当前位置:文档之家› 羟基磷灰石

羟基磷灰石

羟基磷灰石
羟基磷灰石

羟基磷灰石的影响

,纳米填料的分散状况和两相间的界 面结合会极大影响复合材料的性能,近年来,纳米级填料在聚合物改性方面 得到了大量研究和应用。与普通填料相比,纳米级填料表面缺陷少,表面活 性高,与聚合物发生物理或化学作用的可能性大,界面结合也较强。但由于 其大的界面张力,高的表面活性同时使得其极易团聚,难以在聚合物基体中 分散均匀,或者说是很难以纳米尺度与聚合物结合,显现纳米效应。常用的 纳米材料表面处理方法,如加入偶联剂等,会降低复合材料的生物相容性。 由于羟基磷灰石中的羟基、钙离子等可以与聚乙烯醇中的羟基等产生强烈的 相互作用,使二者之间的界面粘合增加,为此,我们对纳米羟基磷灰石进行 大功率超声预先分散后,对其循环冷冻一解冻处理,进一步增加聚乙烯醇分子与羟基磷灰石之间的相互作用,从而在赋予材料生物活性和生物相容性的同时,提高其他性能。 ,说明HA与PVA的羟基间存在相互作用。已有研究表明PVA的羟基与HA中的ca2+之间能形成一种配位结构,具有相互作用,可引起PVA羟基伸缩振动峰向低 波数移动。这也说明凝胶复合材料中n-HA与PVA不是简单的物理共混,而是以某 种化学形式相结合。郭玉明等[11的研究结果表明HA中的Ca2+和PVA分子中的羟基 之蜘形成了一种配位结构,具有相互作用,从而导致PVA分子中的羟基伸缩振动峰 向低频方向移动。同时,HA同PVA分子间的氢键作用使得PVA分子的空间立构规整度有所下降,从而导致加入n.HA后PVA分子中各基团特征峰的位置有所改变。 在n-HA/PVA凝胶复合材料中,均 可观察到大量的羟基磷灰石粒子分布在PVA基体之中。同时,当HA含量较少时(图 4_4b1和r图4.4c),HA粒于在PVA基体中呈均匀分布状态:随着HA粒子含量的增加 f图4-4d),部分HA粒子在PVA基体中呈团聚状态。无机纳米粒子具有较高的表面能和比表面,当n-HA粒子在PVA中的含量较低 时.一方面PVA溶液可作为纳米羟基磷灰石粒子的分散剂.使HA粒子均匀分布在 PVA基体之中:另一方面,n-HA粒子的高表面能和比表面,可有效提高n-HA粒子 同PVA基体问的界面结合强度.有利于改善复合材料的力学性能。当n-HA粒子在 PVA基体中的含量较高时,n_HA粒子的高表面能导致粒子间发生团聚,从而使得粒 子的比表面和表面活性点大幅下降。此时,纳米粒子不仅难以起到增强的效果,而且成为复合材料的缺陷源,导致复合材料的性能恶化。 在PVA溶液孛原位合成的n-HA粒子大小具有纳米量级,同时,n-HA/PVA凝胶 复合材料具有与自然关节软骨相似的多孔网络结构.当其作为关节软骨修复材 料使用时,这中独特的结构有利于软骨细胞的长入。使修复材料和自然软骨形 成良好的骨性结合,’从丽有利于增强二者界面间的结合强度· (2)PVA溶液有剩予纳米粒子的均匀分布,当复合材料中a-HA粒子含量较低时,纳 米羟基磷灰石粒子在p、狻基体中墨均匀分布,隧着n-HA含量的增加,纳米粒子 一发生团聚。. (3)n-HA粒子同PVA基体之闻存在一定的纯学键作用,n-HA的加入改变了PVA的

羟基磷灰石

由羟基磷灰石、氟磷灰石、磷酸三钙和碳酸磷灰石等磷酸钙盐或其复合物构成的生物陶瓷。Ca/P原子比和材料结构决定其表面是否具有生物活性或生物可吸收性。 羟基磷灰石和磷酸三钙等磷酸钙类生物材料与脊椎动物骨和齿的主要无机成分十分相近,具有良好的生物相容性,植入骨组织后能在界面上与骨形成很强的化学键合,各国学者均给予广泛关注,是临床医生喜用的医用材料。目前,医用的磷酸钙粉末是用分析纯化学原料人工合成的,其主要制备方法有在高温下反应的干式方法与在溶液中进行沉淀反应的湿式方法。传统的磷酸钙粉末制备方法均很难得到力学性能好的磷酸钙陶瓷,这就限制了磷酸钙陶瓷材料作为承重骨的应用。因而有必要寻求一些合成及改性的新方法。冲击波技术作为材料制备、活化、改性等的研究手段,正日益受到人们的重视,它具有能产生高压、高温及作用时间短等特点,在材料研究中占有独特的地位。凝聚态物质经冲击波作用后,位错密度大大增加,表面能明显提高,化学活性增加,可显著改善粉体的烧结性能及反应活性。在冲击波作用下固体粉末混合物间相互碰撞、挤压、摩擦和穿透,能使晶粒粒度减小,分布均匀,达到细化与均化的目的。同时,在冲击波的作用下,固体颗粒发生高速运动,使其扩散速度是一般条件下固相反应中扩散速度的几倍,大大提高了反应速度,是一种合成超细粉末材料的新方法。因此,本研究提出了用冲击波技术合成磷酸钙

