当前位置:文档之家› 20170704-开关电源中的控制理论基础知识(一)

20170704-开关电源中的控制理论基础知识(一)

20170704-开关电源中的控制理论基础知识(一)
20170704-开关电源中的控制理论基础知识(一)

开关电源中的控制理论基础知识(一)

普高(杭州)科技开发有限公司 张兴柱 博士

传递函数的频域表示---Bode 图 v 图1: 控制理论中最常见单变量系统的传递函数方块图

在控制理论中,一个典型的控制系统往往用它们传递函数的方块图来表示。图1是最常见的一个单变量控制系统的传递函数方块图,它是一个负反馈随动系统。通过取样输出,并与给定进行比较,再将比较后的误差信号进行放大,并有执行机构去调整输出,使之跟随给定。在控制理论分析这种系统的稳定性时,会先将每一个环节用它们的传递函数表示出来,如图1中的取样环节,其传递函数用)(s H 表示,误差放大环节的传递函数用)(s G c 表示,执行机构的传递函数用)(s G 表示,然后绘制出系统的传递函数方块图,最后从这个方块图获得系统的闭环输出与给定的关系。

经推导可得图1这种系统的闭环输出和给定之间的关系为:

)()(1)()

(1)()()()()(1)()(s H V s T s T s T V s G s G s G s G s H V s G s G v ref ref c c ref c o +=+=+= 由于)(s G c 是需要设计的传递函数,所以闭环后的输出只有在0)(1≠+s T 时才有解。)()()()(s

G s G s H s T c =是引入的环增益,它为环内各传递函数的乘积,一个系统能否稳定工作,及稳定后工作的好坏都与环增益)(s T 有关,这是一个非常重要的参数。那么如何用最简单的方法来分析一个已有系统的稳定性,或者来设计一个新系统的补偿参数以保证该系统具有最优越的动态特性呢?这些都会涉及到)(s T ,控制理论已用很大的篇幅介绍了分析和设计)(s T 的工具 --- Bode 图。

)()()(s v s v s G in o =

图2: 传递函数的定义

Bode 图是将图2定义的一个传递函数)(s G , 在频域算子s 用ωj 代替后,得到的)(ωj G 用其幅频)(log 20ωj G 和相频)(ωj G ∠所绘制的一组曲线。

为了能将这组曲线的整个频率范围都画在一张图上,横坐标用ωlog 或f log 表示,其刻度为对数刻度(多数以频率为单位表示);幅频的单位为分贝、相频的单位为度,两者均为线性刻度。图3是绘制Bode 图所用的坐标纸。 -20dB 0dB 20dB 40dB -40dB -60dB °0°

90°

?90°

?18060dB °

180°

?270°

+2701Hz 10Hz 100Hz 1KHz 10KHz 100KHz 1MHz 0.1Hz )

(log 20ωj G )(ωj G ∠

图3: Bode 图所用的坐标纸

由于频率为0 Hz 时的坐标为无限大,所以图中的横坐标起始点设为0.1Hz (具体可视情况而定,如也可设为1Hz 或10Hz 等等)。

对于传递函数为)(s G 的环节,其一般表达式可写成:)()()(s s P s G =。

其中)(s P 和)(s Q 都是s 的多项式。当表达的环节是一个稳定的环节时,其0)(=s Q 不会有右半平面的根,或者说)(s G 没有右半平面的极点。在控制理论所研究的简单系统中,单个环节传递函数的阶数(分母多项式中s 的最高次数)一般都等于或低于2阶,所以我们能很容易地将他们的Bode 图绘制出来,又因为环增益是几个环节传递函数的乘积,所以根据下面的数学公式: )

(log 20)(log 20)(log 20)

()()(log 20)(log 20ωωωωωωωj G j G j H j G j G j H j T c c ++==)

()()()]()()([)(ωωωωωωωj G j G j H j G j G j H j T c c ∠+∠+∠=∠=∠ 我们就可以非常容易地把环增益的Bode 图也绘制出来,具体的作法是将组成环增益各个环节传递函数的幅频和相频在Bode 图上分别相加就行。采用这种方法,也可将一个复杂环节

的传递函数先分解成几个简单的环节,再通过简单环节传递函数的Bode 图来获得该复杂环节的传递函数Bode 图。

?v 图4: 电压型控制开关电源的小信号传递函数框图

从后面将要介绍的文章中,我们会看到一个电压型控制的开关电源在其稳态工作点上的小信号传递函数方块图可用图4来表示,它比图1要复杂,但可看成是有两个扰动输入变量,即

)(?s v

g 和)(?s i o 的负反馈随动系统。其输出的小信号扰动经取样后,与基准的小信号(等于零)进行比较,再有误差放大和PWM 调制及功率变换器后,使输出的小信号扰动趋向于零。这个小信号传递框图的闭环小信号方程是:

)(?)

