当前位置:文档之家› 稀土硅铁合金及镁硅铁合金化学分析方法 氧化镁量的测定

稀土硅铁合金及镁硅铁合金化学分析方法 氧化镁量的测定

稀土硅铁合金及镁硅铁合金化学分析方法  氧化镁量的测定
稀土硅铁合金及镁硅铁合金化学分析方法  氧化镁量的测定

稀土硅铁合金及镁硅铁合金

化学分析方法

氧化镁量的测定

1 范围

本标准规定了稀土硅铁合金、稀土镁硅铁合金中氧化镁量的测定方法。

本标准适用于稀土硅铁合金、稀土镁硅铁合金中氧化镁量的测定。测定范围:0.50%~2.00%。

2 方法原理

试样用重铬酸钾溶液浸取分离,在稀盐酸介质中,采用等离子发射光谱仪,在波长280.270 nm 处,测定氧化镁的含量。

3 试剂

3.1 盐酸(1+1)。

3.2 重铬酸钾溶液(40g/L):称取40g重铬酸钾,置于250mL烧杯中,用水溶解后移入1000mL容量瓶中,用稀释至刻度,混匀。

3.3氧化镁标准溶液:称取0.2500g预先在850℃灼烧至恒重并在干燥器中冷却至室温的氧化镁(99.99%),置于150mL烧杯中,加10mL盐酸(3.1)加热溶解,冷却至室温,移入250mL容量瓶中,以水稀释至刻度,混匀。此溶液1mL含1mg氧化镁。使用时将此溶液稀释为1mL含50μg的氧化镁。

4仪器

4.1全谱直读等离子体发射光谱仪,分辨率<0.006nm(200nm处)。

光源:氩等离子体光源,使用功率不小于1.0kW。

4.2 振荡器

5 试样

称取0.2g试样,精确至0.0001g。

6 分析步骤

6.1 测定次数

称取二份试料进行平均测定,取其平均值。

6.2 空白试验

随同试料做空白试验。

6.3 测定

6.3.1将试料(5)置于150mL锥形瓶中,加入25mL重铬酸钾溶液(3.2),用胶皮塞塞紧瓶口,置于振荡器(4.2)上振荡35min,取下用中速滤纸过滤于250mL容量瓶中。用水冲洗锥形瓶3~4次,洗涤滤纸至无重铬酸钾溶液的黄色,弃去滤纸,以水稀释至刻度,混匀。按表1将试液移

入25mL容量瓶中,加入5mL盐酸(3.1),以水稀释至刻度,混匀。

6.3.2标准系列溶液的配制

移取0.50,1.00,2.00mL氧化镁溶液(3.3)于一系列50mL容量瓶中,加入5mL盐酸(3.1),以水

稀释至刻度,混匀,此标准系列溶液浓度为0.50μg/mL ,1.00μg/mL,2.00μg/mL 。 6.3.3将分析试液(6.3.1)与标准系列溶液(6.3.2)同时进行氩等离子体光谱测定. 7 分析结果的计算与表述:

按公式(1)计算氧化镁的质量分数:

10010

)()(1

62012??-=

-mV V V c c MgO w (1)

式中:c 1— 自工作曲线上查得空白溶液中氧化镁的浓度,单位为微克每毫升(μg/mL); c 2— 自工作曲线上查得试料溶液中氧化镁的浓度,单位为微克每毫升(μg/mL);

V 0— 试液总体积,单位为毫升(mL); V 1—试液分取体积,单位为毫升(mL); V 2—被测试液体积,单位为毫升(mL); m — 试料的质量,单位为克(g)。

8 精密度 8.1 重复性

在重复性条件下获得的两次独立测试结果的测定值,在以下给出的平均值的范围内,这两个测试结果的绝对差值不超过重复性限(r),超过重复性限(r)的情况不超过5%,重复性限(r)按表2数据采用线性内插法求得:

8.2 再现性

8.3允许差

实验室间分析结果的差值应不大于表4所列允许差。

9 质量保证和控制

每周用自制的控制标样(如有国家级或行业级标样时,应首先使用)校核一次本标准分析方法的有效性,当过程失控时,应找出原因,纠正错误,重新进行校核。

稀土镁合金的研究现状及应用

稀土镁合金的研究现状及应用 杨素媛,张丽娟,张堡垒 (北京理工大学材料科学与工程学院,北京 100081) 摘 要:镁合金具有质轻、高比强度、高比刚度等优异性能。但其强度不高,高温性能较差,为了改善其性能,在熔炼过程中加入稀土制成具有高强、耐热、耐蚀等性能的稀土镁合金,大大增加了材料的抗拉强度、延展性及抗蠕变性能,从而使镁合金在航空航天、汽车工业及电子通讯行业得到了广泛应用。总结了稀土对镁合金的净化和阻燃作用,分析了稀土元素对合金组织和性能的影响,综述了稀土耐热镁合金、稀土高强镁合金、稀土阻燃镁合金的研究现状,并简述了稀土镁合金的应用及发展前景。 关键词:稀土镁合金;组织;力学性能;应用 中图分类号:TG146 2 文献标识码:A 文章编号:1004 0277(2008)04 0081 06 镁及镁合金是目前最轻的结构金属材料,具有高的比强度和比刚度,很好的抗磁性,高的电负性和导热性,良好的消震性和切削加工性能。但是镁合金的强度不高,特别是高温性能较差,大大限制了其应用。所以提高镁合金的室温强度和高温强度是镁合金研究中要解决的首要问题[1,2]。 大部分稀土元素与镁的原子尺寸半径相差在 15%范围内,在镁中有较大固溶度,具有良好的固溶强化、沉淀强化作用;可以有效地改善合金组织和微观结构、提高合金室温及高温力学性能、增强合金耐蚀性和耐热性等;稀土元素原子扩散能力差,对提高镁合金再结晶温度和减缓再结晶过程有显著作用;稀土元素还有很好的时效强化作用,可以析出非常稳定的弥散相粒子,从而能大幅度提高镁合金的高温强度和蠕变抗力。因此在镁合金领域开发出一系列含稀土的镁合金,使它们具有高强、耐热、耐蚀等性能,将有效地拓展镁合金的应用领域。 1 稀土在镁合金中的作用 1 1 稀土对镁合金熔体的净化作用 稀土对镁合金熔体有很好的净化作用,具有除氢净化及除氧化夹杂物的作用。 在熔炼过程中,由于镁的化学性质非常活泼,易与水气发生反应使镁合金具有较强的析氢倾向。在镁合金液有较大的溶解度的氢,会导致铸件产生气孔、针孔及缩松等铸造缺陷。在镁合金熔炼过程中加入稀土,稀土元素与水气和镁液中的氢反应,生成高熔点的稀土氢化物和稀土氧化物,比重较轻的稀土氢化物和稀土氧化物上浮成固体渣,从而达到除氢的目的[3]。 镁与氧结合形成稳定的MgO,是镁合金中形成氧化夹杂物的主要原因。夹杂物使合金的力学性能和耐蚀性能降低,且易使合金产生疲劳裂纹等[4]。由于稀土元素与氧的亲和力更大,因此在镁溶液中加入稀土元素,稀土将优先与氧结合而生成稀土氧化物,从而达到去除氧化物夹杂的作用。 1 2 稀土的阻燃作用 由于镁与氧极易发生反应,因此镁合金在熔炼和浇注过程中易氧化燃烧。镁与氧反应生成的表面MgO膜,致密度系数 Mg<1,疏松多孔,不能有效阻止氧穿透该氧化膜;且MgO的导热系数小,不利于热量的扩散,会加剧镁的氧化和燃烧。稀土元素加入镁合金后,与氧发生反应或与MgO中氧发生置换反应生成稀土氧化物RE2O3,该稀土氧化物的致密度系数 >1,能够有效阻止氧穿透氧化膜与镁发生反应。 第29卷第4期2008年8月 稀 土 Chinese Rare Earths Vol 29,No 4 August2008 收稿日期:2008 02 22 作者简介:杨素媛(1966 ),女,内蒙古锡林浩特人,硕士,教授,研究方向:金属材料。

