当前位置:文档之家› 高中不等式练习题及答案

高中不等式练习题及答案

高中不等式练习题及答案
高中不等式练习题及答案

不等式

1、解不等式:1

211

922+-+-x x x x ≥7.

2、解不等式:x 4-2x 3-3x 2<0.

3、解不等式:

6

55

92+--x x x ≥-2.

4、解不等式:22

69x x x -+

->3.

5、解不等式:232

+-x x >x +5.

6、若x 2+y 2=1,求(1+xy)(1-xy)的最大、最小值。

7、若x,y >0,求

y

x y

x ++的最大值。

8、已知关于x 的方程x 2+(m 2-1)x +m -2=0的一个根比-1小,另一个根比1大, 求参数m 的取值范围。

9、解不等式:log a (x +1-a)>1. 10解不等式38->-x x . 11.解log (2x – 3)(x 2-3)>0

12.不等式04

9)1(220

82

2<+++++-m x m mx x x 的解集为R,求实数m 的取值范围。

13.求y x z +=2的最大值,使式中的x 、y 满足约束条件??

?

??-≥≤+≤.1,1,y y x x y

14在函数x

y 1=的图象上,求使y x 1

1+取最小值的点的坐标。

15函数4

52

2++=x x y 的最小值为多少?

16.若a -1≤x 2

1log ≤a 的解集是[

41,2

1

],则求a 的值为多少?

17.设,10<

)

02log 2<--x x

a a a

18.已知函数y =1

3422+++x n

x mx 的最大值为7,最小值为-1,求此函数式。

19.已知2>a ,求证:()()1log log 1+>-a a a a

20.已知集合A=??????-<-=??

??????????? ??<---)26(log )9(log |,212|31

2

31)

1(3322x x x B x x x x , 又A ∩B={x|x 2+ax+b <0},求a+b 等于多少?

21画出下列不等式组表示的平面区域,

????

??

?≤≤≤≤≤+≤+.110,100,3623,242y x y x y x

1、[-

21,1]∪(1,3

4

) 2、(-1,0)∪(0,3) 3、(-∞,2)∪(3,+∞) 4、(0,3) 5、(-∞,-13

23

) 6、1, 43 7、2 8、-2<m <0

9、解:(I)当a>1时,原不等式等价于不等式组:?

??>-+>-+.101a a x a x ,

解得x>2a-1.

(II)当0

?<->-+.

101a a x a x +,

解得:a-1

综上,当a>1时,不等式的解集为{x|x>2a-1};

当0

10、原不等价于不等式组(1)??

?

??->-≥-≥-2

)3(8030

8x x x x 或(2)???<-≥-0308x x

由(1)得2

21

53+<

≤x , 由(2)得x <3, 故原不等式的解集为?

??

?

??+<2215|x x

高中数学不等式练习题

1、设恒成立的c的取值范围是 A.B.C.D. 2、设,且(其中),则M的取值范围是A.B.C.D. 3、若实数、满足,则的取值范围是 A.B.C.D. 4、已知,,,则的最小值是() (A)(B)4(C)(D) 5、若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是 (A)(B)(C)(D) 6、已知,若在上恒成立,则实数的取值范围是()

A.B.C.D. 7、已知正实数满足,则的最小值为。 8、如图,目标函数可行域为四边形(含边界),若是该目标函数的最优解,则的取值范围是() (A)(B)(C)(D) 的最大值与最小值之和为 9、函数,当时,恒成立,则 D. 10、已知正数满足,则的最小值为 A.3B.C.4D. 11、二次函数轴两个交点的横坐标分别为。(1)证明:;(2)证明:; (3)若满足不等式的取值范围。 12、设满足约束条件,若目标函数的最大值为10,则的最小值为.

