当前位置:文档之家› 基于FCS的电力推进船舶的综合监控系统

基于FCS的电力推进船舶的综合监控系统

基于FCS的电力推进船舶的综合监控系统
基于FCS的电力推进船舶的综合监控系统

基于FCS的电力推进船舶的综合监控系统“基于FCS的电力推进船舶的综合监控系统”是交通部重点实验室在建的“多模式机舱综合仿真系统”的子项目,是其真实环境的一部分,得到了上海市市科委科技发展基金的资助,项目号:021107013。开发这个新型的综合监控系统,主要是为了进一步完善电力推进船舶的综合监控功能。相对于柴油机推进船舶的热工参数而言,与电力推进相关的参数多半是快速变化的电参量,为能实时反映这些参数及其变化过程,要求系统的数据采集速度快、频率高,由此带来的数据流高速、量大,同时也带来了高速通信和大量实时数据处理与存储的问题。现有的船舶监控系统不能很好地完成这些任务,为此,必须从控制器到网络的关键部分进行彻底地改变,才能达到这一要求。

针对上述要求,我们自主开发了MA-2100型微控制器和智能PCCAN卡,摒弃了智能模块构成网络结构,采用基于现场总线技术、微控制器技术、分布技术,由现场监控网络、延伸监控网络、信息管理网络、远程网络组成的多重网络结构的集散型监控系统。现场监控网络完成对设备集散监控,它由6组现场监控装置(MA-2100微控制器)和一个中央监控站组成,现场监控装置负责数据的高速采集、实时处理、报警、控制、设备运行参数显示等基本监控功能,并向中央监控站、其它现场监控装置传送过程检测数据和报警信息等,接受中央监控站的命令,实现参数的远程修改,执行远程操作指令。现场监控装置分布于设备现场,满足了船舶监控点高度分散的要求,它既可以与中央监控站连接成网工作,又可以脱离中央监控站而独立工作,提高了综合监控系统的可靠性;利用CAN组成现场监控网络,满足了大量实时数据高速通信的要求;中央监控站的监控软件具有友好的人机交互界面,方便用户使用,中央监控站存储设备的实时运行参数,实现资源共享,同时它还实现集中监控管理、设备在线冗余,提高了系统的综合能力,配合以延伸监控网络,实现“无人值班”机舱。综合监控系统要求现场控制装置之间可以远程复示,即在一个现场控制装置的液晶显示器上可以远程显示另一个现场控制装置的液晶显示器上显示的内容,这要求通信必须实现具有一定实时性的大数据包传送;同时系统要求实现数据多优先级传送。

现有的CAN应用层协议不能满足这些要求,为此,本文制定并实现了MPLP 协议(Multi-priority and Large Package CAN application protocol)。MPLP

协议在HiLon B协议的基础上进行了改进,首先在协议格式上满足了数据多优先

级传送的要求;其次在实现上采用十字链表技术、报文分割与重组技术、动态内

存管理技术,保证了大数据包和数据多优先级传送的实现。大数据包传送意味着

数据分割、重组、缓存,同时带来数据发送、接收过程中如何保证数据帧顺序问题,多优先级传送更增加了这个问题的复杂性;大数据包缓存、传送又带来存储

问题,内存是微控制器极其宝贵的资源,如何有效合理利用内存,这些问题的解

决构成了本文的重要内容。论文同时论述了MPLP协议的完整实现过程。

CAN通信接口是现场控制装置实现通信的支持,本文论述了其硬件的实现,详细解释了接口的原理图,cAN控制器SJA 1000接口参数的设置,CPu ATMega128对CAN控制器SJAI000的接口设置,用工CCAVR编写中断程序和访问

绝对地址的特殊方法,并介绍了增量调试、仿真调试和硬件调试相结合的硬件调

试过程。综合监控系统采用“命令+参数”的应用协议,以示例论述了协议

格式及其使用方法,阐述了协议的数据编码与解码问题。另外,在这里还介绍了

通用网络管理工具。中央监控站是连接现场监控网络、延伸监控网络、信息

管理网络连接的枢纽,其核心是CAN总线通信接口适配器(智能PCCAN卡)。

本文结合PCI协议和PCI接口控制芯片CY7C09449,详细解释了PCI智能PCCAN卡的硬件设计原理,配置空间以及PnP中的动态资源分配。驱动程序是设

计PCCAN卡的核心,本文详细论述了其实现过程,重点介绍了Windows 2000下

驱动程序的原理,驱动程序例程,请求包的处理过程,PnP及硬件初始化等。PCCAN

卡同样实现了对MPLP协议的支持,更重要的是突出了事件驱动的设计目标。目

前市场上能购买到的PCCAN卡只提供DLL库供用户调用,且要求用户使用查询方

式获取数据,本PCCAN卡向用户提供PCCANCard控件,一方面,使用控件比调用DLL库函数方便,另一方面,它用事件驱动通知用户接收数据,这也方便了应用

软件的开发。

另外,本文还论述了CAN控制局域网中的共性问题在综合监控系统中的

具体解决,如多主网络的总线竞争与仲裁、广播与点对点通信、传输速率与节点

间最大传输距离的关系、节点故障、节点丢失等问题。本文的章节组织如下: 第一章是“引言”,说明了选题依据,要解决的问题、方案及课题的意义; 第

二章是“基于FCS的电力推进船舶的综合监控系统”,论述了系统的特殊要求、

系统组成、系统的功能,以及系统平台与开发工具的选择等。第三章是“CAN 控制器局域网与总线控制器”。简介CAN控制器局域网、cAN控制器sJA1000的编程结构,及其在电力推进船舶监控系统汇总的应用。