活性氧化镁测试方法

活性氧化镁测试方法 2010-08-31 点击:892 使用仪器: 烘箱、分析天平(精确度为万分之一)、玻璃瓶 活性MgO(WB/T 1019-2002) 分析方法:活性MgO含量用水合法分析。 分析步骤: 准确称量约2.0g(精确至0.0001g)轻烧氧化镁试样,置于φ24mm×40mm的玻璃称量瓶中,加入20mL 蒸馏水,盖上盖子并稍留一条小缝,在温度20±2℃,相对湿度(70±5)%的条件下静置水化24h,放入烘箱中于100~110℃水化、预干,然后升温至150℃,在此温度下烘干至恒重,然后取出在干燥器中冷却至室温,再称出试样水化后的质量。 结果表达:轻烧氧化镁的活性MgO含量按式(8)计算(精确至0.01%) W=〔(W 2-W 1 )/0.45W 1 〕× 100% W —轻烧镁粉中活性MgO的含量,% W 1 —试样质量,g W 2 —试样水化后的质量,g 由于条件限制,如没有分析天平,使用普通电子称,可以将氧化镁的量放大100倍,以减少实验误差。即: 使用仪器: 烘箱、电子称(精确度为万分之一)、烧杯 活性MgO 分析方法:活性MgO含量用水合法分析。 分析步骤: 准确称量约200g(精确至0.01g)轻烧氧化镁试样,置于400ml的烧杯中,加入清水到至杯沿下2cm 处,盖上玻璃板并稍留一条小缝,在温度20±2℃,相对湿度(70±5)%的条件下静置水化24h,放入烘箱中于100~110℃水化、预干,然后升温至150℃,在此温度下烘干至恒重,然后取出在干燥器中冷却至室温,再称出试样水化后的质量。 结果表达:轻烧氧化镁的活性MgO含量按式(8)计算(精确至0.01%) W=〔(W 2-W 1 )/0.45W 1 〕× 100% W —轻烧镁粉中活性MgO的含量,% W 1 —试样质量,g W 2 —试样水化后的质量,g 此方法仅为无完善实验条件生产厂家自测使用,误差在5%内,由于各地水质、电子称精确度和人员操作影响不同,误差也不尽相同。

稀土中间合金及其应用

稀土中间合金及其应用 稀土元素与一种或数种其他元素组成的具有金属特性的物质,又称母合金。一般包括混合稀土金属、硅基稀土复合铁合金和以稀土或钇为基的二元稀土中间合金。 稀土中间合金的基本用途是作稀土添加剂。它的生产方法视原料情况和使用要求而定,主要有熔合法、熔盐电解法、金属热还原法和粉末冶金法(见稀土合金制取)。 一、简史 1908年含铁30%的打火石问世,这是稀土合金的首次应用。1922年美国矿务局(U.S.BureauofMines)首先在钢中添加稀土。从50年代起,含铁5%的铈组混合稀土金属广泛用于钢铁冶金,生产球墨铸铁和汽车用高强度低合金钢。60年代美国钒公司(VanadiumCorp.)和钼公司(MolycorpInc.)研制成功被欧美等一些国家称作稀土硅化物的稀土硅铁合金。1968~1974年期间,由于稀土硅化物的价格按稀土金属含量计比电解法生产的混合稀土金属低58%,致使混合稀土金属在钢铁冶金中的应用地位逐渐被稀土硅化物所取代。1972年稀土硅化物在美国冶金领域中的用量占稀土在该领域中用量的90%。1974年稀土硅化物的消费量相当于6000t的混合稀土金属。从70年代中期起,受世界钢市场和炼钢新技术的影响以及稀土硅化物在炼钢中的熔合能力欠佳,特别是合金生产费用增加而导致价格上涨等因素,致使稀土硅化物在钢中的消费量在80年代初下降到15%。到80年代末,用于高强度低合金钢的稀土中,稀土硅化物的占有率不到10%。 1948年英国研究人员首先用火石合金与硅铁一起处理生铁得到了球墨铸铁。1952年美国联合碳化物公司(UnionCarbideCorp.)在镁硅铁球化剂中配入铈处理铁水取得成功,从而导致了稀土镁硅铁合金的诞生。 前苏联在钢铁冶金中最先应用混合稀土金属和铈铁,70年代开始广泛试制稀土硅铁合金和含镁、钙、锶、钡及稀土的复合铁合金。 1956年中国科学院上海陶瓷冶金研究所研制成功用电硅热法从含RE2O34%~6%的包头钢铁公司的炼铁高炉渣中冶炼稀土硅铁合金的方法,这是世界上首次在电弧炉内用硅铁还原稀土氧化物生产稀土硅铁合金,并于1958年在内蒙古的包头市开始了工业化生产。70年代又先后开发了用碳热法生产稀土硅铁合金和抗球化衰退能力强的钇组稀土硅铁合金的方法。经历20多年的提高与发展,在80年代初稀土硅铁合金及稀土镁硅铁合金产量成为当时中国稀土工业产品中产量最大的稀土产品,大大促进了中国球铁工业的发展。1988年上述两种产品的产量按稀土氧化物计达到4500t。80年代中期,作为球化剂、蠕化剂及孕育剂的稀土复合铁合金产品开始进入系列化、标准化和商品化。80年代后期,中国又开发用熔盐电解法和金属热还原法生产RE-Al、RE-Mg、Nd-Fe、Y-Fe、Y-Mg及Y-Al 等二元合金,用于稀土功能性材料的研究开发。 二、混合稀土金属 由几种或十几种稀土金属自然组成具有金属特性的物质。常用的有铈组混合稀土金属、富铈混合稀土金属和富镧混合稀土金属。 铈组混合稀土金属 按外来译音又称米什金属,是人们最早应用而又常用的稀土金属合金。基本的稀土成分是镧、铈、镨和钕,根据不同的矿物原料制得的铈组混合稀土金属,其稀土元素配分范围为Ce45%~48%、La17%~30%、Pr4%~8%、Nd10%~18%,其他稀土元素1%~6%。工业产品纯度一般含RE96%~99.5%和Fe0.5%~5%,其他杂质元素为硅、钙、镁和铝。铈组混合稀土金属的密度、熔点与沸点分别为6300~6600kg/m3、1089~1163K和3673~3973K。铈组混合稀土金属主要用于生产打火石、钢及有色金属合金的变性处理和微合金化,80年代的新用途是制造廉价的稀土永磁体和生产金属钐的还原剂。铈组混合稀土金属一般用熔盐电解法生产。 富铈混合稀土金属 含铈高的稀土混合金属,一般铈占稀土总量的50%~60%,含La18%~28%、Pr4%~6%和Nd12%~20%,稀土品位为97%~99.7%。一些特殊富铈混合稀土金属的含铈量占稀土总量的90%,