13、已知对任意实数x,二次函数f(x)=ax2+bx+c恒非负,且a

(完整版)高二数学不等式练习题及答案(经典)

不等式练习题 一、选择题 1、若a,b 是任意实数,且a >b,则 ( ) (A )a 2>b 2 (B ) a b <1 (C )lg(a-b)>0 (D )(21)a <(2 1)b 2、下列不等式中成立的是 ( ) (A )lgx+log x 10≥2(x >1) (B )a 1 +a ≥2 (a ≠0) (C ) a 1<b 1 (a >b) (D )a 21+t ≥a t (t >0,a >0,a ≠1) 3、已知a >0,b >0且a +b =1, 则()11 )(1122--b a 的最小值为 ( ) (A )6 (B ) 7 (C ) 8 (D ) 9 4、已给下列不等式(1)x 3+ 3 >2x (x ∈R ); (2) a 5+b 5> a 3b 2+a 2b 3(a ,b ∈R ); (3) a 2+b 2≥2(a -b -1), 其中正确的个数为 ( ) (A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个 5、f (n ) = 12+n -n , ?(n )= n 21 , g (n ) = n 12--n , n ∈N ,则 ( ) (A ) f (n )

高一数学不等式解法例题.doc

典型例题一 例 1 解不等式:( 1)2x3 x2 15 x 0 ;(2) ( x 4)( x 5)2 (2 x)3 0 . 分析:如果多项式 f (x) 可分解为 n 个一次式的积,则一元高次不等式 f ( x) 0 (或f (x) 0 )可用“穿根法”求解,但要注意处理好有重根的情况. 解:( 1)原不等式可化为 x(2x 5)( x 3)0 把方程 x(2 x 5)( x 3) 0 的三个根 x1 0, x2 5 , x3 3顺次标上数轴.然后从右上2 开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为x 5 0或 x 3 x 2 ( 2)原不等式等价于 ( x 4)( x 5)2 (x 2)3 0 x 5 0 x 5 (x 4)( x 2) 0 x 4或 x 2 ∴原不等式解集为x x 5或 5 x 4或x 2 说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或 奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿” ,其法如下图. 典型例题二 例 2 解下列分式不等式: ( 1) 3 1 2 ;(2) x2 4x 1 1 x 2 x 2 3x2 7x 2 分析:当分式不等式化为f (x) 0(或0) 时,要注意它的等价变形g( x)

① f ( x) f ( ) g ( ) 0 g( x) x x ② f ( x) f (x) g(x) f ( x) f ( x ) 0或 ( ) ( ) 0 或 g( x) g (x) 0 g (x) f x g x ( 1)解: 原不等式等价于 3 x 3 x 0 x 2 x 2 x 2 x 2 3( x 2) x( x 2) x 2 5x 6 ( x 2)( x 2) (x 2)( x 2) ( x 6)( x 1) 0 (x 6)( x 1)( x 2)(x 2) 0 ( x 2)( x 2) (x 2)( x 2) 0 用“穿根法” ∴原不等式解集为 ( , 2) 1,2 6, 。 ( 2)解法一 :原不等式等价于 2x 2 3x 1 0 3x 2 7x 2 (2x 2 3x 1)(3x 2 7 x 2) 0 2x 2 3x 1 0 2x 2 3x 1 3x 2 7x 2 或 3x 2 7x 2 1 或 1 x 或 x 2 x 2 1 3 ∴原不等式解集为 ( , 1 ) ( 1 ,1) (2, ) 。 3 2 解法二:原不等式等价于 ( 2x 1)( x 1) 0 (3x 1)( x 2) (2x 1)( x 1)(3x 1) (x 2) 0 用“穿根法” ∴原不等式解集为 ( , 1) ( 1 ,1) (2, ) 3 2 典型例题三 例 3 解不等式 x 2 4 x 2

高中不等式所有知识及典型例题(超全)

一.不等式的性质: 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。其中比较法(作差、作商)是最基本的方法。 三.重要不等式 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”); 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 (2 22b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求 它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 5.a 3+b 3+c 3≥3abc (a,b,c ∈ R +), a +b +c 3 ≥3abc (当且仅当a =b =c 时取等号); 6. 1 n (a 1+a 2+……+a n )≥12n n a a a (a i ∈ R +,i=1,2,…,n),当且仅当a 1=a 2=…=a n 取等号; 变式:a 2+b 2+c 2≥ab+bc+ca; ab ≤( a +b 2 )2 (a,b ∈ R +) ; abc ≤( a +b +c 3 )3(a,b,c ∈ R +) a ≤ 2a b a +b ≤ab ≤ a +b 2 ≤ a 2+b 2 2 ≤b.(0b>n>0,m>0; 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1 x

高中数学基本不等式知识点归纳及练习题00294

高中数学基本不等式的巧用 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)a 2+b 22≥? ?? ??a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个 正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是22 ?? ??a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥? ?? ??a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们. 三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽

