功能和调节方法。 ②目测粗调“三垂直”。 ③调叉丝对目镜聚焦。打开电源,让 照明小灯照亮望远镜视场。旋转目镜 同时眼睛从目镜中观察,直至看到叉 丝变清晰,此时叉丝正好位于目镜的 焦平面上。 ④调望远镜对无穷远聚焦。 ⑤调望远镜的主光轴与分光计主轴垂直。 ⑥调载物台平面与分光计主轴垂直。 ⑦狭缝对平行光管的物镜聚焦。 ⑧调平行光管主光轴与分光计主轴垂直。 2、调节三棱镜的两个光学面平行于分光计主轴 将三棱镜放置于载物台上,使其每一个角对准一个调平螺钉,并使其非光学面对准平 行光管。采用“二分法”反复调节,直至AB 、AC 两面返回的绿十字像与调节用的 叉丝重合,此时棱镜的两光学面就平行于分光计主轴。 3、用自准法测三棱镜的顶角。 4、测量三棱镜的最小偏向角min δ。 五、数据表格及数据处理 入射光波长:546.1nm λ= 分光计分度值:'1 图2 分光计 1-物镜 2-分划板 3-目镜 4-小棱镜 5-小电珠 图3 自准自目镜

《测定三棱镜折射率》物理实验报告标准范本

报告编号:LX-FS-A51476 《测定三棱镜折射率》物理实验报 告标准范本 The Stage T asks Completed According T o The Plan Reflect The Basic Situation In The Work And The Lessons Learned In The Work, So As T o Obtain Further Guidance From The Superior. 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

《测定三棱镜折射率》物理实验报 告标准范本 使用说明:本报告资料适用于按计划完成的阶段任务而进行的,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想的汇报,以取得上级的进一步指导作用。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 【实验目的】 利用分光计测定玻璃三棱镜的折射率; 【实验仪器】 分光计,玻璃三棱镜,钠光灯。 【实验原理】 最小偏向角法是测定三棱镜折射率的基本方法之一,如图10所示,三角形ABC表示玻璃三棱镜的横截面,AB和AC是透光的光学表面,又称折射面,其夹角a称为三棱镜的顶角;BC为毛玻璃面,称为三棱镜的底面。假设某一波长的光线LD入射到

棱镜的AB面上,经过两次折射后沿ER方向射出,则入射线LD与出射线ER的夹角称为偏向角。 【实验内容与步骤】 1.调节分光计 按实验24一1中的要求与步骤调整好分光计。 2.调整平行光管 (1)去掉双面反射镜,打开钠光灯光源。 (2)打开狭缝,松开狭缝锁紧螺丝3。从望远镜中观察,同时前后移动狭缝装置2,直至狭缝成像清晰为止。然后调整狭缝宽度为1毫米左右(用狭缝宽度调节手轮1调节)。 (3)调节平行光管的倾斜度。将狭缝转至水平,调节平行光管光轴仰角调节螺丝29,使狭缝像与望远镜分划板的中心横线重合。然后将狭缝转至竖直方向,使之与分划板十字刻度线的竖线重合,并无视