陶瓷粉末及对磷酸钙粉末活化改性这一新的研究课题,以制备力学性能优良的磷酸钙人工骨材料。经查新表明在国内外的相关文献中关于这一领域的研究还未见报道,本研究将填补这方面的空白,具有较大的科学价值和实际意义。本研究用冲击波方法处理CaCO3与CaHPO4·2H2O的混合物制备出了羟基磷灰石粉末。冲击波实验装置采用接触爆轰柱面装置,使用硝基甲烷液体炸药时,其炸药厚度应在20mm厚左右,既能顺利引爆又能保证样品的完整回收,所产生的初始入射压力约为16GPa,这种装置比现有用冲击波技术制备磷酸钙块状材料专利所用装置更简单、处理样品的量更多。与传统固相反应法相比较,冲击波合成的HA粉末有与之相似的晶体结构和组成,而且其粒度更细,分布更均匀,内部存在着大量的晶格畸变,有更高的活性。X射线衍射数据分析表明,用冲击波方法合成的HA粉末,其布拉格角队宽化度刀及晶面间距d三个参数均与动物骨的参数更为接近,作为骨修复和替换材料应用更为有利。用冲击波方法合成的HA粉末为含cO32一离子的碳酸盐轻基磷灰石,其钙磷含量的比值为1.65,与人骨的结构、组成相似,植入人体后更有利于促进骨的生长和骨性结合。作者认为冲击波合成方法是制备HA 粉末的一种有效的新方法。所制备的HA粉末与焙烧方法获得的HA粉末相比,在粒度分布、表面活性以及结构参数等方面具有更有利的优势。但是,冲击波方法合成HA粉末的具体反应机理、合适的反应条件以及反应条件与HA粉末的性能间的关系还可以

羟基磷灰石研究进展

羟基磷灰石研究进展 摘要:由于羟基磷灰石( HA) 不但与人体骨骼晶体成分和结构基本一致,而且其生物 相容性、界面生物活性均优于医用钛、硅橡胶及植骨用碳材料等植入医用材料,另外有极好骨传导性和与骨结合的能力, 无毒副作用, 无致癌作用,所以被广泛用作硬组织修复材料和骨填充材料的生理支架以及疾病、意外事故中的骨修复材料。同时,羟基磷灰石具有良好的生物活性,具有特殊的晶体化学特点,是较好的生物材料,被广泛应用于骨组织的修复与替代技术.目前,羟基磷灰石涂层的制备方法有等离子喷涂法、激光熔覆法、电结晶液相沉积法、溶胶-凝胶法等。对于制备要求较高、具有表面活性的吸附材料羟基磷灰石而言,溶胶- 凝胶法是较为合适的方法,本文羟基磷灰石涂层进行了研究。主要从羟基磷灰石的合成制备,复合材料涂层种类及HA涂层影响因素,应用等方面对羟基磷灰石进行介绍,并对其进行研究展望。 关键词:羟基磷灰石制备复合材料涂层研究进展 前言 羟基磷灰石是一种磷酸钙生物陶瓷, 与人体自然骨和牙齿等硬组织中的无机质在 化学成分和晶体结构上具有相似性,是一类重要的骨修复材料,分子式为Ca10 ( PO4) 6 ( OH ) 2 , 简写为HA 或HAP,Ca/ P 物质的量比理论值为1. 67, 属磷酸钙陶瓷中的一种生物活性材料。从分子结构( 如图1) 可以看出, 它易与周围液体发生离子交换。HA 属六方晶系, 空间群为P63/m。其结构为六角柱体, 与c轴垂直的面是一个六边形, a、b 轴的夹角为120 °, 晶胞常数a= b= 9. 324 A , c= 6. 881A 。单位晶胞含有10 个 [ Ca]2+、6个[ PO4]3-和2个 [ OH]-, 这样的结构和组成使 得H A 具有较好的稳定性。 磷灰石是自然界广泛分布的 磷酸钙盐矿物,根据其结构通 道中存在的阴离子的种类, 可分为氟-、氯-、羟磷灰石等 不同亚种矿物。其中,羟基磷 灰石(hydroxyapatite,缩写为 HA或HAp)的研究和应用最 广泛。羟基磷灰石是人体和动 物的骨骼和牙齿的主要无机 成分,具有良好的生物相容性和生物活性,HA材料对动物体人体无毒、无害、无致 癌作用,可增强骨愈合作用,能与自然骨产生化学结合,HA植入人体后对组织无刺 激和排斥作用,能与骨形成很强的化学结合,用作骨缺损的充填材料,为新骨的形成提供