视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+ 的单调性。例:求函数224y x =+的值域。 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=>(2)12,33 y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈ 2.已知01x <<,求函数(1)y x x = -.;3.203 x <<,求函数(23)y x x =-. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是. 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且191x y +=,求x y +的最小值。

(完整)高中数学不等式习题及详细答案

第三章 不等式 一、选择题 1.已知x ≥2 5 ,则f (x )=4-25+4-2x x x 有( ). A .最大值45 B .最小值4 5 C .最大值1 D .最小值1 2.若x >0,y >0,则221+)(y x +221 +)(x y 的最小值是( ). A .3 B . 2 7 C .4 D . 2 9 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b + ab 1≥22 B .(a +b )( a 1+b 1 )≥4 C 22 ≥a +b D . b a ab +2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式x x f x f ) ()(--<0 的解集为( ). A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞) D .(-1,0)∪(0,1) 5.当0<x <2 π时,函数f (x )=x x x 2sin sin 8+2cos +12的最小值为( ). A .2 B .32 C .4 D .34 6.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18 B .6 C .23 D .243 7.若不等式组?? ? ??4≤ 34 ≥ 30 ≥ y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ). A . 7 3 B . 37 C . 43 D . 34 8.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为

高中数学不等式解法15种典型例题

不等式解法15种典型例题 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3,2 5,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<- 3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2 450)2)(4(050 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--+-+-x x x x 2 12 1 310 2730 132027301320 )273)(132(2 22222><<+->+-?>+-+-?x x x x x x x x x x x x x x x 或或或∴原不等式解集为),2()1,21()31,(+∞??-∞。 解法二:原不等式等价于 0) 2)(13() 1)(12(>----x x x x 0)2()13)(1)(12(>-?---?x x x x 用“穿根法”∴原不等式解集为),2()1,2 1()31 ,(+∞??-∞ 典型例题三 例3 解不等式242+<-x x 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义? ??<-≥=)0() 0(a a a a a 二是根据绝对值的性质:a x a x a x a a x >?<<-?<.,或a x -<,因此本题有如下两种解法. 解法一:原不等式?????+<-<-?????+<-≥-?2 40 4240422 22x x x x x x 或 即? ? ?>-<<<-???<<--≤≥1222222x x x x x x x 或或或 ∴32<≤x 或21<-+<-) 2(42 422x x x x ∴312132<<<-x x x x 故或. 典型例题四 例4 解不等式 04125 62 2<-++-x x x x . 分析:这是一个分式不等式,其左边是两个关于x 二次式的商,由商的符号法则,它等价于下列两个不等式组: ?????>-+<+-041205622x x x x 或?????<-+>+-0 4120 562 2x x x x 所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解.

(完整)高中数学不等式练习题

高中数学不等式练习题 一.选择题(共16小题) 1.若a>b>0,且ab=1,则下列不等式成立的是() A.a+<<log2(a+b))B.<log2(a+b)<a+ C.a+<log2(a+b)<D.log2(a+b))<a+< 2.设x、y、z为正数,且2x=3y=5z,则() A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 3.若x,y满足,则x+2y的最大值为() A.1 B.3 C.5 D.9 4.设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.9 5.已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.6 6.设x,y满足约束条件,则z=x+y的最大值为() A.0 B.1 C.2 D.3 7.设x,y满足约束条件则z=x﹣y的取值范围是()A.[﹣3,0]B.[﹣3,2]C.[0,2]D.[0,3] 8.已知变量x,y满足约束条件,则z=x﹣y的最小值为()A.﹣3 B.0 C.D.3

9.若变量x,y满足约束条件,则目标函数z=﹣2x+y的最大值为()A.1 B.﹣1 C.﹣ D.﹣3 10.若a,b∈R,且ab>0,则+的最小值是() A.1 B.C.2 D.2 11.已知0<c<1,a>b>1,下列不等式成立的是() A.c a>c b B.a c<b c C.D.log a c>log b c 12.已知x>0,y>0,lg2x+lg8y=lg2,则的最小值是() A.2 B.2 C.4 D.2 13.设a>0,b>2,且a+b=3,则的最小值是() A.6 B.C.D. 14.已知x,y∈R,x2+y2+xy=315,则x2+y2﹣xy的最小值是() A.35 B.105 C.140 D.210 15.设正实数x,y满足x>,y>1,不等式+≥m恒成立,则m的最大值为() A.2 B.4 C.8 D.16 16.已知两正数x,y 满足x+y=1,则z=的最小值为()A.B.C.D. 二.解答题(共10小题) 17.已知不等式|2x﹣3|<x与不等式x2﹣mx+n<0的解集相同. (Ⅰ)求m﹣n; (Ⅱ)若a、b、c∈(0,1),且ab+bc+ac=m﹣n,求a+b+c的最小值. 18.已知不等式x2﹣2x﹣3<0的解集为A,不等式x2+x﹣6<0的解集为B.(1)求A∩B;