(1)()(?)(1)()(?s i s T s Z s v s T s G s v o out g vg o +?+= 其中)()()()(s G F s G s H s T vd m c =是小信号环增益,为了保证系统在小扰动下的稳定,同样必须保证0)(1≠+s T 。系统中的传递函数)(s G vd 、)(s G vg 和)(s Z out 是功率变换器在稳态工作点上的小信号传递函数,与PWM 变换器的拓扑结构和工作模式有关,可用等效电源平均法求得;)(s H 是输出电压取样环节的传递函数,在基准及输出电压给定后为常数;m F 是PWM 调制器的传递函数,在电压型控制中为常数;)(s G c 是开关电源补偿电路的传递函数,其是为了满足开关电源的动态指标而需要设计的参数。

由此可见,开关稳压电源的小信号动态分析和设计完全可以借用控制理论中的工具。因此先通过一定的篇幅,把在开关电源中用得非常多的简单环节之传递函数Bode 图介绍给大家,通过绘制这些环节的Bode 图,大家可以对它们的动态有所了解,并为绘制复杂环节传递函数的Bode 图和环增益的Bode 图打下基础。

开关电源研发范例

1 目的 希望以简短的篇幅,将公司目前设计的流程做介绍,若有介绍不当之处,请不吝指教. 2 设计步骤: 2.1 绘线路图、PCB Layout. 2.2 变压器计算. 2.3 零件选用. 2.4 设计验证. 3 设计流程介绍(以DA-14B33为例): 3.1 线路图、PCB Layout 请参考资识库中说明. 3.2 变压器计算: 变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,以下即就DA-14B33变压器做介绍. 3.2.1 决定变压器的材质及尺寸: 依据变压器计算公式 Gauss x NpxAe LpxIp B 100(max ) ? B(max) = 铁心饱合的磁通密度(Gauss) ? Lp = 一次侧电感值(uH)

? Ip = 一次侧峰值电流(A) ? Np = 一次侧(主线圈)圈数 ? Ae = 铁心截面积(cm 2) ? B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。 3.2.2 决定一次侧滤波电容: 滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。 3.2.3 决定变压器线径及线数: 当变压器决定后,变压器的Bobbin 即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。 3.2.4 决定Duty cycle (工作周期): 由以下公式可决定Duty cycle ,Duty cycle 的设计一般以50%为基准,Duty cycle 若超过50%易导致振荡的发生。 xD Vin D x V Vo Np Ns D (min))1()(-+=

开关电源基础知识简介

1、输出纹波噪声的测量及输出电路的处理 PWM 开关电源的输出的纹波噪声与开产频率有关。其纹波噪声分为两大部分:纹波(包括开关频率的纹波和周期及随机性漂移)和噪声(开关过程中产生)。 周期及随机性漂移 在纹波与噪声的测量过程中,如果不使用正确的测量方法将无法正确地测量出真出的输出纹波噪声。下面是推荐的测量方法: 平行线测量法:输出管脚接平行线后接电容,在电容两端使用20MHz C 为瓷片电容,负载与模块之间的距离在51mm 和76mm(2in.和3in)之间。 在大多数电路中, 2、多路输出的交互调节及其应用 交互调节的优点。图中lo1路负载电流、Vo2为辅助路输出电压。由图可见,20% 100% Io2 在主路负载从20%~100%变化时,辅助路输出电压随 辅助路负载电流的变化曲线中,辅助路输出电压始终在±4%范围之内。即使在最坏的情况,即主路空载、辅助路江载,主路满载、辅助路空载时其输出电压也能保证在标称电压的±10%范围之内。由此,对于输出稳压精度要求不太高的情况下,这种不稳压的辅助输出不仅能够满足供电的条件,而且相对成本低、器件少、可靠性高。建议用户首先考虑不稳压的辅助输出的电源模块。 开关电源基础知识简介

3、容性负载能力与电源输出保护 建议用户对电源模块的阻性负载取大于10%额定负载,这样模块工作比较稳定。 电容作为电源去耦及抗干扰的手段,在现代电子线路中必不可少,本公司的电源模块考虑此因素,都有相当的容性负载能力。但由于考虑到电源的综合保护能力,尤其是输出过载保护, 容性负载能力不可能太大,否则保护特性将变差。因此用户在使用过程中负载电容总量不应 超过最大容性负载能力。 Vo 输出电流保护一般有四种方式: ●恒流式:当到达电流保护点时,输出电流随负载的 进一步的加重,略有增加,输出电压不断下降。 ●回折式:当到达电流保护点时,输出电流随负载的 的加重,输出电压不断下降,同时输出电流也不断下降。 ●恒流-截止式:当到达电流保护点时,首先是恒流式 ●精确自恢复截止式:输出电流到达保护点,电源模块输出被禁止,负载减轻电路自恢复。 在大部分电路中使用恒流式与截止式较多,比较理想的保护方式是精确自恢复截止式,或者恒流-截止式保护。其中恒流式、回折式保护本质上就是自恢复的,但输出短路时的功耗较大, 尤其是恒流式。而截止式、恒流-截止式保护的自恢复特性须加辅助复位电路来完成自恢复,其 输出过载时的功耗可以通过复位电路的周期进行调整,即调整间歇启动的时间间隔。一般电流 保护1.2~2倍标称输出电流。精确自恢复截止式电流保护点设定为标称输出电流1.2倍或1.3倍。 一般输出有过压嵌位保护。 4、负载瞬态响应 当输出的负载迅速发生变化时,输出的电压会出现 上冲或下跌。电源模块经过调整恢复原输出电压。这个 响应过程中有两个重要的指标:过冲电压( Vo)和恢复 时间(tr)。过冲越小,恢复时间越短,系统响应速度 越快。一般在25%的标称负载阶跃变化,输出电压的 过冲为4%VO,恢复时间为500μS左右。 5、外围推荐电路 1)输出电压的调节: 本公司产品中有TRIM输出管脚的产品,可以通过电阻或电位器对输出电压进行一定范围内的调节。将电位器的中心与TRIM相连,在有+S,-S管脚的模块中,其他两端分别接+S、-S,没有相应主路的输出正负极(+S接Vo1,-S接GND上,调节电位器即可。辅路跟随主路调节。电位器阻值根据输出电压的大小选用5~20K?比较合适。一般微调范围为±10%。

