当前位置:文档之家› OTDR设备的使用

OTDR设备的使用

OTDR设备的使用
OTDR设备的使用

OTDR基本使用方法

一、按设备顶部的红色按钮启动机器

二、进入系统后选择F3进入专家模式

三、在上面图的右面面板有三个按钮:“km”“Ω”“λ”

1. km键的作用是选择需要测试的距离,一般选择你实际距离的2倍,在设备屏幕右边出现16KM/8M的字样,这个表示距离16公里每8米采集一个数据。

2. Ω:选好距离和采样距离后选择,这个表示脉宽

脉宽越长,动态测量范围越大,测量距离更长,但在OTDR曲线波形中产生盲区更大;短脉冲注入光平低,但可减小盲区。一般50公里以下选择2500ns和5000ns,50公里以上选择10000ns和20000ns

3. λ:波长,这个切换两种波长1310和1550,一般50公里以下选择1310,50公里以上选择1550

四、选好以上后连接好光线,这里光纤选择对端收光的一端,否则数据会不正常,

五、按下设备右面面板上的红色按钮(TEST/STOP)开始测试,测试1到2分钟即可. 按(A/B SET)选定游标A,转动旋钮,将游标A移动到过渡光纤尾端接头

反射峰后的线性区起始点,然后按(A/B SET)选定游标B,转动旋钮,将

游标B移动到被测光纤的尾端反射峰前

这是测试完成后出现的表,在这个表中我们A端在0起始线,B端是那条虚线.可以看到AB两点间相距53.4252KM。在虚线旁有个高峰后落下,这表示光纤已经到了设备或终端。在图中a点b点为熔接点,

OTDR测试的光线曲线斜率基本一致,若某一段斜率较大,则表明此段衰减较大,b 点为正常情况,a点有上升的情况,是由于在熔接点之后的光纤比熔接点之前的

光纤产生更多的后向散光而形成的.

如果出现П这个图标或一个高峰后线没有落到底处,这表示这是个跳接。在图中间上方20.147dB,这表示这条线路的衰减值。

OTDR 光时域反射仪

测试原理:

OTDR测试是通过发射光脉冲到光纤内,然后在OTDR端口接收返回的信息来进行。当光脉冲在光纤内传输时,会由于光纤本身的性质、连接器、接合点、弯曲或其它类似的事件而产生散射、反射。其中一部分的散射和反射就会返回到OTDR中。返回的有用信息由OTDR 的探测器来测量,它们就作为光纤内不同位置上的时间或曲线片断。

从发射信号到返回信号所用的时间,再确定光在玻璃物质中的速度,就可以计算出距离。以下的公式就说明了OTDR是如何测量距离的。

d=(c×t)/2(IOR)

在这个公式里,c是光在真空中的速度,而t是信号发射后到接收到信号(双程)的总时间(两值相乘除以2后就是单程的距离)。因为光在玻璃中要比在真空中的速度慢,所以为了精确地测量距离,被测的光纤必须要指明折射率(IOR)。IOR是由光纤生产商来标明。

OTDR使用瑞利散射和菲涅尔反射来表征光纤的特性。瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。OTDR就测量回到OTDR端口的一部分散射光。这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。形成的轨迹是一条向下的曲线,它说明了背向散射的功率不断减小,这是由于经过一段距离的传输后发射和背向散射的信号都有所损耗。

给定了光纤参数后,瑞利散射的功率就可以标明出来,如果波长已知,它就与信号的脉冲宽度成比例:脉冲宽度越长,背向散射功率就越强。瑞利散射的功率还与发射信号的波长有关,波长较短则功率较强。也就是说用1310nm信号产生的轨迹会比1550nm信号所产生的轨迹的瑞利背向散射要高。

在高波长区(超过1500nm),瑞利散射会持续减小,但另外一个叫红外线衰减(或吸收)的现象会出现,增加并导致了全部衰减值的增大。因此,1550nm是最低的衰减波长;这也说明了为什么它是作为长距离通信的波长。很自然,这些现象也会影响到OTDR。作为1550nm波长的OTDR,它也具有低的衰减性能,因此可以进行长距离的测试。而作为

高衰减的1310nm或1625nm波长,OTDR的测试距离就必然受到限制,因为测试设备需要在OTDR轨迹中测出一个尖锋,而且这个尖锋的尾端会快速地落入到噪音中。

另一方面,菲涅尔反射是离散的反射,它是由整条光纤中的个别点而引起的,这些点是由造成反向系数改变的因素组成,例如玻璃与空气的间隙。在这些点上,会有很强的背向散射光被反射回来。因此,OTDR就是利用菲涅尔反射的信息来定位连接点,光纤终端或断点。

换句话说,OTDR的工作原理就类似于一个雷达。它先对光纤发出一个信号,然后观察从某一点上返回来的是什么信息。这个过程会重复地进行,然后将这些结果进行平均并以轨迹的形式来显示,这个轨迹就描绘了在整段光纤内信号的强弱(或光纤的状态)。下图就说明了Mini-OTDR的一些基本组成。

Mini-OTDR一个最重要的性能,就是能从原有事物中进行辨别,大型的OTDR,就有能力完全、自动地识别出光纤的范围。这种新的能力大部分是源于使用了高级的分析软件,这种软件对OTDR的采样进行审查并创建一个事件表。这个事件表显示了所有与轨迹有关的数据,如故障类型,到故障点的距离,衰减,回损和熔接损耗。Mini-OTDR的性能紧紧地依赖于分析软件,从而具有精确地识别事件的能力。

浅析OTDR工作原理及测试应用

光时域反射仪OTDR(Optical Time Domain Reflectometer)测量的方法,是将大功率的窄脉冲光注入待测光纤中,然后在同一端检测沿光纤轴向向后返回散射光功率,由于光纤材料密度不均匀,其本身的缺陷和掺杂成分不均匀,当脉冲通过光纤传输时,沿光纤长度上的每一点均会引起瑞利散射,其中总有一部分进入光纤的数值孔径角,沿光纤轴反向传输到输入端。瑞利散射光的波长与入射光的波长相同,其光功率与散射点的入射光功率成正比,测量沿光纤轴返回的背向瑞利散射光功率可采集到沿光纤传输损耗的信息,从而测得光纤的衰减。

光时域反射仪通过光发送脉冲进入输入光纤,同时在输入端接收其中的菲涅尔反射光和瑞利背向散射光,再变成电信号,随时间在示波器上显示。最终得到被测光纤的长度、链路损耗、熔接损耗、熔接点和故障点位置等物理信息。日常应用中,也是利用其强大的数据分析功能,对光纤链路中的事件点及故障点进行精确定位。

二、 OTDR操作使用及注意事项

OTDR一般具备自动测试和手动测试两种模式。对于一般精度要求不高的测试,用OTDR 的自动测试模式即可满足要求,操作也很方便。

但在超短距离和超长距离的测试中,自动测试对事件点的判断和定位就未必准确,可能会出现误判、漏判的现象。有时同样一根光纤,先后多次自动测试的结果可能不一致,在这些情况下,最好采用手动测试模式。

手动测试模式要求操作者根据被测光纤的距离选择合适的测试参数,如距离量程、工作波长、脉冲宽度、光纤群折射率、平均次数等,测试参数选择的恰当与否直接影响测试结果的

精确度。

1、距离量程:选择距离量程时,必须注意所选距离量程要大于被测光纤的长度,最好大于被测光纤长度的两倍,以防止光纤末端二次反射的影响。

2、脉冲宽度:脉冲宽度的选择同样取决于被测光纤的长度,当需要测试长距离的光纤时,尽量选用较大脉宽,而若要测试短距离光纤,则最好选择较小脉宽,由于脉宽的大小决定了空间分辨率,所以测试时,在曲线信噪比许可的情况下,尽量选择小脉宽会得到事件点更准确的结果。

3、平均次数:平均次数(或平均时间)的设置应视具体情况灵活掌握,一般来讲,平均处理一定次数(如300次或3分钟)后,效果不再明显。

常用光纤测试表有:光功率计、稳定光源、光万用表、光时域反射仪(OTDR)和光故障定位仪。

光功率计: 用于测量绝对光功率或通过一段光纤的光功率相对损耗。在光纤系统中,测量光功率是最基本的。非常像电子学中的万用表,在光纤测量中,光功率计是重负荷常用表,光纤技术人员应该人手一个。通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。

稳定光源: 对光系统发射已知功率和波长的光。稳定光源与光功率计结合在一起,可以测量光纤系统的光损耗。对现成的光纤系统,通常也可把系统的发射端机当作稳定光源。如果端机无法工作或没有端机,则需要单独的稳定光源。稳定光源的波长应与系统端机的波长尽可能一致。在系统安装完毕后,经常需要测量端到端损耗,以便确定连接损耗是否满足设计要求,如:测量连接器、接续点的损耗以及光纤本体损耗。