(完整)高中数学一元二次不等式练习题

一元二次不等式及其解法 1.形如)0)(0(02≠<>++a c bx ax 其中或的不等式称为关于x 的一元二次不等式. 2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程20(0)ax bx c a ++=>判别式ac b 42-=? 0>? 0=? 0a )的图象 ()002>=++a c bx ax 的解集)0(02>>++a c bx ax 的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。(如果是负,那么在不等式两边都乘以-1,把系数变为正) 2、解对应的一元二次方程。(先看能否因式分解,若不能,再看△,然后求根) 3、求解一元二次不等式。(根据一元二次方程的根及不等式的方向) 不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3 <0 x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4且x ≠5}. (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图 不等式解集为 {x |x< 1 3 或 1 2 ≤x ≤1或x>2}. 2 -4 -5 2 2 1 1 3 1

最新高中数学不等式练习题

精品文档 高中数学不等式练习题 一.选择题(共16小题) 1.若a>b>0,且ab=1,则下列不等式成立的是() +ab)<log(a+a+b))B<A.a+.<<log(22<+b))<a()<D.loga+C.a+<log(a+b22xyz,则(=3=5x、y、z为正数,且2)2.设 A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 满足,则x+2y的最大值为(x,y)3.若 D.9A.1 B.3 C.5 满足约束条件yx,4的最小值是().设,则z=2x+y A.﹣15 B.﹣9 C.1 D.9 满足约束条件,yx)5.已知,则z=x+2y的最大值是( A.0 B.2 C.5 D.6 满足约束条件,则z=x+y的最大值为(.设x,y)6 A.0 B.1 C.2 D.3 满足约束条件y.设x),7z=x则﹣y的取值范围是(

A.[﹣3,0],D .[03] B.[﹣3,2]],[C.02 满足约束条件﹣,则z=xyy.已知变量x,的最小值为()8 .D.0 B.﹣A3 .C3 精品文档. 精品文档 满足约束条件,则目标函数z=﹣2x+y的最大值为(9.若变量x,y) .﹣DC.﹣3A.1 B.﹣1 +的最小值是(,且ab>0),则10.若a,b∈R 2..2 BD.CA.1 11.已知0<c<1,a>b>1,下列不等式成立的是() ccab.D.logc>B.alog<bcA.c >cC ba yx,则lg8,lg2=lg2+12.已知x >0,y>0的最小值是() 2D.2 C.BA.2 .4 ,则的最小值是( +b=3)>0,b>2,且a13.设a ...CDA.6 B 2222﹣xy的最小值是(xy=315,则x+.已知14x,y∈R,xy+y)+ A.35 B.105 C.140 D.210 +≥m1恒成立,则,不等式m的最.设正实数x,y满足x>,y>15)大值为( 16D.2 B..4 C.8