开关电源类产品设计的安全规范

仅供参考[整理] 安全管理文书 开关电源类产品设计的安全规范 日期:__________________ 单位:__________________ 第1 页共14 页

开关电源类产品设计的安全规范 1.范围 1.1本规范规定了0公司户内使用、额定电压≤600V的开关电源类产品的设计安全要求,它包括参考标准资料、标志说明、一般要求和试验一般条件、电气技术参数规格、材料和结构、电气试验、机械试验、环境可靠性试验、包装、存放、出货和附录项内容。 1.2它主要以信息技术设备,包括电气事务设备及与之相关设备的安全标准为基础编写。 2.主要参考资料 2.1IEC60950-1999:信息技术设备的安全。 2.2IEC61000-4(所有系列):电磁兼容--试验和测量技术。 2.3IEC61000-3-2-1998:电磁兼容第3部分:限值第2章低压电气及电子设备发出的谐波 电流限值(设备每相输入电流≤16A)。 2.4IEC61000-3-3-1998:电磁兼容第3部分:限值第3章标称电流≦16A的低压电气及电子设备的供电系统中电压波动和变化的限值。 2.5IEC60384-14-1993:电子设备用固定电容器第14部分:分规范拟制电源电磁干扰用固定电容器。 2.6CISPR22-1998:信息技术设备的无线电干扰特性的限值和测量方法。 2.7CISPR24-1997:信息技术设备的无线电抗干扰特性的限值和测量方法。 2.8IEC60695-10-2:1995:着火危险试验第10部分:减少着火对电子技术产品而引起的不正常发热效应的指南和试验方法第2部分: 第 2 页共 14 页

(研发管理)开关电源研发范例

1 目的 希望以簡短的篇幅,將公司目前設計的流程做介紹,若有介紹不當之處,請不吝指教. 2 設計步驟: 2.1 繪線路圖、PCB Layout. 2.2 變壓器計算. 2.3 零件選用. 2.4 設計驗證. 3 設計流程介紹(以DA-14B33為例): 3.1 線路圖、PCB Layout 請參考資識庫中說明. 3.2 變壓器計算: 變壓器是整個電源供應器的重要核心,所以變壓器的計算及驗証是很重要的,以下即就DA-14B33變壓器做介紹. 3.2.1 決定變壓器的材質及尺寸: 依據變壓器計算公式 Gauss x NpxAe LpxIp B 100(max ) ? B(max) = 鐵心飽合的磁通密度(Gauss) ? Lp = 一次側電感值(uH) ? Ip = 一次側峰值電流(A) ? Np = 一次側(主線圈)圈數 ? Ae = 鐵心截面積(cm 2) ? B(max) 依鐵心的材質及本身的溫度來決定,以TDK Ferrite Core PC40為例,100℃時的B(max)為3900 Gauss ,設計時應考慮零件誤差,所以一般取3000~3500 Gauss 之間,若所設計的power 為Adapter(有外殼)則應取3000 Gauss 左右,以避免鐵心因高溫而飽合,一般而言鐵心的尺寸越大,Ae 越高,所以可以做較大瓦數的Power 。 3.2.2 決定一次側濾波電容: 濾波電容的決定,可以決定電容器上的Vin(min),濾波電容越大,Vin(win)越高,可以做較大瓦數的Power ,但相對價格亦較高。 3.2.3 決定變壓器線徑及線數: 當變壓器決定後,變壓器的Bobbin 即可決定,依據Bobbin 的槽寬,可決定變壓器的線徑及線數,亦可計算出線徑的電流密度,電流密度一般以6A/mm 2為參考,電流密度對變壓器的設計

开关电源基础学习知识原理及各功能电路详解

开关电源原理及各功能电路详解 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。开关电源的电路组成方框图如下: 开关电源电路方框图 二、输入电路的原理及常见电路 1、AC输入整流滤波电路原理:

输入滤波、整流回路原理图 ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的

电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET (MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

开关电源变压器基础知识

开关电源变压器基础知识 开关电源变压器现代电子设备对电源的工作效率、体积 以及安全要求等技术性能指标越来越高,在开关电源中决定这些技术性能指标的诸多因素中,基本上都与开关变压器的技术指标有关。开关电源变压器是开关电源中的关键器件,因此,在这一节中我们将非常详细地对与开关电源变压器相关的诸多技术参数进行理论分析。在分析开关变压器的工作原理的时候,必然会涉及磁场强度H和磁感应强度B以及磁 通量等概念,为此,这里我们首先简单介绍它们的定义和概念。在自然界中无处不存在电场和磁场,在带电物体的周围必然会存在电场,在电场的作用下,周围的物体都会感应带电;同样在带磁物体的周围必然会存在磁场,在磁场的作用 ,周围的物体也都会被感应产生磁通。现代磁学研究表明: 切磁现象都起源于电流。磁性材料或磁感应也不例外,铁磁现象的起源是由于材料内部原子核外电子运动形成的微电流,亦称分子电流,这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。因此,磁场强度的大小与磁偶极子的分布有关。在宏观条件下,磁场强度可以定义为空间某处磁场的大小。我们知道,电场强度的概念是用单位电荷在电场中所产生的作用力来定义的,而在