第四章是“CAN智能?。

船舶电力推进技术简述

船舶电力推进技术简述 摘要:电力推进作为船舶的新型推进动力,世界各国都在进行深入的研究。本文简要介绍了船舶电力推进装置的基本组成、船舶电力推进技术的优缺点以及发展趋势。 关键词船舶电力推进展望 1概述 自1833年第一艘电动实验船诞生到现在,电力推进系统的发展已经有170多年的历史。二战期间,电力推进曾出现过一段流行期,由于当时交流电机调速技术不成熟,多采用直流电力推进,其调速系统简单、调速性能好。但由于直流电机结构复杂、体积及重量大,并存在功率及转速极限等问题,故只能用在一些工程船舶及潜艇上,使得电力雏进在整个船舶推进领域中的发展受到限制。 20世纪80年代以来,随着电力电子技术迅速发展,大功率交流电机变频调速技术日益成熟,同时,为了迎合各国对船舶性能要求的进一步提高,船舶电力推进技术在国内外得以迅速发展。近年来,综合全电力推进系统使得电力推进船舶在军事舰艇上得到了深入的研究。实现了电力和动力两大系统的全面融合。目前,电力推进越来越广泛的使用在潜艇、起重船、破冰船、挖泥船、消防船、滚装船、领航船、航标工作、船渡船、豪华游船以及军事舰艇上。 2船舶电力推进装置基本组成 目前世界上使用电力推进的船舶,主要可分为两类:一类是电力推进与其他发动机推进结合的混合推进,例如英国23型护卫舰;另一类是全电力推进,即使用一个电站供电给推进装置和其他辅助装置,例如美国DD21水面舰艇。 船舶电力推进装置一般由原动机、发电机、电动机、螺旋桨以及控制单元组成。原动机带动发电机,发电机带动推进电机,电机驱动螺旋桨,推动船舶航行。因螺旋桨所需功率很大,一般需要设置两个单独的电站:推进电机电站和辅机电站,分别给推进电机和辅机供电。目前的原动机一般使用高速或中高速的柴油机,推进装置一般有直流电力推进和交流电力推进两种。 3船舶电力推进技术优缺点 3.1船舶电力推进技术具有的主要优点 (1)可获得所需要的推进电机机械特性,以满足不同航行工况的要求,这对主机以及船舶的经济性有利。 (2)电力推进装置的操纵由驾驶台直接控制,启动加速性好,制动快,大大提高了船舶的可操纵性,机动性好,安全可靠性得到提高。 (3)省去了主机与螺旋桨之间的轴系以及舵,机械振动和噪声减小,环境更加舒适,船舶航行也更加隐蔽。 (4)采用中高速的非反转原动机,主机的选择有很大的灵活性,减少设备的体积和重量,动力系统功率重量比大大提高,这对机舱的灵活布置非常有利。 (5)原动机和螺旋桨系柔性连接,使得螺旋桨的转速不受原动机转速的限制,彼此都可以工作在最佳状态,从而推进系统有较大的能量效率。

船舶管道智能监控系统

船舶管道智能监控系统 该智能监控系统综合应用数据采集技术、IC卡技术、数据库管理技术、计算机网络技术以及RS-485现场总线技术,实现对船舶油、水、气供应数据的自动控制;同时利用传感器和控制设备对油水气的运行状态参数进行实时监控,实现对其供给过程的智能管理。 1 智能监控系统的结构组成 系统结构见图1。其中,供油监控子系统主要包括供油智能控制箱、供油管路智能控制及传感器(主要包括流量计、电液阀、温度变送器、压力变送器、油气浓度探测器);供水监控子系统主要包括供水智能控制箱、供水管路智能控制设备(主要有远传水表、电磁阀)等;供气监控子系统主要包括供气智能控制箱;传输部分主要为电缆;主控制台主要包括:显示器、控制计算机、控制软件及控制台等。 图1船舶供给智能监控系统结构示意图 2 监控系统的主要技术指标与功能 2 .1 主要技术指标 主要技术参数包括供油计量误差≤0.3 %,供水计量误差≤1 %,供气计量误差≤0.5 %,压力、流量参数检测误差≤0.5 %;IC读卡响应时间≤0.5 s;故障报警响应时间≤1 s;平均修复时间<1h;每个供气、供水监控箱可为4艘船舶同时供气和供水。 2 .2 主要功能 1)供油监控子系统的功能。供油监控子系统硬件由泵房供油监控单元和码头供油监控箱两部分组成,功能分别为: (1)泵房供油控制单元。可对发油管路的油品自动进行定量加油,自动计量累积、记录船舶供油量;自动控制供油管路上阀门的启闭;自动监测供油管路的温度、泵房油气浓度参数;当泵房现场油气浓度超过设定极限时,自动发出报警信号;可实现定量加油(定量由上

位机设定);当机器启动后,10 s没有接收到流量计发出的流量信号(如阀门没有打开,或者流量计卡死)时,自动切断电液阀,并发出报警信号;将供油现场工作参数(流量、温度、可燃气体浓度及阀门启闭状态等)传送到主控制室,进行集中显示、管理等。 (2)供油监控箱。读取IC卡身份号并传送给主控制计算机,接收计算机传来的IC卡身份识别的判断信号;发油现场环境温度和油气浓度的实时监测采集;同步显示实际船舶加油量;当现场油气浓度超过设定限值时,自动发出报警信号;将船舶管道工作参数(环境温度、可燃气体浓度等)传送到主控制室,进行集中显示、管理等。 2)供水监控子系统的功能。主控制台配合实现对4路供水管路设备调度、启闭的自动控制;实现对输水管路内流量工作参数的实时自动检测;实现对单船供水量的自动计量和管理;实现对供水设备的安全保护与报警。 3)供气监控子系统的功能。实时监测供气单元运行(气压、流量、温度等)情况;监控各供气单元接触器的开关状态;并对船舶供气量进行自动计量和管理;实现对供气管道的过气压、过流量的自动保护和报警。 3 监控系统的硬件设计与软件开发 3 .1 主控制台设计 主控制台由监视器、主控计算机、现场总线通信接口、报警装置、控制台及相应控制软件等组成。其中主控设备采用商用计算机,对各种控制点采用脉冲编码的微机控制方式,系统的运行控制和功能操作在控制台上进行,油、水、气供给监控中心共用一个控制台;现场总线通信接口采用RS-485现场总线技术,自动实现主控计算机与各监控子系统之间的实时数据通信;监控软件采用VC ++平台编写和模块化设计,其结构如图2所示,它包含数据通信接口程序、监测点配置程序、读入网络监测参数程序、数据分析处理程序、控制信号输出程序、报警显示模块、数据管理和多形态数据显示、统计报表输出等。软件的主要功能如图2所示。 图 2 监控软件的结构图 1)对系统配置组态和对用户信息进行管理。 2)接收船舶管道各监控子系统检测到的系统实时工作参数,并分别对这些数据进行相应处理后保存到对应的数据库中。 3)以流程图、数据表等方式显示系统工作的物理参数和工作状态。 4)当系统工作参数超过系统设定的范围时,发出报警信息,指示报警点和报警数据,并自动发出控制信号。 5)提供友好的输入界面,实现对码头油、水、气的供应管路的自动调度。 6)管理系统运行参数,对各船统计年、季度、月的油、水、气供应量,并打印出报表。