羟基磷灰石的制备及表征

羟基磷灰石的制备及表征 一、实验目的 1.掌握纳米羟基磷灰石的制备及原理 2.了解羟基磷灰石的表征方法及生物相容性 二实验原理 羟基磷灰石(hydrrosyapatite,HAP)分子式为Ca10(PO4)6(OH)2是自然骨无机质的主要成分,具有良好的生物相容性和生物活性,可以引导骨的生长,并与骨组织形成牢固的骨性结合。HAP是生物活性陶瓷的代表性材料,生物活性材料是指能够在材料和组织界面上诱导生物或化学反应,使材料与组织之间形成较强的化学键,达到组织修复的目的。HAP在组成上与人体骨的相似性,使HAP与人体硬组织以及皮肤、肌肉组织等都有良好的生物相容性,植入体内不仅安全、无毒,还能引导骨生长,即新骨可以从HAP植入体与原骨结合处沿着植入的体表面或内部贯通性空隙攀附生长,材料植入体内后能与骨组织形成良好的化学键结合。HAP主要的生物学应用作骨组织代替材料,磷酸钙类生物陶瓷材料在临床应用中遇到的最大困难之一是材料强度差,尤其是韧性低,且机械可加工性差,导致其在临床应用中受到了极大的限制。为了改善HAP陶瓷的脆性和强度问题,一般会在其中添加ZrO2和碳纤维或是Al2O3和玻璃等物质进行增韧。纳米级羟基磷灰石的制备方法很多,主要分为固相法和液相法两大类。固相法合成在一定条件下(高温、研磨)让磷酸盐与钙盐充分混合发生固相反应,合成HAP粉末。液相法合成是在水液中,一磷酸盐和钙盐为原料,在一定条件下发生化学反应,生成溶解度较小的HAP晶粒,包括化学沉淀法。水热合成法、溶胶-凝胶法、自然烧法、微乳液法、微波法等。 化学沉淀法因具有实验条件要求不高、反应容易控制,适合制备纳米材料等优点从而得到广泛应用。沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合溶液中加入适量的沉淀剂得到纳米材料的前驱沉淀物,再将此沉淀物结晶进行干燥或煅烧制得相应的纳米材料。金属离子在沉淀过程是不平衡的,需要控制溶液中的沉淀剂的浓度,使沉淀过程缓慢发生,才会使溶液中的沉淀处于平衡状态,使沉淀能均匀的出现在整个溶液中。此法制备纳米HAP大多采用无机钙盐和磷酸盐反应得到。常采用的钙盐有:CaCl2、Ca(OH)2、Ca(NO)2等,常采用的磷酸盐有:K2HPO4、Na3PO4、(NH4)2HPO4、和H3PO4,发生酸碱中和反应反应生成HAP纳米颗粒。沉淀法的影响因素主要有HP值、合成温度、反应原料纯度、反应原料浓度、反应物的混合步骤、沉淀剂的选择和添加速率等。采用化学沉淀法制备HAP纳米颗粒,需要的设备简单,相应的生产的经济成本也较低,很容易实现工业上大批量的生产。但化学沉淀法制备HAP也存在问题,制备所得的纳米HAP颗粒粒径均匀性差,并且团聚现象严重。化学沉淀法制备HAP的主要原理是在含有可溶性钙盐和磷酸盐的水溶液中,加入适量的沉淀剂,在特定条件,使溶液中两种溶剂发生化学反应,形成不溶性的水合氧化物从溶液中析出,再进行加入脱水对得到的溶液进行离心干燥,进而得到HAP纳米粉体。反应方程式如下: 10Ca(OH)2+6H3PO4→Ca10(PO4)6(OH)2+18H2O 三实验设备及材料

羟基磷灰石研究进展

2010-2011 第2学期《生物医用材料》期中考试 姓名: 学号: 学院: 专业: 班级: 任课老师:

羟基磷灰石研究进展 摘要:由于羟基磷灰石( HA) 不但与人体骨骼晶体成分和结构基本一致,而且其生物 相容性、界面生物活性均优于医用钛、硅橡胶及植骨用碳材料等植入医用材料,另外有极好骨传导性和与骨结合的能力, 无毒副作用, 无致癌作用,所以被广泛用作硬组织修复材料和骨填充材料的生理支架以及疾病、意外事故中的骨修复材料。同时,羟基磷灰石具有良好的生物活性,具有特殊的晶体化学特点,是较好的生物材料,被广泛应用于骨组织的修复与替代技术.目前,羟基磷灰石涂层的制备方法有等离子喷涂法、激光熔覆法、电结晶液相沉积法、溶胶-凝胶法等。对于制备要求较高、具有表面活性的吸附材料羟基磷灰石而言,溶胶- 凝胶法是较为合适的方法,本文羟基磷灰石涂层进行了研究。主要从羟基磷灰石的合成制备,复合材料涂层种类及HA涂层影响因素,应用等方面对羟基磷灰石进行介绍,并对其进行研究展望。 关键词:羟基磷灰石制备复合材料涂层研究进展 前言 羟基磷灰石是一种磷酸钙生物陶瓷, 与人体自然骨和牙齿等硬组织中的无机质在 化学成分和晶体结构上具有相似性,是一类重要的骨修复材料,分子式为Ca10 ( PO4) 6 ( OH ) 2 , 简写为HA 或HAP,Ca/ P 物质的量比理论值为1. 67, 属磷酸钙陶瓷中的一种生物活性材料。从分子结构( 如图1) 可以看出, 它易与周围液体发生离子交换。HA 属六方晶系, 空间群为P63/m。其结构为六角柱体, 与c轴垂直的面是一个六边形, a、b 轴的夹角为120 °, 晶胞常数a= b= 9. 324 A , c= 6. 881A 。单位晶胞含有10 个[ Ca]2+、6个[ PO4]3-和2个 [ OH]-, 这样的结构和组成使 得H A 具有较好的稳定性。 磷灰石是自然界广泛分布的 磷酸钙盐矿物,根据其结构通 道中存在的阴离子的种类, 可分为氟-、氯-、羟磷灰石等 不同亚种矿物。其中,羟基磷 灰石(hydroxyapatite,缩写为 HA或HAp)的研究和应用最 广泛。羟基磷灰石是人体和动 物的骨骼和牙齿的主要无机 成分,具有良好的生物相容性和生物活性,HA材料对动物体人体无毒、无害、无致 癌作用,可增强骨愈合作用,能与自然骨产生化学结合,HA植入人体后对组织无刺 激和排斥作用,能与骨形成很强的化学结合,用作骨缺损的充填材料,为新骨的形成提供

