当前位置:文档之家› 一元二次函数解法、韦达定理、根的判别式精分类习题

一元二次函数解法、韦达定理、根的判别式精分类习题

一元二次函数解法、韦达定理、根的判别式精分类习题
一元二次函数解法、韦达定理、根的判别式精分类习题

一、概念习题

1、方程782

=x 的一次项系数是 ,常数项是 。

2、若方程()021

=--m x m 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程。

3、若方程()112

=?+

-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( )

A.m=n=2

B.m=2,n=1

C.n=2,m=1

D.m=n=1 5、方程()0132=+++mx x

m m

是关于x 的一元二次方程,则m 的值为 。

6、已知322

-+y y 的值为2,则1242++y y 的值为 。

7、关于x 的一元二次方程()0422

2

=-++-a x x a 的一个根为0,则a 的值为 。

8、已知关于x 的一元二次方程()002

≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。 9、已知b a ,是方程042

=+-m x x 的两个根,c b ,是方程0582

=+-m y y 的两个根,则m 的值为 。

10、已知方程0102

=-+kx x 的一根是2,则k 为 ,另一根是 。

11、已知关于x 的方程022

=-+kx x 的一个解与方程

31

1

=-+x x 的解相同。⑴求k 的值 ⑵方程另一个解。 12、已知m 是方程012=--x x 的一个根,则代数式=-m m 2

13、已知a 是0132=+-x x 的根,则=-a a 622

14、方程()()02

=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a -

15、若=?=-+y

x 则y x 324,0352 。

二、解法习题

直接开平方法

1、解关于x 的方程:

();08212=-x ()216252x -=0; ()();09132=--x (4)02=-b ax

2、若()()2

2

21619+=-x x ,则x 的值为 。

3下列方程无解的是( )

A.1232

2

-=+x x B.()022

=-x C.x x -=+132 D.092

=+x

配方法

1、(1)试用配方法说明322

+-x x 的值恒大于0。(2)试用配方法说明47102-+-x x 的值恒小于0。

2、已知x 、y 为实数,求代数式7422

2

+-++y x y x 的最小值。

3、已知,x、y

y x y x 013642

2

=+-++为实数,求y

x 的值。

4、分解因式:31242

++x x

5、试用配方法说明47102

-+-x x 的值恒小于0。

6、已知04112

2

=---+x x x

x ,则=+x x 1

. 7、若912322-+--

=x x t ,则t 的最大值为 ,最小值为 。 8、如果4122411-++-=--+

+b a c b a ,那么c b a 32-+的值为 。

公式法

1、在实数范围内分解因式: (1)3222

--x x ; (2)1842-+-x x . ⑶22542y xy x --

2、已知0232

=+-x x ,求代数式

()1

1

123

-+--x x x 的值。

3、如果012=-+x x ,那么代数式7223-+x x 的值。

4、已知a 是一元二次方程0132

=+-x x 的一根,求1

1

522

23++--a a a a 的值。

因式分解法

1、()()3532-=-x x x 的根为( )

A 25=

x B 3=x C 3,2

521==x x D 52=x 2、若()

()044342=-+++y x y x ,则4x+y 的值为 。

变式1:(

)()=+=-+-+2222

2

22

,06b 则a b a

b

a 。

变式2:若()()032=+--+y x y x ,则x+y 的值为 。

变式3:若142

=++y xy x ,282

=++x xy y ,则x+y 的值为 。

3、方程062

=-+x x 的解为( )

A.232

1

=-=,x

x B.232

1-==,x

x C.332

1-==,x

x D.2221-==,x x

4、解方程: (

)

04321322

=++++x x

27003000000x x +-=

5、已知02322

2

=--y xy x ,则

y

x y

x -+的值为 。

变式:已知02322

2

=--y xy x ,且0,0>>y x ,则

y

x y

x -+的值为 。 6、若实数x 、y 满足()()023=++-+

y x y x ,则x+y 的值为( )

A 、-1或-2

B 、-1或2

C 、1或-2

D 、1或2

7、方程:21

2

2

=+

x x 的解是 。 8、已知0662

2

=--y xy x ,且0>x ,0>y ,求y

x y

x --362的值。

9、方程()012000199819992

=-?-x x 的较大根为r ,方程01200820072

=+-x x

的较小根为s ,则

s-r 的值为 。

换元法解决特殊的一元二次方程

2

4935120x x +-=

222

()5()60x x x x ---+=

2

21211x x x x +-=+

用两种不同的方法解方程组???=+-=-)

2(.

065)1(,622

2

y xy x y x

三、韦达定理练习题

1、若12,x x 是方程2

220070x x +-=的两个根,试求下列各式的值: (1) 2

2

12x x +; (2) 12

11

x x +

; (3) 12(5)(5)x x --; (4) 12||x x -.

2、已知关于x 的方程2

2

1(1)104

x k x k -+++=,根据下列条件,分别求出k 的值. (1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.