船舶电力推进系统优势

船舶电力推进系统优势 随着国际海事组织在船舶排放方面制定越来越严格的标准,加上石油资源逐渐耗尽,内燃机将逐步退出历史舞台,绿色环保的电力推进系统将成为未来船舶动力发展的方向。国外已经开发了多种类型电力推进系统,并在多型船舶上应用。我国在此领域的研究则刚刚起步,应加速对相关技术的研究和开发应用,积极参与到这一领域的国际竞争,在市场上占有一席之地。 “与传统的船舶动力系统相比,电力推进系统具有调速范围广、驱动力大、易于正反转、体积小、布局灵活、安装方便、便于维修、振动和噪音小等优点。电力推进作为船舶的新型推进动力,世界各国都在进行深入的研究” 中国工程院院土、中国船舶轮机专家闻雪友表示,作为船舶主动力系统的电力推进系统,由于其高效率、高可靠性、高自动化以及低维护,正成为新世纪大型水面船舶青睐的主推进系统。目前,发达国家新造船舶的30%已采用电力推进系统。船舶电力推进新技术的研发及应用,将大大减轻船舶污染和海洋环境污染,充分体现了“绿色航运”和“绿色船舶”的环保节能理念,这将是今后船舶动力领域的一个发展方向。 “相对于传统的柴油机推进系统,电力推进系统可谓优势多多。”据上海海事大学教授汤天浩介绍,一是电力推进具有良好的经济性。在一艘船上多台中速柴油机用于发电,可根据用电负荷选择发电机运行台数,使机组始终运行于高效工作区,实现最大的经济性。与同功率的船舶相比,采用电力推进要比内燃机推进耗油减少10%左右,减少船体阻力5%-10%,提高运输效率15%,航速可提高0.5节。二是电力推进系统操纵性好。采用电力推进系统后,操纵控制方便,起动加速性好,制动快,正反车速度切换快,可推进电机转速易于调节,在正反转各种转速下都能提供恒定转矩,因此能得到最佳的工作特性,使船舶取得优良的操纵性。二是电力推进系统具有良好的安全性。对于柴油机推进的船舶来说,一旦主机重要部件或舵机、轴系出现故障往往导致瘫船。而电力推进则使用多台原动机,个别机组故障不致丧失动力。电力推进系统多采用两套以上互为备用,同步电动机定子有两组相互独立的绕组,一组出了故障仍可减载运行。四是电力推进系统节省空间。采用传统推进系统的船舶轴系长度往往占到船长的40%左右,采用电力推进系统的船舶省去了传动轴系、减速齿轮箱,改善了机舱布局结构,使动力装置安排更加合理,节省了大量空间。五是电力推进系统噪音低。采用电力推进后,主要振动源——发动机安装在弹性底座上,以恒定转速运行,与轴系和船体也无直接联结,大大减少了振动和噪声,工作区整洁,提高了乘船的舒适程度。六是采用电力推进系统有利于船舶控制环境污染,降低排放。对同一功率船舶而言,电力推进中的中速柴油机可以始终在最佳工作区工作,燃油燃烧质量好,燃烧产物中的氮氧化物含量少,减少了废气排放,使机舱内空气新鲜,环境质量得到改善。

舰船电力推进技术的发展现状

舰船电力推进技术的发展现状 电力推进是指由舰船的原动机(柴油机或燃气轮机或两者混合,甚至核动力装置)驱动发电机产生电能,再由电动机将电能转换为机械能驱动推进器实现舰船机动的一种推进方式。一艘电力推进船舶,不管采用何种方式发电,电力不是像传统布置一样直接与驱动装置相连,但可为全船提供电力,这种方式能提供更大的供电灵活性、高效性和生存性。舰船步入全电力时代就像当初从帆船时代步入蒸汽时代一样,是一个巨大的跨越。 一电力推进的优缺点 1 电力推进的优点 1)可以灵活布置船上大型机械设备; 2)便于操控和航行; 3)可降低运行噪声。因为没有齿轮箱等大功率后传动机械装置和长轴系,明显降低了舰艇运行噪声,提高了乘员的舒适度,且提高了舰船的隐身性; 4)如果电动机设计成低速(100~200 r/min)运行,并直接与推进轴连接,则可省去减速齿轮;

5)与常规的机械推进比较,电力推进的重量和体积大大减少; 6)电力推进系统能效更高; 7)电力由冗余电缆传输,可靠性高,并可减少维护; 8)节能环保。所有原动机均以恒定速度运行于最佳工作状态,并可根据负载变化动态调整,明显降低能耗和排放; 9)全电力舰船所需的舰员人数会大幅减少,进一步减少使用成本。10)可使舰船成为电磁武器的搭载平台。大型舰船变频调速电力推进在功率等级上与电磁武器基本相当,随着这种新型电力推进技术的工程化应用,将在电能管理和脉冲式电源变换等重大技术上为大功率雷达、电磁炮、电磁弹射等新装备装舰扫清障碍。 2 电力推进系统相对常规推进装置的不足之处 1)电力推进系统的价格较传统推进装置更为昂贵,因而船舶建造的初投资将会增加; 2)在原动机与螺旋桨之间增加的电器设备,如发电机、变压器、变频器和电动机等,加大了船舶全动力运行时的传输损耗; 3)大量采用电气设备可能引起一些危害,如火灾和电网的谐波干扰等;4)由于船舶安装了多种新型设备,需要制定不同的运行、人员配备及维护策略,提高了对操作人员和维护人员的要求。

港口船舶动态监控系统建设方案详细

港口船舶动态监控系统建设方案 1.电子海图显示系统概述 电子海图作为在港口区域航行与作业的船舶监控的工作平台,直观快捷地向监控管理人员提供船舶在港口的当前位置和航行状态。对船舶的航行的信息存储,可以对船舶在港口区域的航行历史状态的查询和再现,为船舶的监控和管理提供强有力的保证。 本系统的电子海图数据平台采用代表我国官方水道测量组织的权威电子矢量海图数据,保证了电子海图数据的合法性和准确性,并且按照《中华人民国电子海图技术规》和IHO(国际航道测量组织)的S-52,S-57标准进行设计,完全支持汉字。 在电子海图系统的平台上,结合岸基AIS系统(AISPORT)、AIS数据处理中心(AIS-Space),实现船舶基本信息管理、船舶动态信息管理和船舶监控报警等功能。电子海图将作为AIS系统的工作平台,辖区水域的AIS船舶数据可以直接叠加显示在电子海图上。 系统的软、硬件配置采用通用设备为主,便于用户维护和设备的更新。电子海图AIS的软件操作平台将采用Windows 2003/XP。硬件可采用通用的网络服务器。 2.系统功能 系统功能框架图如下图所示,系统由岸基AIS设备(AISPORT)、AIS数据处理中心(AIS-Space)、船舶信息管理、船舶监控报警、船舶动态信息分发、港口视频监控系统接口和电子海图综合显示软件等组成。

