当前位置:文档之家› 牵引供变电课程设计牵引变电所电气主接线设计

牵引供变电课程设计牵引变电所电气主接线设计

牵引供变电课程设计牵引变电所电气主接线设计
牵引供变电课程设计牵引变电所电气主接线设计

课程设计任务书

题目牵引变电所电气主接线设计

一、设计的目的

通过该设计,使学生初步掌握交流电气化铁道牵引变电所电气主接线的设计步骤和方法;熟悉有关设计规范和设计手册的使用;基本掌握变电所主接线图的绘制方法;锻炼学生综合运用所学知识的能力,为今后进行工程设计奠定良好的基础。

二、设计的内容及要求

1、按给定供电系统和给定条件,确定牵引变电所电气主接线。

2、选择牵引变电所电气主接线中的主要设备。如:母线、绝缘子、隔离开关、熔断器、断路器、互感器等。

选择时应优先考虑采用国内经鉴定的新产品、新技术。

3、提交详细的课程设计说明书和牵引变电所电气主接线图。

三、指导教师评语

四、成绩

指导教师(签章)

年月日

牵引变电所课程设计原始资料原始资料(任选其中一所进行设计)

1、电力系统及牵引变电所分布图

图例:

:电力系统,火电为主

:地方220/110kV区域变电所

:地方110/35/10kV变电站

:铁道牵引变电所

——:三相高压架空输电线

图中:

L1:220kV 双回路150kM LGJ-300

L2:110kV 双回路10kM LGJ-120

L3:110kV 20kM

L4:110kV 40kM

L5:110kV 60kM

L6:110kV 双回路20kM

L7:110kV 30kM

L8:110kV 50kM

L9:110kV 60kM

L10:110kV 60kM

未标注导线型号者均为LGJ-185,所有导线单位电抗均为X=0.4Ω/kM

牵引变压器容量如下(所有U d%=10.5):

A:2×3.15万kV A B:2×3.15万kV A

C:2×3.15万kV A D:2×1.5万kV A

E:2×1.5万kV A F:2×1.5万kV A

2、电力系统对各牵引变电所的供电方式及运行条件

[1] 甲站对A所正常供电时,两回110kV线路中,一回为主供电源,另一回备用。A所内采用两台牵引变压器固定全备用。所内不设铁路岔线。27.5kV侧需设室外辅助母线,每相馈线接电容补偿装置二组,电容器室内,电抗器室外。

[2] 甲站对B所供电时,110kV线路还需经B所送至丙站。正常运行时B所内有系统功率穿越。当甲站至B的输电线路故障时,B所由丙站供电,丙站内110kV母线分段运行,输电线L4、L5分别接入不同的分段母线上。正常运行时,丙站内110kV 母线分段断路器断开。B所提供甲站至丙站的载波通道。

B所内采用两台牵引变压器固定全备用。所内不设铁路岔线,外部有公路直通所内。27.5kV侧需设室外辅助母线,每相馈线接电容补偿装置二组,电容器室内,电抗器室外。

[3] C所由丙站送出的两回110kV线路供电。但正常运行时,由甲站送至丙站(L5)再由丙站送至C所的一回110kV线路(L6)平时不向牵引负荷供电。只经过C所的110kV母线转接至某企业110kV变电站。

C所内采用两台变压器,固定全备用。所内不设铁路岔线,外部有公路直通所内。牵引侧除向两个方向的牵引网供电外,还要向电力机务段供电(两回)和地区10kV 负荷供电(一回)。C所内设有27.5/10kV 1000kV A动力变压器一台。10kV高压间内设有4路馈线,每路馈线设有:电流表、电压表、有功电度表、无功电度表。设有电流速断和接地保护,继电保护动作时间0.1秒。10kV高压间设在27.5kV高压室一端,单独开门。27.5kV侧设室外辅助母线,每相馈线接电容补偿装置二组,电容器室内,电抗器室外。