高中数学不等式单元测试题(含有详细答案--

高中数学不等式综合测试题 一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的.共60分) 1.(文)设a b <,c d <,则下列不等式中一定成立的是( ) A .d b c a ->- B .bd ac > C .d b c a +>+ D .c b d a +>+ (理)已知a <0,-1> B .2ab ab a >> C .2ab ab a >> D .2 ab a ab >> 2.“0>>b a ”是“2 2 2b a ab +<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 3.(文)关于x 的不等式(1)ax b a ><-的解集为( ) A .R B .φ C .),(+∞a b D .(,)b a -∞ (理)不等式b ax >的解集不可能...是( ) A .φ B .R C .),(+∞a b D .),(a b --∞ 4.不等式022>++bx ax 的解集是)3 1,21(-,则b a -的值等于( ) A .-14 B .14 C .-10 D .10 5.(文)不等式|1|2x -<的解集是( ) A .{|03}x x ≤< B .{|22}x x -<< C .{|13}x x -<< D .{|1,3}x x x <-> (理)不等式||x x x <的解集是( ) A .{|01}x x << B .{|11}x x -<< C .{|01x x <<或1}x <- D .{|10,1}x x x -<<> 6.(文)若0b a <<,则下列结论不正确... 的是( ) A . 11a b < B .2b ab < C .2>+b a a b D .||||||b a b a +>+ (理)若011<+b a a b D .||||||b a b a +>+ 7.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为( ) A .)()(x g x f > B .)()(x g x f = C .)()(x g x f < D .随x 值变化而变化 8.下列各式中最小值是2的是( ) A .y x +x y B .4 5 22++x x C .tan x +cot x D .x x -+22 9.下列各组不等式中,同解的一组是( ) A .02>x 与0>x B .01 )2)(1(<-+-x x x 与02<+x C .0)23(log 2 1>+x 与123<+x D .112≤--x x 与112≤--x x 10.(文)如果a x x >+++|9||1|对任意实数x 总成立,那么a 的取值范围是( ) A .}8|{a a C .}8|{≥a a D .}8|{≤a a

(完整版)高中不等式试题和答案

不等式 一、选择题: 1.不等式(1+x )(1-|x |)>0的解集是 A .{x |0≤x <1} B .{x |x <0且x ≠-1} C .{x |-1<x <1} D .{x |x <1且x ≠-1} 2.直角三角形ABC 的斜边AB =2,内切圆半径为r ,则r 的最大值是 A . 2 B .1 C . 22 D .2-1 3.给出下列三个命题 ①若1->≥b a ,则 b b a a +≥ +11 ②若正整数m 和n 满足n m ≤,则2 )(n m n m ≤ - ③设),(11y x P 为圆9:2 2 1=+y x O 上任一点,圆2O 以),(b a Q 为圆心且半径为1. 当1)()(2 12 1=-+-y b x a 时,圆1O 与圆2O 相切 其中假命题的个数为 A .0 B .1 C .2 D .3 4.不等式|2x -log 2x |<2x +|log 2x |的解集为 A .(1,2) B .(0,1) C .(1,+∞) D .(2,+∞) 5.如果x ,y 是实数,那么“xy <0”是“|x -y |=|x |+|y |”的 A .充分条件但不是必要条件 B .必要条件但不是充分条件 C .充要条件 D .非充分条件非必要条件 6.若a =ln22,b =ln33,c =ln5 5,则 A .a B .c b a ()-<0 C .c b a b 22 < D .0)(<-c a ac 8.设10<

最新高一数学不等式练习题

高一数学不等式练习题 1、不等式1 1 2x <的解集是( ) A .(,2)-∞ B .(2,)+∞ C .(0,2) D .()0,∞-?(2,)+∞ 2、不等式2 01x x -+≤的解集是( ) A .(1)(12]-∞--,, B .[12]-, C .(1)[2)-∞-+∞,, D .(12]-, 3、已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =( ) (A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3} 4 ) A. D. 5、不等式203x x ->+的解集是( ) (A)(-3,2) (B)(2,+∞) (C) (-∞,-3)∪(2,+∞) (D) (-∞,-2)∪(3,+∞) 6、若不等式210x ax ++≥对一切102x ?? ∈ ???,成立,则a 的最小值为( ) A.0 B.2- C.5 2- D.3- 7、设x 、y 为正数,则有(x+y)(1 x +4 y )的最小值为( ) A .15 B .12 C .9 D .6 8、.若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是( ) (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 9、下面给出的四个点中,位于???>+-<-+01, 01y x y x 表示的平面区域内的点是( ) (A )(0,2) (B)(-2,0) (C)(0,-2) (D)(2,0) 10、已知函数()???≥ -<+-=01 1x x x x x f ,则不等式()()111≤+++x f x x 的解集是( ) (A) {}121|-≤≤-x x (B) { }1|≤x x (C) {}12|-≤x x (D) {}1212|-≤≤--x x