3、已知12,x x 是一元二次方程2

4410kx kx k -++=的两个实数根. (1)是否存在实数k ,使12123

(2)(2)2

x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2)求使12

21

2x x x x +-的值为整数的实数k 的整数值.

4、以71+与71-为根的一元二次方程是()

A .0622

=--x x B .0622

=+-x x

C .0622

=-+y y

D .0622

=++y y

5、⑴写出一个一元二次方程,要求二次项系数不为1,且两根互为倒数:

⑵写出一个一元二次方程,要求二次项系数不为1,且两根互为相反数:

6、已知一个直角三角形的两直角边长恰是方程07822

=+-x x 的两根,则这个直角三角形的斜边是( )

A.3

B.3

C.6

D.6 7、解方程组:

???=+=+???==+.

2,10)2(;24,

10)1(22y x y x xy y x 8、已知关于x 的方程()01122

2=+-+x k x k 有两个不相等的实数根21,x x ,(1)求k 的取值范围;

(2)是否存在实数k ,使方程的两实数根互为相反数?若存在,求出k 的值;若不存在,请说明理由。

9、小明和小红一起做作业,在解一道一元二次方程(二次项系数为1)时,小明因看错常数项,而得到解为8和2,小红因看错了一次项系数,而得到解为-9和-1。你知道原来的方程是什么吗?其正确解应该是多少?

10、已知b a

≠,0122=--a a ,0122=--b b ,求=+b a

变式:若0122=--a a ,0122

=--b b ,则a b b a +的值为 。

11、已知βα,是方程012

=--x x 的两个根,那么=+βα34 .

四、根的判别式练习题

1、若关于x 的方程0122

=-+x k x 有两个不相等的实数根,则k 的取值范围是 。

2、关于x 的方程()0212

=++-m mx x m 有实数根,则m 的取值范围是( )

A.10≠≥且m m

B.0≥m

C.1≠m

D.1>m

3、已知关于x 的方程()0222

=++-k x k x

(1)求证:无论k 取何值时,方程总有实数根;

(2)若等腰?ABC 的一边长为1,另两边长恰好是方程的两个根,求?ABC 的周长。

4、已知二次三项式2)6(92

-++-m x m x 是一个完全平方式,试求m 的值.

5、m 为何值时,方程组???=+=+.

3,

6222y mx y x 有两个不同的实数解?有两个相同的实数解?

6、当k 时,关于x 的二次三项式92

++kx x 是完全平方式。

7、当k 取何值时,多项式k x x 2432

+-是一个完全平方式?这个完全平方式是什么?

8、已知方程022

=+-mx mx 有两个不相等的实数根,则m 的值是 .

9、k 为何值时,方程组??

?=+--+=.

0124,22

y x y kx y (1)有两组相等的实数解,并求此解;(2)有两组不相等的

实数解;(3)没有实数解.

10、当k 取何值时,方程0423442

2

=+-++-k m m x mx x 的根与m 均为有理数?

11、不解方程,判断关于x 的方程()322

2-=+--k

k x x 根的情况。

12、求证:无论m 取何值,方程03)7(92

=-++-m x m x 都有两个不相等的实根。 13、当m 为什么值时,关于x 的方程01)1(2)4(2

2

=+++-x m x m 有实根。

14、已知关于x 的方程01)12(2

2

=+-+x k x k 有两个不相等的实数根1x 、2x ,问是否存在实数k ,使方程的两实数根互为相反数?如果存在,求出k 的值;如果不存在,请说明理由。

15、关于x 的方程()03212=-++mx x m ⑴有两个实数根,则m 为 ,⑵只有一个根,则m 为 。

第十课判别式与韦达定理

第10课 判别式与韦达定理 〖知识点〗 一元二次方程根的判别式、判别式与根的个数关系、判别式与根、韦达定理及其逆定理 〖大纲要求〗 1.掌握一元二次方程根的判别式,会判断常数系数一元二次方程根的情况。对含有字母系数的由一元二次方程,会根据字母的取值范围判断根的情况,也会根据根的情况确定字母的取值范围; 2.掌握韦达定理及其简单的应用; 3.会在实数范围内把二次三项式分解因式; 4.会应用一元二次方程的根的判别式和韦达定理分析解决一些简单的综合性问题。 内容分析 1.一元二次方程的根的判别式 一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac 当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根, 当△<0时,方程没有实数根. 2.一元二次方程的根与系数的关系 (1)如果一元二次方程ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么a b x x -=+21,a c x x =21 (2)如果方程x 2 +px+q=0的两个根是x 1,x 2,那么x 1+x 2=-P ,x 1x 2=q (3)以x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x+x 1x 2=0. 3.二次三项式的因式分解(公式法) 在分解二次三项式ax 2+bx+c 的因式时,如果可用公式求出方程ax 2+bx+c=0的两个根 是x 1,x 2,那么ax 2+bx+c=a(x-x 1)(x-x 2). 〖考查重点与常见题型〗 1.利用根的判别式判别一元二次方程根的情况,有关试题出现在选择题或填空题中,如: 关于x 的方程ax 2-2x +1=0中,如果a<0,那么梗的情况是( ) (A )有两个相等的实数根 (B )有两个不相等的实数根 (C )没有实数根 (D )不能确定 2.利用一元二次方程的根与系数的关系求有关两根的代数式的值,有关问题在中考试题中出现的频率非常高,多为选择题或填空题,如: 设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( ) (A )15 (B )12 (C )6 (D )3 3.在中考试题中常出现有关根的判别式、根与系数关系的综合解答题。在近三年试题中又出现了有关的开放探索型试题,考查了考生分析问题、解决问题的能力。 考查题型 1.关于x 的方程ax 2-2x +1=0中,如果a<0,那么根的情况是( ) (A )有两个相等的实数根 (B )有两个不相等的实数根 (C )没有实数根 (D )不能确定 2.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( ) (A )15 (B )12 (C )6 (D )3 3.下列方程中,有两个相等的实数根的是( ) (A ) 2y 2+5=6y (B )x 2+5=2 5 x (C ) 3 x 2- 2 x+2=0(D )3x 2-2 6 x+1=0