透明薄片折射率测定实验报告

透明薄片折射率的测定 迈克尔逊干涉仪是用分振幅的方法实现干涉的光学仪器,设计十分巧妙。迈克尔逊发明它后,最初用于著名的以太漂移实验。后来,他又首次用之于系统研究光谱的精细结构以及将镉(Cd)的谱线的波长与国际米原器进行比较。迈克尔逊干涉仪在基本结构和设计思想上给科学工作以重要启迪,为后人研制各种干涉仪打下了基础。迈克尔逊干涉仪在物理学中有十分广泛的应用,如用于研究光源的时间相干性,测量气体、固体的折射率和进行微小长度测量等。 【实验目的】 1. 掌握迈克尔逊干涉仪的结构、原理和调节方法; 2. 熟悉白光的干涉现象 4. 学习一种测量透明薄片折射率的方法。 【实验仪器】 迈克尔逊干涉仪,He-Ne 激光器,扩束镜,小孔光阑,透明薄片,白光光源 【实验原理】 一、透明薄片折射率的测量原理 干涉条纹的明暗决定于光程差与波长的关系,用白光光源只有在d=0的附近才能在M 1 和 M 2′交线处看到干涉条纹,这时对各种光的波长来说,其光程差均为2/λ(反射时附加2/λ),故产生直线黑纹,即所谓中央黑纹,两旁有对称分布的彩色条纹。d 稍大时,因对各种不同波长的光满足明暗条纹的条件不同,所产生的干涉条纹明暗互相重叠,结果就显不出条纹来。因而白光光源的彩色干涉条纹只发生在零光程差附近一个极小的范围内,利用这一点可以定出d =0的位置。利用白光的彩色干涉条纹可以测量透明薄片的 图1 透明薄片折射率测定 二、点光源干涉条纹的特点 不论平面镜M 1往哪个方向移动,只要是使距离d 增加,圆条纹都会不断从中心冒出来并扩大,同时条纹会变密变细。反之,如果使距离d 减小,条纹都会缩小并消失在中心处,同时条纹会变疏变粗。这表明0=d (即两臂等长)是一个临界点。当往同一个方向不断地移动1M 时,只要经过这个临界点,看到的现象就会反过来(见图2)。因此,实现点光源的非定域干涉后,最好先把两臂的长度调成有明显差别(0>>d ),避免在移动1M 时不小心通过了临界点,造成不必要的麻烦。 用眼睛观察 M 2

牛顿环测液体的折射率

摘要:由牛顿发现利用用一个曲率半径大的凸透镜和一个平面玻璃相接触,用单色光照射,则出现明暗相间的单色圆环。这种光学现象被称为“牛顿环”。利用牛顿环的光学原理测量液体折射率,是一种十分可行的方法,本文中阐述了牛顿环的光学原理和测量蓖麻油折射率的实验原理,并研究出了具体的测量方法,最后对蓖麻油的折射率进行了测量,并得出了较为可靠地数据结果。 English abstract:By Newton found use in a large radius of curvature of the convex lens and a flat glass contact, with monochromatic light illuminate, appear with monochromatic light and shade is ring. This optical phenomenon is known as \"Newton ring\". Using the optical principle of Newton's rings measuring liquid refractive index, is a very feasible method, this article elaborated the Newton ring optical principle and the principle of measuring refractive index of castor oil experiment, and worked out the specific measurement method, finally, the refractive index were measured, castor oil and it is concluded that the more data results in a reliable way. 关键词:牛顿环、折射率、逐差法 Keywords:Newton's rings, refractive index, by differential method 目录

测液体折射率实验报告

实验题目: 表面等离激元共振法测液体折射率实验预习报告与原始数据见纸质报告。 实验步骤: 1.调整分光计,实验部件安装和线路连接已经完成; 2.传感器中心调整 粗调:将微调座放到载物台上,固定好调节架后,在调节架中心放上准星, 调节载物台锁紧螺钉使激光光斑至粗调对准处,不断调节平行光管光轴水平调节螺钉与微调座的两颗微调螺钉,使当游标盘转动一圈时,激光光斑一直照在该处; 细调:调节平行光管光轴高低调节螺钉,使激光光斑射在细调对准处,不断调节平行光管与微调座使当转动游标盘一圈时,激光光斑一直射在该处; 中心调节:继续调节平行光管光轴高低调节螺钉,使激光光斑射在准星顶尖处,再次调节使转动游标盘一圈时,激光光斑一直射在顶尖处。 3.测量前准备调节 中心调节完毕后,移去准星,放入敏感元件,将游标盘和刻度盘调节到合适位置;调整敏感元件使光垂直入射至半圆柱棱镜中的镀金属膜上,拧紧游标盘止动螺钉;转动刻度盘使刻度盘0o对准游标盘0°;拧紧转座与刻度盘止动螺钉,松开游标盘止动螺钉,从此刻开始刻度盘始终保持不动,将游标盘转回至刻度盘所示65o 位置处锁定,测量前准备调节完毕。 4.测量读数 保持刻度盘和游标盘不动,转动望远镜支臂,观察功率计读数,记录其中的最大读数;保持刻度盘不动,移动游标盘从66°到88°,入射角没增加1°,记录功率计最大读数。