羟基磷灰石

中文名:羟基磷灰石 英文名:Hydroxyapatite 简称:HAP 分子式:Ca10(PO4)6(OH)2 分子量:1004 理化性质:熔点:1650°C,比重:3.16g/cm,溶解度:0.4ppm,Ca/P:1.67 结晶构造:六角晶系 产品规格:粉末、多孔颗粒、块状(非标定型)产品 应用领域:骨替代材料、整形和整容外科、齿科、层析纯化、补钙剂 羟基磷灰石,又称羟磷灰石,是钙磷灰石(Ca5(PO4)3(OH))的自然矿物化。但是经常被写成(Ca10(PO4)6(OH)2)的形式以突出它是由两部分组成的:羟基与磷灰石。-OH基能被氟化物、氯化物和碳酸根离子代替,生成氟基磷灰石或氯基磷灰石。羟基磷灰石(HAP)是脊椎动物骨骼和牙齿的主要组成,人的牙釉质中羟基磷灰石的含量在96%以上。羟基磷灰石具有优良的生物相容性,并可作为一种骨骼或牙齿的诱导因子,在口腔保健领域中对牙齿具有较好的再矿化、脱敏以及美白作用。实验证明HAP粒子与牙釉质生物相容性好,亲和性高,其矿化液能够有效形成再矿化沉积,阻止钙离子流失,解决牙釉质脱矿问题,从根本上预防龋齿病。含有HAP材料的牙膏对唾液蛋白、葡聚糖具有强吸附作用,能减少患者口腔的牙菌斑,促进牙龈炎愈合,对龋病、牙周病有较好的防治作用。 *高达50%的骨骼都是由均匀成分的无机羟基磷灰石构成。 *目前广泛应用于制造认同牙齿或骨骼成份的尖端新素材 功能效果: *健康亮白 *去除牙菌斑 *改善牙龈问题 *防止蛀牙 *清新口气 制法:可由Ca(PO4)2和CaCO3按拟定比例在高温下反应同时注入高压水蒸气,粉末经NH4Cl水溶液洗涤后干燥而成,分多孔型和致密型两种,前者是粉料发泡后于1250℃烧结制备,后者成型后于1250℃烧结而成。 分布:广泛存在于人体和牛乳中,人体内主要分布于骨骼和牙齿中,牛乳内主要分布于酪蛋白胶粒和乳清中。

羟基磷灰石的制备及其表征实验方案

实验方案 课题六 纳米羟基磷灰石的制备与表征 小组成员 段东斑、陆文心、耿明宇 1.背意义景 羟基磷灰石(Hydroxyapatite,简称HA,化学分子式:(Ca10 (PO4)6(OH)2)是人体和动物骨骼的主要无机成份。在人体骨中,HA 大约占60%,它是一种长度为20~40nm,厚1.5~3.0nm 的针状结晶,其周围规则地排列着骨胶原纤维[36]。齿骨的结构也类似于自然骨,但齿骨中HA 的含量高达97%。医学领域长期以来广泛使用的金属和有机高分子等生物医学材料,其成分和自然骨完全不同,用来作为齿骨的代材料(人工骨、人工齿)填补骨缺损材料,其生物相容性和人体适应性尚不令人满意。而羟基磷灰石具有无毒、无刺激性、无致敏性、无致突变性和致癌性,是一种生物相容性材料,可与骨发生化学作用,有很好的骨传导性。因此,近二十年来,研究接近或类似于自然骨成份的无机生物医学材料极其活跃,其中特值得重视的是与骨组织生物相容性最好的HA 活性材料的研究、临床应用。近年来,随着人们对纳米领域的认识与关注,医学界也相继开始了对纳米HA 粒子(或称超细HA 粉)的研究,HA 纳米粒子与普通的HA 相比具有不同的理化性能:如溶解度较高、表面能较大、生物活性更好、具有抑癌作用等,可以作为药物载体用于疾病的治疗,是一种生物相容性良好的治疗材料。 目前,人们已经开发出多种方法来制备纳米HA,如水解法、水热反应法、溶胶一凝胶法及最近发展的微乳液法等,其中化学沉淀法是各种水溶性的化合物经混合、反应生成不溶性的沉淀,然后将沉淀物过滤、洗涤、煅烧处理,得到符合要求的粉体。化学沉淀法因工艺简单、成本低、颗粒小等优点被广泛应用。但是目前对这种方法的研究还处于初级阶段,制备出的纳米粒子粒径不均一,分散性差且有易团聚的现象。为此,我们希望对化学沉淀法制备HA纳米粒子的条件的进行深入研究,分析各种因素对纳米HA晶型与粒径的影响,为HA的工业化生产提供依据。 2.1实验基本原理 目前报道,常用的制备羟基磷灰石粉体的钙的反应物有Ca(NO3)2、Ca(OH)2、CaCl2、CaO、Ca(OC2H5)2等,常用的磷的反应物有(NH4)2HPO4、H3PO4、K2HPO4、Na2HP04和((CH3O)3PO)等。 以硝酸钙和磷酸氢二氨为例,反应方程式为: Ca(N03)2·4H20+6(NH4)2HP04+8NH3·H20=Ca10 (P04)6(OH)2+20NH4N03+6H20 以氢氧化钙和磷酸盐为例,反应方程式为: 10Ca(OH)2+6H3P04= Ca10(PO4)6(OH)2+18H20 不同反应物合成HA的方法有一定差异,但总体而言,化学沉淀法的实质是羟基磷灰石的溶解平衡的逆反应,即 10Ca2++6PO43-+2OH- = Ca10(PO4)6(OH)2 Ksp=2.34*10-59 2.2实验条件的选择与调控。 影响化学沉淀法的工艺参数主要有:Ca/P 摩尔比、pH 值、磷酸的加入速度、反应温