镁合金表面化学镀镍

镁合金表面化学镀镍处理 摘要:本实验研究以硫酸镍为主盐的AZ91镁合金化学镀镍。选择适合的工艺流程、对实验材料进行化学镀镍处理、对化学镀镍层进行宏观或微观形貌观察、测量镀镍层的硬度、检验化学镀镍层的耐蚀性。实验表明,用该工艺能够在AZ91合金表面上生成化学镀镍层,镀层表面为胞状结构而且胞表面的晶界和缺陷较多,化学镀镍层较好地提高了镁合金的耐腐蚀性能,硬度有所提高。 关键词:AZ91D镁合金化学镀镍腐蚀性硬度 The chemical nickel plated of the surface of Magnesium alloy Abstract: The experimental study the nickel plating of Magnesium alloys of AZ91 that the sulfuric acid salt of nickel is the mainly electroless. Select the appropriate process, chemical nickel plating for experimental material, macro-or micro-morphology of electroless nickel deposits, measuring the hardness of nickel-plated, testing chemical corrosion resistance of nickel plating. Experiments show, we can generated plating layer on the surface of the AZ91 alloy with this technology, and the surface of the plating is the cell structure and there are more grain boundaries and defects on the cell surface ,the sulfuric processed chemical nickel plating layer is good to improve the magnesium alloy corrosion resistance, and the hardness is improved. Keywords: AZ91D magnesium alloy electroless nickel plating corrosive hardness t

稀土镁合金的研究现状

稀土镁合金的研究现状 摘要:镁合金是目前最轻的结构金属材料,稀土的加入对改善其组织和提高耐腐蚀性,特别是高温性能具有重要作用。本文介绍了稀土镁合金的研究现状以及压铸和快速成型稀土镁合金。 关键词:稀土镁合金;压铸;快速成型 Abstract :Magnesium alloys are the most light structure metal materials ,the rare earth to improve their organization and improve corrosion resistance, especially high temperature performance has an important role,Study situation of Rare-earth Magnesium Alloys were introduced in the paper and pressure casting and rapid prototyping the rare earth magnesium alloys were introduced. Key words: Rare-earth Magnesium Alloys; Pressure Casting; Rapid Prototyping 镁合金是最轻的工程结构材料,具有密度小、比强度和比刚度高、导热导电性好、

阻尼减震性能高、电磁屏蔽性好、良好的铸造性能、易于加工成型、废料容易回收等一系列优点,因此,目前被广泛应用于汽车、电子、航空航天等诸多领域,具有极为广阔的应用前景。稀土元素由于具有独特的核外电子排布,表现出独特的性质,对0、S和其他非金属元素有较强的亲和力,在冶金过程中可以净化合金熔体、改善合金组织、提高合金室温力学性能、增强合金耐腐蚀性能等。近年来,根据对材料的性能要求而研制开发了一系列含稀土的高强、耐热、抗蠕变、阻燃等镁合金,稀土作为主要的合金元素或微合金化元素在镁合金研究领域发挥愈来愈重要的作用[1]。 1稀土在镁中的性质 1.1 稀土镁合金与氢和氧的相互作用 由于镁与氧极易发生反应,因此镁合金在熔炼和浇注过程中易氧化燃烧。镁与氧反应生成的表面MgO膜,致密度系数αMg<1,疏松多孔,不能有效阻止氧穿透该氧化膜;且MgO的导热系数小,不利于热量的扩散,会加剧镁的氧化和燃烧。稀土元素加入镁合金后,与氧发生反应或与MgO中氧发生置换反应生成稀土氧化物RE203,该稀土氧化物的致密度系数a>1,能够有效阻止氧穿透氧化膜与镁发生反应。 在镁合金中,已知Mg-Be,Mg-Ca,Mg-Ce-La合金系的氧化速度都比纯镁小,稀土对改善镁合金熔体的氧化性质有益。 氢在镁中有较大的溶解度,比其在铝中高1~2个数量级,在液态镁中,随温度升高,压力增大,氢的溶解度也增大。氢的主要来源是潮湿的气氛,在熔炼过程中与空气中的水反应: Mg(l)+H2O(g) →MgO(s)+2[H] 氢和镁不形成化合物,在镁中呈间隙式固溶体存在,含氢量过高会使镁合金出现显微气孔。稀土对除去镁合金中的氢有明显作用。在加入稀土后,稀土与氢反应生成REH2相; [RE]+2[H] →REH2 同时,稀土与MgO发生反应: 2 [RE]+3MgO →RE2O3+ 3Mg 此反应有较强的驱动力,因此可生成稀土氢化物和氧化物而达到合金溶液除氢的效果。特别对于含锆的镁合金,由于[H]与Zr生成稳定的化合物ZrH2,使锆在镁合金中溶