光万用表: 用来测量光纤链路的光功率损耗。有以下两种光万用表:

1、由独立的光功率计和稳定光源组成。

2、光功率计和稳定光源结合为一体的集成测试系统。

在短距离局域网(LAN)中,端点距离在步行或谈话之内,技术人员可在任意一端成功地使用经济性组合光万用表,一端使用稳定光源另一端使用光功率计。对长途网络系统,技术人员应该在每端装备完整的组合或集成光万用表。

当选择仪表时,温度或许是最严格的标准。现场便携式设备应在-18℃(无湿度控制)至50℃(95%湿度)

光时域反射仪(OTDR)及故障定位仪(Fault Locator): 表现为光纤损耗与距离的函数。借助于OTDR,技术人员能够看到整个系统轮廓,识别并测量光纤的跨度、接续点和连接头。在诊断光纤故障的仪表中,OTDR是最经典的,也是最昂贵的仪表。与光功率计和光万用表的两端测试不同,OTDR仅通过光纤的一端就可测得光纤损耗。OTDR轨迹线给出系统衰减值的位置和大小,如:任何连接器、接续点、光纤异形、或光纤断点的位置及其损耗大小。OTDR可被用于以下三个方面:

1、在敷设前了解光缆的特性(长度和衰减)。

2、得到一段光纤的信号轨迹线波形。

3、在问题增加和连接状况每况愈下时,定位严重故障点。

故障定位仪(Fault Locator)是OTDR的一个特殊版本,故障定位仪可以自动发现光纤故障所在,而不需OTDR的复杂操作步骤,其价格也只是OTDR的几分之一。

选择光纤测试仪表,一般需考虑以下四个方面的因素:即确定你的系统参数、工作环境、比较性能要素、仪表的维护

确定你的系统参数

工作波长(nm)三个主要的传输窗口为850nm,1300nm 及1550nm。

光源种类(LED或激光):在短距离应用中,由于经济实用的原因,大多数低速局域网LAN(<100Mbs)通常使用LED光源。大多数高速系统>100Mbs使用激光光源长距离传输信号。

光纤种类(单模/多模)以及芯/涂覆层直径(um):标准单模光纤(SM)为9/125um,尽管某些其它特殊单模光纤应该仔细辨认。典型的多模光纤(MM)包括50/125、62.5/125、100/140 和200/230 um。

连接器种类:国内常见的连接器包括:FC-PC,FC-APC,SC-PC,SC-APC,ST等。最新的连接器则有:LC,MU,MT-RJ等

可能的最大链路损耗。

损耗估算/系统的容限。

明确你的工作环境

对用户/购买者来讲,选择一台野外现场用仪表,温度标准或许是最严格的。通常,野外现场测量必须在严峻的环境中使用,推荐现场便携式仪表的工作温度应该从-18℃~50℃,同时储运温度为-40~+60℃(95%RH)。实验室的仪器仅需在较窄的控制范围5~50℃工作。

不像实验室仪表能够采用交流供电,现场便携式仪表对仪表电源通常要求较为苛刻,否则会影响工作效率。另外,仪器的电源供电问题还经常是引起仪器故障或损坏的一个重要诱因。因此,用户应该考虑和权衡如下因素:

1、内装电池的位置应便于用户更换。

2、新电池或满充电池的最少工作时间要达到10小时(一个工作日)。然而电池工作寿命的目标值应在40~50小时(一周)以上,以确保技术人员和仪器的最佳工作效率。

3、使用电池的型号越普通越好,如通用9V或1.5V五号干电池等,因为这些通用电池非常容易就地找到或购得。

4、普通干电池优于可充电电池(如:铅-酸、镍镉电池),因为充电电池大多存在“记忆”问题、包装不标准、不容易买到、环保问题等。

以前,要找到符合上述所有四个标准的便携式测试仪器几乎是不可能的。现在,采用最现代CMOS电路制造技术的艺术化光功率计,仅用一般五号干电池(随处可得),即可工作100小时以上。另外一些实验室型号提供双电源(AC和内部电池)以增加其适应性。

如同手提电话一样,光纤测试仪表同样具有众多的外观包装形式。低于1.5公斤的手持式表一般没有许多虚饰,只提供基本功能和性能;半便携式仪表(大于1.5公斤)通常具备更复杂的或扩展的功能;实验室仪器是专为控制实验室/生产场合设计的,具备AC供电。

比较性能要素:这里是选择步骤的第三步,包括每种光测试设备的详细分析。

光功率计

对于任何光纤传输系统的生产制造、安装、运行和维护,光功率测量是必不可少的。在光纤领域,没有光功率计,任何工程、实验室、生产车间或电话维护设施都无法工作。例如:光功率计可用于测量激光光源和LED光源的输出功率;用于确认光纤链路的损耗估算;其中最重要的是,它是测试光学元器件(光纤、连接器、接续子、衰减器等)的性能指标的关键仪器。

针对用户的具体应用,要选择适合的光功率计,应该关注以下各点:

1、选择最优的探头类型和接口类型

2、评价校准精度和制造校准程序,与你的光纤和接头要求范围相匹配。

3、确定这些型号与你的测量范围和显示分辨率相一致。

4、具备直接插入损耗测量的dB功能。

几乎在光功率计所有性能中,光探头是最应仔细选择的部件。光探头是一个固态光电二极管,它从光纤网络中接收耦合光,并将之转换为电信号。可以使用专用的连接器接口(仅适用一种连接类型)输入到探头,或用通用接口UCI(使用螺扣连接)适配器。UCI能接受绝大多数工业标准连接器。基于选定波长的校准因子,光功率计电路将探头输出信号转换,把光功率读数以dBm方式显示(绝对dB等于1 mW, 0dBm=1mW)在屏幕上。图一是一个光功率计的方块图。

选择光功率计最重要的标准是使光探头类型与预期的工作波长范围相匹配。下表汇总了基本的选择。值得一提的是,在进行测量时,InGaAs在三个传输窗口都有上佳表现,与锗相比InGaAs具有在所有三个窗口更为平坦的频谱特性,在1550nm窗口有更高的测量精度,同时具有优越的温度稳定性和低噪声特性。

光功率测量是任何光纤传输系统的制造、安装、运行和维护中必不可少的部分。

下一个因素与校准精度息息相关。功率计是与你应用相一致的方式校准的吗?即:光纤和连接器的性能标准与你的系统要求相一致。应分析是什么原因导致用不同的连接适配器测量值不确定?充分考虑其它的潜在误差因素是很重要的,虽然NIST(美国国家标准技术研究所)建立了美国标准,但是来自不同生产厂家相似的光源、光探头类型、连接器的频谱是不确定的。

第三个步骤是确定符合你测量范围需求的光功率计型号。以dBm为单位表示,测量范围(量程)是全面的参数,包括确定输入信号的最小/最大范围(这样光功率计可以保证所有精度,线性度(BELLCORE 确定为+0.8dB)和分辨率(通常0.1 dB or 0.01 dB)是否满足应用要求。

光功率计的最重要选择标准是光探头类型与预期的工作范围相匹配。

第四,大多数光功率计具备dB 功能(相对功率),直接读取光损耗在测量中非常实用。低成本的光功率计通常不提供此功能。没有dB功能,技术人员必须记下单独的参考值和测量值,然后计算其差值。所以dB功能给使用者以相对损耗测量,因而提高生产率,减少人工计算错误。

现在,用户对光功率计具有的基本特性和功能的选择已经减少,但是,部分用户要考虑特殊需求----包括:计算机采集数据纪录、外部接口等。

稳定光源

在测量损耗过程中,稳定光源(SLS)发射已知功率和波长的光进入光系统。对特定波长光源(SLS)校准的光功率计/光探头,从光纤网络中接收光,将之转换为电信号。为确保损耗测量精度,尽可能使光源仿真所用传输设备特性:

1、波长相同,并采用相同的光源类型(LED,激光)。

2、在测量期间,输出功率和频谱的稳定性(时间和温度稳定性)。

3、提供相同的连接接口,并采用同类型光纤。

4、输出功率大小满足最坏情况下系统损耗的测量。

当传输系统需要单独稳定光源时,光源的最优选择应模拟系统光端机的特性和测量需求。选择光源应考虑如下方面:

激光管(LD) 来自LD发射的光,波长带宽窄,几乎是单色光,即单波长。与LED相比,通过其光谱波段(小于5nm)的激光不是连续的,在中心波长的两边,还发射几个较低峰植的波长。与LED光源相比,虽然激光光源提供更大功率,但价格高于LED。激光管常用于损耗超过10dB的长途单模系统。应尽量避免用激光光源测量多模光纤。

发光二极管(LED):

LED具有比LD 更宽的光谱,通常范围为50~200nm。另外,LED光是非干涉光,因而输出功率更加稳定。LED光源比LD光源要便宜的多,但对最坏情况损耗测量显得功率不足。LED光源典型应用在短距离网络和多模光纤的局域网LAN中。LED可以用于激光光源单模系统进行精确损耗测量,但前提条件是要求其输出足够功率。

光万用表

将光功率计和稳定光源组合在一起被称为光万用表。光万用表用来测量光纤链路的光功率损耗。这些仪表可以是两个单独的仪表,也可以是单一的集成单元。总之,两类光万用表具有相同的测量精度。所不同的通常是成本和性能。集成光万用表通常功能成熟、具有各种性能但价格较高。

从技术的角度来评价各种光万用表配置,基本的光功率计和稳定光源标准仍然适用。注意选择正确的光源种类、工作波长、光功率计探头以及动态范围。

光时域反射仪和故障定位仪

OTDR是最经典的光纤仪器装备,它提供测试时相关光纤最多的信息。OTDR本身是一维的闭环光学雷达,测量仅需光纤的一个端头。发射高强度、窄的光脉冲进入光纤,同时高速光探头纪录返回信号。此仪器给出有关光链路的可视化解释。在OTDR曲线上反映出接续点、连接器和故障点的位置以及损耗大小。

OTDR评价过程与光万用表有许多相似点。事实上,OTDR 可以被认为是一个非常专业的测试仪表组合:由一个稳定高速脉冲源和一个高速光探头组成。OTDR的选择过程可关注下列属性:

1、确认工作波长,光纤类型和连接器接口。

2、预期连接损耗和需要扫描的范围。

3、空间分辨率。

故障定位仪大多是手持式仪器,适用于多模和单模光纤系统。利用OTDR (光时域反射仪) 技术,用于对光纤故障的点定位,测试距离大多在20公里以内。仪器直接以数字显示至故障点的距离。适用于:广域网(WAN)、20 km范围的通讯系统、光纤到路边(FTTC)、单模和多模光纤光缆的安装和维护、以及军用系统。在单模及多模光缆系统中,要定位带故障的连接头、坏的接续点,故障定位仪是一种优异的工具。故障定位仪操作简单,只需单键操作,可探测多达7个多重事件。

频谱分析仪的技术指标

(1)输入频率范围

指频谱仪能够正常工作的最大频率区间,以HZ表示该范围的上限和下限,由扫描本振的频率范围决定。现代频谱仪的频率范围通常可从低频段至射频段,甚至微波段,如1KHz~

4GHz。这里的频率是指中心频率,即位于显示频谱宽度中心的频率。

(2)分辨力带宽

指分辨频谱中两个相邻分量之间的最小谱线间隔,单位是HZ。它表示频谱仪能够把两个彼此靠得很近的等幅信号在规定低点处分辨开来的能力。在频谱仪屏幕上看到的被测信号的谱

线实际是一个窄带滤波器的动态幅频特性图形(类似钟形曲线),因此,分辨力取决于这个幅频生的带宽。定义这个窄带滤波器幅频特性的3dB带宽为频谱仪的分辨力带宽。

(3)灵敏度

指在给定分辨力带宽、显示方式和其他影响因素下,频谱仪显示最小信号电平的能力,以dBm、dBu、dBv、V等单位表示。超外差频谱仪的灵敏度取决于仪器的内噪声。当测量小信号时,信号谱线是显示在噪声频谱之上的。为了易于从噪声频谱中看清楚信号谱线,一般信号电平应比内部噪声电平高10dB。另处,灵敏度还与扫频速度有关,扫频速度赶快,动态幅频特性峰值越低,导致灵敏度越低,并产生幅值差。

(4)动态范围

指能以规定的准确度测量同时出现在输入端的两个信号之间的最大差值。动态范围的上限爱到非线性失真的制约。频谱仪的幅值显示方式有两种:线性的对数。对数显示的优点是在有限的屏幕有效的高度范围内,可获得较大的动态范围。频谱仪的动态范围一般在60dB以上,有时甚至达到100dB以上。

(5)频率扫描宽度(Span)

另有分析谱宽、扫宽、频率量程、频谱跨度等不同叫法。通常指频谱仪显示屏幕最左和最右垂直刻度线内所能显示的响应信号的频率范围(频谱宽度)。根据测试需要自动调节,或人为设置。扫描宽度表示频谱仪在一次测量(也即一次频率扫描)过程中所显示的频率范围,可以小于或等于输入频率范围。频谱宽度通常又分为三种模式。

①全扫频频谱仪一次扫描它的有效频率范围。

②每格扫频频谱仪一次只扫描一个规定的频率范围。用每格表示的频谱宽度可以改变。

③零扫频频率宽度为零,频谱仪不扫频,变成调谐接收机。

(6)扫描时间(Sweep Time,简作ST)

即进行一次全频率范围的扫描、并完成测量所需的时间,也叫分析时间。通常扫描时间越短越好,但为保证测量精度,扫描时间必须适当。与扫描时间相关的因素主要有频率扫描范围、分辨率带宽、视频滤波。现代频谱仪通常有多档扫描时间可选择,最小扫描时间由测量通道的电路响应时间决定。

(7)幅度测量精度

有绝对幅度精度和相对幅度精度之分,均由多方面因素决定。绝对幅度精度是针对满刻度信号的指标,受输入衰减、中频增益、分辨率带宽、刻度逼真度、频响及校准信号本身的精度等的综合影响;相对幅度精度与测量方式有关,在理想情况下仅有频响和校准信号精度两项误差来源,测量精度可以达到非常高。仪器在出厂前要经过校准,各种误差已被分别记录下来并用于对实测数据进行修正,显示出来的幅度精度已有所提高。

OTDR主要参数

测试距离

由于光纤制造以后其折射率基本不变,这样光在光纤中的传播速度就不变,这样测试距离和时间就是一致的,实际上测试距离就是光在光纤中的传播速度乘上传播时间,对测试距离的选取就是对测试采样起始和终止时间的选取。测量时选取适当的测试距离可以生成比较全面的轨迹图,对有效的分析光纤的特性有很好的帮助,通常根据经验,选取整条光路长度的 1.5 - 2 倍之间最为合适。

脉冲宽度

可以用时间表示,也可以用长度表示,很明显,在光功率大小恒定的情况下,脉冲宽度的大小直接影响着光的能量的大小,光脉冲越长光的能量就越大。同时脉冲宽度的大小也直接影响着测试死区的大小,也就决定了两个可辨别事件之间的最短距离,即分辨率。显然,脉冲宽度越小,分辨率越高,脉冲宽度越大分辨率越低。如图所示:

折射率

就是待测光纤实际的折射率,这个数值由待测光纤的生产厂家给出,单模石英光纤的折射率大约在 1.4 - 1.6 之间。越精确的折射率对提高测量距离的精度越有帮助。这个问题对配置光路由也有实际的指导意义,实际上,在配置光路由的时候应该选取折射率相同或相近的光纤进行配置,尽量减少不同折射率的光纤芯连接在一起形成一条非单一折射率的光路。

测试光波长

就是指 OTDR 激光器发射的激光的波长,波长越短,瑞利散射的光功率就越强,在 OTDR 的接收段产生的轨迹图就越高,所以 1310 的脉冲产生的瑞利散射的轨迹图样就要比 1550nm 产生的图样要高。但是在长距离测试时,由于 1310nm 衰耗较大,激光器发出的激光脉冲在待测光纤的末端会变得很微弱,这样受噪声影响较大,形成的轨迹图就不理想,宜采用 1550nm 作为测试波长。在高波长区( 1500nm 以上),瑞利散射会持续减少,但是一个红外线衰减(或吸收)就会产生,因此 1550nm 就是一个衰减最低的波长,因此适合长距离通信。所以在长距离测试的时候适合选取 1550nm 作为测试波长,而普通的短距离测试选取1310nm 为宜,视具体情况而定。

平均值

是为了在 OTDR 形成良好的显示图样,根据用户需要动态的或非动态的显示光纤状况而设定的参数。由于测试中受噪声的影响,光纤中某一点的瑞利散射功率是

一个随机过程,要确知该点的一般情况,减少接收器固有的随机噪声的影响,需要求其在某一段测试时间的平均值。根据需要设定该值,如果要求实时掌握光纤的情况,那么就需要设定平均值时间为 0 ,而看一条永久光路,则可以用无限时间。