[4] 牵引变电所D、E、F由乙站供电。正常运行时,110kV线路在E所内断开,

不构成闭合环网。E所内的牵引变压器正常运行时,接入由D所送来的电源线L8上,L8故障时可转接至F所由L9供电。D、F所均可能有系统功率穿越。但正常运行时,F所无系统功率穿越。

D所内采用两台牵引变压器固定全备用。所内不设铁路岔线。27.5kV侧设室外辅助母线,每相馈线接电容补偿装置二组,电容器室内,电抗器室外。所用电有地方10kV可靠电源。

[5] E所内采用两台牵引变压器固定全备用。所内不设铁路岔线,有公路引入所内。27.5kV侧不设室外辅助母线,每相馈线接电容补偿装置二组,电容器室内,电抗器室外。所用电采用在110kV进线隔离开关内侧接入(3

110)/0.23kV单相变压器,以提高向硅整流装置供电的可靠性。

[6] F所内采用两台牵引变压器固定全备用。所内不设铁路岔线。27.5kV侧设室外辅助母线,每相馈线接电容补偿装置二组,电容器室内,电抗器室外。该地区无地方10kV电源。

[7] 牵引变电所A、C、E 110kV侧要求计费,牵引变电所B、D、F 27.5kV侧要求计费,采用低压侧(27.5kV侧)计费时,110kV侧仍需设电压监视。

[8] 各变电所设计时,一律按海拔h≤1000m,I级污秽地区,盐密δ≤0.1毫克/厘米2,最高环境温度+40℃考虑。

[9] 各牵引变电所均设置避雷针三座。

[10] 牵引变电所B、D 110kV线路采用纵向平行引入方式;C、E 110kV线路采用横向相对引入方式;A、F 110kV线路采用T字型引入方式。

[11] 假定各牵引变电所馈线主保护动作时间t b=0.1秒,27.5kV母线采用矩型截面硬铝母线,母线间距a=40cm,母线跨距l=120cm;10KV母线采用矩型截面硬铝母线,母线间距a=25cm;母线跨距l=100cm。

[12] 各牵引变电所主控制室均采用一对一集中控制方式,直流电源电压均为220V。

摘要

电气主接线设计应遵循的主要原则与步骤,在此基础上根据原始资料与要求选择牵引变电所的电气主接线图;根据要求选择短路点,对牵引变电所进行短路计算,计算出110KV侧及27.5KV侧短路电流与冲击电流、周期分量电流,由短路计算的结果与设计牵引变电所的要求选择牵引变电所的电气设备并对其校验,最后完成对牵引变电所主接线的设计。

关键词电气主接线;短路计算;电气设备选择与校验

目录

第1章牵引变电所主结线设计原则及要求 (6)

1.1概述 (6)

1.2电气主接线基本要求 (6)

1.3电气主接线设计应遵循的主要原则与步骤 (7)

第2章牵引变电所电气主接线图设计说明 (7)

第3章短路计算 (8)

3.1短路点的选取 (8)

3.2短路计算 (8)

第4章设备及选型 (10)

4.1硬母线的选取 (10)

4.2支柱绝缘子和穿墙导管的选取 (13)

4.3高压断路器的选取 (14)

4.4高压熔断器的选取 (15)

4.5隔离开关的选取 (16)

4.6电压互感器的选取 (17)

4.7电流互感器的选取 (17)

4.8避雷器的选取 (18)

附图 (20)

参考书目 (21)

后记 (22)

第一章牵引变电所主结线设计原则及要求

1.1概述

牵引变电所(含开闭所、降压变电所)的电气主结线,是指由主变压器、高压电器和设备等各种电器元件和连接导线所组成的接受和分配电能的电路。用规定的设备文字符号和图形代表上述电气设备、导线,并根据他们的作用和运行操作顺序,按一定要求连接的单线或三线结线图,称为电气主结线图。它不仅标明了各主要设备的规格、数量,而且反映各设备的连接方式和各电气回路的相互关系,从而构成变电所电气部分主系统。电气主结线反映了牵引变电所的基本结构和功能。在运行中,它能表明与高压电网连接方式、电能输送和分配的关系以及变电所一次设备的运行方式,成为实际运行操作的依据;在设计中,主结线的确定对变电所电气设备选择、配电装置布置、继电保护装置和计算、自动装置和控制方式选择等都有重大影响。此外,电气主结线对牵引供电系统运行的可靠性、电能质量、运行灵活性和经济性起着决定性作用。此外,电气主结线及其组成的电气设备,是牵引变电所的主体部分。