球墨铸铁生产中的稀土球化剂的选择

中频炉球墨铸铁生产中的稀土球化剂的选择 2012-05-08 13:47 1。球化剂及球化元素在球墨铸铁生产中的作用 内容导读:尽管国内外球化剂的种类很多,但在我们国内目前应用最多的还是稀土镁类合金,现主要论述该类合金及其球化元素的作用。球化元素及反球化元素 1球化元素的作用 所谓球化元素是指那些能够促进石墨球状化、使石墨球生成或增加的元素。球化元素一般有以下共同性质:(1)元素最外电子层上有一个或两个价电子,次内层有8个电子。这种电子结构使元素与硫、氧和碳有较强的亲和力,反映产物稳定,能显著减少贴水中的硫和氧。(2)元素在铁水中溶解度低,凝固过程中有显著偏析倾向。(3)虽然和碳有一定亲和力,但在石墨晶格内溶解度低。根据以上特点,Mg,Ce,Y,Ca属于有效球化元素。 一是在铁水中蒸气压力高,使铁水佛腾。镁的原子量和密度比铁水小,熔点650度,沸点1108度,在铁水的处理温度下,镁产生的蒸气压力很高(超过1Mpa).镁的熔解热为21J/g,蒸发潜热为406J/g。因此,镁加入铁水时,要产生汽化,使铁水翻腾。二是与硫、氧有很强的亲和力。所生成的MgO和MgS熔点高,密度也远小于铁,容易与铁水分离,因此镁处理后的铁水,硫和羊的含量都很低;三是在铁水凝固过程中有偏析于石墨的倾向,当其在铁水中的残留量超过0.035%时,使末就可以球化,但当镁残留量超过0.07%时,一部分镁偏析于晶界,并于晶界中的碳、磷等发生放热反应,生成MgC2、Mg2C3、Mg3P2等。残留镁量更多时,晶间碳化物增多。 稀土族元素对石墨球化有显著作用的是轻稀土元素中的铈和重稀土中的钇。一是稀土元素的沸点均比镁高,加入铁水中时,不会引起铁水的翻腾和喷溅;二是铈和钇基稀土元素有比镁更强的脱硫脱氧能力,生成的硫化稀土、氧化稀土等化合物熔点高、稳定性好;三是,稀土元素与铁水中的球化干扰元素也能形成稳定的化合物,因此含稀土的球化剂比镁球化剂的抗干扰能力强。 稀土元素残留量对石墨球化有明显的影响。轻稀土处理过共晶铁水,当残留铈含量0.04%时,石墨就可以球化,而且很稳定;处理亚共晶铁水时,轻稀土加入量要增加。轻稀土处理得球铁,石墨圆整度比镁处理得球铁要差,并出现碎块状石墨;另外轻稀土处理得球铁白口倾向大,因此需要控制其加入量。重稀土钇本身熔点高,其脱氧除硫产生的氧化物、硫化物在高温下比较稳定,因此其抗球化衰退能力很强。1400度的铁水保温1小时,球化率降低不超过10%,含硫0.06%的铁水,用钇基重稀土合金处理后,能得到完整的球状石墨。铁水中残留钇0.10—0.15%,石墨球化良好;低于此限度,随钇量减少一次出现不规则石墨和蠕虫状石墨;残留钇超过0.15而低于0.30%时,白口倾向逐渐增大,石墨圆整度变差,并在更高残留量时出现YTe4。 Ca:钙在铁水中的溶解度很低,它对金相组织的影响是通过与氧和硫的结合而间接实现的。与镁相比,钙与硫、氧的亲和力更强,能够有效的脱硫除氧。钙残留量很低时,石墨分枝倾向增加,残留量较多时,可是使石墨尺寸减小,分枝倾向降低。钙残留量达到0.2%时,白口倾向明显加大。 1、1、2反球化元素(球化干扰元素)的作用 该类元素主要是指破坏和阻碍使石墨球化的元素,按其作用机理大概可以分三类: 一是消耗型反球化元素,如硫、氧、硒、碲等,它们与镁、稀土元素生成化合物,通过消耗球化元素来阻止球状石墨的形成。 二是境界偏析的球化干扰元素,包括锡、锑、砷、铜、硼、钛、铝等,这些元素富集到晶界,促使碳在共晶后期结晶时,形成畸形的枝晶状石墨,如果这些元素含量较高,也可在