磁场中就很难找到一个类似于“单位电荷”或“单位磁场”的带磁物质来定义磁场强度,为此,电场强度的定义只好借用流过单位长度导体电流的概念来定义磁场强度,但这个概念本应该是用来定义电磁感应强度的,因为电磁场是可以互相产生感应的。幸好,电磁感应强度不但与流过单位长度导体的电流大小相关,而且还与介质的属性有关。所以,电磁感应强度可以在磁场强度的基础上再乘以一个代表介质属性的系数来表示。这个代表介质属性的系数人们把它称为导磁率。 在电磁场理论中,磁场强度H 的定义为:在真空中垂直于磁场方向的通电直导线,受到的磁场的作用力F 跟电流I 和导线长度的乘积I 的比值,称为通电直导线所在处的磁场强度。或:在真空中垂直于磁场方向的1 米长的导线,通过1 安培的电流,受到磁场的作用力为1 牛顿时,通过导线所在处的磁场强度就是1 奥斯特(Oersted) 。电磁感应强度一般也称为磁感应强度。由于在真空中磁感应强度与磁场强度在数

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

开关电源经典书籍推荐

开关电源经典书籍推荐 Power Supply Cookbook, Marty Brown, EDN Series, 2001. 本书作者Marty Brown任职On Semiconductor (Motorola)多年, 具有多年开关式电源供应器设计之实务经验,本书可以说是他以工程师 的观点,以实务经验为出发点所著作的一本精简扼要的设计参考书籍, 全书仅230余页.本书重点主要在第三章:PWM Switching Power Supplies说明传统脉宽调变转换器的设计方法;与第四 章:Waveshaping Techniques说明新型的谐振式转换器设计方法.本 书的优点是掌握重点,可以快速的建立系统的设计观念,缺点是未提供设计方程式推导说明,初学者不易了解其设计概念. Switching Power Supply Design, Edited by: Abraham I. Pressman, McGraw Hill, 2nd Ed., Nov. 1997. 本书作者Abraham I. Pressman可以说是开关式电源设计祖师级开 创大师早自1977年即着有『Switching and Linear Power Supply, Power Converter Design』一书,是早期电源设计从业人员重要的参 考书籍.本书是作者20年后再次出版的一本SPS设计专业书籍,全书包 含了十七章近700页,针对电源设计的专门议题都有重点的说明,读者可以选择有兴趣的章节阅读,是一本很好的设计百科工具书. [缺图] 交换式电源技术手册, 原著:原田耕介, 译者:陈连春, 建兴出版社, 1997年10月. 本书是原田耕介先生自1990年~1993年间在日本『电子技术』杂志连载关于电源供应器技术解说相关文章所汇整而成的一本着作,本书汇集了四十余位专家学者在开关式电源设计的专业说明,1997年由陈连村先生翻译中文本,本书目前已更新至第二版.本书的特色是非常实际,直接提供设计相关信息与实例说明,都是从事电源多年工作经验的累积,是从事电源设计工程师必读的参考书. Switching Power Supply Design & Optimization, Sanjaya Maniktala, McGraw Hill, May 2004. 本书作者任职于美商国家半导体公司(National Semiconductor)主 任工程师,具有多年电源设计之实务经验.电源设计是一个整合理论与 实务的最佳化过程,在这个复杂的最佳化过程当中,有许多需要进行试 试看的选择,而这些选择又不纯然只是试试看,是基于经验与理论判断 的试试看,有时也需要一些灵机一动的想法,也就是这些困难与迷惑成就了电源设计引人入胜之处,许许多多的工程师置身其间,获得难以言明的乐趣.本书作者选择了『最佳化』为书名之关键字,有兴趣的读者可一窥实务工程师观点的最佳化思路历程.

开关电源研发范例

开关电源研发范例文件编码(TTU-UITID-GGBKT-POIU-WUUI-0089)

1目的 希望以简短的篇幅,将公司目前设计的流程做介绍,若有介绍不当之处,请不吝指教. 2设计步骤: 2.1绘线路图、PCB Layout. 2.2变压器计算. 2.3零件选用. 2.4设计验证. 3设计流程介绍(以DA-14B33为例): 3.1线路图、PCB Layout请参考资识库中说明. 3.2变压器计算:

变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,以下即就DA-14B33变压器做介绍. 3.2.1 决定变压器的材质及尺寸: 依据变压器计算公式 Gauss x NpxAe LpxIp B 100(max ) B(max) = 铁心饱合的磁通密度(Gauss) Lp = 一次侧电感值(uH) Ip = 一次侧峰值电流(A) Np = 一次侧(主线圈)圈数 Ae = 铁心截面积(cm 2) B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时 的B(max)为3900 Gauss ,设计时应考虑零 件误差,所以一般取3000~3500 Gauss 之

间,若所设计的power为Adapter(有外壳) 则应取3000 Gauss左右,以避免铁心因高 温而饱合,一般而言铁心的尺寸越大,Ae越 高,所以可以做较大瓦数的Power。 3.2.2决定一次侧滤波电容: 滤波电容的决定,可以决定电容器上的 Vin(min),滤波电容越大,Vin(win)越高,可 以做较大瓦数的Power,但相对价格亦较高。 3.2.3决定变压器线径及线数: 当变压器决定後,变压器的Bobbin即可决 定,依据Bobbin的槽宽,可决定变压器的线 径及线数,亦可计算出线径的电流密度,电流 密度一般以6A/mm2为参考,电流密度对变 压器的设计而言,只能当做参考值,最终应以 温昇记录为准。 3.2.4决定Duty cycle (工作周期):

最新开关电源基础知识

开关电源基础知识

?开关电源就是用通过电路控制开关管进行高速的道通与截止.将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!转华为高频交流电的原因是高频交流在变压器变压电路中的效率要比50Hz高很多.所以开关变压器可以做的很小,而且工作时不是很热!成本很低.如果不将50Hz变为高频那开关电源就没有意义 ? ?开关电源大体可以分为隔离和非隔离两种,隔离型的必定有开关变压器,而非隔离的未必一定有. ? ? ? ?开关电源的工作原理是: ? ? ? ? 1.交流电源输入经整流滤波成直流; ? ? 2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上; ? ? 3.开关变压器次级感应出高频电压,经整流滤波供给负载; ? ? 4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的. ? ? ?