1.2电气主接线基本要求

1.安全性

主要体现在:隔离开关的正确配置和隔离开关接线的正确绘制。

隔离开关的主要用途是将检修部分与电源隔离,以保证检修人员的安全。

在主接线图中,凡是应该安装隔离开关的地方都必须配置隔离开关,不能有个别遗漏之处,也不允许从节省投资来考虑而予以省略。

主接线的安全性是必须绝对保证的,在比较分析主接线的特点时,不允许有“比较安全、安全性还可以”等不合适的结论。

2.可靠性

电气主接线的可靠性不是绝对的。同样形式的主接线对某些发电厂和变电所来说是可靠的,而对另一些发电厂和变电所则不一定满足可靠性要求。

电气主接线可靠性的高低,与经济性有关。一般来讲,主接线的可靠性愈高,所需的总投资和年运行费愈多。

另一方面,可靠性愈高,因停电而造成的经济损失愈小。

所以,对主接线可靠性进行分析时,要根据资金是否充沛,停电的经济损失多少等,从各方面加以综合考虑。

3.经济性

它通常与可靠性方便性之间有矛盾。

4.方便性

(1)操作的方便性尽可能使操作步骤少,以便于人员掌握,不致出错。

(2)调度的方便性根据调度要求,方便地改变运行方式。

(3)扩建的方便性

1.3电气主接线设计应遵循的主要原则与步骤

在电气主结线的设计中,应遵循的主要原则与步骤:

1.应以批准的设计任务书为依据,以国家经济建设的方针政策和有关的技术政策、

技术规范和规程为准则,结合工程具体特点和实际调查掌握的各种基础资料,进行综合分析和方案研究。

2.主结线设计与整个牵引供电系统供电方案、电力系统对电力牵引供电方案密切相

关,包括牵引网供电方式、变电所布点、主变压器接线方式和容量、牵引网电压水平及补偿措施、无功、谐波的综合补偿措施以及直流牵引系统电压等级选择等重大综合技术问题,应通过供电系统计算进行全面的综合技术经济比较,确定牵引变电所的主要技术参数和各种技术要求。

3.根据供电系统计算结果提供的上述各种技术参数和有关资料,结合牵引变电所高

压进线及其与系统联系、进线继电保护方式、自动装置与监控二次系统类型、自用电系统,以及电气化铁路当前运量和发展规划远景等因素,并全面考虑对主结线的基本要求,做出综合分析和方案比较,以期设计合理的电气主结线。

4.新技术的应用对牵引变电所主结线结构和可靠性等方面,将产生直接影响。

第二章牵引变电所电气主接线图设计说明中心变电所:有4路以上进线并有系统功率穿越

中间通过式变电所:有两路进线并有系统功率穿越

中间式变电所:有两路进线,无系统功率穿越

不同类型的牵引变电所采取不同型式的电气主接线。

根据原始资料易知,牵引变电所D、E、F由乙站供电。正常运行时,110kV线路在E所内断开,不构成闭合环网。E所内的牵引变压器正常运行时,接入由D所送来的电源线L8上,L8故障时可转接至F所由L9供电。D所可能有系统功率穿越。