最新初中数学之韦达定理

精品文档 精品文档 韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根 12,x x ,那么1212,b c x x x x a a +=-= 说明:定理成立的条件0?≥ 1.不解方程写出下列方程的两根和与两根差 (1)01032=--x x (2)01532=++x x (3)0223422 =--x x 2. 如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = . 3. 若两数和为3,两数积为-4,则这两数分别为 4. 已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += 5. 若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 6. 已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值: (1)2212x x += ; (2)2 111x x += ; (3)=-221)(x x = ; (4))1)(1(21++x x = 7.已知关于x 的方程02)15(22=-++-k x k x ,是否存在负数k ,使方程的两个实数根的 倒数和等于4?若存在,求出满足条件的k 的值;若不存在,说明理由。 8.关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是( ) (A )0 (B )正数 (C )-8 (D )-4 9.已知方程122-+x x =0的两根是1x ,2x ,那么=++1221221x x x x ( ) (A )-7 (B) 3 (C ) 7 (D) -3 10.已知方程0322=--x x 的两根为1x ,2x ,那么2 111x x +=( ) (A )-31 (B) 3 1 (C )3 (D) -3 11. 若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是( ) (A )5或-2 (B) 5 (C ) -2 (D) -5或2 12.若方程04322=--x x 的两根是1x ,2x ,那么)1)(1(21++x x 的值是( ) (A )-21 (B) -6 (C ) 21 (D) -2 5 13.分别以方程122--x x =0两根的平方为根的方程是( )

二次函数经典例题及答案

二次函数经典例题及答案 1.已知抛物线的顶点为P (- 4,—2),与x轴交于A B两点,与y轴交于点C,其中B点坐标为(1 , 0)。 (1) 求这条抛物线的函数关系式; (2) 若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ ADQ 1 2 9 . 135 y=2 x +4x - 2;存在点Q (-1 , -4 ) , Q (2^5-9,-%'5 ) , Q (--^, -4) ?析 一2 25 试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a ( x+4) - 2,然后把点B的坐 标代入解析式求出a的值,即可得解; (2)先根据顶点坐标求出点D 的坐标,再根据抛物线解析式求出点A、C的坐标,从而得 到OA OC AD的长度,根据勾股定理列式求出AC的长度,然后根据锐角三角形函数求出/ OAC勺正弦值与余弦值,再分① AD=QD时,过Q作QE1丄x轴于点E,根据等腰三角形三线合一的性质求出AQ,再利用/ OAC勺正弦求出QE的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;②AD=AQ时,过Q作QE2丄x轴于点E>,利用/ OAC勺正弦求出QE2的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;③AQ=DQ时,过Q作QE3丄x轴于点已,根据等腰三角形三线合一的性质求出AE 的长度,然后求出OE,再由相似三角形对应边成比例列式求出QE3的长度,从而得到点Q 的坐标. 试题解析:(1 )???抛物线顶点坐标为( 25 -4 , - 2), ???设抛物线解析式为 2 25 y=a (x+4) - 2 为等腰三角形?若存在,请求出符合条件的点

判别式韦达定理题型讲解

根的判别式 【典例1】.关于x 的方程10422 =-+kx x 的一个根是-2,则方程的另一根是 _____;k =______。 【典例2】.1x 、2x 是方程05322 =--x x 的两个根,不解方程,求下列代数式 的值: (1)2 2 2 1x x +(2) 2 1x x -(3)22 22133x x x -+ 【典例3】.已知关于x 的一元二次方程与 有一个相同的根,求k 的值。 【典例4】已知方程032=++k x x (1)若方程两根之差为5,求k 。 (2)若方程一根是另一根2倍,求这两根之积。 【典例5】已知方程 两根之比为1:3,判别式值为16,求a 、b 的值。