图 2-1 系统功能框架 岸基AIS设备(AISPORT):在港口位置较高的位置架设AIS基站的收发天线接收船载AIS设备发送的AIS动态信息,AISPORT对船舶进出港和靠泊的船舶动态进行采集。 AIS数据处理中心(AIS-Space):通过岸基AIS设备接受船舶AIS的信息可以获得船舶的静态信息,例如:船名、呼号、MMSI号等信息;船舶航行动态,例如:航速、航向、转向率等。将岸基AIS设备接收、采集的港口区域航行的船舶的AIS信息进行解析后统一的数据库存储,为后续的船舶监控和管理功能提供数据库支持。 船舶信息管理:对数据库存储的AIS信息进行分类整理,为电子海图的综合显示提供信息支持。 船舶监控报警:对当前港口区域的船舶进行监控,设置报警的条件,当在港口区域航行或作业船舶出现违反或满足报警条件时,提供报警信息。在电子海图综合显示界面上,向值班监控人员进行声光报警。 船舶动态信息分发:对采集和存储的船舶AIS信息进行授权的信息查询和分发,为系统的其他自系统提供船舶AIS信息,为将来的信息资源的共享和系统扩展提供支持。

船舶电力推进系统优势多多

船舶电力推进系统优势多多 随着国际海事组织在船舶排放方面制定越来越严格的标准,加上石油资源逐渐耗尽,内燃机将逐步退出历史舞台,绿色环保的电力推进系统将成为未来船舶动力发展的方向。国外已经开发了多种类型电力推进系统,并在多型船舶上应用。我国在此领域的研究则刚刚起步,应加速对相关技术的研究和开发应用,积极参与到这一领域的国际竞争,在市场上占有一席之地。 “与传统的船舶动力系统相比,电力推进系统具有调速范围广、驱动力大、易于正反转、体积小、布局灵活、安装方便、便于维修、振动和噪音小等优点。电力推进作为船舶的新型推进动力,世界各国都在进行深入的研究”中国工程院院土、中国船舶轮机专家闻雪友表示,作为船舶主动力系统的电力推进系统,由于其高效率、高可靠性、高自动化以及低维护,正成为新世纪大型水面船舶青睐的主推进系统。目前,发达国家新造船舶的30%已采用电力推进系统。船舶电力推进新技术的研发及应用,将大大减轻船舶污染和海洋环境污染,充分体现了“绿色航运”和“绿色船舶”的环保节能理念,这将是今后船舶动力领域的一个发展方向。 “相对于传统的柴油机推进系统,电力推进系统可谓优势多多。”据上海海事大学教授汤天浩介绍,一是电力推进具有良好的经济性。在一艘船上多台中速柴油机用于发电,可根据用电负荷选择发电机运行台数,使机组始终运行于高效工作区,实现最大的经济性。与同功率的船舶相比,采用电力推进要比内燃机推进耗油减少10%左右,减少船体阻力5%-10%,提高运输效率15%,航速可提高0.5节。二是电力推进系统操纵性好。采用电力推进系统后,操纵控制方便,起动加速性好,制动快,正反车速度切换快,可推进电机转速易于调节,在正反转各种转速下都能提供恒定转矩,因此能得到最佳的工作特性,使船舶取得优良的操纵性。二是电力推进系统具有良好的安全性。对于柴油机推进的船舶来说,一旦主机重要部件或舵机、轴系出现故障往往导致瘫船。而电力推进则使用多台原动机,个别机组故障不致丧失动力。电力推进系统多采用两套以上互为备用,同步电动机定子有两组相互独立的绕组,一组出了故障仍可减载运行。四是电力推进系统节省空间。采用传统推进系统的船舶轴系长度往往占到船长的40%左右,采用电力推进系统的船舶省去了传动轴系、减速齿轮箱,改善了机舱布局结构,使动力装置安排更加合理,节省了大量空间。五是电力推进系统噪音低。采用电力推进后,主要振动源——发动机安装在弹性底座上,以恒定转速运行,与轴系和船体也无直接联结,大大减少了振动和噪声,工作区整洁,提高了乘船的舒适程度。六是采用电力推进系统有利于船舶控制环境污染,降低排放。对同一功率船舶而言,电力推进中的中速柴油机可以始终在最佳工作区工作,燃油燃烧质量好,燃烧产物中的氮氧化物含量少,减少了废气排放,使机舱内空气新鲜,环境质量得到改善。 专家表示,船舶采用电力推进系统后,有利于进行计算机网络管理,有助于实现系统的自动控制,全面提升船舶信息化、智能化、自动化水准。因此,船舶电力推进系统应用范围不断扩大,将成为未来绿色船舶前进的动力。

船舶生产监控系统方案

广新海事重工股份有限公司船舶生产监控系统要求 2011年9月

广新海工船舶监控需求分析 为了保证广新海工在船舶上作业人员财产及生命安全,以及提高施工管理水平,我们根据公司着手建立一套综合视频网络监控管理系统。该系统要求界面友好、操作简易、图像清晰、音频还原度高,并且能够有效的管理各公司的情况并记录下来,最终进行存档和查询工作。 总体技术指标: 1. 具有良好开放性的系统构架和拓扑结构,易于扩充、升级。 2. 用户端网络操作系统选用适合于多种媒体访问技术和多种高层协议的系 统。 3. 在用户端系统采用结构化布线,并利用已有的互联网络进行数据传输。 4. 网络拓扑采用了B/S体系,用户可随时增加或减少视频终端,而不会影 响其他终端正常工作。 5. 视频监控系统图象清淅,达到视频600线水平。 一、系统具体功能 1)能监控各船仓物品存放情况及状态、船仓内人员和设备工作情况。 2)要求系统智能、稳定、易操作; 3)系统要具有可扩展性,为以后增设监控点作预留扩展; 4)要求二十四小时监控,全方位,无盲点; 5)要求保安部门在监控中心随时看到公司的整体情况。 二、系统组成 由前端摄像、传输部分、存储部分、监控部分组成