羟基磷灰石

羟基磷灰石具有良好的生物相容性和骨传导性,新骨在界面上和HA植入体直接接触,两者间无纤维组织存在。HA植入体与骨界面的结合强度往往超过HA植入体或者骨自身的结合强度. 磷酸三钙是一种具有优秀亲和性的生物材料,通过细胞的吞噬和体液的侵蚀作用被机体部分或全部吸收而被取代,可在骨缺损修复中起到暂时性的支架作用,能促进骨组织的生长. 羟基磷灰石在体内稳定性较高,磷酸三钙在体内的降解吸收较快,因此希望复合羟基磷灰石和磷酸三钙,利用二者在体内的不同降解吸收速率,改善材料的生物活性。 在HA和TCP的吸收、降解性能互补的情况下,BCP陶瓷材料的生物相容性要优于单相磷酸钙陶瓷,力学性能方面,磷酸三钙的断裂强度会因为羟基磷灰石的重结晶而增强,特定的HA/TCP比则会提高BCP陶瓷的抗弯强度和弹性模量。 传统羟基磷灰石陶瓷的弹性模量和强度都比较高,但断裂韧性小;同时随着烧结条件的改变,将出现很大的力学性能波动。纳米生物陶瓷的显微结构中,晶界、晶粒及其结合都处于纳米量级水平,晶粒细化及晶界数量大幅度增加,可使其生物学性能和力学性能大幅度提高. 反应温度低,反应组成容易控制,所需设备简单;由于胶体是从溶液反应开始的,可以在分子水平上混合钙和磷的前驱物,使溶液有高度的化学均匀性,所得产品纯度高,晶粒尺寸小。其基本原理是利用金属无机盐或金属醇盐在溶液中水解或醇解,生成溶胶,经脱水或干燥转变为凝胶,然后经热处理,得到所需的粉体. 粉体表面自由能和比表面积有关:物质被分割得越细,比表面积就越大,相应地体系总的表面自由能必然会大大增加。表面自由能过高使整个体系在热力学上不稳定,粒子就有相互聚结从而降低表面自由能的趋势。因此,粉料越细,就越容易聚结成团,最终导致粉料分散性变差. 团聚现象影响了样品的导电性,亮度大的区域颗粒较大,在高度上优于相对暗 区域,二次电子产率较高而发亮;也可能是制样不佳,喷金太薄影响了导电性。 XRD数据本身只能说明一个连续的晶面长度在40nm左右,而SEM显示的是粒子的相对真实的粒径,即XRD表现的是晶粒度,而SEM则表现出颗粒度,所以比根据XRD图得出的平均晶粒尺寸大