高性能稀土镁合金及其研究进展

高性能稀土镁合金及其研究进展 镁合金作为一种轻质的绿色工程材料具有很大的应用前景,被称为21世纪的“绿色工程材料”。然而,大部分镁合金的力学性能(尤其高温力学性能)较差,使其应用受到限制。因此,如何改善其力学性能成为亟待解决的问题。添加合金化元素是常用来改善镁合金力学性能的手段之一,尤其是添加稀土元素。稀土元素对镁合金具有“净化”“细化”“强化”“合金化”的四重作用。Mg-RE系合金因其优异的高温拉伸性能、抗蠕变性能及良好的塑性成形能力而备受青睐,被认为是最具有应用前景的高温高强合金体系。因此,本文主要综述近年来国内外在高性能稀土镁合金方面的研究进展,重点介绍制备高性能镁合金的制备方法、加工技术、热处理工艺、强韧化机制及目前研究中存在的问题与不足。 1.Mg-RE系合金 Mg-RE系合金是目前镁合金中最重要的高强耐热镁合金体系,尤其是含有重稀土元素(Gd、Y、Dy、Ho、Er等)的镁合金。Mg-RE系二元合金的时效硬化特性、强度与稀土添加量成正比关系,如在 Mg-Gd二元合金体系中Gd的质量百分含量若低于10%则合金的时效析出偏低或者无析出,直接导致合金的强度及耐热性能降低。为了降低稀土的添加量且不影响时效硬化特性效果,在Mg-RE二元合金的基础上添加其它合金化元素开发出了三元、四元等稀土镁合金。目前,稀土镁合金主要包括在Mg-Gd体系上形成的Mg-Gd-Y、Mg-Gd-Er、Mg-Gd-Ho、Mg-Gd-Dy等系列合金,在Mg-Y体系上形成的Mg-Y-Gd、Mg-Y-Nd、Mg-Y-Sc-Mn 等系列合金,为了细化晶粒稀土镁合金中常常加入Zr元素。 除了早期的WE54、WE43合金,Mordike等通过添加Sc及Mn等元素,开发了抗蠕变性能优于WE43合金的Mg-4Y-1Sc-1Mn(wt.%)合金;He等用普通铸造+挤压+峰值时效的方法制备了高强耐热Mg-10Gd-2Y-0.5Zr(wt.%)合金,其室温下的屈服强度、抗拉强度、延伸率分别可高达331 MPa、397 MPa、1%。最近,Li等通过轧制+时效的方法制备了Mg-14Gd-0.5Zr 合金,其屈服强度、延伸率分别可高达445 MPa、2%。Mg-RE系合金是目前最适合、最有前途的可应用在航空航天或汽车上的镁合金材料,多数单位都将此系列合金的目标性能提高到550Mpa-600Mpa,稳定使用温度在200 o C。晶粒细化、形变强化、沉淀强化是目前稀土镁合金采用的强化手段。目前的研究主要集中在沉淀强化方面。Mg-RE系合金主要的时效析出强 化相为β′′ (DO 19)、β′(cbco),其中,β′′相的化学成分为Mg 3 RE, β′相的化学成分为Mg15RE3。 β′相与基体具有半共格关系,匹配较好,大量、致密、规则析出的β′相,可有效阻止位错运动,被认为是合金强度提高的主要原因之一。 目前的研究仍有不足,主要表现在以下几个方面:(1)合金中含有大量的稀土,导致合金成本偏高;(2)合金的塑性加工性能偏差,有必要寻找改善合金塑性的新方法、新理论;(3)合金的塑性变形机制研究较少,需大研究稀土溶质原子、晶粒尺寸、晶界类型、织构等对滑移系机制的影响规律。 2.Mg-RE-Zn系合金 Mg-RE-Zn合金是现在研究的一个热点,一方面因为Kawamura于2001年用快速凝固粉/

石灰氧化镁测定方法

石灰氧化镁测定方法 1适用范围 本方法适用于测定各种石灰的总氧化镁含量。 2 仪器设备 (1)方孔筛:0.15mm,1个。(2)烘箱:50~250℃,1台。(3 )干燥器:φ25cm,1个。(4)称量瓶:φ30mm×50mm,10个。(5)瓷研钵:φ12~13cm,1个。(6)分析天平:量程不小于50g,感量0.0001g,1台。(7)天子天平:量程不小于500g,感量0.01g,1台。(8)电炉:1500W,1个。(9)石棉网:20cm ×20cm,1块。(10)玻璃珠:φ3mm,1袋(0.25kg)。(11 )具塞三角瓶:250mL,20个。(12)漏斗:短颈,3个。(13)塑料洗瓶:1个。(14)塑料桶:20L,1个。(15)下口蒸馏水瓶:5000mL,1个。(16)三角瓶:300mL,10个。(17)容量瓶:250mL、1000mL,各1个。(18)量筒:200mL、100mL、50mL、5mL,各1个。(19)试剂瓶:250mL、1000mL,各5个。(20)塑料试剂瓶:1L,1个。(21)烧杯:50mL,5个;250mL(或300mL),10个。(22)棕色广口瓶:60mL,4个;250mL,5个。(23)滴瓶:60mL,3个。(24)酸滴定管:50mL,2支。(25)滴定台及滴定管夹:各1

套。(26) 大肚移液管:25mL 、50mL ,各1支。(27) 表面皿:7cm ,10块。(28) 玻璃棒:8mm ×250mm 及4mm ×180mm ,各10支。(29) 试剂勺:5个。 (30) 吸水管:8mm ×150mm ,5支。(31) 洗耳球:大、小各1个。 3 试剂 (1)1﹕10盐酸:将1体积盐酸(相对密度1.19)以10体积蒸馏水稀释。(2)氢氧化铵—氯化铵缓冲溶液:将67.5g 氯化铵溶于300mL 无二氧 化碳蒸馏水中,加浓氢氧化铵(氨水)(相对密度为0.90)570mL ,然后用水稀释至1000mL 。(3)酸性铬兰K —萘酚绿B (1﹕2.5)混合指示剂:称取0.3g 酸性铬兰K 和0.75g 萘酚绿B 与50g 已在105℃烘干的硝酸钾混合研细,保存于棕色广口瓶中。(4)EDTA 二钠标准溶液:将10gEDTA 二钠溶于40~50℃蒸馏水中,待全部溶解并冷却XXXX 作业指导书 文件编号: XXXX-03-3.23 第2页 共 4 页 主题:石灰氧化镁测定方法 第B 版 第0次修订 颁布日期:2017年8月 15日

稀土元素在球墨铸铁中作用

友达商贸有限公司专业从事球墨铸铁批发的公司,针对稀土元素在球墨铸铁中所产生的作用 有如下介绍: 净化作用 稀土元素可与氧,硫,氮,氢等形成化合物,但是在铁水中稀土元素与这些元素的反应则受到很多因素的影响而呈现复杂的规律,但是一般来说,稀土元素加入铁水中可脱硫去气,尤 其在用稀土元素镁合金处理时,效果较好。 稀土元素和氧气的亲和力极强,加入铁水中应有强烈的脱氧作用,但是稀土元素氧化物熔点远高于铁水温度,密度接近或超过铁水密度,不易从铁水中逸出,因此稀土元素在铁水中可与夺走氧形成稀土氧化物,从而促进球化但是不一定降低铸铁中总含量,稀土氧化物与二氧化硅可与组成熔点及密度较低的盐而逸出铁水,所以加入稀土硅钙合金会有较好的脱氧效果,把稀土镁硅铁合金加入铁水,由于镁起到沸腾搅拌作用,也促进脱氧。 稀土元素虽然与氮有一定的亲和力,但是铁水中含有錋等元素,氮的溶解度会增加到超过正常铁水的含氮量,这是由于稀土元素可吸收氮气,因此有些实验表明,稀土元素在铁水中脱氮未见成效,甚至还有增氮可能被稀土元素化合或吸收。 稀土元素可以大量吸收氢气,氢在稀土元素中溶解度比在铁中的溶解度高几百倍至几千倍。稀土元素也可以和氢形成不稳定化合物,在高温下分解放出氢气,铁水中加入稀土后,总的含氢量并不减少,但在冷却过程中基体或石墨中的氢大部分被稀土所吸收溶解。 (责任编辑:admin)