?交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰; ? ?在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高; ? ?开关变压器的次级可以有多个绕组或一个绕组有多个抽头,以得到需要的输出; ? ?一般还应该增加一些保护电路,比如空载、短路等保护,否则可能会烧毁开关电源 ? ? ? ? ? ?ATX电源的主要组成部分 ? ?EMI滤波电路:EMI滤波电路主要作用是滤除外界电网的高频脉冲对电源的干扰,同时也起到减少开关电源本身对外界的电磁干扰,在优质电源中一般都有两极EMI滤波电路。 ? ? ? ?一级EMI电路:交流电源插座上焊接的是一级EMI电源滤波器电路,这是一块独立的电路板,是交流电输入后所经过的第一组电路,这个由扼流圈和电容组成的低通网络能滤除电源线上的高频杂波和同相干扰信号,

DC-DC开关电源基础知识

开关电源基础知识介绍 1、输出纹波噪声的测量及输出电路的处理 PWM 开关电源的输出的纹波噪声与开产频率有关。其纹波噪声分为两大部分:纹波(包括 开关频率的纹波和周期及随机性漂移)和噪声(开关过程中产生)。 周期及随机性漂移 在纹波与噪声的测量过程中,如果不使用正确的测量方法将无法正确地测量出真出的输出 纹波噪声。下面是推荐的测量方法: 平行线测量法:输出管脚接平行线 后接电容,在电容两端使用20MHz 示波器探头测量。具体要求见右图, 负载 C 为瓷片电容,负载与模块之间的 距离在51mm 和76mm(2in.和3in) 之间。 在大多数电路中,本公司模块的输出纹波噪声都能满足要求。对于输出纹波有较为严格要求的 电源系统可以在输出增加差模滤波器来进一步降低纹波,但在设计过程中应注意尽量选择较小的 电感和较大的电容。如果需要消除进一步喊小噪声,需要加共模滤波器。 输入与输出及外壳之间加高压隔离电容(一般为1~2.2nF )也可以减小共模噪声。 2、多路输出的交互调节及其应用 对于多路输出的电源模块,用户比较关心输出 负载发生变化时不同输出路的相互间的影响。例如, 当主路输出空载时,辅助输出路的负载能力,一般电源100% 由于主路负载太轻,而使辅助路输出的能力极低。本 公司产品采用了集成磁路的概念,或采取双路同步控制96% 使输出电压之间的交互调节特性大大改善。下图显示了 交互调节的优点。图中lo1为主路负载电流、lo2为辅助 0 路负载电流、Vo2为辅助路输出电压。由图可见, 20% 100% Io2 在主路负载从20%~100%变化时,辅助路输出电压随 辅助路负载电流的变化曲线中,辅助路输出电压始终在±4%范围之内。即使在最坏的情况,即主路 空载、辅助路江载,主路满载、辅助路空载时其输出电压也能保证在标称电压的±10%范围之内。 由此,对于输出稳压精度要求不太高的情况下,这种不稳压的辅助输出不仅能够满足供电的条件, 而且相对成本低、器件少、可靠性高。建议用户首先考虑不稳压的辅助输出的电源模块。

开关电源基础知识

开关电源就是用通过电路控制开关管进行高速的道通与截止.将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!转华为高频交流电的原因是高频交流在变压器变压电路中的效率要比50Hz高很多.所以开关变压器可以做的很小,而且工作时不是很热!成本很低.如果不将50Hz变为高频那开关电源就没有意义 开关电源大体可以分为隔离和非隔离两种,隔离型的必定有开关变压器,而非隔离的未必一定有. 开关电源的工作原理是: 1.交流电源输入经整流滤波成直流; 2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上; 3.开关变压器次级感应出高频电压,经整流滤波供给负载; 4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的. 交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰; 在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高; 开关变压器的次级可以有多个绕组或一个绕组有多个抽头,以得到需要的输出;

一般还应该增加一些保护电路,比如空载、短路等保护,否则可能会烧毁开关电源 ATX电源的主要组成部分 EMI滤波电路:EMI滤波电路主要作用是滤除外界电网的高频脉冲对电源的干扰,同时也起到减少开关电源本身对外界的电磁干扰,在优质电源中一般都有两极EMI滤波电路。 一级EMI电路:交流电源插座上焊接的是一级EMI电源滤波器电路,这是一块独立的电路板,是交流电输入后所经过的第一组电路,这个由扼流圈和电容组成的低通网络能滤除电源线上的高频杂波和同相干扰信号,同时也将电源内部的干扰信号屏蔽起来,构成了电源抗电磁干扰的第一道防线。 二级EMI电路:市电进入电源板后先通过电源保险丝,然后再次经过由电感和电容组成的第二道EMI电路以充分滤除高频杂波,然后再经过限流电阻进入高压整流滤波电路。保险丝能在电源功率太大或元件出现短路时熔断以保护电源内部的元件,而限流电阻含有金属氧化物成分,能限制瞬间的大电流,减少电源对内部元件的电流冲击。 桥式整流器和高压滤波:经过EMI滤波后的市电,再经过全桥整流和电容滤波后就变成了高压的直流电。将输入端的交流电转变为脉冲直流电,目前有两种形式,一种是全桥就是把四个二极管封装在一起,一种是用4个分立的二极管组成桥式整流电路,作用相同,效果也一样。

反激式开关电源设计与测试步骤(精)