D所内采用两台牵引变压器固定全备用。所内不设铁路岔线。每相馈线接电容补偿装置二组,电容器室内,电抗器室外。所用电有地方10kV可靠电源。

由于高压侧要求有电压监视,低压侧要求计费,故低压(二次)侧需设电压互感

器,高压侧同样需设电压互感器,按正常运行方式选择变压器容量。

因D 所可能有系统功率穿越,并且还向E 所供电,所以选用桥型结线方式的电气主结线。该主结线图高压侧采用外桥结线,两回进线中,采用一回主供,一回备用。变压器采用两台三相主变压器,其绕组联结形式为YNd-11变压器,二次绕组有一相接地并与钢轨连接。由于该变电所的供电方式是单线双边供电,馈线有两条,考虑到经济性,牵引负荷母线不采用带旁路母线的单母线分段接线方式,但为了保证馈线供电的可靠性,采用100%备用断路器馈线接线方式,每回馈线接两台断路器,一台运行,另一台备用。每个分段母线都设有单相电压互感器和避雷器,以便某分段母线检修或故障停电时,它们不致中断工作。

该牵引变电所的运行方式如下: 1:一次侧

两路110KV 进线,一路工作,一路备用,变压器相同,1B 工作,2B 全备用。当110KV 进线1发生故障时,只需合上外跨桥上的隔离开关。1B 发生故障时,若采用110KV 进线1工作,也合外跨桥上的隔离开关。设备的检修相同。

2:二次侧

当变压器发生故障或检修时,合上分段母线上相应的隔离开关,27.5KV 的馈线能继续工作。断路器及其他设备发生故障或检修相同。但馈线上的断路器采用50%的备用,所以该断路器发生故障或检修时,只需合上另外一个。

第三章 短路计算

3.1短路点的选取

因短路计算的主要内容是确定最大短路电流的大小,所以对一次侧设备的选取一般选取110KV 高压母线短路点作为短路计算点;对二次侧设备和牵引馈线断路器的选取一般选取27.5KV 低压母线短路点作为短路计算点。

3.2短路计算

电路简化图如图 3-1:在图中,1d 点为110KV 高压母线短路点,2d 点为27.5KV 低压母线短路点。

1

2

1b 乙7

Db

图: 3-1

取100j S MVA =,115j U KV =

*1

122

100

1500.40.453686115j j

S X L X U =??

=??

= *b

%1000.170.26984110063

j d S U X

S =?=?=乙 *

7

722

100

300.40.0907372115j j

S X L X U =??

=??

= *%100

0.1050.710015

j d Db S U X S =

?=?= 1d 处短路时,即110KV 处短路:*****

11710.824264X X X X x ∑=+++=乙b

周期分量有效值为:()

1

*****

1711.08

1.33951d I j j X X X x ==-+++乙b

111

**

1.339510.703081d d j d S I I I I KA =?===

若取 1.8ch K =时,电路中最大冲击电流为

11 2.67 2.670.703081 1.87723()ch d i I KA ==?=

短路电流最大有效值为11 1.61 1.610.703081 1.13196()ch d I I KA ==?=

2d 处短路时,即27.5KV 处短路:******

2171 1.52426b X X X X X x ∑=++++=乙b

周期分量有效值为:()

2

******

1711.08

0.708539d Db I j j X X X X x ==-++++乙b

22

2

**0.708539 1.48759d d j d S I I I I

KA =?===

若取 1.7ch K =时,电路中最大冲击电流为

22 1.05 1.7 1.05 1.7 1.48759 3.75466()ch d i I KA =?=?=

短路电流最大有效值为22 2.22267()ch d I I KA == 对牵引变电所主变压器:

110KV

侧额定电流:178.7319(A)e I =

== 27.5KV

侧额定电流:2314.928(A)e I ===

短路计算值一览表如下表

对环境校核:海拔h≤1000m ,I 级污秽地区,盐密δ≤0.1毫克/厘米2,最高环境温度+40℃考虑,所以所有参数可以直接引入计算。

第四章 设备及选型

4.1硬母线的选取

一、110KV 侧母线的选取:

1、按最大长期工作电流选择母线的截面可按变压器过载1.3倍考虑

max 1.3 1.3 1.3102.351g e I I A ==== 由附录二表3查出铝母线153?的允许载流量为156A ,大于最大工作电流102.351A ,故初步确定选用215345mm ?=截面的铝母线。 2.校验母线的短路热稳定性

要求短路最终温度Z θ,应先求出起始温度S θ,根据Z θ,利用曲线()A f θθ=,找出对应的S A 值,再由

21

d Z S Q A A S

=-求出Z A ,再次利用曲线()A f θθ=找出对应的Z θ。 ()()2

2

max 00102.35125702544.3708156g S XU xu I C C C C I θθθθ????