多孔羟基磷灰石生物陶瓷的合成和特性研究进展

多孔羟基磷灰石生物陶瓷的合成和特性研究进展3 牛金龙 综述 张镇西 蒋大宗 审校 (西安交通大学生物医学工程研究所,西安 710049) 摘要 人体骨组织的多孔结构,有利于骨组织生长代谢所需物质的交流,并能很好地适应外部应力的变化。合成模拟骨组织多孔结构的生物活性陶瓷材料,用于临床人体骨组织缺失的修复,是组织工程所需要的。将化学沉淀法合成的羟基磷灰石原始粉末与过氧化氢、聚乙烯醇、甲基纤维素等成孔物质混合,经低温发泡,中温脱碳,高温烧结,可以获得孔径理想,互通性能良好的多孔羟基磷灰石陶瓷。这种陶瓷,在一定程度上具有骨诱导性能,但更重要的是它能够很好的吸附人体骨形成蛋白等骨生长因子,使其具有良好的骨再生能力,从而获得了良好的临床应用性能。本文从临床应用性能的角度,评述了近几年多孔羟基磷灰石生物活性陶瓷的研究进展。 关键词 羟基磷灰石 多孔陶瓷 制备 特性 生物陶瓷 Syn thesis and Character istics of Porous Hydroxyapa tite B ioceram ics N iu J i n long Zhang Zhenx i J i ang Dazong (Institu te of B io m ed ica l E ng ineering,X ian J iaotong U n iversity,X i’an 710049) Abstract T he m acropo rous structure of hum an bone allow s the ingrow th of the soft tissues and o rganic cells into the bone m atrix,p rofits the developm ent and m etabo lis m of bone tissue,and adap ts the bone to the change of load.T here is great requirem ent fo r artificial bi om i m ic po rous bi oactive ceram ics w ith the si m ilar structure of bone tissue that can be used clinically fo r repairing lo st bone.F ine hydroxyapatite(HA p)pow der p roduced by w et chem ical reacti on w as m ixed w ith hydrogen peroxide(H2O2),po lyvinyl alcoho l,m ethyl cellulo se o r o ther po res2 m ak ing m aterials to fo r m green cake.A fter drying at low temperature(below100℃)and decarbonizing at about 300℃~400℃,the spongy ceram ic block w as sintered at h igh temperature,thus,m acropo rous HA p bi oceram ic w ith interconnected po res and reasonable po ro sity and po re2diam eter w as m anufactured.T h is k ind of po rous HA p bi oceram ics w ere intrinsically o steo inductive to a certain degree,but its outstanding p roperty w as that they can ab2 so rb hum an bone mo rphogenetic p ro teins and o ther bone grow th facto rs to fo r m compo sites,so that the m acrop2 o rous HA p bi oactive ceram ic has app rop riate feasibility fo r clinical app licati on.F rom the po int of bi om edical app li2 cati on,the recent developm ents in synthesis and characteristics investigati on of m acropo rous HA p are review ed in th is paper. Key words H ydroxyapatite Po rous ceram ics Synthesis Characteristics B i oceram ics 生物骨组织的多孔结构,使其能够适应一定范围的应力变化,同时多孔组织能够使血液流通,保证了骨组织的正常生长代谢。人体骨组织的缺损,特别是骨髓炎、骨肿瘤、骨囊肿等手术切除,以及创伤引起的较大面积的骨缺损,严重影响了人体骨组织的生理功能。骨缺损的手术治疗,用适当的骨填充材料修复缺陷,是快速恢复病态的或创伤性的骨缺损组织生理功能的有效方法。自体骨组织是骨填充的理想材料,但来源很少还需要二次手术;异体骨组织可能存在排异反应和疾病传播等问题。随着外科技术 3陕西省自然科学基础研究计划(2000C17)、西安交通大学博士学位论文基金资助项目(D FXJU200029)和医疗水平的不断提高,对于合成的骨替代材料的需求不断增加。合成和应用模拟人体骨组织多孔特性的生物活性和生物相容性的生物陶瓷材料,引起了科学家和临床医生的关注。多孔羟基磷灰石陶瓷,多孔磷酸钙陶瓷,具有高度生物活性和生物相容性,与骨组织的键合能力很强,是良好的骨组织缺损填充材料。我们从羟基磷灰石粉体的合成,多孔成型,以及合成的多孔羟基磷灰石陶瓷的性能等方面,评述近年多孔羟基磷灰石陶瓷的研究进展。 1 羟基磷灰石粉体的化学合成 用于烧结法制备多孔羟基磷灰石陶瓷的原始粉 生物医学工程学杂志 J B i om ed Eng 2002;19(2)∶302~305

羟基磷灰石在生物医用材料中的研究进展

《生物医用材料》期末论文 学院:材料与化工学院 专业:材料科学与工程 学生姓名: 学号: 任课教师:唐敏 2010年6月20日

羟基磷灰石在生物医用材料中的研究进展 材料与化工学院07材料科学与工程卢仁喜 摘要:羟基磷灰右是一种优质的医用生物材料,在生物医用材料和医学研究领域有着广泛的应用和研究。本文在综合了一些文献的基础上,对羟基磷灰石在生物医用材料的研究上做了总结和概括,并且提出了一些自己的看法。 关键字:羟基磷灰石生物医用材料进展 1.引言 生物材料(biomaterials)是对生物体进行治疗和置换损坏的组织、器官或增进其功能的材料。随着材料科学、生命科学与生物技术的发展,越来越多的生物材料得到广泛应用,人们开始在分子水平上去认识材料和机体问的相互作用,力求使无生命的材料通过参与生命组织的活动,成为有生命组织的一部分。其中金属材料、生物陶瓷材料、高分子材料、聚合物及其复合材料是应用最广泛的生物材料。近年来,常用的骨骼替代品是金属、塑料以及陶瓷等,其中以钛和钛合金为主。但是由于它们的惰性,它们不能很好的与生物体本身产生相容性,作为硬组织植入材料,它们与骨之间只是一种机械嵌连的骨整合,而非化学骨性结合,致使植入后与骨组织之间结合较差,常引起植入失效。同时金属的耐磨性和耐腐蚀性较差,腐蚀产牛的离子会对人体组织产生不良影响。羟基磷灰石(Hydroxyapatite,HA)生物陶瓷材料具有优良的生物活性和生物相容性,被认为是一种最具潜力的人体硬组织替换材料。但是HA的力学性能较差,抗弯强度和断裂韧性指标均低于人体致密骨,限制了它们单独在人体负重部位的使用。但是由于它本身的特点,以及自然界再也找不出与它具有类似生物相容性的陶瓷材料,同时他又可以同多种材料进行复合来改变它在某一方面的劣势。所以,近年来羟基磷灰石及其复合物的研究受到广泛关注。 2.羟基磷灰石及特点 羟基磷灰石(Hydroxyapatite,HA)是一种微溶于水的弱碱性磷酸钙盐,它是脊椎动物骨和齿的主要无机成分,在人骨中约占72%,齿骨中则高达97%,其生物相容性及活性良好,对人体无毒副作用,可增强骨愈合作用,能与自然骨产生化学结合,被认为是最有前途的人工齿及人工骨的替代材料。目前有关羟基磷灰石的研究已经取得了很大的进展,人工合成HA的方法主要有沉淀法、水热反应法和溶胶一凝胶法。然而,羟基磷灰石的烧结性能差,力学性能特别是冲击韧性不足以作为骨替代的理想材料,因此必须通过与其它材料复合来提高有关性能,使之得以在临床上推广应用。所以,基于羟基磷灰石在力学上的性质,它在生