动态范围

它表示后向散射开始与噪声峰值间的功率损耗比。它决定了 OTDR 所能测得的最长光纤距离。如果 OTDR 的动态范围较小,而待测光纤具有较高的损耗,则远端可能会消失在噪声中。目前有两种定义动态范围的方法:

?峰值法:它测到噪声的峰值,当散射功率达到噪声峰值即认为不可见。

? SNR=1 法:这里动态范围测到噪声的 rms 电平为止,对于同样性能的 OTDR 来讲,其指标高于峰值定义大约 2.0db 。(图)

后向散射系数

如果连接的两条光纤的后向散射系数不同,就很有可能在 OTDR 上出现被测光纤是一个增益器的现象,这是由于连接点的后端散射系数大于前端散射系数,导致连接点后端反射回来的光功率反而高于前面反射回的光功率的缘故。遇到这种情况,建议大家用双向测试平均趣值的办法来对该光纤进行测量。

死区

死区的产生是由于反射淹没散射并且使得接收器饱和引起,通常分为衰减死区和事件死区两种情况。

?衰减死区:从反射点开始到接收点回复到后向散射电平约 0.5db 范围内的这段距离。这是 OTDR 能够再次测试衰减和损耗的点。

?事件死区:从 OTDR 接收到的反射点开始到 OTDR 恢复的最高反射点 1.5db 一下的这段距离,这里可以看到是否存在第二个反射点,但是不能测试衰减和损耗。如图所示

鬼影

它是由于光在较短的光纤中,到达光纤末端 B 产生反射,反射光功率仍然很强,在回程中遇到第一个活动接头 A ,一部分光重新反射回 B ,这部分光到达 B 点以后,在 B 点再次反射回 OTDR ,这样在 OTDR 形成的轨迹图中会发现在噪声区域出现了一个反射现象。如下图所示(红色为一次反射,绿色为二次反射):

OTDR

OTDR的英文全称是Optical Time Domain Reflectometer,中文意思为光时域

反射仪。OTDR是利用光线在光纤中传输时的瑞利散射和菲涅尔反射所产生的背向散

射而制成的精密的光电一体化仪表,它被广泛应用于光缆线路的维护、施工之中,可

进行光纤长度、光纤的传输衰减、接头衰减和故障定位等的测量。

OTDR测试是通过发射光脉冲到光纤内,然后在OTDR端口接收返回的信息来进

行。当光脉冲在光纤内传输时,会由于光纤本身的性质,连接器,接合点,弯曲或其

它类似的事件而产生散射,反射。其中一部分的散射和反射就会返回到OTDR中。

返回的有用信息由OTDR的探测器来测量,它们就作为光纤内不同位置上的时间或

曲线片断。从发射信号到返回信号所用的时间,再确定光在玻璃物质中的速度,就可以计算出距离。

从发射信号到返回信号所用的时间,再确定光在玻璃物质中的速度,就可以计算出距离。以下的公式就说明了OTDR是如何测量距离的。

d=(c×t)/2(IOR)

在这个公式里,c是光在真空中的速度,而t是信号发射后到接收到信号(双程)的总时间(两值相乘除以2后就是单程的距离)。因为光在玻璃中要比在真空中的速度慢,所以为了精确地测量距离,被测的光纤必须要指明折射率(IOR)。IOR是由光纤生产商来标明。

OTDR使用瑞利散射和菲涅尔反射来表征光纤的特性。瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。OTDR就测量回到OTDR端口的一部分散射光。这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。形成的轨迹是一条向下的曲线,它说明了背向散射的功率不断减小,这是由于经过一段距离的传输后发射和背向散射的信号都有所损耗。

给定了光纤参数后,瑞利散射的功率就可以标明出来,如果波长已知,它就与信号的脉冲宽度成比例:脉冲宽度越长,背向散射功率就越强。瑞利散射的功率还与发射信号的波长有关,波长较短则功率较强。也就是说用1310nm信号产生的轨迹会比1550nm信号所产生的轨迹的瑞利背向散射要高。

在高波长区(超过1500nm),瑞利散射会持续减小,但另外一个叫红外线衰减(或吸收)的现象会出现,增加并导致了全部衰减值的增大。因此,1550nm是最低的衰减波长;这也说明了为什么它是作为长距离通信的波长。很自然,这些现象也会影响到OTDR。作为1550nm波长的OTDR,它也具有低的衰减性能,因此可以进行长距离的测试。而作为高衰减的1310nm或1625nm波长,OTDR的测试距离就必然受到限制,因为测试设备需要在OTDR轨迹中测出一个尖锋,而且这个尖锋的尾端会快速地落入到噪音中。

瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。OTDR就测量回到O TDR端口的一部分散射光。这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。

菲涅尔反射是离散的反射,它是由整条光纤中的个别点而引起的,这些点是由造成反向系数改变的因素组成,例如玻璃与空气的间隙。在这些点上,会有很强的背向散射光被反射回来。因此,OTDR就是利用菲涅尔反射的信息来定位连接点,光纤终端或断点。

OTDR的工作原理就类似于一个雷达。它先对光纤发出一个信号,然后观察从某一点上返回来的是什么信息。这个过程会重复地进行,然后将这些结果进行平均并以轨迹的形式来显示,这个轨迹就描绘了在整段光纤内信号的强弱。

什么是盲区?

Fresnel 反射引出一个重要的OTDR 规格,即盲区。有两类盲区:事件和衰减。两种盲区都由Fresnel 反射产生,用随反射功率的不同而变化的距离(米)来表示。

盲区定义为持续时间,在此期间检测器受高强度反射光影响暂时“失明”,直到它恢复正常能够重新读取光信号为止,设想一下,当您夜间驾驶时与迎面而来的车相遇,您的眼睛会短期失明。在OTDR 领域里,时间转换为距离,因此,反射越多,检测器恢复正常的时间越长,导致的盲区越长。绝大多数制造商以最短的可用脉冲宽度以及单模光纤-45 dB、多模光纤-35 dB 反射来指定盲区。为此,阅读规格表的脚注很重要,因为制造商使用不同的测试条件测量盲区,尤其要注意脉冲宽度和反射值。例如,单模光纤-55 dB 反射提供的盲区规格比使用-45 dB 得到的盲区更短,仅仅因为-55 dB 是更低的反射,检测器恢复更快。此外,使用不同的方法计算距离也会得到一个比实际值更短的盲区。

事件盲区

事件盲区是Fresnel 反射后OTDR 可在其中检测到另一个事件的最小距离。换而言之,是两个反射事件之间所需的最小光纤长度。仍然以之前提到的开车为例,当您的眼睛由于对面车的强光刺激睁不开时,过几秒种后,您会发现路上有物体,但您不能正确识别它。转过头来说OTDR,可以检测到连续事件,但不能测量出损耗(如图 4 所示)。OTDR 合并连续事件,并对所有合并的事件返回一个全局反射和损耗。为了建立规格,最通用的业界方法是测量反射峰的每一侧-1.5 dB 处之间的距离(见图5)。还可以使用另外一个方法,即测量从事件开始直到反射级别从其峰值下降到-1.5 dB 处的距离。该方法返回一个更长的盲区,制造商较少使用。

图四合并长盲区事件图五测量事件盲区

使得OTDR 的事件盲区尽可能短是非常重要的,这样才可以在链路上检测相距很近的事件。例如,在建筑物网络中的测试要求OTDR 的事件盲区很短,因为连接各种数据中心的光纤跳线非常短。如果盲区过长,一些连接器可能会被漏掉,技术人员无法识别它们,这使得定位潜在问题的工作更加困难。

衰减盲区

衰减盲区是Fresnel 反射之后,OTDR 能在其中精确测量连续事件损耗的最小距离。还使用以上例子,经过较长时间后,您的眼睛充分恢复,能够识别并分析路上可能的物体的属性。如图 6 所示,检测器有足够的时间恢复,以使得其能够检测和测量连续事件损耗。所需的最小距离是从发生反射事件时开始,直到反射降低到光纤的背向散射级别的0.5 dB,如图7 所示。

图 6. 衰减盲区

图7. 测量衰减盲区

盲区的重要性

短衰减盲区使得OTDR 不仅可以检测连续事件,还能够返回相距很近的事件损耗。例如,现在就可以得知网络内短光纤跳线的损耗,这可以帮助技术人员清楚了解链路内的情况。

盲区也受其他因素影响:脉冲宽度。规格使用最短脉冲宽度是为了提供最短盲区。但是,盲区并不总是长度相同,随着脉冲变宽,盲区也会拉伸。使用最长的可能的脉冲宽带会导致特别长的盲区,然而这有不同的用途,下文会提到。