E I F 3 三、网络视频监控拓扑图 A I 6 丨 匸 D ■? 5 R e v i s i o n n o b e e> *-2 ?J ? F g v t ! 广新海工船船监控平面不意图 办玄楼 二层 三层 岗亭 超五娄网线 船舶 HI 纸说明t 1. 峪船甲扳上各层各通址专用规戲觇纜连接到 控 制紺" 2. 蝸柏期过网络弱电蜒梅视频倍号将传输紛启 辜,岗亭将信号迪过5,80微披技输到办公楼 3. 打公楼人员可以通过电盼査肯各监揑点图悝 』、尚亭安装一台廉务器.W.存储. 乩网给监控系纯连接到企业呵域可以进行网 络管理,離护,以及ftR. A-^>WKHI ± S4F GAQTDNIT 4H8N E rnRitoxniL^ 甲聞乩 IftLI 单僅 Hl K t 卸£ fiTW “IS a it 苏小亘 囲号 U EB ■尊亂 II NI 3?II T H .M C i D i F i F C ] D I E I F ,■ it£A;Kft*a 广新海工船舶监控平面示意图 KihB-lt l^ I, I k i s J — f ?1 ? 'n r.T | I | HA ; | L | it* | m | 「 i?? J " |fB |j |fj |" IF er iin an I uh JUI JHI an r*n g 上khldUL aw ! , b-JI l 丄 ,久f/?环囲口平E FMIBJ)jtLDl9TailE 时JM1 鼻島拉料?!齡司 i 』iH AH EtH a H - 苏小三 M 号 - M M n fi

船舶综合电力系统资料讲解

船舶综合电力系统

精品资料 浅析船舶综合电力系统 1.引言 船舶综合电力系统是船舶动力的发展方向,是造船技术发展史上的又一个革命性的跨越,其主要特点是将推进动力与电站动力合二为一。该项技术正在逐步成熟、完善。以美、英、法为代表的发达国家率先引入综合电力系统这一概念,并积极开展研究、试验和应用到船艇。 2.综合电力系统概述 综合电力系统的思想基础是降低未来船舶的总成本,优化船舶总体、系统和设备的组成。其设计理念是突出系统化、集成化和模块化。在船舶平台上的具体实现途径是将全船所需的能源以电力的形式集中提供,统一调度、分配和管理。 美国海军提出的综合电力系统主要包括发电、配电、电力变换、电力控制、平台负载、推进电机、能量储存等七个模块。其中,发电模块将其它形式的能量转化为电能,经全船环形电网向各区域配电系统供电;电力控制模块对配电模块实行电能分配和监控;配电模块将电力输送到电力负荷中心,再分配到各用电设备;电力变换模块将一种形式的配电模块转化为另一种形式的配电模块;推进电机模块用于船舶推进;平台负载模块是一个或多个配电模块的用户;能量储存模块用于储存电能,维持整个供电系统的稳定。 采用综合电力系统的船舶与传统船舶比较,具有的主要优势为: 便于采用分段和模块化建造,使用维护费用低,经济性好;噪音低,可提高船舶的安静性和舒适性,提高舰艇的战斗力和生命力;调速性能好,控制方便,倒车简便、迅速,提高船舶的机动性;布置灵活、设计方便、可靠性高,可维修性好、生命力强;便于实现自动化,减少船员;适用性强,可广泛采用各种电子设备和先进的推进技术,对于舰艇而言,可以使用诸如激光武器、电磁炮等高能武器。 3.综合电力系统的发展现状 近十来年,船舶的电力推进技术已进入应用阶段。目前,不同类型的船舶,如一些科考船、破冰船以及邮轮采用了电力推进系统。推进电机采用直流、交流同步电动机或交流感应电动机。研究报告显示,虽然商船的综合电力推进系统提高了船的建造费用,但其运行和支持费用,及其生命周期里的整个费用却降低了。上世纪九十年代,一些商船业公司,如ALSTOM、ABB、SIEMENS等,已形成了企业内部的商船业电力推进标准。有人统计,八十年代后期建造的1000吨以上的商船中采用柴-电推进的约占25%,到九十年代中期,此类船舶中有35%以上采用电力推进,且该比例正在呈逐年上升的趋势。据统计,到2000年,全世界商船电力推进的装机总容量约为4200MW。 美国海军于1980年建立了综合电力驱动计划,希望通过将船舶日用电力系统和推进电力系统合而为一,进一步提高战船的性能。1990年后,美国海军将注意力转到提高船舶的能购性上,研究计划转为综合电力系统(IPS:Integrated Power System)项目。针对当时水面战斗舰艇(SC-21,现转型为DD(X))的概念设计,美海军完成了费用和效能评估。2002年4月29日,美国海军宣布英格尔斯造船公司、诺斯罗普格鲁曼船舶系统公司为DD(X)的设计主承包商,设计承包合同总价款为28亿多美元,执行期至2005财政年度。DD(X)设计合同的签署意味着美国海军水面舰艇革命性变革的开始。综合电力系统强调的主要技术目标为增加可操作性和支持柔性设计。美海军计划2003年开始,用3年多时间完成11个工程 仅供学习与交流,如有侵权请联系网站删除谢谢2