5.数据表格与数据处理 (1)数据表格自拟; (2)画出相对光强与入射角的关系曲线图; (3)比较不同溶液的共振角有何差异。 实验样本: 本实验采用样本为:纯净水;无水乙醇;水:乙醇=1: 1的乙醇溶液。 实验数据: 1.纯净水 角度(° ) 87 88 相对光强751 746

阿贝折光仪测液体折射率

实验一 阿贝折光仪测液体物质折射率 折射率是物质的重要光学常数之一,能借以了解物质的光学性能、纯度、及浓度大小等.在分光计的使用实验中将给出固体(玻璃)折射率的测定方法,本实验采用阿贝折光仪测定液体折射率. 实 验 目 的 (1) 学习用掠入射法测量液体折射率的原理; (2) 了解阿贝折光仪的结构和工作原理,学会使用该仪器测量液体的折射率. 实 验 仪 器 阿贝折光仪,滴管,蒸馏水,无水酒精,少许脱脂棉,待测液体(水). 实 验 原 理 光线从光密介质进入 光疏介质,入射角小于折射 角.逐渐加大入射角,可使 折射角达到90?.折射角等 于90?时的入射角称为临界 角.反过来,若光线自光疏 介质进入光密介质,入射角 大于折射角.当光线以90? 角入射(掠射)时仍有光线 进入光密介质,此时的折射 角亦为临界角.本实验测量折射率的原理及阿贝折射 计的工作原理,就是基于测 定临界角的原理. 1 1 掠入射法测量液体的折射率 如图1.3所示,在一折射棱镜的AB 面上充满了折射率为n 1的液体,棱镜的折射率n 2> n 1.若以单色的扩展光源照射分界面AB 时, 从图1.3可看出:入射角为90?的光线1将掠射到AB 界面而折射进入三棱镜内.显然,光线1经折射面AB 后的折射角i '正如发生全反射时 的临界角,因而满足 21 sin n n i ='

(1.1) 当掠入射光线1经折射到A C面,再经折射而进入空气时,设在AC 面上的入射角为ψ,折射角为φ,则有 ψ?sin sin 2n = (1.2) 除掠入射光线1外,其它光线如光线2在AB 面上的入射角均小于90?,因此经三棱镜折射,最后从AC 面折射进入空气时,都在光线i '的左侧.由于入射角i 不可能比90?大,因而在三棱镜内不可能出现比临界角i '大的光线,即AC 面上出射的光线中,没有比φ角小的折射光线,故称φ为极限角.当用望远镜对准AC 面观察时,视场中将看到明暗两部分,其分界线就是i =90?的掠入射引起的极限角方向. 由图1.3中的光路图可知:三棱镜的棱镜角A 与角i '及角ψ有如下关系: ψ+'=i A , 即 ψ-='A i . (1.3) 应用式(1.3),并从式(1.1)和式(1.2)中消去i '和ψ后可得 ??sin cos sin sin ?--=A n A n 2221 . (1.4) 如果棱镜角A =90°,则 ?2221sin -=n n . (1.5) 因此,当直角三棱镜的折射率n 2为已知时,测出φ角后即可计算出待 测液体的折射率n 1.上述测定折射率的方 法即为掠入射法. 2 阿贝折光仪的测量原理及仪器结构 阿贝折光仪是测量透明、半透明液体 或固体折射率的常用仪器.国产的阿贝计 的测量范围为 1.3000~1.7000(精度为 ±0.0002).若该仪器接上恒温器,则可测 定温度为0℃~70℃内的折射率n . 阿贝折光仪也是根据全反射原理设计 的.它有两种工作方式,即透射式和反射 式.本实验只要求采用透射式方法测量透 明液体的折射率.透射式测量光路如图所 示. 将折射率为n 的待测液体放置在折射

相关主题
文本预览
相关文档 最新文档