发布时间:12-05-04 来源:南京固琦分析仪器制造有限公司点击量:1392 字段选择:大中小 稀土在球墨铸铁中的作用 南京固琦分析仪器制造有限公司专业生产石墨球化率分析仪,石墨球化率化验仪,石墨球化率检测仪,石墨大小分析仪,石墨金相分析仪等精密仪器,稀土能使石墨球化。自从H. Morrogh最先使用铈得到球墨铸铁以来,先后许多人研究了各种稀土元素的球化行为,发现铈是最有效的球化元素,其他元素也均具有程度不等的球化能力。结合国情,我国对稀土的球化作用进行了大量研制工作,发现稀土元素对常用的球墨铸铁成分(C3.6~3.8wt%,Si2.0~2.5wt%)来说,很难获得同镁球墨铸铁那样完整均匀的球状石墨;而且,当稀土量过高时,还会出现各种变态形的石墨,白口倾向也增大,但是,如果是高碳过共晶成分(C>4.0wt%),稀土残留量为0.12~0.15wt%时,可获得良好的球状石墨。根据我国铁质差、含硫量高(冲天炉熔炼)和出铁温度低的情况,加入稀土是必要的。球化剂中镁是主导元素,稀土一方面可促进石墨球化;另一方面克服硫以及杂质元素的影响以保证球化也是必须的。稀土防止干扰元素破坏球化。研究表明,当干扰元素Pb、Bi、Sb、Te、Ti等总量为0.05wt%时,加入0.01wt%(残余量)的稀土,可以完全中和干扰,并可抑制变态石墨的产生。我国绝大部分的生铁中含有钛,有的生铁中含钛高达0.2~0.3wt%,但稀土镁球化剂由于能使铁中的稀土残留量达0.02~0.03wt%,故仍可保证石墨球化良好。如果在球墨铸铁中加入0.02~0.03wt%Bi,则几乎把球状石墨完全破坏;若随后加入0.01~0.05wt%Ce,则又恢复原来的球化状态,这是由于Bi和Ce形成了稳定的化合物。稀土的形核作用。20世纪60年代以后的研究表明,含铈的孕育剂可使铁液在整个保持期中增加球数,使最终的组织中含有更多的石墨球和更小的白口倾向。经研究还表明,含稀土的孕育剂可改善球墨铸铁的孕育效果并显著提高抗衰退的能力。加入稀土可使石墨球数增多的原因可归结为:稀土可提供更多的晶核,但它与FeSi孕育相比所提供的晶核成分有所不同;稀土可使原来(存在于铁液中的)不活化的晶核得以长大,结果使铁液中总的晶核数量增多。

钆镁合金化学分析方法

镧镁合金化学分析方法 ——编制说明 一、任务来源 根据全国稀土标准化技术委员会稀土标委[2010]32号文件的要求,包头稀土研究院承担了《镧镁合金化学分析方法》国家标准的起草任务,《镧镁合金化学分析方法》共包括5个方法:《镧镁合金化学分析方法稀土总量的测定》、《镧镁合金化学分析方法镁量的测定》、《镧镁合金化学分析方法碳量的测定》、《镧镁合金化学分析方法稀土杂质量的测定》、镧镁合金化学分析方法非稀土杂质量的测定》,按照时间要求,完成了相应方法的研究报告、一验报告、编制说明以及意见征求稿。行业标准计划编号、起草单位、验证单位见表1。 表1 二、编制原则与依据 2.1根据目前镧镁合金的生产、应用和贸易要求确定分析方法及测定范围。 2.2根据任务落实会议纪要,确定每一方法检测的各要素。 2.3根据不同方法以及测定元素的不同,最终确定每一方法的允许差。 三、编制过程 《镧镁合金化学分析方法》的制定是随着《镧镁合金》国家标准的制定而制定的。在任务落实会上,广泛地征求了与会专家和代表的意见,在会议结束后包头稀土研究院又组织了有关专家,对方法起草过程中可能遇到的问题以及对任务落实会议上,征求的与会专家和代表的意见进行了讨论,确定了试验方案。 3.1国内外标准的收集 目前尚未发现国内外与本标准一致的检测标准,包头稀土研究院在编制过程中收集了大量相关资料与

标准,主要参考了《稀土金属及其氧化物化学分析方法——稀土杂质的测定》、《稀土金属及其氧化物化学分析方法——非稀土杂质的测定》、《稀土金属及其氧化物化学分析方法——稀土总量的测定》等,为该系列标准的编制做了必要的准备工作。 3.2标准制订过程 3.2.1 2011年2月,填写标准草案; 3.2.2 2011年11月,召开任务落实会。 3.2.3 2011年1月至3月,收集国内外相关标准及技术资料,准备样品,进行探索性试验。 3.2.4 2011年4月15日之前,完成方法试验报告和第一次草案稿的编写工作。 3.2.5 2011年6月15日之前,进行方法的验证试验和草案稿征求意见工作。 3.2.6 2011年8月15日之前,将初审稿、研究报告、验证报告及意见汇总稿上交稀标委同时再次发送到各参加单位。 3.2.7 2011年10月15日之前,起草单位将形成的意见汇总完成补充验证报告,将初审稿、研究报告、验证报告上交稀标委,准备召开预审会。 3.2.8 2011年11月~2012年5底前,在试验报告及验证报告的基础上,提出标准预审稿、标准编制说明等,并将试验报告、验证报告、标准预审稿、标准编制说明等(电子版)发送至稀土标委会秘书处。 3.2.9 2010年6中下旬,参加全国稀土标准化技术委员会有关《镧镁合金化学分析方法》的初审会 3.3方法的条件实验与标准编制 按照测定元素的不同,采用不同的溶样方法,考察共存元素之间的相互干扰情况以及镧、镁比例发生变化时方法的适用性,通过不同方法的比对实验,完成精密度与准确度数据统计,最终确定测定方法,3.4验证实验与数据分析 按照镧镁合金各元素测定方法的不同,分析每一方法第一验证单位及第二验证单位与起草单位的数据,将数据汇总到数据汇总表中(具体数据见数据汇总表)。通过数据分析,表明每一方法都是准确可靠的 3.5反馈意见分析 在本标准起草和编制过程中,起草单位同国内多家稀土生产、应用企业进行了紧密的合作,在验证单位的大力配合下对方法进行了验证,将存在问题及时沟通并改进,顺利完成了方法的试验报告,形成了预审稿。 四、标准的主要技术内容说明 4.1《镧镁合金化学分析方法稀土总量的测定》 4.1.1测定范围 采用重量法测定,本标准适用于质量分数为:15.00%~30.00%的镧镁合金中稀土总量的测定。 4.1.2测定原理 试样经盐酸分解,在氯化铵存在下,氨水沉淀稀土,分离钙、镁等。以盐酸溶解稀土,在pH1.5~2.0的条件下用草酸沉淀稀土,以分离铁、铝、镍等。于950℃灼烧,称其质量,计算稀土总量。