初次设计反激电源式电源步骤 准备 在初次设计电源之前,应确保电源所采用的印刷电路板符合Power Integrations器件数据手册中指定的布局指南。如果在实验用面包板或原始样板上搭建设计的电路,会引入很多寄生元件,这样会影响电源的正常工作。而且,许多实验用面包板都无法承载开关电源所产生的电流水平,并可能因而受损。此外,在这些电路板上非常难以控制爬电距离和电气间隙。 所需设备 在本课程中,您将用到以下设备: 1.一个隔离式交流电源供应器或一个自耦变压器 2.一个瓦特表 3.至少四个数字万用表,其中两个具有高精度电流量程 4.一个带有高压探针的示波器 5.一个电流探针 6. 还有您的实际负载 第1章:术语 本课中将频繁使用的两个术语是“稳压”和“自动重启动”。当电源处于稳压状态时,控制器持续接收反馈,所有输出电压均保持稳定不变,并处于指定的容差限值内。自动重启动是Power Integrations器件中内置的一种保护模式。 处于稳压状态的输出 自动重启动 在工作期间,如果所消耗的功率大于电源所能提供的功率限值,或者在启动后,电源的输出电压在指定的时间内不能达到稳压,Power Integrations器件将进入自动重启动保护模式。这种设计通过限制电源在故障情况下提供的平均功率,可防止元件受损。有关特定的自动重启动导通时间,请参见相关的Power Integrations器件数据手册。 在测试期间,如果发现电源性能与本课程中所描述的情况不符,或者表现出任何异常特征,请停止测试程序,并参照其他PI大学故障诊断课程中的内容排查问题,或者联系当地PI代表解决问题。 第2章:设计信息

开关电源的基础知识

开关电源的基础知识 一、电源的重要性 随着高科技的电脑及相关产品逐渐进入平常百姓家,人们对电脑及相关产品的认识不断深入。对于电脑来讲,最重要的硬件主要有两个:一个是CPU,其作用相当于人的大脑,是电脑的核心;二是电源,其作用相当于人的心脏。如果没有高品质的电源,再好的CPU及其它电脑部件都无法充分稳定的发挥作用,甚至可能对电脑主机造成伤害。 然而在DIY市场,长期以来人们强调的是CPU、主板、显卡等硬件,对电源不太重视,忽略了开关电源的质量对电脑的可靠性、稳定性以及对使用者健康的影响。其实,国际知名品牌电脑厂商对电源非常重视,如IBM等世界名牌电脑的电源采购价高达每台18-25美元,正是源于他们对电源品质的高标准要求。根据统计,电脑故障的40%~60%是由于电源引起,而一台电源只占电脑整机价值的2%--3%,电源选用不当,不但可能烧毁CPU、主板、硬盘,还可能给使用者健康和生命财产安全造成损失,因而有必要重新认识电源的重要性。 二、电源的工作原理 市电进入电源,首先要经过扼流圈和电容,滤除高频杂波和同相干扰信号。然后再经过电感线圈和电容,进一步滤除高频杂波。接下来再经过由4个二极管组成的全桥电路整流,和大容量的滤波电容滤波后,电流才由高压交流电转换为高压直流电。 经过了交直转换后,电流就进入了整个电源最核心的部分--开关电路。开关电路主要由两个开关管组成,通过它们的轮流导通和截止,便将直流电转换为高频率的脉动直流电。接下来,再送到高频开关变压器上进行降压。 经过高频开关变压器降压后的脉动电压,同样要使用二极管和滤波电容进行整流和滤波,此外还会有1、2个电感线圈与滤波电容一起滤除高频交流成分。 经过上面一系列工序后,输出的的电流,才算真正完成电脑所需要的较为纯净的低压直流电。 三、有关性能参数说明 1、 PG ( POWER GOOD ) 信号 从电源开通那一瞬间起,到电源输出稳定电压需要一定的时间,+5V的爬升时间通常为2ms~20ms。当电源开通后,电源首先会自行检查输出电压是否正常,如果正常,即向CPU发出一个POWER GOOD 信号,意即“我准备好了,您可以开始工作了”。为了保证相互间的衔接,CPU厂商推出CPU时,就PG信号作出了规定,要求电源发出PG信号的时间是在开机后的100~500ms时间内,如果CPU在这个范围内得不到PG 信号,就意味着开机失败。 2、 PF( POWER FAIL) 信号 PF信号是指当电源的交流输入电压切断,电源首先给CPU一个持续时间约1ms的POWER FAIL信号,通知CPU电源将马上关闭。PF时间不够容易造成相关设置数据丢失。 3、保持时间(HOLD UP TIME ) 指在输入电压切断后,电源能继续保持输出的时间,一般为20ms左右,通常不小于16ms,这段时间很重要,一方面使CPU在得到PF信号后有足够时间保存系统设置,使系统下次能正常开机,另一方面使UPS有足够的时间启动,并开始工作。

开关电源世界各地安规认证介绍

世界各国认证简介 新加坡PSB认证 新加坡消费品保护法规1991指定新加坡标准,生产力和创新委员作为产品安全职能机构,负责对消费者保护(安全要求)注册方案(CPS)涉及的产品进行许可和注册。只有带“SAFETY”标志的注册产品才能在新加坡销售。 目前新加坡只要求安全而对EMC只是自愿原则。安全要求:在IEC标准要求下,产品还要符合热带条件测试。 新加坡电压:AC 230V\ 50Hz 验厂:一般需要(如果通过莱茵CB去申请有莱茵的工厂检查报告可以不再工厂检查)。 说明书:要求英文 证书有效期:证书有效期为一年。 申请周期:一般3-4周。 瑞士SEV 为非欧盟国家,在产品认证方面未加入欧盟的CE制度。因此瑞士的产品法规有自己的要求,瑞士的SEV低电压产品法规规定:进入瑞士市场的电子电气产品需要取得S-PLUS标志。此标志包含了产品的安全性也涵盖了电磁兼容(EMC)的要求。 电压:AC 23厂 说明书:法语0V/50Hz 验厂:无需验、意大利语或徳语 认证周期:如用CB申请需2-3周。无CB需4-6周。 波兰(Poland)认证