生物医用纳米羟基磷灰石的性质及其制备_李颖华

中国组织工程研究与临床康复 第 12 卷 第 41 期 2008–10–07 出版
Journal of Clinical Rehabilitative Tissue Engineering Research October 7, 2008 Vol.12, No.41
综 述
生物医用纳米羟基磷灰石的性质及其制备*★
李颖华1,曹丽云1,黄剑锋1 2,曾燮榕2

Characteristics and preparation of nanometer hydroxyapatite in medical science
Li Ying-hua1, Cao Li-yun1, Huang Jian-feng1, 2, Zeng Xie-rong2 Abstract: Hydroxyapatite is the main inorganic mineral component in animals and human bone, and nanometer hydroxyapatite may
show a series of specific characteristics. Nanometer hydroxyapatite with the characteristics of nanometer materials and good biocompatibility has a wide application in biomedical field. The development process, crystal structure and processing methods of nanometer hydroxyapatite are reviewed. Also the development direction of nanometer hydroxyapatite is prospected. It is pointed out that the main problem in producing nanometer hydroxyapatite in a large scale with low-cost in industrial preparation is difficult to solve. The exploitation of industrial equipments for the preparation of nanometer hydroxyapatite will be the next research focus. In addition, the brittleness problem of nanometer hydroxyapatite in biomedical applications can be solved through composite technologies and coating techniques. Li YH, Cao LY, Huang JF, Zeng XR.Characteristics and preparation of nanometer hydroxyapatite in medical science.Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu 2008;12(41):8143-8146 [https://www.doczj.com/doc/f29122493.html, https://www.doczj.com/doc/f29122493.html,]
School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, Shaanxi Province, 2 China; Shenzhen Key Laboratory of Special Functional Materials, Shenzhen University, Shenzhen 518060, Guangdong Province, China Li Ying-hua★, Studying for master’s degree, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, Shaanxi Province, China liyinghua840306@ https://www.doczj.com/doc/f29122493.html, Correspondence to: Huang Jian-feng, Doctor, Professor, Doctoral supervisor, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, Shaanxi Province, China; Shenzhen Key Laboratory of Special Functional Materials, Shenzhen University, Shenzhen 518060, Guangdong Province, China huangjf@https://www.doczj.com/doc/f29122493.html, Supported by: Special Natural Science Foundation of Shaanxi Provincial Education Bureau, No.08JK220* Received: 2008-08-30 Accepted: 2008-09-20
1
摘要:羟基磷灰石是动物和人体骨骼的主要无机矿物成分,当羟基磷灰石的尺寸达到纳米级时将表现出一系列的独特性能。
纳米羟基磷灰石既有纳米材料的特性,又有良好的生物相容性,在生物医学领域具有非常广阔的应用前景。文章介绍了纳 米羟基磷灰石的历史发展、结构特性及制备方法。对纳米羟基磷灰石的发展前景进行了展望。指出:纳米羟基磷灰石的大 批量工业化低成本制备尚存在一定困难,工业化设备的研发将是下一步研究的重点。此外,通过复合技术和涂层技术有望 解决医用纳米羟基磷灰石材料的脆性问题。 关键词:纳米;羟基磷灰石;生物医学材料 李颖华,曹丽云,黄剑锋,曾燮榕 . 生物医用纳米羟基磷灰石的性质及其制备 [J]. 中国组织工程研究与临床康复, 2008 , 12(41):8143-8146 [https://www.doczj.com/doc/f29122493.html, https://www.doczj.com/doc/f29122493.html,]
钙化的关系。 1972年,日本学者成功合成羟基 0 引言 羟基磷灰石(Hydroxyapatite,HA)是动 物和人体骨骼的主要无机矿物成分,具有良好 的生物活性和生物相容性。当羟基磷灰石的尺 寸达到纳米级时将表现出一系列的独特性能, 如具有较高的降解和可吸收性。研究表明:超 细羟基磷灰石颗粒对多种癌细胞的生长具有 抑制作用,而对正常细胞无影响。因此纳米羟 基磷灰石的制备方法及应用研究已成为生物 医学领域中一个非常重要的课题,引起国内外 学者的广泛关注。 2 1 学术背景 综述生物医用纳米羟基磷灰石的研究进展 羟基磷灰石的研究历史很长。早在 1790 年,就有学者用希腊文字将这种材料命名为磷 灰石。1926年,有人用X射线衍射方法对人骨 和牙齿的矿物成分进行分析,认为其无机矿物 很像磷灰石。从1937年开始,国外发表了大量 有关磷灰石复合物晶体化学方面的文章。19世 纪60年代,国外学者大量报道了羟基磷灰石与 3.1
文献检索 检索人相关内容:第1作者。 检索文献时限:1996/2008。
磷灰石并烧结成陶瓷。1974/1975,日本学者发 现烧成的羟基磷灰石陶瓷具有很好的生物相容 性[1-3]。自此以后,世界各国都对羟基磷灰石材 料进行广泛的基础研究和临床应用研究。 由于纳米粒子具有表面效应、 小尺寸效应及 量子效应等独特的特性, 医学界也相继开始了对 纳米羟基磷灰石的研究, 并已发现纳米羟基磷灰 石具有更强的生物活性[4]。自1990年以后,对纳 米羟基磷灰石制备方法及其在医学领域的研究 有了突飞猛进的发展, 而且有关的文献报道还在 逐年增多。 目的
及其在临床的应用。 3 资料和方法
ISSN 1673-8225 CN 21-1539/R
CODEN: ZLKHAH
8143