韦达定理 [典例1]因式分解6x y+7xy-3=___________ [典例2]解方程组 [典例3]如果直角三角形三条边a,b,c,都满足方程x-mx+=0,求三角形的面积。 [典例4]已知方程2x-8x-1=0的两个根为α,β,不解方程,求解以+,(α-1)(β-1)为根的一元二次方程。 [典例5]已知某二次项系数为1的一元二次方程的两个实数根为p,q,且满足关系式,试求这个一元二次方程。

[典例6]已知α,β是一元二次方程4kx-4kx+k+1=0的两个实根 (1)是否存在实数根k,使(2α-β)(α-2β)=- 成立?若存在,求出k 的值;若不存在,请说明理由。 (2)求使+-2的值为整数的实数k的整数值。 训练题 1、(海淀中考)已知:关于x的一元二次方程ax2+2ax+c=0的两个实数根之差的平方为m. (1)试分别判断当a=1,c=-3与a=2,c=时,m≥4是否成立,并说明理由; (2)若对于任意一个非零的实数a,m≥4总成立,求实数c及m的值. 2、已知下列n(n为正整数)个关于x的一元二次方程:①x2-1=0,②x2+x-2=0, ③x2+2x-3=0,…(n)x2+(n-1)x-n=0. (1)请解上述一元二次方程①、②、③、(n); (2)请你指出这n个方程的根具有什么共同特点,写出一条即可. 3、(02海淀)(1)求证:若关于x的方程(n-1)x2十mx十1=0①有两个相等的实数根.则关于y的方程m2y2-2my-m2-2n2+3=0②必有两个不相等的实数根; (2)若方程①的一根的相反数恰好是方程②的一个根,求代数式m2n十12n 的值.

韦达定理(根与系数的关系)全面练习题及答案

1、韦达定理(根与系数的关系) 韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么 1212,b c x x x x a a +=-= 说明:定理成立的条件0?≥ 练习题 一、填空: 1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = . 2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = . 5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = . 6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 . 7、以13+,13-为根的一元二次方程是 . 8、若两数和为3,两数积为-4,则这两数分别为 . 9、以23+和23-为根的一元二次方程是 . 10、若两数和为4,两数积为3,则这两数分别为 . 11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += . 12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 . 13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = . 14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .

高中数学二次函数分类讨论经典例题

例1(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围; (2)关于x 的方程0142)3(22=++++m x m x 有两实根都在)4,0[内,求m 的取值范围; ⑶关于x 的方程0142)3(22=++++m x m x 有两实根在[]3,1外,求m 的取值范围 (4)关于x 的方程0142)3(22=++++m x m mx 有两实根,且一个大于4,一个小于4,求m 的取值范围. 例3已知函数3)12()(2--+=x a ax x f 在区间]2,2 3[-上的最大值为1,求实数a 的值。

解(1)令142)3(2)(2++++=m x m x x f ,∵对应抛物线开口向上,∴方程有两个实根,且一个大于1,一个小于1等价于0)1(?吗?),即.4 21-++++≥+????? ?????≥+-+<+-<≥≥m m m m m m m m m m f f (3)令142)3(2)(2++++=m x m x x f ,原命题等价于 ???<<0)3(0)1(f f 即? ??<++++<++++0142)3(690142)3(21m m m m 得.421-0)4(0g m 或,0 )4(0???>)(恒成立,求实数a 的取 值范围。 解:(1)0)()(恒成立?.)]([min a x f >又当]1,1[-∈x 时, 5)1()]([min -=-=f x f ,所以).5,(--∞∈a 【评注】“有解”与“恒成立”是很容易搞混的两个概念。一般地,对于“有解”与“恒成立”,有下列常用结论:(1)a x f >)(恒成立?a x f >min )]([;(2)a x f <)(恒成立?a x f )(有解?a x f >max )]([;(4)a x f <)(有解?.)]([min a x f < 分析:这是一个逆向最值问题,若从求最值入手,首先应搞清二次项系数a 是否为零,如果)(,0x f a ≠的最大值与二次函数系数a 的正负有关,也与对称轴

判别式与韦达定理的应用

【学习课题】 九上 补充内容 综合应用根的判别式和韦达定理 龙泉二中 范积慧 【学习目标】 1、掌握一元二次方程根与系数的符号关系 2、利用韦达定理并结合判别式,求参数的值 【学习重点】一元二次方程根与系数的符号关系 【学习难点】利用韦达定理并结合判别式,求参数的值 【学习过程】 学习准备:(1)一元二次方程ax 2+bx+c=0 (a ≠0) 的判别式△=__________ △>0?__________△=0 ?_____________△<0 ?__________ (2)一元二次方程ax 2+bx+c=0 (a ≠0)的两根分别为x 1和x 2 x 1+x 2=____________, x 1x 2=_____________ 解读教材:由根的判别式及韦达定理可得如下结论: (1)若a 、c 异号 ? ax 2+bx+c=0 (a ≠0)必有两个不相等的实数根; (2)有一个根为1 ? a+b+c=0 ; (3) 有一个根为—1 ? a —b+c=0; (4)有一个根为0 ? c=0 (5)有两个正根 ??????+≥0210210>>△x x x x (6)有两个负根 ? ?? ???+≥0210210><△x x x x (7) 有一正根一负根 ????0021<△>x x (8)两根同号 ????≥002 1>△x x (9)两根互为相反数????=?=+0 0021b x x △> (10)两根互为倒数????=≥102 1x x △ (11)一根为正,一根为0 ??????=?=+00002 121c x x x x >△> (12)一根为负,一根为0 ??????=?=+00002 121c x x x x <△> (13)两根均为0?b=c=0 (14) 一根比a 大,一根比a 小????--0))(021 <(△>a x a x 例1 已知方程(k+1)x 2—4kx+3k —1=0 的两个实数根均为正,求k 的值。 思路点拨:因为原方程两个实数根均为正,有上述结论(5)可得不等式组,解这个不 等式组即可求出k 的值。