动态范围

动态范围是一个重要的OTDR 参数。此参数揭示了从OTDR 端口的背向散射级别下降到特定噪声级别时OTDR 所能分析的最大光损耗。换句话说,这是最长的脉冲所能到达的最大光纤长度。因此,动态范围(单位为dB)越大,所能到达的距离越长。显然,最大距离在不同的应用场合是不同的,因为被测链路的损耗不同。连接器、熔接和分光器也是降低OTDR 最大长度的因素。因此,在一个较长时段内进行平均并使用适当的距离范围是增加最大可测量距离的关键。大多数动态范围规格是使用最长脉冲宽度的三分钟平均值、信噪比(SNR)=1(均方根(RMS) 噪声值的平均级别)而给定。再次请注意,仔细阅读规格脚注标注的详细测试条件非常重要。

凭经验,我们建议选择动态范围比可能遇到的最大损耗高 5 到8 dB 的OTD R。例如,使用动态范围是35 dB 的单模OTDR 就可以满足动态范围在30 dB

左右的需要。假定在1550 nm 上的典型光纤典型衰减为0.20 dB/km,在每 2 公里处熔接(每次熔接损耗0.1 dB),这样的一个设备可以精确测算的距离最多120公里。最大距离可以使用光纤衰减除OTDR 的动态范围而计算出近似值。这有助

于确定使设备能够达到光纤末端的动态范围。请记住,网络中损耗越多,需要的动态范围越大。请注意,在20 μ 指定的大动态范围并不能确保在短脉冲时动态范围也这么大,过度的轨迹过滤可能人为夸大所有脉冲的动态范围,导致不良故障查找解决方案。

光缆测试设备OTDR的操作使用

光时域反射计(Optical Time Domain Refiectomete 简称OTDR)对光纤的测试具有非破坏性、单端接入及直观快速的独特优点。

1 OTDR的使用

用OTDR进行光纤测量可分为三步:参数设置、数据获取和曲线分析。人工设置测量参数包括:

(1)波长选择(λ):

因不同的波长对应不同的光线特性(包括衰减、微弯等),测试波长一般遵循与系统传输通信波长相对应的原则,即系统开放1550波长,则测试波长为1550nm。

(2)脉宽(Pulse Width):

脉宽越长,动态测量范围越大,测量距离更长,但在OTDR曲线波形中产生盲区更大;短脉冲注入光平低,但可减小盲区。脉宽周期通常以ns来表示。

(3)测量范围(Range):

OTDR测量范围是指OTDR获取数据取样的最大距离,此参数的选择决定了取样分辨率的大小。最佳测量范围为待测光纤长度1.5~2倍距离之间。

(4)平均时间:

由于后向散射光信号极其微弱,一般采用统计平均的方法来提高信噪比,平均时间越长,信噪比越高。例如,3min的获得取将比1min的获得取提高0.8dB 的动态。但超过10min的获得取时间对信噪比的改善并不大。一般平均时间不超过3min。

(5)光纤参数:

光纤参数的设置包括折射率n和后向散射系数n和后向散射系数η的设置。折射率参数与距离测量有关,后向散射系数则影响反射与回波损耗的测量结果。这两个参数通常由光纤生产厂家给出。

参数设置好后,OTDR即可发送光脉冲并接收由光纤链路散射和反射回来的光,对光电探测器的输出取样,得到OTDR曲线,对曲线进行分析即可了解光纤质量。

2 经验与技巧

(1)光纤质量的简单判别:

正常情况下,OTDR测试的光线曲线主体(单盘或几盘光缆)斜率基本一致,若某一段斜率较大,则表明此段衰减较大;若曲线主体为不规则形状,斜率起伏较大,弯曲或呈弧状,则表明光纤质量严重劣化,不符合通信要求。

(2)波长的选择和单双向测试:

1550波长测试距离更远,1550nm比1310nm光纤对弯曲更敏感,1550nm 比1310nm单位长度衰减更小、1310nm比1550nm测的熔接或连接器损耗更高。在实际的光缆维护工作中一般对两种波长都进行测试、比较。对于正增益现象和超过距离线路均须进行双向测试分析计算,才能获得良好的测试结论。

(3)接头清洁:

光纤活接头接入OTDR前,必须认真清洗,包括OTDR的输出接头和被测活接头,否则插入损耗太大、测量不可靠、曲线多噪音甚至使测量不能进行,它还可能损坏OTDR。避免用酒精以外的其它清洗剂或折射率匹配液,因为它们可使光纤连接器内粘合剂溶解。

(4)折射率与散射系数的校正:就光纤长度测量而言,折射系数每0.01的偏差会引起7m/km之多的误差,对于较长的光线段,应采用光缆制造商提供的折射率值。如果需要精确测量光纤段的散射系数值。

(5)鬼影的识别与处理:

在OTDR曲线上的尖峰有时是由于离入射端较近且强的反射引起的回音,这种尖峰被称之为鬼影。

识别鬼影:曲线上鬼影处未引起明显损耗;沿曲线鬼影与始端的距离是强反射事件与始端距离的倍数,成对称状。消除鬼影:选择短脉冲宽度、在强反射前

端(如OTDR输出端)中增加衰减。若引起鬼影的事件位于光纤终结,可"打小弯"以衰减反射回始端的光。

(6)正增益现象处理:

在OTDR曲线上可能会产生正增益现象。正增益是由于在熔接点之后的光纤比熔接点之前的光纤产生更多的后向散光而形成的。事实上,光纤在这一熔接点上是熔接损耗的。常出现在不同模场直径或不同后向散射系数的光纤的熔接过程中,因此,需要在两个方向测量并对结果取平均作为该熔接损耗。在实际的光缆维护中,也可采用≤0.08dB即为合格的简单原则。

(7)附加光纤的使用:

附加光纤是一段用于连接OTDR与待测光纤、长300~2000m的光纤,其主要作用为:前端盲区处理和终端连接器插入测量。

一般来说,OTDR与待测光纤间的连接器引起的盲区最大。在光纤实际测量中,在OTDR与待测光纤间加接一段过渡光纤,使前端盲区落在过渡光纤内,而待测光纤始端落在OTDR曲线的线性稳定区。光纤系统始端连接器插入损耗可通过OTDR加一段过渡光纤来测量。如要测量首、尾两端连接器的插入损耗,可在每端都加一过渡光纤。

OTDR常用参数设置

OTDR常用参数设置 OTDR在光缆工程施工和光缆线路维护工作中经常使用,是最重要的光纤性能测试仪器,它能将长100多公里光纤的性能参数和故障状态,以一定斜率直线(曲线)的形式清晰的显示在几英寸的液晶屏上。根据图形和事件表的数据进行分析,能迅速的查找确定故障点的位置和判断障碍的性质及类别。OTDR主要是根据光学原理以及瑞利散射和菲涅尔反射理论制成的。仪表的激光源发出一定强度和波长的光束至被测光纤,由于光纤本身的缺陷,制作工艺和石英玻璃材料组分的不均匀性,使光在光纤中传输将产生瑞利散射;由于机械连接和断裂等原因将造成光在光纤中产生菲涅尔反射,由光纤沿线各点反射回的微弱的光信号经光定向耦合器到仪器的接收端,通过光电转换器,低噪声放大器,数字图象信号处理等过程,实现图表、曲线扫迹在屏幕上显现。目前OTDR型号种类繁多,本人在工作中先后使用过4种OTDR,操作方式虽各不相同,但其工作原理是一致的。铁通湖南分公司管内使用较多的型号有安捷伦Agilent HP8145A、HP8147,安捷伦Agilent E6000C,安科特纳Acterna MTS5100,在使用中只要其动态范围能达到要求,折射率、波长、脉宽、距离、均化时间等参数的设置符合要求,就可以得到满意的测试结果。 OTDR中测试仪表中的几个参数 测试距离、脉冲宽度、折射率、测试光波长、平均值、动态范围、死区、“鬼影” 下面简单介绍上面各个参数(术语)代表的意义 测试距离:由于光纤制造以后其折射率基本不变,这样光在光纤中的传播速度就不变,这样测试距离和时间就是一致的,实际上测试距离就是光在光纤中的传播速度乘上传

播时间,对测试距离的选取就是对测试采样起始和终止时间的选取。测量时选取适当的测试距离可以生成比较全面的轨迹图,对有效的分析光纤的特性有很好的帮助,通常根据经验,选取整条光路长度的1.5-2倍之间最为合适。