=+-=?+?-?=? ? ?????

短路电流计算时间

0.10.20.3js b g t t t s =+=+=

短路电流热效应d Z fi Q Q Q =+

由*****

11710.824264X X X X x ∑=+++=乙b , 由资料,可得:

*2

1.145d t I =,* 1.122d

t I = 所以

2

1.1450.600987, 1.1220.588915d d t t I I ====

()1222

222220.3100.703081100.6009870.5889150.1113251212

d d d Z d t t t Q I I I kA s ??=++=+?+=? ??? 0.1b t s =

1

2220.7030810.0640.0316367fi d fi Q I T kA s ∴=?=?=? 由44.3708S C θ=?,从图中查得40.077210S A =? 则由

2

1

d Z S Q A A S =- 得:()6

4422

0.1113250.0316367101

0.0772100.08425981045Z d S A Q A S +?=+=+?=?

再由Z A ,查得50Z C θ

1、按最大长期工作电流选择母线的截面可按变压器过载1.3倍考虑

max 1.3 1.3 1.3409.406g e I I A ====

由附录二表3查出铝母线404?的允许载流量为456A ,大于最大工作电流409.406A ,故初步确定选用2404160mm ?=截面的铝母线。 2.校验母线的短路热稳定性

要求短路最终温度Z θ,应先求出起始温度S θ,根据Z θ,利用曲线()A f θθ=,找出对应的S A 值,再由

21

d Z S Q A A S

=-求出Z A ,再次利用曲线()A f θθ=找出对应的Z θ。 ()()2

2

max 00409.40625702561.2736456g S XU xu I C C C C I θθθθ????

=+-=?+?-?=? ? ?????

短路电流计算时间

0.10.20.3js b g t t t s =+=+=

短路电流热效应d Z fi Q Q Q =+

由******

2171 1.52426b X X X X X x ∑=++++=乙b ,查汽轮发电机计算曲线,可得:

*2

0.628d t I =,*0.625d

t I = 所以

2

0.628 1.3185,0.625 1.3122d d t t I I ====

()2222

222220.3

10 1.4875910 1.3185 1.31220.532981212

d d d Z d t t t Q I I I kA s ??=

++=

+?+=? ??? 0.1b t s =

2221487.590.0640.141627fi z

fi Q I T KA s ''∴=?=?=? 由61.2736S C θ=?,从图中查得40.44910S A =? 则由

2

1

d Z S Q A A S =- 得:()6

4422

0.532980.141627101

0.449100.45163510160

Z d S A Q A S +?=+=+?=? 再由Z A ,查得100Z C θ

设母线采用水平排列平放, 3.75466ch i KA = 已知:a=40cm ,l=120cm ,h=40mm ,b=4mm 则

400.4

920.44

a b b h --==>>++ 1

x K ∴=

三相短路时的相间电动力为 ()()()22

337731201.7310 1.7310 3.75466107.3165940

ch x l F i K N a --??=?=????=?? 母线平放及水平排列时,其抗弯模量为:

226311

0.0040.04 1.066671066

W bh m -==??=?

母线的计算应力为:

()36

67.31659100.685928101010 1.06667

M F Pa W W σ?====??