一元二次方程根的判别式与韦达定理

一元二次方程根的判别式和韦达定理 知识点一、一元二次方程根的判别式 一元二次方程)0(02 ≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02 ≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42-=?. (1)当△>0?一元二次方程有2 个不相等的实数根;1x = 2x = (2)当△=0?一元二次方程有2个相等的实数根;122b x x a ==- (3)当△<0?一元二次方程没有实数根. 例1:下列一元二次方程没有实数根的是( ) A .x 2+2x +1=0 B .x 2+x +2=0 C .x 2﹣1=0 D .x 2﹣2x ﹣1=0 【变式一】不解方程,判断一元二次方程2210x ax a -++=的根的情况是( ). A .没有实数根 B .只有一个实数根 C .有两个相等的实数根 D .有两个不相等的实数根 例2.关于x 的一元二次方程(k ﹣1)x 2﹣2x +1=0有两个不相等的实数根,则实数k 的取值范围是 . 【变式一】关于x 的方程()22210m x x ++-=有两个不等的实根,则m 的取值范围是 知识点二、韦达定理 1.如果一元二次方程2 0(0)ax bx c a ++=≠的两根为12x x 、,那么有:1212b x x a c x x a ? +=-????=?? . 例3:已知α,β是一元二次方程220x x +-=的两个实数根,则α+β-αβ的值是( ) A .3 B .1 C .-1 D .-3 知识点&例题

【变式一】已知一元二次方程22210x x +-=的两个根为1x ,2x ,且1x <2x ,下列结论正确的是( ) A .1x + 2x =1 B .1x ?2x =-1 C .|1x |<|2x | D .21112 x x += 【变式二】已知1x ,2x 是关于x 的方程230x bx +-=的两根,且满足121235x x x x +-=,那么b 的值为( ) A .4 B .-4 C .3 D .-3 2、利用根与系数的关系求值,要熟练掌握以下等式变形 ①()2 221212122x x x x x x +=+-; 例4:设1x 、2x 是一元二次方程22410x x --=的两实数根,则的2212x x +值是( ) A .2 B .4 C .5 D .6 【变式一】设1x ,2x 是一元二次方程x 2﹣2x ﹣3=0的两根,则2212x x + = . 【变式二】若α、β是一元二次方程x 2+2x ﹣6=0的两根,则α2+β2= . ②()()2 21212124x x =x x x x -+-; 例5:设1x 、2x 是一元二次方程x 2﹣5x ﹣1=0的两实数根,则()2 12x x -的值为 . 【变式一】设1x ,2x 是一元二次方程x 2﹣5x ﹣6=0的两根,则()212x x - = . 【变式二】若α、β是一元二次方程x 2+7x ﹣6=0的两根,则()2 α-β= . ③12x x =-± 例6:设1x 、2x 是一元二次方程23450x x -+=的两实数根,则12x x -的值为 . 【变式一】设1x ,2x 是一元二次方程21 5102 x x --=的两根,则12x x - = . 【变式二】若α、β是一元二次方程2250x x +-=的两根,则α-β= .

初中数学竞赛辅导-韦达定理及其应用

学科:奥数年级:初三 不分版本期数:346 本周教学内容:韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则, 。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b 为实数,且,,求的值。 思路注意a,b 为方程的二实根;(隐含)。 解(1)当a=b时, ; (2 )当时,由已知及根的定义可知,a,b分别是方程的两根,由韦达定理得 ,ab=1. 说明此题易漏解a=b 的情况。根的对称多项式,,等都可以用 方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。

★★★例2 若,且,试求代数式的值。 思路 此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 解:因为,由根的定义知m ,n 为方程 的二不等实根,再由韦达定理, 得 , ∴ 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3 设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以 和 为根的一元二次方程仍为 。求所有这样的一元二次方 程。 解 (1)由韦达定理知 , 。 , 。 所以,所求方程为 。 (2)由已知条件可得 解之可得由②得,分别讨论 (p,q )=(0,0),(1,0),(1-,0),(0,1),(2,1),(2-,1)或(0, 1-)。 于是,得以下七个方程 , , , ,, 01x 2x 2=++,01x 2=-,其中01x 2=+无实数根,舍去。其余六个方程均为所求。