OTDR基本使用方法

OTDR基本使用方法 一、按设备顶部的红色按钮启动机器 二、进入系统后选择F3进入专家模式 三、在上面图的右面面板有三个按钮:“km”“Ω”“λ” 1. km键的作用是选择需要测试的距离,一般选择你实际距离的2倍,在设备屏幕右边出现16KM/8M的字样,这个表示距离16公里每8米采集一个数据。 2. Ω:选好距离和采样距离后选择,这个表示脉宽 脉宽越长,动态测量范围越大,测量距离更长,但在OTDR曲线波形中产生盲区更大;短脉冲注入光平低,但可减小盲区。一般50公里以下选择2500ns和5000ns,50公里以上选择10000ns和20000ns 3. λ:波长,这个切换两种波长1310和1550,一般50公里以下选择1310,50公里以上选择1550 四、选好以上后连接好光线,这里光纤选择对端收光的一端,否则数据会不正常, 五、按下设备右面面板上的红色按钮(TEST/STOP)开始测试,测试1到2分钟即可. 按(A/B SET)选定游标A,转动旋钮,将游标A移动到过渡光纤尾端接头 反射峰后的线性区起始点,然后按(A/B SET)选定游标B,转动旋钮,将 游标B移动到被测光纤的尾端反射峰前 波长1550nm 脉宽30ns 平均时间30s 光纤折射率1.4671

这是测试完成后出现的表,在这个表中我们A端在0起始线,B端是那条虚线.可以看到AB两点间相距53.4252KM。在虚线旁有个高峰后落下,这表示光纤已经到了设备或终端。在图中a点b点为熔接点, OTDR测试的光线曲线斜率基本一致,若某一段斜率较大,则表明此段衰减较大,b 点为正常情况,a点有上升的情况,是由于在熔接点之后的光纤比熔接点之前的光纤产生更多的后向散光而形成的. 如果出现П这个图标或一个高峰后线没有落到底处,这表示这是个跳接。在图中间上方20.147dB,这表示这条线路的衰减值。 2006-08-14 | OTDR使用方法 一/OTDR的使用 用OTDR进行光纤测量可分为三步:参数设置、数据获取和曲线分析。人工设置测量参数包括: (1)波长选择(λ): 因不同的波长对应不同的光线特性(包括衰减、微弯等),测试波长一般遵循与系统传输通信波长相对应的原则,即系统开放1550波长,则测试波长为1550nm。

OTDR使用经验大全

OTDR使用经验大全 1 OTDR的使用用OTDR进行光纤测量可分为三步:参数设置、数据获取和曲线分析。 人工设置测量参数包括:(1)波长选择(λ):因不同的波长对应不同的光线特性(包括衰减、微弯等),测试波长一般遵循与系统传输通信波长相对应的原则,即系统开放1550波长,则测试波长为1550nm。 (2)脉宽(Pulse Width): 脉宽越长,动态测量范围越大,测量距离更长,但在OTDR曲线波形中产生盲区更大;短脉冲注入光平低,但可减小盲区。脉宽周期通常以ns来表示。(3)测量范围(Range): OTDR测量范围是指OTDR获取数据取样的最大距离,此参数的选择决定了取样分辨率的大小。最佳测量范围为待测光纤长度1.5~2倍距离之间。 (4)平均时间:由于后向散射光信号极其微弱,一般采用统计平均的方法来提高信噪比,平均时间越长,信噪比越高。例如,3min的获得取将比1min的获得取提高0.8dB的动态。但超过10min的获得取时间对信噪比的改善并不大。一般平

均时间不超过3min。(5)光纤参数: 光纤参数的设置包括折射率n和后向散射系数n和后向散射系数η的设置。折射率参数与距离测量有关,后向散射系数则影响反射与回波损耗的测量结果。这两个参数通常由光纤生产厂家给出。 参数设置好后,OTDR即可发送光脉冲并接收由光纤链路散射和反射回来的光,对光电探测器的输出取样,得到OTDR曲线,对曲线进行分析即可了解光纤质量。2 经验与技巧 (1)光纤质量的简单判别: 正常情况下,OTDR测试的光线曲线主体(单盘或几盘光缆)斜率基本一致,若某一段斜率较大,则表明此段衰减较大;若曲线主体为不规则形状,斜率起伏较大,弯曲或呈弧状,则表明光纤质量严重劣化,不符合通信要求。 (2)波长的选择和单双向测试: 1550波长测试距离更远,1550nm比1310nm光纤对弯曲更敏感,1550nm比1310nm单位长度衰减更小、1310nm比1550nm测的熔接或连接器损耗更高。在实际的光缆维护工作中一般对两种波长都进行测试、比较。对于正增益现象和超过距离线路均须进行双向测试分析计算,才能获得良好的测试结论。 (3)接头清洁:

正确、熟练掌握仪表的使用方法 OTDR

随着光缆线路的大量敷设和使用,光纤通信系统的可靠性和安全性越来越受到人们的关注。由于我国幅员辽阔,地形地貌差异很大,对光缆线路可能造成的各种危险因素很多,这包括各种自然因素和人为破坏的光缆线路损毁等。从过往的光缆线路障碍分析中可以出由于光缆本身的质量问题和自然灾害引起的障碍占的比例较少,大部分障碍是属于人为性质的损坏。 一、光缆线路的故障定位 在光传输系统故障处理中故障定位的一般思路为:先外部、后传输,即在故障定位时,先排除外部的可能因素,如光纤断裂、电源中断等,然后再考虑传输设备故障。 首先分析光缆线路的常见障碍现象及原因 1.线路全部中断:光板出现R-LOS告警,可能原因有光缆受外力影响被挖断、炸断或拉断等 2.个别系统通信质量下降:(1)出现误码告警,可能的原因有光缆在敷设和接续过程中造成光纤的损伤使线路衰耗时小时大,活动连接器未到位或者出现轻微污染,或者其它原因造成适配时好时坏;(2)光纤性能下降,其色散和衰耗特性受环境因素影响产生波动;(3)光纤受侧应力作用,全程衰耗增大;(4)光缆接头盒进水;(5)光纤在某些特殊点受压(如收容盘内压纤)等 在确定线路障碍后,用OTDR对线路测试,以确定障碍的性质和部位,当遇到自然灾害或外界施工等外力影响造成光缆线路阻断时,查修人员根据测试人员提供的位置,一般比较容易找到。但有些时候不容易从路由上的异常现象找到障碍地点,这时,必须根据OTDR 测出障碍点到测试点的距离,与原始测试资料进行核对,查出障碍点处于个哪个区段,再通过必要的换算后,再精确丈量其间的地面距离,直至找到障碍点的具体位置。但往往障碍点与测量计算的位置相差很大,这样既浪费人力物力,更由于光缆线路障碍未能尽快修复造成很大影响或损失。 如何才能更精确的判断障碍点的准确位置呢? 二、首先要分析影响光缆线路障碍点准确定的主要因素 1.OTDR测试仪表存在的固有偏差 由OTDR的测试原理可知,它是按一定的周期向被测光纤发送光脉冲,再按一定的速率将来自光纤的背向散射信号抽样、量化、编码后,存储并显示出来。OTDR仪表本身由于抽样间隔而存在误差,这种固有偏差主要反映在距离分辩率上。OTDR的距离分辩率正比于抽样频率。 2.测试仪表操作不当产生的误差

OTDR测试时常遇到的问题

OTDR测试时常遇到的几个问题 一、我们在使用光时域反射仪(OTDR)时,常常由于测试链路较长不能看到所有的链路情况。那么在什么情况是动态范围不足的表现哪 1、轨迹被淹没在噪声中,有时候会测到的轨迹波动很大,但却保持着轨迹应有的发展趋势。 2、当分析轨迹时,出现《扫描结束》的标识。所谓扫描结束实际是说从该点以后的测试结果只作为参考。扫描结束的出现实际上是因为轨迹的清晰度变差,噪声水平较高,轨迹波动性较大。 3、已知测试链路的长度较长,应该考虑通过设置增大动态范围。 增大动态范围有两种最为常用的方法,一是增加激光注入能量,另一是提高信噪比(S/N)。两种方法均可以通过仪表设置达到。下面是对几种方法的简单概述。 1、选择更大的脉冲宽度。 实际上这种方法是最为常用的方法,它的本质是增加激光的注入能量。由于激光器的性能限制,不可能直接调整激光器以求更大的发射能量。我们知道,OTDR测量必须采用脉冲方式,加大脉冲宽度实际上是使激光器发射的持续时间增加,以达到增大注入能量的目的。因此,这种方法可以获得更大的动态范围。然而,更大的脉宽意味着会有更大的盲区,这种方法是有一定代价的。 2、选择《取平均时间》测量模式,并选择更长的取平均时间。 这种方法被我们实际测量中大量采用,实际上是增大信噪比的一种数字信号处理的算法。主要采用将多次测量的结果相加取平均值的方式提高信噪比。它利用了信号及噪声的不同特性达到提高信噪比的目的。信号是有规律性的,而噪声是随机的。在相加过程中,信号被一次次放大,而噪声相加总的趋势是趋近于“0”。取平均的过程,是将信号还原到原有的强度。整个处理过程实际上是降低噪声的