高中基本不等式的十一类经典题型

高中基本不等式的十一类经典题型 类型一:基本不等式的直接运用 类型二:分式函数利用基本不等式求最值 类型三:分式与整式乘积构造的基本不等式 类型四:1的妙用 类型五:利用整式中和与积的关系来求最值 类型六:两次运用基本不等式的题型 类型七: 负数的基本不等式 类型八: 化成单变量形式☆ 类型九:与函数相结合 类型十: 判别式法 类型十一:构造 高考真题 10.已知a =()x f x a =,若实数m 、n 满足()()f m f n >,则m 、n 的大小关系为 ▲ . [解析] 考查指数函数的单调性. (0,1)a =,函数()x f x a =在R 上递减.由()()f m f n >得:m>y x y x 则xy 的最小值是 3 ,141,0,0=+>>y x y x 则y x +的最小值是 4已知x ,y 为正实数,且x 2+y 22 =1,求x 1+y 2 的最大值 5.如果函数f (x )=(m ﹣2)x 2+(n ﹣8)x +1(m ≥0,n ≥0)在区间[ ]上单调递减, 则mn 的最大值为 18 .

【解答】解:∵函数f (x )=(m ﹣2)x 2+(n ﹣8)x +1(m ≥0,n ≥0)在区间[,2]上单调递减, ∴f ′(x )≤0,即(m ﹣2)x +n ﹣8≤0在[,2]上恒成立. 而y=(m ﹣2)x +n ﹣8是一次函数,在[,2]上的图象是一条线段. 故只须在两个端点处f ′()≤0,f ′(2)≤0即可.即, 由②得m ≤(12﹣n ), ∴mn ≤n (12﹣n )≤=18, 当且仅当m=3,n=6时取得最大值,经检验m=3,n=6满足①和②. ∴mn 的最大值为18. 故答案为:18. 类型二、分式函数利用基本不等式求最值 1设1->x ,求函数1 )2)(5(+++=x x x y 的最值 2 已知1x >-,求2311 x x y x -+=+的最值及相应的x 的值 3 不等式13 22<+-x x 的解集为 类型三、分式与整式乘积构造的基本不等式 1 若c b a >>,求使 11k a b b c a c +≥---恒成立的k 的最大值. 2 若0,0>>b a 且11121=+++b b a ,求b a 2+的最小值 3 函数y =log a (x +3)-1 (a >0,a ≠1)的图象恒过点A ,若点A 在直线mx +ny +1=0上,其 中mn >0,则1m +2n 的最小值为________. 4. 设,1,1,,>>∈b a R y x 若,4,22=+==b a b a x x 则y x 12+的最大值为

高中数学不等式综合练习题

不等式综合练习题 常用不等式有:(1 2211 a b a b +≥≥≥+ ; (2)a 、b 、c ∈R ,222 a b c ab bc ca ++≥++(当且仅当a b c ==时取=;) (3)若0,0a b m >>>,则b b m a a m +<+(糖水的浓度问题)。 常用的放缩技巧有:(1)21111111 1(1)(1)1n n n n n n n n n -=<<=-++-- <<= 1、对于实数c b a ,,中,给出下列命题: ①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若; ④b a b a 1 1,0<<<则若; ⑤b a a b b a ><<则 若,0; ⑥b a b a ><<则若,0; ⑦b c b a c a b a c ->->>>则若,0; ⑧11 ,a b a b >>若,则0,0a b ><。 其中正确的命题是______ 2、已知c b a >>,且,0=++c b a 则a c 的取值范围是______ 3、设0,10>≠>t a a 且,比较2 1log log 21+t t a a 和的大小 4、设2a >,1 2 p a a =+ -,2422-+-=a a q ,试比较q p ,的大小 5、比较1+3log x 与)10(2log 2≠>x x x 且的大小

6、下列命题中正确的是 A 、1y x x =+的最小值是2 B 、2y =的最小值是2 C 、4 23(0)y x x x =-->的最大值是2- D 、4 23(0)y x x x =-->的最小值是2- 7、若21x y +=,则24x y +的最小值是______ 8、正数,x y 满足21x y +=,则 y x 1 1+的最小值为______ 9、如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________ 10、(1)已知c b a >>,求证:2 22222ca bc ab a c c b b a ++>++ ; (2) 已知R c b a ∈,,,求证:)(222222c b a abc a c c b b a ++≥++; (3)已知,,,a b x y R +∈,且 11,x y a b >>,求证:x y x a y b >++; (4)若a 、b 、c 是不全相等的正数,求证: lg lg lg lg lg lg 222 a b b c c a a b c +++++>++; (5)已知R c b a ∈,,,求证:2222a b b c +22 ()c a abc a b c +≥++; (6)若* n N ∈(1)n +< n ; (7)已知||||a b ≠,求证:|||||||| |||| a b a b a b a b -+≤-+; (8)求证:222111 1223n ++++<。 11、解不等式2 (1)(2)0x x -+≥。 12、不等式(0x -的解集是____