二次函数典型例题解析

二次函数典型例题解析 关于二次函数的概念 例1 如果函数1)3(232++-=+-mx x m y m m 是二次函数,那么m 的值为 。 例2 抛物线422-+=x x y 的开口方向是 ;对称轴是 ;顶点为 。 关于二次函数的性质及图象 例3 函数)0(2≠++=a c bx ax y 的图象如图所示, 则a 、b 、c ,?,c b a ++,c b a +-的符号 为 , 例4 (镇江2001中考题)老师给出一个函数y=f (x ),甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。乙:函数的图像经过第一象限。丙:当x <2时,y 随x 的增大而减小。丁:当x <2时,y >0,已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数—————————————————。 例5 (荆州2001)已知二次函数y=x 2+bx +c 的图像过点A (c ,0),且关于直线x=2对称,则这个二次函数的解析式可能是 (只要写出一个可能的解析式) 例6 已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( ) (A ) 第一或第二象限 (B )第三或第四象限 (C )第一或第四象限 (D )第二或第三象限 例7 双曲线x k y = )0(≠k 的两分支多在第二、四象限内,则抛物线222k x kx y +-=的大致图 象是( ) 例8 在同一坐标系中,直线b ax y +=和抛物线c bx ax y ++=2 确定二次函数的解析式 例9 已知:函数c bx ax y ++=2的图象如图:那么函数解析式为((A )322++-=x x y (B )322--=x x y (C )322+--=x x y (D )322---=x x y

判别式与韦达定理

第三讲判别式与韦达定理 教学容:判别式与韦达定理 教学目标: 1、熟练掌握判别式的概念以及判别式与方程根的情况; 2、能熟练运用△求方程中的参数值或取值围; 3、理解并掌握韦达定理的定义; 4、熟练掌握一些常用代数式的变形; 5、能利用韦达定理构造一元二次方程; 6、经过本章的学习,体会一元二次方程根与系数的关系,以及加深对一元二次方程的理解。 教学重点: 1、△与方程根的关系; 2、韦达定理; 3、常用代数式的变形; 教学难点: 1、运用△求方程中参数的值或取值围; 2、常用代数式的变形; 教学方法:探究法、讲授法; 教学过程: 8:20~8:30:考勤,收发作业 8:30~8:50:进门考 第一课时8:50~9:20 一、讲评作业 二、导入新课 子曰:“温故而知新,可以为师矣!”所以在学习今天的新知识前我们先一起

来温习一下昨天我们学了什么? 1、引导学生复习一元二次方程: 定义 一元二次方程 特点 解 直接开方 解法 配方 公式 因式分解 2、举例复习四种方法: (1) x 2=25 (2) 2x 2+4x-2=0 (3) 2123 0234 x x +-= (4) 2560x x ++= 3、问公式引入判别式 三、探索新知: 1、回顾得出判别式的概念:24b ac ?=-作用:判别一元二次方程根的个数. 要先化为一般式 2、算出下列一元二次方程的判别式 2223720230410 x x x x x x -+=-=++= 3、判别式与方程的根的关系 1,2120020x b x x a ?>?= -?=?==?

二次函数经典测试题及答案解析

二次函数经典测试题及答案解析 一、选择题 1.如图,ABC ?为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】 根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意; 点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】 本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .0<t <5 B .﹣4≤t <5 C .﹣4≤t <0 D .t ≥﹣4 【答案】B 【解析】 【分析】 先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函

数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解; 【详解】 解:∵对称轴为直线x =2, ∴b =﹣4, ∴y =x 2﹣4x , 关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4, ∴二次函数y 的取值为﹣4≤y <5, ∴﹣4≤t <5; 故选:B . 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零 B .原数与对应新数的差,随着原数的增大而增大 C .当原数与对应新数的差等于21时,原数等于30 D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】 解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误.