稀土生产中的放射性分布

立志当早,存高远 稀土生产中的放射性分布 有两个方面,一方面是稀土元素本身有少数几个在自然界丰度较小的放射 性同位素。另一方面是稀土矿物中伴生的铀、钍和镭等天然放射性核素。稀土 元素的天然放射性同位素的比放射性强度都很低,故稀土元素本身不作为放射 性元素处理。稀土矿物中伴生的铀、钍和镭等天然放射性核素是稀土生产中放 射性的主要来源,并在稀土中间产品和稀土合金产品中有所分布。表1、表 2、表3 中分别列出了部分稀土矿物、中间产品和稀土合金产品中天然铀、钍 含量及比放射性强度。由表可见,包头混合型稀土矿精矿的α比放射性强度, 在国家控制的7.4×104Bq/kg 的控制线上,生产能力大时,日操作量就有可能超 过国家控制标准。氟碳铈矿、独居石矿和褐钇铌矿精矿的比放射性强度均高于 国家标准控制最低值。稀土中间合金产品中比放射性强度较高,对于贮存、运 输来说,需加强防护。其他多数产品的放射性比强度都低于国家卫生标准限 值。表1 我国几种稀土精矿中铀、钍含量及其比放射性稀土精矿矿种类REO/%ThO2/%U3O8/%总比放射性强度/(Bq/kg)混合矿氟碳铈矿独居石矿褐 钇铌矿24.43~40.265042.7~60.322.02~30.660.111~0.2460.364.3~7.181.48~4.38-0.00510.22~0.882.12~2.145.37×104~7.77×1041.2×1050.37~ 3.7×1060.37~3.7×106 表2 稀土混合矿生产的部分中间产品中天然钍含量及比放射性中间产品名称REO/%ThO2/%总比放射性强度/(Bq/kg)复盐混合稀土 氧化物氧化铈42~4545~480.056~0.22≤0.03≤0.033.26×104~ 7.8×1040.41×104~1.11×1040.44×103 表3 稀土中间合金冶炼原料、产品中天然钍含量及其比放射性原料、产品名称稀土富渣稀土硅铁合金稀土镁合金钙稀土 合金稀土含量(REO)/%天然钍含量/%总比放射性强度/(×104Bq/kg) ≥80.056~0.0592.22~3.4823~340.10~0.203.92~7.776~200.05~0.122.22~

稀土镁合金的研究进展及应用

稀土镁合金的研究现状及应用 张晓 (中北大学材料科学与工程学院,山西太原030051) 摘要:镁合金具有许多优异的性能,如高比强度、高比刚度等。但它强度不高,高温抗蠕变性能差。稀土的加入对改善其组织和提高耐腐蚀性,特别是高温性能具有重要作用。本文介绍了国内外稀土镁合金的研究现状,并展望了稀土镁合金的应用前景。 关键词:镁合金;稀土;现状 Study Situation And Application Of Rare-earth Magnesium Alloys Zhang Xiao (North University Of China School Of Material Science And Engineering, Taiyuan Shanxi 030051) Abstract: Magnesium Alloy has many inherent advantages of Magnesium Alloy, such as high specific strength,high specific stiffness and so on. But it is not high strength and high temperature creep resistance is poor.the rare earth to improve their organization and improve corrosion resistance, especially high temperature performance has an important role,Study situation of Rare-earth Magnesium Alloys were introduced at home and abroad in the paper and the prospect of application in Rare-earth alloys Magnesium Alloy was looked. Key words: Magnesium Alloy; Rare-earth; situation

稀土金属元素

稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。 稀土用途: 在军事方面 稀土有工业“黄金”之称,由于其具有优良的光电磁等物理特性,能与其他材料组成性能各异、品种繁多的新型材料,其最显著的功能就是大幅度提高其他产品的质量和性能。比如大幅度提高用于制造坦克、飞机、导弹的钢材、铝合金、镁合金、钛合金的战术性能。而且,稀土同样是电子、激光、核工业、超导等诸多高科技的润滑剂。稀土科技一旦用于军事,必然带来军事科技的跃升。从一定意义上说,美军在冷战后几次局部战争中压倒性控制,以及能够对敌人肆无忌惮地公开杀戮,正缘于稀土科技领域的超人一等。 在冶金工业方面 稀土金属或氟化物、硅化物加入钢中,能起到精炼、脱硫、中和低熔点有害杂质的作用,并可以改善钢的加工性能;稀土硅铁合金、稀土硅镁合金作为球化剂生产稀土球墨铸铁,由于这种球墨铸铁特别适用于生产有特殊要求的复杂球铁件,被广泛用于汽车、拖拉机、柴油机等机械制造业;稀土金属添加至镁、铝、铜、锌、镍等有色合金中,可以改善合金的物理化学性能,并提高合金室温及高温机械性能。 在石油化工方面 用稀土制成的分子筛催化剂,具有活性高、选择性好、抗重金属中毒能力强的优点,因而取代了硅酸铝催化剂用于石油催化裂化过程;在合成氨生产过程中,用少量的硝酸稀土为助催化剂,其处理气量比镍铝催化剂大1.5倍;在合成顺丁橡胶和异戊橡胶过程中,采用环烷酸稀土-三异丁基铝型催化剂,所获得的产品性能优良,具有设备挂胶少,运转稳定,后处理工序短等优点;复合稀土氧化物还可以用作内燃机尾气净化催化剂,环烷酸铈还可用作油漆催干剂等。 在玻璃陶瓷方面 稀土氧化物或经过加工处理的稀土精矿,可作为抛光粉广泛用于光学玻璃、眼镜片、显象管、示波管、平板玻璃、塑料及金属餐具的抛光;在熔制玻璃过程中,可利用二氧化铈对铁有很强的氧化作用,降低玻璃中的铁含量,以达到脱除玻璃中绿色的目的;添加稀土氧化物可以制得不同用途的光学玻璃和特种玻璃,其中包括能通过红外线、吸收紫外线的玻璃、耐酸及耐热的玻璃、防X-射线的玻璃等;在陶釉和瓷釉中添加稀土,可以减轻釉的碎裂性,并能使制品呈现不同的颜色和光泽,被广泛用于陶瓷工业。