由表6.4铝母线的允许应力为66910Pa ?,即:XU σσ<,满足机械应力稳定性要求。 故最后确定选择截面为2404160S mm =?=的铝母线。

4.2支柱绝缘子和穿墙导管的选取

由于牵引变压器安装在室外,而110KV 进线是直接接到牵引变压器上的,所以不用穿墙导管,故对于110KV 侧只需选择支柱绝缘子而不需要选择穿墙导管。而27.5KV 侧的设备既有安装在室外的也有安装在室内,所以对27.5KV 侧既需要选择支柱绝缘子,也需要选择穿墙导管。 一、110KV 侧支柱绝缘子的选取:

1、按最大工作电压选择支柱绝缘子可按变压器110KV 侧额定电压考虑

110e U KV =

由附录二表11.1查出支柱绝缘子的型号为ZS-110/3,初选破坏荷重为3的支柱绝缘子。

2、校验支柱绝缘子的机械强度

()2(3)(3)2737max 20.5 1.73100.5 1.73 3.754661010 1.219432

ch l F i N a --=????=?????=

由附录二表11.1中查得ZS-110/3型支柱绝缘子允许的抗弯破坏荷重为3000N ,而短

路时中间相中间位置的支柱绝缘子受力为()3

1.21943F N =,故

()30.630001800F N

二、27.5KV 侧支柱绝缘子的选取:

1、按最大工作电压选择支柱绝缘子可按变压器27.5KV 侧额定电压考虑

27.5e U KV =

由附录二表11.1查出支柱绝缘子的型号,初选型号为ZA-35Y 的支柱绝缘子。 2、校验支柱绝缘子的机械强度

由附录二表11.1中查得ZA-35Y 型支柱绝缘子允许的抗弯破坏荷重为3750N ,而短路

时中间相中间位置的支柱绝缘子受力为()37.31659F N =,故()3

0.637502250F N

能满足要求。

三、27.5KV侧穿墙导管的选取:

1、按最大长期工作电流选择母线的截面可按变压器过载1.3倍考虑

max

1.3 1.3 1.3409.406

g e

I I A

====

由附录二表11.1查出穿墙导管的型号,初选型号为CLB-35/600的支柱绝缘子。

2、校验穿墙导管的热稳定性

由前面选择硬母线处可得()62

0.532980.141627100.674607

d Z fi

Q Q Q KA s

=+=+?=?,而

2

5

12

Q KA s

=?,所以

5

d

Q Q

<,故穿墙导管满足热稳定性。

4.3高压断路器的选取

交流牵引负荷侧由于故障跳闸频繁,操作次数多,从减少运行维修工作量考虑,

本设计110KV侧选用

6

SF断路器,27.5KV侧选用真空断路器。

一、110KV侧

6

SF断路器的选取

1、最大长期工作电流按变压器过载1.3倍考虑

max

1.3 1.3 1.310

2.351

g e

I I A

====

110

g

U KV

=

由附录二表6.2查出

6

SF断路器的型号为LW-110,额定电流选取1250A。

2、短路关合电流的校验

由附录二表 6.2查出LW-110型号的

6

SF断路器的极限通过电流为80

eg

i KA

=,而

1877.23

cj

i A

=,所以

eg cj

i i≥,满足要求。

3、校验短路时的热稳定性

由前面选择硬母线处可得()62

0.532980.141627100.674607

d Z fi

Q Q Q KA s

=+=+?=?,而

222

4

31.543969

rt

Q I t KA s

=?=?=?,所以

4

d

Q Q

<,故满足热稳定性。

所以

6

SF断路器选取型号为LW-110,额定电流为1250A。

二、27.5KV 侧真空断路器的选取

1、最大长期工作电流按变压器过载1.3倍考虑

max 1.3 1.3 1.3409.406g e I I A ==== 27.5g U KV =

由附录二表6.3查出真空断路器的型号为627.5ZN -,额定电流选取600A 。 2、短路关合电流的校验

由附录二表6.2查出627.5ZN -型号的真空断路器的极限通过电流为25eg i KA =,而

3754.66cj i A =,所以eg cj i i ≥,满足要求。

3、校验短路时的热稳定性

由前面选择硬母线处可得()620.532980.141627100.674607d Z fi Q Q Q KA s =+=+?=?,而

2

224104400rt Q I t KA s =?=?=?,所以4d Q Q <,故满足热稳定性。

所以6SF 断路器选取型号为627.5ZN -,额定电流选取600A 。

4.4高压熔断器的选取

由于在所设计的电气主结线中,只有27.5KV 侧才有高压熔断器,所以只需选择

27.5KV 侧的高压熔断器。 1、按额定电压选择

由于227.5e U KV =,而2e e U U ≥,所以选择型号为135RN -的高压熔断器。 2、熔断器开断电流的校验

3200105714.2935

ek I A ?==,而23754.66ch I A =,即2ek ch I I >,满足要求。

3、熔断器断流容量的校验

200e S MVA =,而23754.6627.5103.253ch ch e S I U MVA =?=?=,即e ch S S >,满足要求。

由于环境为标准情况,不需要进行绝缘泄露比距校验。故选择135RN -的高压熔断器。

4.5隔离开关的选取

由于在所设计的电气主结线中,110KV 侧隔离开关在室外,而27.5KV 侧既有室内的也有室外的,所以对110KV 侧只需选择室外的,而27.5KV 侧要选择室内和室外的。

一、110KV 侧隔离开关的选取

1、最大长期工作电流按变压器过载1.3倍考虑

max 1.3 1.3 1.3102.351g e I I A ==== 110g U KV =

而max ,e g e g U U I I ≥≥,所以由附录二表9.2查出隔离开关的型号为GW4-110/600。 2、校验短路时的热稳定性

14er I KA =

,703.081172.219I ==

,所以er I I > 所以110KV 侧隔离开关的型号为户外GW4-110/600。 二、27.5KV 侧隔离开关的选取

1、最大长期工作电流按变压器过载1.3倍考虑

max 1.3 1.3 1.3409.406g e I I A ==== 27.5g U KV =

而max ,e g e g U U I I ≥≥,所以由附录二表9.1查出户内隔离开关的型号为GN2-35T/600,户外隔离开关的型号为GW2-35G/600, 2、校验短路时的热稳定性 1)、户内隔离开关的校验

25er I KA =

,1487.59364.384I ==

,所以er I I > 所以27.5KV 侧隔离开关的型号为户内GN2-35T/600。 2)、户外隔离开关的校验

14er I KA =

,1487.59364.384I ==

,所以er I I >

所以27.5KV 侧隔离开关的型号为户外GW2-35G/600。

4.6电压互感器的选取

一、110KV 侧电压互感器的选取

1110E U KV =

由附录二表12查出电压互感器110JCC -的原线圈额定电压为110KV ,副线圈额定

电压为0.1/,故确定选用的型号为110JCC -的电压互感器。

由于电压互感器是并接在主回路中,当主回路发生短路时,短路电流不会流过互感器,因此电压互感器不需要校验短路的稳定性。 二、27.5KV 侧电压互感器的选取

227.5E U KV =

由附录二表12查出电压互感器35JDJ -的原线圈额定电压为35KV ,副线圈额定电压为0.1KV ,故确定选用的型号为35JDJ -的电压互感器。

由于电压互感器是并接在主回路中,当主回路发生短路时,短路电流不会流过互感器,因此电压互感器不需要校验短路的稳定性。

4.7电流互感器的选取

一、110KV 侧电流互感器的选取

1、最大长期工作电流可按变压器过载1.3倍考虑

max 1.3 1.3 1.3102.351g e I I A ====, 1110E U KV =,

而111max ,e E e g U U I I ≥≥,由附录二表13.2查出电流互感器LCW-110的额定电压为

110KV ,额定电流比为(300~600)/5,故初步确定选用的型号为LCW-110的电流互感器。

2、短路热稳定性校验

()

()2

2

6130075506.2510e t I K t ??=?=?