初二.判别式与韦达定理

[文件] sxjsck0006 .doc [科目] 数学 [关键词] 初二/ 判别式/韦达定理/方程 [标题] 判别式与韦达定理 [内容] 判别式与韦达定理 根的判别式和韦达定理是实系数一元二次方程的重要基础知识,利用它们可进一步研究根的性质,也可以将一些表面上看不是一元二次方程的问题转化为一元二次方程来讨论. 1. 判别式的应用 例1 (1987年武汉等四市联赛题)已知实数a 、b 、c 、R 、P 满足条件PR >1,Pc+2b+Ra=0. 求证:一元二次方程ax 2+2bx+c=0必有实根. 证明 △=(2b )2-4ac.①若一元二次方程有实根, 必须证△≥0.由已知条件有2b=-(Pc+Ra ),代入①,得 △ =(Pc+Ra )2-4ac =(Pc )2+2PcRa+(Ra )2-4ac =(Pc-Ra )2+4ac (PR-1). ∵(Pc-Ra )2≥0,又PR >1,a ≠0, (1)当ac ≥0时,有△≥0; (2)当ac <0时,有△=(2b )2-4ac >0. (1)、(2)证明了△≥0,故方程ax 2+2bx+c=0必有实数根. 例2 (1985年宁波初中数学竞赛题)如图21-1,k 是实数,O 是数轴的原点,A 是数 轴上的点,它的坐标是正数a.P 是数轴上另一点,坐标是x,x <a ,且OP 2=k ·PA ·OA. (1) k 为何值时,x 有两个解x1,x2(设x 1<x 2); 此处无图 (2) 若k >1,把x 1,x 2,0,a 按从小到大的顺序排列,并用不等号“<”连接. 解 (1)由已知可得x 2=k ·(a-x )·a ,即 x 2+kax-ka 2=0,当判别式△>0时有两解,这时 △ =k 2a 2+4ka 2=a 2k (k+4)>0. ∵a >0, ∴k (k+4)>0,故k <-4或k >0. (2)x 1<0<x 2<a. 例3(1982年湖北初中数学竞赛题)证明y x y xy x +++-2 2不可能分解为两个一次因式之积. 分析 若视原式为关于x 的二次三项式,则可利用判别式求解. 证明 ).()1(2222y y x y x y x y xy x ++-+=+++- 将此式看作关于x 的二次三项式,则判别式 △ =.163)(4)1(222+--=+--y y y y y 显然△不是一个完全平方式,故原式不能分解为两个一次因式之积. 例3 (1957年北京中学生数学竞赛题)已知x ,y ,z 是实数,且x+y+z=a ,①.2 12222a z y x =++ ②

初中数学竞赛:韦达定理(附练习题及答案)

初中数学竞赛:韦达定理 一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。 韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值; 利用韦达定理并结合根的判别式,讨论根的符号特征; 利用韦达定理逆定理,构造一元二次方程辅助解题等。 韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。 韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。 【例题求解】 【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 。 思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例 【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么 b a a b +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2 思路点拨:可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件。 注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧: (1)恰当组合;(2)根据根的定义降次;(3)构造对称式。 【例3】 已知关于x 的方程:04)2(2 2 =---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根。 (2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x 。 思路点拨:对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手。 【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值。

二次函数知识点总结及典型例题和练习(极好)

二次函数知识点总结及典型例题和练习(极好) 知识点一:二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a不为零,那么y叫做x 的二次函数。)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法--------五点作图法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C,再找到点C 的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B,然后顺次连接五点,画出二次函数的图像。 【例1】 已知函数y=x 2-2x-3, (1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。然后画出函数图象的草图; (2)求图象与坐标轴交点构成的三角形的面积: (3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y <0;③ y>0

知识点二:二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2) 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程 02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果 没有交点,则不能这样表示。 (3)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, 当题目中告诉我们抛物线的顶点时,我们最好设顶点式,这样最简洁。 【例1】 抛物线c bx ax y ++=2与x 轴交于A (1,0),B(3,0)两点,且过(-1,16),求抛物线的解析式。 【例2】 如图,抛物线c bx ax y ++=2与x 轴的一个交点A 在点(-2,0)和(-1,0)之间(包括这两点),顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,则: (1)abc 0 (>或<或=) (2)a 的取值范围是 ? 【例3】 下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( ) A.y = (x ? 2)2 + 1 B .y = (x + 2)2 + 1 C .y = (x ? 2)2 ? 3 D.y = (x + 2)2 – 3

根的判别式韦达定理

一元二次方程根的判别式和韦达定理 知识点1.根的判别式 2 1.402 2.0204 3.,22ac b b ac b x x a a ? ?≠-????>???? ?=?????

1、下列方程①012=+x ;②02=+x x ;③012=-+x x ;④02 =-x x 中,无实根的 方程是 。 2、已知关于x 的方程022 =+-mx x 有两个相等的实数根,那么m 的值是 。 3、下列方程中,无实数根的是( ) A 、011=-+-x x B 、 762=+y y C 、021=++x D 、0232=+-x x 4、若关于x 的一元二次方程01)12()2(2 2 =+++-x m x m 有两个不相等的实根,则m 的取值范围是( ) A 、43< m B 、m ≤43 C 、4 3>m 且m ≠2 D 、m ≥43 且m ≠2 5、在方程02 =++c bx ax (a ≠0)中,若a 与c 异号,则方程( ) A 、有两个不等实根 B 、有两个相等实根 C 、没有实根 D 、无法确定 6、关于x 的一元二次方程x 2 +kx -1=0的根的情况是 ( ) A 、有两个不相等的同号实数根 B 、有两个不相等的异号实数 C 、有两个相等的实数根 D 、没有实数根 7、 m 取何值时,方程()0112)2(2 2 =++--x m x m (1)有两个不相等的实数根 (2) 有两个相等的实数根;(3)没有实数根 8、试证:关于x 的方程1)2(2 -=+-x m mx 必有实根。 9、已知关于x 的方程022 =-+-n m mx x 的根的判别式为零,方程的一个根为1,求m 、 n 的值。