B标志认证是波兰目前的强制性认证。出口到波兰的电子电气产品都必须通过B标志认证。B标志涵盖产品安全、电磁兼容和卫生要求。 认证机构:PCBC,BBJ 电压:AC 230V/50Hz 验厂:需要或指定机构的验厂报告 说明书:波兰文 认证周期:4-5周 申请方式:CB报告或GS报告+EMC报告的基础上申请。 匈牙利(Hungary) 匈牙利的电工产品实验是依据关于人身、健康、财产安全的有关规定,按照匈牙利的电气标准而进行的强制实验。 认证机构:Magyar Elektrotechnikai Ellenorzo Intezet-MEEI 认证标志:S-Mark MEEI Mark 认证要求:安全及EMC都要求 电压:AC 230V/50Hz 验厂:需要或指定机构的验厂报告 说明书:匈牙利文 认证周期:S-Mark 1-2 周 (有CB的时间) MEEI 2-3 周 (有CB的时间) 申请方式:CB报告或GS报告+EMC报告的基础上申请。 土耳其(Turkey) 土耳其标准学会(TSE)认证中心是土耳其国家认可权力`机构,对其国內及进口的工业电器设备产品进行质量监督.但不是强制要求,目前CE标识是强制的. 认证要求:目前只要求SAFETY.根据IEC标准测试. 电压:AC 230V/50Hz 验厂:要求 认证周期: CB后申请2-3周. 北欧四国认证 --北欧四国是那四国? 丹麦,挪威,芬兰,瑞典 --申请程序 可通过CB报告来申请,或由该四国的认证机构直接目击测试。可任意申请其中一国认证,另外三国将在该证书的基础上直接颁发证书。

开关电源的关键布线技巧

高频开关电源的关键布局技巧 目前的交换式稳压器和电源设计更精巧、性能也更强大,但其面临的挑战之一,在于不断加速的开关频率使得PCB设计更加困难。PCB布局正成为区分一个开关电源设计好坏的分水岭。本文将就如何在第一次就实现良好PCB布局提出建议。 以一个将24V降为3.3V的3A交换式稳压器为例。乍看之下,一个10W稳压器不会太困难,所以设计师通常会忍不住直接进入建构阶段。 不过,在采用像美国国家半导体的Webench等设计软件后,我们可观察该构想实际上 会遭遇哪些问题。输入上述要求后,Webench会选出该公司‘Simpler Switcher’系列的LM25576(一款包括3A FET的42V输入组件)。它采用的是带散热垫的TSSOP-20封装。 Webench选项包括对体积或效率的设计最佳化,这些均为单一选项。即高效率要求低开关频率(降低FET内的开关损耗)。因此需要大容量的电感和电容,因而需更大PCB空间。 注意:最高效率是84%,且此最高效率是当输入-输出间的压差很低时实现的。此例中,输入/输出比率大于7。一般情况,用两个级降低级-级比率,但透过两个稳压器得到的效率不会更好。 接着,我们选择最小PCB面积的最高开关频率。高开关频率最可能在布局方面产生问题。随后Webench产生包含所有主动和被动组件的电路图。 电路设计 参考图1的电流通路:把FET在导通状态下流经的通路标记为红色;把FET 在关断状态下的回路标记为绿色。我们观察到两种不同情况:两种颜色区域和仅一种颜色的区域。我们必须特别关注后一种情况,因为此时电流在零以及满量程电压间交替变化。这些均为高di/dt区域。 图1 高di/dt的交流电在PCB导线周围产生大量磁场,该磁场是该电路内其它组件甚至同一或邻近PCB上其它电路的主要干扰源。由于假设公共电流路径不是交流电,因此它不是关键路径,di/dt的影响也小得多。另一方面,随着时间变化,这些区域的负载更大。本例中,从二极管阴极到输出以及从输出地到二极管阳极是公共通路。当输出电容充放电时,该电容具有极高的di/dt。连接输出电容的所有线路必须满足两个条件:由于电流大,它们要宽;为最小化di/dt影响,它们