羟基磷灰石合成方案

羟基磷灰石合成方案 羟基磷灰石基本信息:羟基磷灰石(Ca 10(PO 4 ) 6 (OH) 2 ,M=1004),熔点:1650℃, 比重:3.16g/cm3,溶解度:0.4ppm,Ca/P:1.67 合成方法:化学共沉淀法 原料:四水合硝酸钙(Ca(NO 3) 2 ·4H 2 O,M=236.15)、磷酸氢二铵((NH 4 ) 2 HPO 4 , M=132.06)和氨水(NH 3·H 2 O,M=35.05)。 反应方程式: 需要设备:搅拌器、恒温水浴锅、酸度计、离心机、pH试纸、烧杯(2L、1L、500ml),量筒(500ml或1L),1L容量瓶(2个),分液漏斗(500ml,2个),玻璃棒,保鲜膜。 实验步骤 1、配制浓度为0.5mol/L硝酸钙和磷酸氢二氨溶液; 2、将恒温水浴锅恒温至50℃,用量筒量取1000ml浓度为0.5mol/L硝酸钙溶液倒入大烧杯中,并将烧杯置于恒温水浴锅中,再用分液漏斗滴加氨水将溶液的pH值调节至10~11; 3、在搅拌器的不停搅拌下,用量筒量取600ml、0.5mol/L磷酸氢二氨溶液,将其装入分液漏斗,然后缓慢加入烧杯中。在滴加的过程中,使用pH酸度仪实时监测并通过滴加氨水来控制其pH值保持在10~11。当磷酸氢二铵溶液滴加完后,用适量的水冲洗漏斗。继续搅拌30分钟,用保鲜膜封闭烧杯口; 4、静置陈化24小时; 5、将反应产物用离心机离心分离。除去上清液,加入蒸馏水,用玻璃棒搅拌均匀后,继续离心3~5分钟:重复步骤多次,直至测得的pH值在7~8之间(一般需要离心4—5次);向沉淀物中加入酒精,再离心清洗2次,最后得到纯净的HA乳状胶体; 5、将HA乳状胶体倒入培养皿中,置于恒温为70℃干燥箱中干燥24小时; 6、将干燥后的HA粉体置于马弗炉中,700℃烧结2小时,得到羟基磷灰石粉末。

纳米羟基磷灰石的结构设计

纳米羟基磷灰石的结构设计 摘要 羟基磷灰石与人体硬组织的化学成分和晶体结构极为相似,具有独特的生物活性和生物相容性,是目前生物材料研究的热点。当尺寸在1~100nm时,羟基磷灰石(HAP)纳米粒子有独特的生物学特性。此外羟基磷灰石粉体在吸附、催化、荧光、半导体、抗癌等领域也有广泛应用。 关键词:纳米材料羟基磷灰石结构设计抗癌 NANO HYDROXY APATITE STRUCTURE DESIGN ABSTRACT Hydroxyapatite is the main inorganic components of bone tissues,has good biocompatibility and biological activity,which is the research hotspot of biologicalmaterials.HAP particles have unique biological properties when their size maintained in nano scale.In addition,HAP also has wide application in adsorption,catalysis,fluorescence,semiconductor,cancer areas. KEYWORDS:nanometer materials hydroxyapatite physical design anticancer

1.1 纳米羟基磷灰石的特点 nHA是一种粒径较一般细胞粒径小,粒径为1~100 nm的超微粒子。当物质小到纳米级后,会具有表面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应等特点。这些特性导致其特有的热、磁、光敏感特性和表面稳定性,容易通过外场(电、磁、光)实现对其性能的控制,有利于实现靶向输送、控制释放、保护和稳定被输送物质。同时还具有不易被机体网状内皮细胞清除、有效避免脾滤过效应、通过增加渗透和滞留效应增强靶组织累积等优势。 人体骨中无机结构的基本单元式针状和柱状的磷灰石晶体,呈高度有序的排列,其结晶学C轴平行于胶原纤维方向定向生长,这种结构是一种理想的等强度优化结构,具有优良的生物力学性能。人工合成的羟基磷灰石是一种优良的硬组织替代材料,具有良好的生物亲和性,生物相容性,生物活性和骨传导作用。依据“纳米效应”理论,纳米级的羟基磷灰石其粒子活性更高,更有利于骨组织的整合,骨传导性能,溶解性能和力学性能提高。 1.2 纳米磷灰石的基本特性 1.2.1 HAP粒子的晶体结构 羟基磷灰石的理论组成为Ca10(P04)6(OH)2,为六方晶系,属于L6PC对称型和P63/m空间群,其结构为六角柱体,晶胞参数为a0=b0=0.943~0.938nm,C0=0.688~0.686nm,z=2, α=β=900,γ=1200。晶胞含有l0个Ca2+、6个PO43-,和2个OH-,结构中Ca2+离子分别位于配位数为9的Ca(Ⅰ)位置和配位数为7的Ca(Ⅱ)位置,结构比较复杂,其在(0001)面上的投影如图1.1。

相关主题
文本预览
相关文档 最新文档