稀土元素在镁合金中的作用及其应用

稀土元素在镁合金中的作用及其应用() 稀土元素在镁合金中的作用及其应用(1).txt爱情是艺术,结婚是技术,离婚是算术。这年头女孩们都在争做小“腰”精,谁还稀罕小“腹”婆呀?高职不如高薪,高薪不如高寿,高寿不如高兴。稀土元素在镁合金中的作用及其应用.. 张景怀1,2,唐定骧1,张洪杰1,王立民1,王..军1,孟..健1* (1.中国科学院长春应用化学研究所稀土资源利用国家重点实验室,吉林长春130022;2.中国科学院研究 生院,北京100039) 摘要:综述了稀土元素在镁合金中的主要作用和效果,从冶金物理化学角度对稀土元素在镁合金中的作用行为进行了初步分析。结合中国科 学院长春应用化学研究所的初步研究成果介绍了含稀土镁合金Mg..Zn..RE,Mg..Al..RE,Mg..RE等系列的性能及其应用,展示了含稀土镁合金的 优良综合性能,特别是高强、高韧、耐热和抗蠕变性能、耐腐蚀性能,稀土镁合金将成为研制高性能镁合金的重要方向。 关键词:镁合金;力学性能;耐热性;稀土 中图分类号:TG146.2;O614.33....文献标识码:A....文章编号: 0258-7076(2008)05-0659-09

....镁合金是工程应用中最轻的金属结构材料, 具有密度低、比强度高、比刚度高、减震性高、易加工、易回收等优点,在航天、军工、电子通讯、交通运输等领域有着巨大的应用市场,特别是在 全球铁、铝、锌等金属资源紧缺大背景下,镁的资源优势、价格优势、产品优势得到充分发挥,镁合金成为一种迅速崛起的工程材料。面临国际镁金 属材料的高速发展,我国作为镁资源生产和出口 大国,对镁合金开展深入研究和应用前期开发工 作意义重大。然而目前普通镁合金强度偏低、耐热耐蚀等性能较差仍然是制约镁合金大规模应用的 瓶颈问题[1~5]。 稀土元素由于具有独特的核外电子结构,作 为一种重要的合金化元素,在冶金、材料领域起着独特的作用,例如净化合金熔体、细化合金组织、提高合金力学性能和耐腐蚀性能等。作为合金化 元素或微合金化元素,稀土已经被广泛应用于钢 铁及有色金属合金中[6]。在镁合金领域,尤其是在耐热镁合金领域,稀土突出的净化、强化性能逐渐被人们认识与把握,稀土被认为是耐热镁合金中 最具使用价值和发展潜力的合金化元素。我国的 镁资源和稀土资源特别丰富,近年来国内科研工

稀土在钢中的作用

稀土在钢中的应用 1 概况 稀土,系指元素周期表中第ⅢB族镧系元素以及与镧系元素在化学性质上相近的钪和钇,共计17种元素。是芬兰学者加多林(Johan Gado1in)在1794年发现的。当时在瑞典的矿石中发现了矿物组成类似“土”状物而存在的钇土,且又认为稀少,便定名为“稀有的土”(Baxe Earth)。此后,又陆续发现了与此同类的多种元素,总称为稀土。但后来研究发现,稀土在地壳中的丰度要比人们想象的多得多。如铈比锡多得多,钇也比铅多,即使丰度最少的稀土元素也比铂族元素多,说明稀土并不稀少。也不是“土”,全部是金属元素。 我国稀土资源丰富,为世界上其它任何一个国家所不及。现己探明的工业储量为3600万吨,约占全世界总量的80%,且品种繁多,分布集中。其中包头市白云鄂博矿山的储量就占了全国储量的95%以上。所以才有了“世界稀土在中国,中国稀土在包头”之说。现在包钢每年采出的稀土矿石量为230万吨-250万吨,这一部分矿石中多数稀土品位都比较高,能达到7.25%以上。经过几十年的研究开发,生产技术不断完善,生产规模不断扩大。现已形成了年产稀土精矿6万吨,稀土合金1.5万吨、湿法稀土产品折合氧化物5800吨的83个品种、195种规格的世界最大的稀土矿产品生产基地。 包钢虽然有很丰富的稀土资源,但在稀土处理钢的品种及处理效果等方面,与武钢、济钢、本钢等相比还有很大差距。如何把稀土的资源优势变成经济优势,还需进一步研究和开发。 2 稀土在钢中应用的现状 近几年来国内外的钢铁生产实践表明,钢经过稀土处理,可对钢的性能产生一系列的作用。现在我国用稀土处理钢有80多个品种,年产量达60万吨,预计2002年全国稀土钢产量达300万吨。包钢是稀土之乡,稀土处理钢也开发了一些,但只占包钢钢产量的0.5%。因此大力开发应用稀土资源,进行稀土钢的开发及应用研究,应提到日程上来。 包钢研究稀土在钢中的应用始于60年代。当时稀土当作灵丹妙药,认为无论放到哪种钢里都有作用,甚至提出过“以稀土代替镍、铬”的口号,到70年代中期,对稀土在钢中的应用出现了两种截然不同的见解,一种意见认为稀土在有些钢中作用很明显,应该继续进行试验研究;另一种意见则认为,稀土对含硫较高的钢有一些作用,但是随着生铁含硫量的降低,稀土这一作用将逐渐消失,因此稀土处理钢是没有前途的。到80年代后期,由事实证明,稀土确实有用,当然也不是万能的。钢中含有微量稀土元素,即可明显地优化铸坯质量,提高钢的

相关主题
文本预览
相关文档 最新文档