开关电源的基本知识

开关电源的基本知识 一、电源的定义 将交流电转换为PC(个人电脑)电脑工作所需要的直流电的转换器。二、电源的重要性 对于电脑来讲,最重要的两个硬件是CPU和电源,CPU相当于人的大脑,电源相当于人的心脏,据统计,电脑故障的40%-60%是由电源引起的,而一台电源只占整机的2%-3%,电源选用不当,不但可能烧毁CPU,主板、硬盘,还可能造成其它损失。 三、开关电源的工作原理及工作流程 开关电源的工作原理是通过运行高频开关技术将输入的较高的交流电压(AC)转换为PC电脑工作所需要的较低的直流电压(DC) 工作流程:当市电进入电源后,先经过轭流线圈和电容滤去除高频杂波和干扰信号,然后经过整流和滤波得到高压直流电,接着进入电源的核心部分-开关电路。开关电路把直流电转为高频脉动直流电,再送高频开关变压器降压,然后滤除高频交流部分,这样最后输出供电脑使用相对纯净的低压直流电。 市电经过扼流线圈和电容滤除杂波和干扰信号。再经过电感线圈和电容,通过全桥电路整流,和大容量的滤波电容滤波后,电流由高压交流电转为高压直流电,再经过两个开关管的轮流导通的截止,将直流电转为高频率的脉动直流电,接下来,再送到高頻开关变压器上进行降压。降压后的脉冲电压同样要经过二级管和滤波电容进行整流和滤波,此外还会有碍1-2个电感线圈的滤波电容一起滤除高频交流成分。 四、电源的接口 电源内部提供多组接口,其中主要是二十芯的主板插头、四芯驱动器插头和四芯小软驱专用插头。二十芯的主板插头只有一个且具有方向性,可以有效的防止误插,插头上还带有固定装置可以钩住主板上的插座,不至于接反。ATX电源接口根据输出电压的不同可分为+5V、+12V、+3.3V、-5V、-12V和+5V SB等,这些接线颜色也不同。 ①+5V(红色线)。主要用于主板供电,包括主板、内存、CPU和一些主板上的其他设备。光驱、硬盘的信号电器也由+5V电源供电。 ②+12V(黄色线)。主要为标准设备的驱动电路供电例如风扇等散热系统供电,一般连接到适配卡。 ③+3.3V(橙色线)。目前CPU、AGP的电压越来越低,因此新的ATX规范增加了 3.3V电压,这样就不用由+5V转为+3.3V了. ④-5V(白色线)、-12V(蓝色线)。这两个电压分加别支持ISA总线以及窜行口等老式设备,现在比较少用到了。 ⑤+5V SB(紫色线)。与+5V电压完全一样,但自己独自一条电路,与其他供电电路无关,而且电脑无论开机与否,只要电源通电就可以永远保持开通状态。这种电源支持一些对系统激活的设备,例如支持网络唤醒的网卡等。 ⑥PS-ON线(绿色线)。复杂操作系统管理电源的开关,是一种主板信号,和+5V SB一起成为软电源,实现软件、网络唤醒等功能。 ⑦PG(Power Good)信号(灰色线)。PG信号线连接到主板上,并且受主板的

开关电源基础知识问答

开关电源基础知识问答 作为我们电气电子工程师来说!尤其在电子电路设计当中不可或缺的,是我们都要用到电源!而开关电源对我们电路设计来说又是那么的重要!今天给大家带来开关电源问答! 问题一:开关电源为什么常常选择65K或者100K左右范围作为开关频率,有的人会说IC厂家都是生产这样的IC,当然这也有原因。每个电源的开关频率会决定什么? 回答1:应该从这里去思考原因。还会有人说频率高了EMC不好过,一般来说是这样,但这不是必然,EMC与频率有关系,但不是必然。想象我们的电源开关频率提高了,直接带来的影响是什么?当然是MOS开关损耗增大,因为单位时间开关次数增多了。如果频率减小了会带来什么?开关损耗是减小了,但是我们的储能器件单周期提供的

能量就要增多,势必需要的变压器磁性要更大,储能电感要更大了。选取在65K到100K左右就是一个比较合适的经验折中,电源就是在折中合理化折中进行 回答2:假如在特殊情形下,输入电压比较低,开关损耗已经很小了,不在乎这点开关损耗吗,那我们就可以提高开关频率,起到减小磁性器件体积的目的 问题二:LLC中为什么我们常在二区设计开关频率?一区和三区为什么不可以?有哪些因素制约呢?或者如果选取一区和三区作为开关频率会有什么后果呢? 回答1:LLC的原理是利用感性负载随开关频率的增大而感抗增大,来进行调节输出电压的,也就是PFM调制。并且MOS管开通损耗ZVS 比ZCS小,一区是容性负载区,自然不可取。那么三区,开关频率大于谐振频率,这个仍是感性负载区,按道理MOS实现ZVS没有问题,确实如此。但是我们不能忽略副边的输出二极管关断。也就是原边MOS管关断时,谐振电流并没有减小到和励磁电流相等,实现副边整流二极管软关断。这也是我们通常也不选择三区的原因。

开关电源研发范例

1目的 希望以简短的篇幅,将公司目前设计的流程做介绍,若有介绍不当之处,请不吝指教. 2设计步骤: 2.1绘线路图、PCB Layout. 2.2变压器计算. 2.3零件选用. 2.4设计验证. 3设计流程介绍(以DA-14B33为例): 3.1线路图、PCB Layout请参考资识库中说明. 3.2变压器计算: 变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,

以下即就DA-14B33变压器做介绍. 3.2.1 决定变压器的材质及尺寸: 依据变压器计算公式 Gauss x NpxAe LpxIp B 100(max ) B(max) = 铁心饱合的磁通密度(Gauss) Lp = 一次侧电感值(uH) Ip = 一次侧峰值电流(A) Np = 一次侧(主线圈)圈数 Ae = 铁心截面积(cm 2) B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考 虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的 power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心 因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以 做较大瓦数的Power 。

3.2.2 决定一次侧滤波电容: 滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大, Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。 3.2.3 决定变压器线径及线数: 当变压器决定後,变压器的Bobbin 即可决定,依据Bobbin 的槽 宽,可决定变压器的线径及线数,亦可计算出线径的电流密度, 电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言, 只能当做参考值,最终应以温昇记录为准。 3.2.4 决定Duty cycle (工作周期): 由以下公式可决定Duty cycle ,Duty cycle 的设计一般以50%为 基准,Duty cycle 若超过50%易导致振荡的发生。 xD Vin D x V Vo Np Ns D (min))1()(-+= N S = 二次侧圈数 N P = 一次侧圈数 Vo = 输出电压

相关主题
文本预览
相关文档 最新文档