基于CAN总线的船舶机舱综合监控系统

基于CAN总线的船舶机舱综合监控系统 【摘要】为了实现船舶自动化,提高机舱综合监控系统的可靠性,本文结合课题的研究,给出了整个系统的设计方案。文中设计了基于双CAN总线的机舱综合监控系统,并着重介绍了报警分站和人机界面的设计。 【关键词】船舶;综合监控;双CAN总线 0.引言 船舶机舱综合监控系统的自动化水平是衡量当前船舶先进程度的一个重要标志。现场总线技术集先进的嵌入式系统、现代通信、自控理论、网络技术于一身,以其先进性、可靠性、开放性的优点,必然成为未来自动化技术发展的主流。而CAN(Control Area Network)总线是国际上应用最广泛的现场总线之一:起先,CAN被设计作为汽车环境中的微控制器通信,在车载各电子控制装置ECU 之间交换信息,形成汽车电子控制网络;而后逐步被应用于机械工业、过程工业等领域;近年来,船舶综合监控系统越来越多采用CAN总线技术,而且CAN 总线技术表现出的优势是其它总线技术所无法媲美的。 1.CAN总线技术的特点与优势 CAN总线是一种多主方式的串行通信总线,基本设计规范要求高位速率,高抗电磁干扰性,而且能够检测出产生的任何错误。当信号传输距离到10km时,CAN总线仍可提供高达5kbps的数据传输速率。作为一种技术先进、可靠性高、成本合理的远程网络通信控制方式,CAN总线已被广泛应用到各个自动化控制系统中。特别是船舶自动化机舱,越来越多得采用CAN总线。从高速的网络到低价位的多路接线都可以使用CAN总线。CAN总线除具有一般现场总线所具有的技术规范开放、现场设备可互操作等特点外,还有其自身的一些优势:(1)低成本的现场总线。 (2)极高的总线利用率。 (3)很远的数据传输距离。 (4)高速的数据传输速率。 (5)多主结构依据优先权进行总线访问。 (6)可根据报文的ID决定接收或屏蔽该报文。 (7)可靠的错误处理和检错机制。 (8)发送的信息遭到破坏后可自动重发。 (9)节点在错误严重的情况下具有自动退出总线的功能。 (10)报文不包含源地址或目标地址,仅用标志符来指示功能信息、优先级信息。 (11)通信介质支持双绞线、同轴电缆或者光纤。 2.基于CAN-bus的船舶机舱综合监控 本文是采用双CAN技术,冗余设计,提高船舶机舱综合监控的可靠性。 发电机组由三台发电机组成,可以根据负荷的大小,自动并车和解列,可以单机运行、双机运行或三机运行。发电机组将发出来的电送到配电板,由配电板根据负载用电负荷的不同,合理分配用电量。主机的控制单元也挂在CAN总线上,方便主机的各种参数的采集,以及安保系统对主机的实时监控。 由于机舱设备繁杂,待监控的参数众多,一般需在集控室设二台监控机,才可以完成所有的监控任务或达到满意的效果,双机冗余提高了监控的可靠性。两

船舶视频监控系统介绍

摘要:船舶视频监控系统对于船舶的防碰撞、防污染、防海盗以及管理监控等方面起到了非常重要的作用,对于运输危险品油轮的作用更为重要。本文在对现有船舶视频监控系统进行分析的基础上,对船舶视频监控系统在油轮上的应用提出了设想和建议。 关键词:油轮视频监控防碰撞防污染防海盗管理监控 0 引言 视频监控系统对于船舶防碰撞[1]、防污染、防海盗以及管理监控等方面起到了非常重要的作用,如将船舶配备的卫星通信设备与视频监控系统连接,还能做到岸端实时监控船舶的状况,这对于海事管理信息化也有着重大意义[2]。国外NGSCO等航运巨头近年来已经开始应用Kongsberg marine等厂商的视频监控设备。中国海运、中国远洋集团作为国内两大航运巨头,近两年已在推广船舶视频监控系统的应用,作为安全管理方面的重点之一。 1 视频监控系统在油轮船舶的实施方案 船舶视频监控系统一般由8个摄像头采集视频数据,经由主机处理后共享于船舶局域网监控,并将数据刻录在硬盘中保存,也通过卫星传送实现对船只的远程监控和管理。 1.1系统摄像头的布置方案 下表为系统摄像头位置以及主要作用,其中需注意的是新造船舶可以将1号摄像头布置于船头以获得更好的效果,航行船舶改造则考虑到电缆布置的问题只能将1号摄像头置于罗经甲板。 表1 船舶视频监控系统摄像头的布置方案 摄像头位置作用 1号摄像头罗经甲板主要拍摄船舶正前方,包括船头及大部分主甲板

2号摄像头、 3号摄像头驾驶室分别位于驾驶室左右两翼,主要拍摄驾控台以及海图室 4号摄像头 C甲板主要拍摄船尾 5号摄像头、 6号摄像头驾驶甲板分别位于驾驶甲板两翼,主要拍摄船左右两舷 7号摄像头机舱室主要拍摄船舶主机、辅机 8号摄像头集控室主要拍摄集控台 根据油轮船舶的特殊需求,甲板摄像头应为防爆型摄像头,符合国家标准GB3836.1-2010对于爆炸性气体环境用电气设备通用要求,以及国家标准GB3836.2-2010对于爆炸性气体环境用电气设备隔爆型要求。同时所用电缆应为阻燃型,满足国家标准GB50058爆炸和火灾危害环境店里装置设计规范要求。 1.2 系统主机性能介绍 系统主机主要进行数据处理,数据刻录以及连接船舶局域网的工作。主机需满足国家标准GB 20815-2006对于视频安防监控数字录像设备的要求,刻录机应满足国家标准GB50348-2004对于安全技术规范的要求,同时满足以下几点基本要求: (1)较大的硬盘容量。一般推荐为4TB,按照正常视频格式推算的录制时间计算公式:D(录制天数)=硬盘容量/通道数量/每小时所有通道的数据大小/每天的录制时间=30 天; (2)较强的数据压缩处理能力。支持PAL/NTSC 制式视频信号输入,采用H.264 视频压缩技术; (3)多种录像的回放与预览功能。需支持快放、慢放、单帧等回放模式,按录像类型、按时间进行检索; (4)对于外接设备较强的兼容性。因船舶设备需长时间开启,出现故障的可能性较普通设备高,所以主机应能支持U 盘、USB 硬盘、USB 刻录机、SATA 刻录机、SATA 硬盘备份。

船舶电力推进系统

船舶电力推进系统 Edited by 阳光的cxf 第一章 1. 电力推进系统的优缺点 P10 优点: (1)机动性能好 (2)机舱小,布置灵活可增加船舶的载货载客能力 (3)推进效率高 (4)节能,有利于环保 (5)适合于特种船舶的应用 P47 优点: (1)通过减少燃料消耗和维护费用减少生命周期成本,尤其是在负载变化大的地方 (2)增强了系统对单一故障的抵抗性,使优化原动机负载分配成为可能 (3)中高速柴油机重量轻 (4)占用空间少,甲板空间利用更加灵活 (5)推进器位置布置更加灵活 (6)更好的机动性 (7)更小的推进噪声和震动 缺点: (1)初始投资增加 (2)原动机和推进器之间有额外的器件,增加了满负荷运行时的损耗 (3)新型设备需要不同的操作,维护策略 2. 不同推进方式船舶操纵性能对比 项目机械推进常规电力推进POD推进 回转直径120% 100% 75% 零航速回转180 度所需时间118% 100% 41% 全速回转180 度所需时间145% 100% 42% 全速到停止所需时间280% 100% 42% 零航速至全速所需时间210% 100% 90% 第二章 3. 电力推进系统类型 (1)可控硅整流器+直流电动机。应用:船舶推进所应用的直流推进电机的容量,在2~3MW 之间。 优点: 1)启动电流和启动转矩接近零 2)动态响应快 缺点:

1)转矩控制不精准 2)换向器易发生故障 3)谐波污染较大 4)直流电动机结构复杂,成本高,体积大,维护困难,效率低 (2)交流异步电动机+可调螺距螺旋桨模式。应用:这种推进方式只适合于中、小功率船舶,或1000kW 以下的侧推装置,因为微软起动器目前还只有中、小功率的低压产品。 优点 1)几乎没有谐波污染 2)转矩稳定没有脉动 3)设计点运行效率高 缺点: 1)启动电流大 2)启动瞬间机械轴承受转矩大 3)功率因数低 4)功率及转矩动态响应慢 5)反转慢,制动距离长 6)变矩桨结构复杂,价格贵,可靠性差 7)变距桨液压控制系统复杂 (3)电流型变频器CSI (Current Source Inverter) + 交流同步电动机。应用:10MW 以上容量的电力推进装置 优点: 1)启动电流小 2)价格便宜 3)控制方便,操作灵活 4)能匹配特大功率电机 缺点: 1)时间常数大,动态响应慢 2)电感重量和体积大 3)低速运行时,电流变频器将电流控制在零附近脉动,,输出转矩也脉动,给轴 系带来震动 (4)电压型变频器VSI (Voltage Source Inverter) +交流异步电动机。在中小功率范围,包 括部分大功率的电压型变频器中 优点: 1)功率和转矩动态响应快 2)系统电源输出频率范围宽 3)启动平稳 4)功率因数高 5)低速功率损耗小 6)推进效率高 缺点: 1)价格贵 (5)交交变频器+交流同步电动机。单个电力驱动系统的功率范围在2~30MW 之间。 优点: 1)启动平稳,启动电流逐渐增大

船舶电力系统论文.doc

系统在运行的过程中,极易发生各类安全事故,且在任何条件下都可能出现故障,其中,短路问题最为突出。通常情况下,短路主要表现为两相短路、三相短路、单相接地短路、两相接地短路与发电机短路等[2]。导致短路问题出现的主要原因有机械设备被严重损伤、绝缘层被破坏与基本操作不科学等。电力系统多种故障的发生,过负荷问题较为突出,此类故障一旦出现问题,会让绝缘的温度逐步升高,也会加速绝缘层的老化,也会让设备受到严重破坏,最终会引发火灾问题。1.2继电保护的基本任务在各设备间,电与磁存在着密切的联系,不正常情况与故障问题的发生,会让电力系统出现一系列的事故,最终会严重威胁电力企业的实际发展。在继电保护时的主要任务为:若主配电板、输电线路、变压器、发电机等出现短路或过量负载问题时,应在最短时间内将存在

故障的设备借助断路器予以断开,以脱离电力系统,能保证不存在故障的部分正常运行,进而降低故障设备损坏度,还可降低对邻近设备供电系统所构成的影响,进而保证电力系统高效、稳定的运行。 1.3继电保护的基本组成 继电保护主要是由测量元件、执行回路与逻辑环节三个部分所组成的。若物理量出现突变,通过测量之后,及时确定好故障范围与基本类型,从逻辑判断来判断断路器跳开的次数与时间,然后让执行回路发出一定的信号与跳闸脉冲。 1.4继电保护的运行原理 电力系统继电保护装置的运行,其原理为借助被保护设备前期与后期一些物理量的突变情况,一旦突变量达到一定参数值,借助逻辑判断,能及时发出信号与跳闸脉冲。例如,借助被保护设备故障发生后期电流的不断增大,以达到电流保护的效果;借助降低电压来达到低电压保护效果;借助不对称短路发生负序电流与电压,以形成负序保护效果。 2船舶电力系统继电保护措施 2.1发电机继电保护 在发电机继电保护方面,所要保护的内容主要包括短路、

船舶电力系统设计

32,500DWT散货船电力系统的设计简介 李熙群 (广东省江门南洋船舶工程有限公司) 摘要:船舶电气设计的核心部分是电力系统的设计,主要包括:电站的负荷计算,发电机台数和容量选择,船舶电制的确定,电力一次单线图的绘制,短路电流的计算以及保护开关的选用等。 关健词:设计电力系统32,500DWT散货船 32,500 DWT Bulk Carrier Design in Power Systems Xi QUN Li (Jiangmen Nanyang Ship Engineering Co., Ltd. Guangdong province) Abstract:The main part of electrical design is the design of power system in ship, including: Power load calculation, select the number of set and rated output of the generators, decide power system for shipping, mapping the primary power single-circuit, calculated short circuit current and selected protection Switch, etc.. Key words: design power system 32,500 DWT bulk carrier 前言 船舶电力系统是船舶动力和控制的核心部分,随着船舶日趋向大型化、电气化、电子化发展,电力系统担负着给船舶推力、控制、通讯导航等设备提供电源的任务,其电源的质量和选配的数量直接关系到船舶操纵性、节能、排污等方面,所以船舶电力系统的设计是船舶电气详细设计的主要部分,本文以江门南洋船舶工程有限公司建造的3,5000DWT灵便型散货船的电力系统为例,介绍船舶电力系统的设计过程。 一、船舶电站的设计 1、选配发电机的台数和容量 通常用采用三类负荷法对全船电气设备进行分类估算,并据此选配发电机的台数和容量。 (1)收集轮机、舾装专业提供的船舶辅机的功率、功率因数和机械负载系数、同时系数等,统计电气设备、通导设备的功率、功率因数。 (2)将全船的电气设备按使用的频率分类,一般地说,连续运行的设备为一类负荷,间歇使用的设备为二类负荷,偶尔使用的设备为三类负荷。 (3)按船舶设计手册的程序和公式进行计算,计算结果如下表:

(完整版)船舶监控调度系统解决方案

船舶监控调度系统解决方案 行业背景: 我国是个航运大国,江河、海洋资源非常丰富。航运业在我国高速发展的经济中得到了长足的进展,但在航运业飞速发展的同时,因船舶私营化的扩大和管理体制的老化,船舶管理的弊端也逐渐凸现出来,如:航运管理不完善、资源浪费、效率低下。因此,如何利用有效的手段将船舶管理上升到有序、合理、高效的管理层面上来成为航运企业的当务之急。 随着航运发展对信息化管理的迫切要求,船舶监控调度系统在我国航运和海事管理上得到了逐步的应用。行业现有产品的特点是功能比较单一,不具备远洋通信和应急求救告警功能,船舶终端和监控管理终端之间在线信息交换量小,且建设平台均基于单独的航运企业内部,相对封闭,标准不统一,各系统未实现互联互通。而我们船舶监控调度系统的扩展性强,可以接入多种船载终端设备,实现互联互通,船载卫星通信终端设备FR388也填补了国内不能远洋通信和应急求救告警功能的空白,解决了航运企业远洋管理、指挥、调度的实际需求。 一、系统概述 船舶监控调度系统是我公司依托自身多年专业积累,因应国家海洋船舶管理现代化建设需要,面向海洋商船、渔船、运输船、施工船、执法船等多种船舶而开发的,集定位、告警、通信、监管、指挥调度功能为一体的综合型船舶监管系统。 该系统由GPS卫星定位系统、智能卫星通信系统、通讯传输网络、监控中心、船载终端设备、数据采集系统等部分组成,采用世界领先的GPS卫星定位技术、智能卫星通信技术、GIS地理信息技术及管理信息系统技术,其各种性能指标均居国内先进水平。能实现全天候、大范围、多船舶的实时定位、目标锁定跟踪、指挥调度、改进船舶运行管理,提供一个直观的图形化控制平台,在全球范围内实现高效船舶监控和指挥调度。

船舶电力推进系统

船舶电力推进系统 上海海事大学梁伟波摘编2010-08-12 关键字:船舶电力推进系统浏览量:310 船舶电力推进,有直流推进和交流推进两大类。 1970年代以前,主要采用直流电力推进系统,因为直流电机转速调整范围宽广和平滑,过载起动和制动转矩大,逆转运行特性好;而交流电动机尽管具有输出功率大、极限转速高、结构简单、成本低、体积小、运行可靠等优点,但限于当时的技术限制,调速困难,应用较少。 随现代控制理论和数字控制、直接转矩控制、矢量控制等电力电子技术的发展,交流调速系统的性能已经可以与直流调速系统相媲美。交流电力推进系统的应用,已经成为船舶电力推进发展的主流,呈现出蓬勃发展的态势。水面船只,交流电力推进占主导地位,所选用的交流电动机,交流异步电机、交流同步电机、永磁同步电机等并存。只有潜艇,仍是直流推进占主导地位。 世界著名的电气集团,如SIEMENS,ABB,以及ALSTOM等,都研制出船舶交流电力推进的成套装置,功率从几百千瓦到几十兆瓦,其中以吊舱式推进器最具代表性。例如ABB 公司的AZIPOD推进系统,功率已达40MW,性能可靠,传动效率高,节省空间,已成功地应用在油轮、破冰船、邮轮、化学品船、半潜船等多种船型,并在近期新造船舶市场获得良好评价。 目前,船舶采用的电力推进系统,型式多种多样,但归纳起来基本可分为以下五类: ·可控硅整流器+直流电动机 ·变距桨+交流异步电动机 ·电流型变频器+交流同步电动机 ·交一交变频器+交流同步电动机

·电压型变频器+交流异步电动机 选择电力推进装置时,主要关注价格、功率范围、推进效率、起动电流、起动转矩、动态响应、转矩波动、功率因数、功率损耗、谐波等指标。 1 可控硅整流器+直流电动机 1970年代以前,船舶电力推进系统中,直流电动机占据主导地位。1940和1950年代,推进系统采用原动机一直流发电机一直流电动机形式,通过调节发电机励磁电流的大小和方向,调节电动机转速及转向。 1950年代末,大功率可控静态电力变流元件研制成功,可控硅整流装置出现,直流电力推进系统演变成可控整流器加直流电动机模式。晶闸管的问世加速了这种推进技术的发展,拓展了其应用领域。至今,该种推进形式仍不失为一种高效、经济的推进方案。 可控硅整流器+直流电动机系统,采用全桥式晶体管整流器为一个电枢电流可控的直流马达供电。 这种推进方式的优点: ·控制角α的控制范围,理论上是0~180°;实际上一般在15~150°,是考虑到电网的压降,确保电机可控,控制角α确保留有换流边界; ·起动电流及起动转矩接近于零; ·扭矩波动平滑; ·动态响应一般小于100毫秒。 缺点是: ·转矩控制不够精确,若要得到精确平滑的转矩控制,必须提高电枢感应系数,但会引起系统动态性能减弱,功率因数偏低,增加系统损耗; ·直流电机驱动需要的换向器,是一个易发生故障的部件; ·会对船舶电网产生较大的谐波污染,因为采用了大功率电力电子器件; ·直流电动机固有的结构复杂、成本高、体积大、维护困难、效率低等缺点,阻碍了它在船舶电力推进领域的广泛应用。

电力推进船舶技术

船舶电力推进electric propulsion几种典型方式的比较 内容提要:此文介绍目前市场上五种类型电力推进系统,并分析比较它们的工作原理和特点。 0 前言 船舶电力推进,有直流推进和交流推进两大类。 1970年代以前,主要采用直流电力推进系统,因为直流电机转速调整范围宽广和平滑,过载起动和制动转矩大,逆转运行特性好;而交流电动机尽管具有输出功率大、极限转速高、结构简单、成本低、体积小、运行可靠等优点,但限于当时的技术限制,调速困难,应用较少。 随现代控制理论和数字控制、直接转矩控制、矢量控制等电力电子技术的发展,交流调速系统的性能已经可以与直流调速系统相媲美[1]。交流电力推进系统的应用,已经成为船舶电力推进发展的主流,呈现出蓬勃发展的态势。水面船只,交流电力推进占主导地位,所选用的交流电动机,交流异步电机、交流同步电机、永磁同步电机等并存。只有潜艇,仍是直流推进占主导地位。 世界著名的电气集团,如SIEMENS,ABB,以及ALSTOM等,都研制出船舶交流电力推进的成套装置,功率从几百千瓦到几十兆瓦,其中以吊舱式推进器最具代表性。例如ABB公司的AZIPOD推进系统,功率已达40MW,性能可靠,传动效率高,节省空间,已成功地应用在油轮、破冰船、邮轮、化学品船、半潜船等多种船型,并在近期新造船舶市场获得良好评价。 目前,船舶采用的电力推进系统,型式多种多样,但归纳起来基本可分为以下五类[2~4]: ?可控硅整流器+直流电动机 ?变距桨+交流异步电动机 ?电流型变频器+交流同步电动机 ?交一交变频器+交流同步电动机 ?电压型变频器+交流异步电动机 选择电力推进装置时,主要关注价格、功率范围、推进效率、起动电流、

相关主题
文本预览
相关文档 最新文档