二次函数典型例题——旋转

二次函数典型例题——找规律 1、如图,一段抛物线:y =-x(x -3)(0≤x≤3),记为C 1,它与x 轴交于点O ,A 1; 将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A2旋转180°得C 3,交x 轴于点A 3; …… 如此进行下去,直至得C 13.若P (37,m )在第13段抛物线C 13上,则m =_________. 2、二次函数223 y x =的图象如图所示,点A 0位于坐标原点,点1232015,,,,A A A A ???在y 轴的正半轴上,点1232015,,,,B B B B ???在二次函数223 y x =位于第一象限的图象上,若△A 0B 1C 1,△A 1B 2C 2,△A 2B 3C 3,…△A 2014B 2015C 2015都为正三角形,则△011A B A 的边长= , △201420152015A B A 的边长= . 1,2015

3、如图,点A 1、A 2、A 3、……、A n 在抛物线2y x =图象上,点B 1、B 2、B 3、……、B n 在y 轴上,若△A 1B 0B 1、△A 2B 1B 2、……、△A n B n -1B n 都为等腰直角三角形(点B 0是坐 标原点),则△A 2014B 2013B 2014的腰长= . (石景山区)已知关于x 的方程01)1(22=-+-+m x m mx 有两个实数根,且m 为非负 整数. (1)求m 的值; (2)将抛物线1C :1)1(22-+-+=m x m mx y 向右平移a 个单位,再向上平移b 个单位得到抛物线2C ,若抛物线2C 过点),(b A 2和点),(12 4+b B ,求抛物线2C 的 表达式; (3)将抛物线2C 绕点(n n ,1+)旋转?180得到抛物线3C ,若抛物线3C 与直线 12 1+=x y 有两个交点且交点在其对称轴两侧,求n 的取值范围. (石景山区)解:(1)∵方程01)1(22=-+-+m x m mx 有两个实数根, ∴0≠m 且0≥?, ……………………1分 则有0)1(4-)1(42≥--m m m 且0≠m ∴1≤m 且0≠m 又∵m 为非负整数, ∴1=m . ………………………………2分 (2)抛物线1C :2x y =平移后,得到抛物线2C :b a x y +-=2 )(,……3分 ∵抛物线2C 过),2(b A 点,b a b +-=2)2(,可得2=a , 同理:b a b +-=+2)4(12,可得3=b , …………………………4分 ∴2C :()322+-=x y )(或742+-=x x y . …………5分 (3)将抛物线2C :3)2(2+-=x y 绕点(n n ,1+)旋转180°后得到的抛物线3C 顶 点为(322-n n ,), ………………6分 当n x 2=时,1122 1+=+?= n n y , 由题意,132+>-n n ,

二次函数根的判别式韦达定理

一元二次方的应用及根的判别式、韦达定理 一、根的判别式 1.一元二次方程根的判别式的定义: 运用配方法解一元二次方程过程中得到 222 4()24b b ac x a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22 424b b ac x a a -+=± 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ?=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式. 2.判别式与根的关系: 在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ?=-确定. 判别式:设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ?=-则 ①0?>?方程2 0(0)ax bx c a ++=≠有两个不相等的实数根21,24b b ac x -±-=. ②0?=?方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a ==-. ③0?;有两个相等的实数根时,0?=;没有实数根时,0?<. (2)在解一元二次方程时,一般情况下,首先要运用根的判别式24b ac ?=-判定方程的根的情况 (有两个不相等的实数根,有两个相等的实数根,无实数根).当240b ac ?=-=时,方程有两个相等的实数根(二重根),不能说方程只有一个根. ① 当0a >时?抛物线开口向上?顶点为其最低点; ② 当0a <时?抛物线开口向下?顶点为其最高点. 3.一元二次方程的根的判别式的应用: 一元二次方程的根的判别式在以下方面有着广泛的应用: (1)运用判别式,判定方程实数根的个数; (2)利用判别式建立等式、不等式,求方程中参数值或取值范围; (3)通过判别式,证明与方程相关的代数问题; (4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题. 二、韦达定理 如果一元二次方程20ax bx c ++=(0a ≠)的两根为12x x , ,那么,就有 ()()212ax bx c a x x x x ++=-- 比较等式两边对应项的系数,得 1212 b x x a c x x a ? +=-??? ??=??? ①,② ①式与②式也可以运用求根公式得到.人们把公式①与②称之为韦达定理,即根与系数的关系. 因此,给定一元二次方程20ax bx c ++=就一定有①与②式成立.反过来,如果有两数1x ,2x 满足①与②,那么这两数12x x , 必是一个一元二次方程20ax bx c ++=的根.利用这一基本知识常可以简捷地处理问题. 利用根与系数的关系,我们可以不求方程20ax bx c ++=的根,而知其根的正、负性. 在24b ac ?=-≥0的条件下,我们有如下结论: 当0c a <时,方程的两根必一正一负.若0b a -≥,则此方程的正根不小于负根的绝对值;若0b a -<,

相关主题
文本预览
相关文档 最新文档