OTDR原理及使用详解

OTDR原理及使用详解 为什么要使用OTDROTDR工作原理 OTDR定义 定义OTDR的英文全称是Optical Time Domain Reflectometer,中文意思为光时域反射仪 工作原理OTDR在精准时钟电路的控制之下,按照设定的参数向光口发射光脉冲信号,之后OTDR不断的按照一定的时间间隔从光口接收从光纤中反射回的光信号,分别按照瑞利背向散射(测试光钎的损耗)和菲涅尔反射(测试光钎的反射)的原理对光纤进行相应的测试。 Rayleigh 背向散射(瑞利散射) 原因源于光纤内部微小粒子或不均匀结构反射和吸收,当光照射到杂质上时,一些颗粒将光重定向到不同的方向,同时产生了信号衰减和背向散射。 规律其损耗的大小与波长的4次方成反比,即随着波长的增加,损耗迅速下降。光纤中某一点的后向回波可以反映出光纤中光功率的分布情况,椐此可以测试出光纤的损耗。损耗:Rayleigh Backscatter(瑞利背向散 射)=5Log(P0×W×S)-10ax(loge) 式中:P0:发射的光功率(瓦)W:传输的脉冲宽度(秒)S:光纤的反射系数(瓦/焦耳)a:光纤的衰减系数(奈踣/米)

1奈踣=8.686dBx:光纤距离 Fresnel 反射(非涅尔反射) 原因当光到达折射率突变的位置(比如从玻璃到空气)时,很大一部分光被反射回去,产生Fresnel 反射,它可能比Rayleigh 背向散射强上千倍。Fresnel 反射可通过OTDR 轨迹的尖峰来识别。 产生位置这样的反射例子有连接器、机械接头、光纤、光纤断裂或打开的连接器。 用途可检测链路沿线的物理事件。OTDR 的结构OTDR测试过程 第一步:清理光纤接口端面(法兰口)第二步:用光功率计测试链路是否有光(有强光会损坏OTDR)第三步:了解待测链路的状态,设置OTDR相应的参数第四步:OTDR测试及结果分析,保存 距离测量原理如果折射率“n”设置不正确,所测出的距离也将是错误的!!损耗测量原理OTDR 产生返回光强度(背向散射加上反射)与光纤长度相关的光纤曲线熔接损耗是一种由于信号电平在接头点突然下降而造成的点损耗熔接时如 果接点含有空气隙,就会产生具有反射的点损耗。OTDR曲线分析 典型的后向散射信号曲线a、输入端的Fresnel反射区(即盲区)b、恒定斜率区c、局部缺陷、接续或耦合引起的不连

如何正确设定OTDR测试参数

如何正确设定OTDR测试参数 在使用OTDR时,要想准确地测试光纤长度和衰耗,在开始测试前必须要正确地设置相关参数。主要参数有:折射率、脉冲宽带和平均时间;同时,如何用光标准确取点也是至关重要的。一、折射率设置光纤群折射率的设置是否准确对纤长测试的影响较大。该折射率值由光纤生产厂家给出,另外不同厂家的OTDR其距离的算法也略有不同。一般来说,OTDR的纤长测试距离误差由以下的三个因素构成:0.000025%′测试距离±OTDR距离分辨率±光纤折射率引起的误差下面我们通过一个例子来说明 光纤群折射率对纤长测试的影响:假设被测光纤在距离测试点120km处断开,若用XX公司的YY型OTDR进行测试,在此距离范围内若采样点为32,000点,其距离分辨率为8m。我们将光纤群折射率的误差值取为0.001(因为操作者设置折射率时往往在1.467~1.468之间变动): D = 0.000025%′120,000m + 8m + 120,000m′0.001/1.467=100.8m 其中折射率所带来误差为81.8m,约占总误差的81.15%。通过上面的例子我们可以理解折射率设置对光纤纤长测试是多么重要!!!二、脉冲宽度和平均时间设置理论上讲,对于同一段光纤,脉冲宽度越大,距离测试误差就越大。但是若脉冲宽度很小,则不能精确识

别光纤末端与噪声电平的界线。操作人员应根据实际情况选择适当的脉冲宽度,原则是在保证能识别光纤末端的情况下,尽可能地小地设置脉冲宽度。如图一所示: 图一、在保证能识别光纤末端的情况下,尽可能小地设置脉冲宽度一般来说,很难机械地定义测试距离与所用脉冲宽度的关系,因为每根光纤的衰耗不同,很难用标准的尺度去衡量到底用多大的脉冲宽度去测试一定距离 的光纤。但是,有两个原则是必须把握的:1、用尽可能小的脉冲宽度去测试光纤,这样距离和衰耗的精度才能得到保证。只有脉冲宽度小到能够能够看到大致的曲线形状,就可以通过平均来测出曲线。2、当脉冲宽度确定以后,所选取的平均时间应该足够长,一般在15秒至60秒之间。被测光纤越长,平均时间约长(同时脉冲宽带也约大)。三、正确使用光标进行取点操作人员在使用OTDR时,因为取点所带来的误差也是不可避免的。对于发射事件,取点位置应在曲线陡升的起点;对于非反射事件,取点位置应在曲线陡降的起点。在测试时应将故障点处的曲线放大后再确定精确的故障点位置。如图二所示。 虽然OTDR的事件表里面有每个事件所对应的距离值,但是对承担抢修任务的技术人员而言,这个距离值不一定是十分可靠的。因为事件表里的距离值只有在正确设置了

OTDR的使用方法

OTDR使用方法 一、OTDR的使用 用OTDR进行光纤测量可分为三步:参数设置、数据获取和曲线分析。人工设置测量参数包括: (1)波长选择(λ): 因不同的波长对应不同的光线特性(包括衰减、微弯等),测试波长一般遵循与系统传输通信波长相对应的原则,即系统开放1550波长,则测试波长为1550nm。 (2)脉宽(Pulse Width): 脉宽越长,动态测量范围越大,测量距离更长,但在OTDR曲线波形中产生盲区更大;短脉冲注入光平低,但可减小盲区。脉宽周期通常以ns来表示。 (3)测量范围(Range): OTDR测量范围是指OTDR获取数据取样的最大距离,此参数的选择决定了取样分辨率的大小。最佳测量范围为待测光纤长度1.5~2倍距离之间。 (4)平均时间: 由于后向散射光信号极其微弱,一般采用统计平均的方法来提高信噪比,平均时间越长,信噪比越高。例如,3min的获得取将比1min 的获得取提高0.8dB的动态。但超过10min的获得取时间对信噪比的改善并不大。一般平均时间不超过3min。

(5)光纤参数: 光纤参数的设置包括折射率n和后向散射系数n和后向散射系数η的设置。折射率参数与距离测量有关,后向散射系数则影响反射与回波损耗的测量结果。这两个参数通常由光纤生产厂家给出。参数设置好后,OTDR即可发送光脉冲并接收由光纤链路散射和反射回来的光,对光电探测器的输出取样,得到OTDR曲线,对曲线进行分析即可了解光纤质量。 二、经验与技巧 1.光纤质量的简单判别: 正常情况下,OTDR测试的光线曲线主体(单盘或几盘光缆)斜率基本一致,若某一段斜率较大,则表明此段衰减较大;若曲线主体为不规则形状,斜率起伏较大,弯曲或呈弧状,则表明光纤质量严重劣化,不符合通信要求。 2.波长的选择和单双向测试: 1550波长测试距离更远,1550nm比1310nm光纤对弯曲更敏感,1550nm比1310nm单位长度衰减更小、1310nm比1550nm测的熔接或连接器损耗更高。在实际的光缆维护工作中一般对两种波长都进行测试、比较。对于正增益现象和超过距离线路均须进行双向测试分析计算,才能获得良好的测试结论。 3.接头清洁: 光纤活接头接入OTDR前,必须认真清洗,包括OTDR的输出接头和被测活接头,否则插入损耗太大、测量不可靠、曲线多噪音甚至使