高中数学基本不等式练习题

一.选择题 1.(2016?济南模拟)已知直线ax+by=1经过点(1,2),则2a+4b的最小值为()A. B.2C.4 D.4 2.(2016?乌鲁木齐模拟)已知x,y都是正数,且xy=1,则的最小值为() A.6 B.5 C.4 D.3 3.(2016?合肥二模)若a,b都是正数,则的最小值为() A.7 B.8 C.9 D.10 4.(2016?宜宾模拟)下列关于不等式的结论中正确的是() A.若a>b,则ac2>bc2 B.若a>b,则a2>b2 C.若a<b<0,则a2<ab<b2 D.若a<b<0,则> 5.(2016?金山区一模)若m、n是任意实数,且m>n,则() A.m2>n2B.C.lg(m﹣n)>0 D. 6.(2015?福建)若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于 () A.2 B.3 C.4 D.5 7.(2015?红河州一模)若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为() A.6 B.8 C.10 D.12 8.(2015?江西一模)已知不等式的解集为{x|a<x<b},点A(a,b)在直线 mx+ny+1=0上,其中mn>0,则的最小值为() A.B.8 C.9 D.12 9.(2015?南市区校级模拟)若m+n=1(mn>0),则+的最小值为() A.1 B.2 C.3 D.4 10.(2015?湖南模拟)已知x+3y=2,则3x+27y的最小值为() A.B.4 C.D.6 11.(2015?衡阳县校级模拟)若x<0,则x+的最大值是() A.﹣1 B.﹣2 C.1 D.2 12.(2015春?哈尔滨校级期中)已知a,b,c,是正实数,且a+b+c=1,则的最小值 为() A.3 B.6 C.9 D.12 二.填空题 1.(2016?吉林三模)已知正数x,y满足x+y=1,则的最小值为. 2.(2016?抚顺一模)已知a>0,b>0,且a+b=2,则的最小值为. 3.(2016?丰台区一模)已知x>1,则函数的最小值为.4.(2016春?临沂校级月考)设2<x<5,则函数的最大值 是. 5.(2015?陕西校级二模)函数f(x)=1+log a x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny﹣2=0上,其中mn>0,则的最小值为.

不等式练习题_高一数学

不等式题组训练 [A 组] 一、选择题 1.若02522>-+-x x ,则221442 -++-x x x 等于( ) A .54-x B .3- C .3 D .x 45- 2.函数y =log 21(x +11+x +1) (x > 1)的最大值是 ( ) A .-2 B .2 C .-3 D .3 3.不等式x x --213≥1的解集是 ( ) A .{x| 43≤x ≤2} B .{x|4 3≤x <2} C .{x|x >2或x ≤43} D .{x|x <2} 4.设a >1>b >-1,则下列不等式中恒成立的是 ( ) A .b a 11< B . b a 11> C .a >b 2 D .a 2>2b 5.如果实数x,y 满足x 2+y 2=1,则(1-xy) (1+xy)有 ( ) A .最小值 21和最大值1 B .最大值1和最小值4 3 C .最小值43而无最大值 D .最大值1而无最小值 6.二次方程x 2+(a 2+1)x +a -2=0,有一个根比1大,另一个根比-1小, 则a 的取值范围是 ( ) A .-3<a <1 B .-2<a <0 C .-1<a <0 D .0<a <2 二、填空题 1.不等式组???->-≥3 2x x 的负整数解是____________________。 2.一个两位数的个位数字比十位数字大2,若这个两位数小于30, 则这个两位数为____________________。 3.不等式0212<-+x x 的解集是__________________。 4.当=x ___________时,函数)2(22x x y -=有最_______值,其值是_________。 5.若f(n)=)(21)(,1)(,122N n n n n n n g n n ∈= --=-+?,用不等号 连结起来为____________. 三、解答题(四个小题,每题10分,共40分) 1.解log (2x – 3)(x 2-3)>0

文本预览
相关文档 最新文档