OTDR的现场使用【深圳夏光2015.3.18】

OTDR的现场使用 摘要:OTDR(光时域反射仪)的现场使用一般分为以下几种:单盘测试、现场测试、怪峰的消除与避免、光纤中相邻故障点的测试与分析、对测试现象分析等。以下深圳市夏光通信测量技术有限公司(简称“夏光”)为您详细说明这几种OTDR现场使用情况。 单盘测试 光缆的单盘测试是用户检验出厂光缆是否合格和在运输途中十分遭受损坏最直接的办法。它除了外观检查以外,主要是性能的测试。衰减测试是现场测试的必要检验内容,长度检验测试的目的是检查长度是否符合合同规定,同时还可检验光缆在运输途中是否遭受破坏。检验时,应对每根光纤的测试长度和全部纤长进行比较,如有较大差别,应从另一端测试或者做通光检查,以便判断和发现有无断纤。平均损耗测试的目的是检查LSA衰减是否符合标准,一般平均损耗的指标在出厂说明上有写明。 现场的测试 根据OTDR光缆路由中的位置和测试方法不同,OTDR现场监测可分为机房OTDR双向监测、机房OTDR单向监测、接续点前端OTDR双向监测、接续点前端OTDR单向监测四种方式。 一般情况下,如果在同一种继段采用的光缆为同一厂家的产品,不同的单盘光缆中光纤的模场直径差别不大的情况下,通常采用单向监测的方式,以减少光纤端面的制作和接续点前端、机房的环回接续OTDR的双向测量、计算工作。尤其是在大芯数光缆接续工程中,如某芯或者几芯出现损耗值较大情况,在经过三次重复接续以后,数据如无大的变化,在排除熔接机以及其他原因后,一般认为是两条相接光纤的背向系数和摸厂直径出现较大偏差所致,可暂时判断其合格。但假如某一中继段所采用光缆为两家或者两家以上厂家所提供,且这一中继段距离较长,辐射地形复杂时,则最好采用接续点OTDR双向检测法,以避免或者减少返工现象的产生。 怪峰的消除与避免 在单盘以及终端测试时,终端增加匹配液可以减少或者消除怪峰。在光纤故障时,用变化OTDR量程的方法分清反射峰的真伪,如果变化OTDR量程后,反射峰的距离不变化,说明是真故障点,如果变量程后,反射峰距离变化了,说明是怪峰。另外,在反射峰处光纤有衰减说明反射峰是故障点,反射峰处没有光纤衰减,说明反射峰不是故障点是怪峰。 从减少或者消除故障点的观点出发,采用大量程,即显示距离>2倍设置距离时,可消除很多的怪峰干扰。这就是采用OTDR测试时,经常采用大量程的原因所在。当然测试重点不是故障点而是光纤衰减的分布状态,要采用尽可能高的分辨里的量程。 光纤中相邻故障点的测试与分析

OTDR使用说明书

AQ7260 OTDR 光时域反射仪 简易操作手册 第1版 2005年3月

前言 感谢您购买AQ7260。本操作手册循序渐进地介绍了实际测量工作流程,简单的仪表操作,使初学者容易上手。同 时我们还提供AQ7260用户手册(英文版),该手册介绍仪表的所有功能以及使用时的安全注意事项。使用前请阅 读两本手册。 目录 第一章 测量前的准备事项..............................................31-1 连接光模块和连接适配器.............................................3 1-2 打开电源..........................................................31-2-1 连接电源....................................................3 1-2-2 接通电源....................................................31-3 连接测量光纤......................................................3第二章 按键和显示画面说明...........................................42-1 按键..............................................................4 2-2 显示画面..........................................................4 2-3 画面显示设定......................................................5第三章 测量..........................................................63-1 使用单键进行自动测量...............................................63-1-1 开始测量....................................................6 3-1-2 停止测量....................................................6 3-1-3 确认和改变测量条件..........................................7 3-1-4 初始化测量条件..............................................83-2 手动测量..........................................................93-2-1 设置测量条件................................................9 3-2-2 实时测量...................................................10 3-2-3 平均化操作.................................................11 3-2-4 放大、缩小和移动波形........................................11 3-2-5 距离测量...................................................12 3-2-6 测量连接损耗...............................................14 3-2-7 测量回波损耗量.............................................153-3 自动搜索.........................................................16第四章 测量数据的记录...............................................174-1 保存.............................................................17 4-2 调用.............................................................19 4-3 删除.............................................................20 4-4 打印.............................................................214-4-1 打印显示画面...............................................21 4-4-2 打印文件数据...............................................214-5 复制.............................................................23 1

史上最强OTDR使用详解

什么是OTDR,用OTDR能做什么? OTDR:Optical Time Domain Reflectometer 主要用于光缆工程施工和光缆线路维护工 作。主要用途包括:
测量光纤长度 分析链路损耗 故障准确定位
1

交流提纲
一、OTDR原理 二、参数解析 三、曲线分析 四、应用实例分析
2

OTDR原理 目标
了解两个原理,区分瑞利散射和菲涅尔反射
光学原理
工作原理
3

OTDR原理.光学原理
1、光学原理:背向瑞利散射和菲涅尔反射
瑞利散射是光纤的一种固有损耗,是指光波在光纤传输 时,遇到一些比光波波长小的微粒而向四周散射,导致光功率 减小的现象。瑞利散射光有以下特征:波长与入射光波的波长 相同,它的光功率与此点的入射光功率成正比。
瑞利散射 瑞利散射
菲涅尔反射 菲涅尔反射
菲尼尔反射就是光在从一种介质(光纤)传到另一种介质 (空气)中时,被沿原介质(光纤)反射回来。
什么条件下产生瑞利散射和菲涅尔反射?
4

OTDR原理.光学原理
如同大气中的颗粒散射了光,使天空变成蓝色一样。瑞利散射的能 量大小与波长的四次方的倒数成正比,大约比入射光功率低60dB,即入 射光功率的0.0001%。所以波长越短散射越强,波长越长散射越弱。 还 需要注意的是能够产生背向瑞利散射的点遍布整段光纤,是连续的。 瑞利散射发生在每个方向上 沉积点 由前向不均匀点 导致的背向散射 ,能传回光源的 纤芯
瑞利散射 瑞利散射
1
2
光纤在加热制造过程中,使原子产生压缩性的不均匀,造成材料密 度不均匀,进一步造成折射率的不均匀,产生沉积点。
5

OTDR的使用(现场操作)

OTDR的使用 一、OTDR参数设置 1、用OTDR进行光纤测量可分为三步:参数设置、数据获取和曲线分析。人工设置测量参数包括: (1)波长选择(λ): 因不同的波长对应不同的光线特性(包括衰减、微弯等),测试波长一般遵循与系统传输通信波长相对应的原则,即系统开放1550波长,则测试波长为1550nm。 (2)脉宽(Pulse Width): 脉宽越长,动态测量范围越大,测量距离更长,但在OTDR 曲线波形中产生盲区更大;短脉冲注入光平低,但可减小盲区。脉宽周期通常以ns来表示。 (3)测量范围(Range): OTDR测量范围是指OTDR获取数据取样的最大距离,此参数的选择决定了取样分辨率的大小。最佳测量范围为待测光纤长度1.5~2倍距离之间。 (4)平均时间: 由于后向散射光信号极其微弱,一般采用统计平均的方法来提高信噪比,平均时间越长,信噪比越高。例如,3min的获得取将比1min的获得取提高0.8dB的动态。但超过10min的获得取时间对信噪比的改善并不大。一般平均时间不超过3min。 (5)光纤参数:

光纤参数的设置包括折射率n和后向散射系数n和后向散射系数η的设置。折射率参数与距离测量有关,后向散射系数则影响反射与回波损耗的测量结果。这两个参数通常由光纤生产厂家给出。 参数设置好后,OTDR即可发送光脉冲并接收由光纤链路散射和反射回来的光,对光电探测器的输出取样,得到OTDR曲线,对曲线进行分析即可了解光纤质量。 二、OTDR的现场使用 1、现场的测试 (1)根据OTDR光缆路由中的位置和测试方法不同OTDR现场监测可分为机房OTDR双向监测、机房OTDR 单向监测、接续点前端OTDR双向监测、接续点前端OTDR 单向监测四中方式。 一般情况下,如果在同一中继段采用的光缆为同一厂家的产品,不同的单盘光缆中光纤的模场直径差别不大的情况下,通常采用单向监测的方式,以减少光纤端面的制作和接续点前端、机房的环回接续OTDR的双向测量、计算工作。尤其是在大芯数光缆接续工程中,如某芯或者几芯出现损耗值较大情况,在经过三次重复接续以后,数据如无大的变化,在排除熔接机以及其他原因后,一般认为是两条相接光纤的背向系数和摸厂直径出现较大偏差所致,可暂时判断其合格。但假如某一中继段所采用光缆为两家或者两家以上厂家

相关主题
文本预览
相关文档 最新文档