66(0.1113250.0316367)1010d Q =+?<

()

2

1e t d I K t Q ??>,故满足热稳定性。

3、短路动稳定性校验

130015063630e u K ?=?=

1877.23ch i =

1e u ch K i ?>,满足动稳定性。

二、27.5KV 侧电流互感器的选取

1、最大长期工作电流可按变压器过载1.3倍考虑

max 1.3 1.3 1.3409.406g e I I A ====

227.5E U KV =,

而222max ,e E e g U U I I ≥≥,由附录二表13.2查出电流互感器LCW-35的额定电压为35KV ,

额定电流比为(15~1000)/5,故初步确定选用的型号为LCW-35的电流互感器。 2、短路热稳定性校验

()

()2

2

62100065422510e t I K t ??=?=?

()660.532980.1416271010d Q =+?<

()

2

2e t d I K t Q ??>,故满足热稳定性。

3、短路动稳定性校验

21000100141400e u K ?=?=

3754.66ch i =

1e u ch K i ?>,故满足动稳定性。

4.8避雷器的选取

牵引变电所为预防感应雷电波的入侵,通常采用避雷器保护,以限制入侵雷的辐值和陡度,从而保护电气设备的安全。 FCZ 系列磁吹阀式避雷器额定参数如下表

电气设备一览表

牵引变电所的设计

第1章概论 1.1 课题研究的目的意义 牵引变电所是电气化铁路牵引供电系统的心脏,它的主要任务是将电力系统输送来的三相高压电变化成适合电力机车使用的电能。而电气主接线反映牵引变电所设施的主要电气设备以及这些设备的规格、型号、技术参数以及在电气上是如何连接的,高压侧有几回进线、几台牵引变压器,有几回接触网馈电线。通过电气主接线可以了解牵引变电所等设施的规模大小、设备情况。 1.2 电气化铁路的国内外现状 变电所是对电能的电压和电流进行变换、集中和分配的场所。在电能是社会生产和生活质量中最为重要的能源和动力的今天,变电所的作用是很重要的当前我国进行的输变电建设和城乡电网的建设与改造,对未来电力工业发展有着重要的作用。因此,产品技术要先进,产品质量要过硬,应达到30~40年后也能适用的水平;而且产品必须要国产化。现阶段我过主要是使用常规变电所。常规变电所即采用传统模式进行设计、建造和管理的变电所,一般为有人值班或驻所值班,有稳定的值班队伍。继电保护为电磁型,电器就地控制,不具备四遥、远方操作功能,需要一支训练有素的运行与检修队伍和一整套相应的管理机构、制度进行管理,以满足安全运行的要求。这种模式有许多不足之处。我国的近期目标是既要充分利用原有设备,又要能够适应微机远动自动化系统;既要实现无人值班,又要满足安全经济运行的要求。 国外的变电所研究已经远远超过我国,他们在变电站的运行管理模式上, 已经能做到无人值守。 1.3 牵引变电所 1.3.1 电力牵引的电流制 电力牵引按牵引网供电电流的种类可分为三种电流制,即直流制、低频单相交流制和工频单相交流制。 (1) 直流制 即牵引网供电电流为直流的电力牵引电流制。电力系统将三相交流电送到牵引变

变电站课程设计

变电站课程设计

第一章 主变的选择 1、1 设计概念 变电站是电力系统的重要组成部分,是联系发电厂和用户的中间环节。它起着变换和分配电能的作用。 变电站的设计必须从全局利益出发,正确处理安全与经济基本建设与生产运行。近期需要与今后发展等方面的联系,从实际出发,结合国情采用中等适用水平的建设标准,有步骤的推广国内外先进技术并采用经验鉴定合格的新设备、新材料、新结构。根据需要与可能逐步提高自动化水平。 变电站电气主接线指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务,变电所的主接线是电力系统接线组成中的一个重要组成部分。 一次主接线的设计将直接影响各个不同电压侧电气设备的总体布局,并影响各进出线的安装间隔分配,同时还对变电所的供电可靠性和电气设备运行、维护的方便性产生很大的影响。主接线方案一旦确定,各进出线间和电气设备的相对位置便固定下来,所以变电所的一次主接线是电气设计的首要部分。 1.2 初步方案选定 1. 2.1负荷分析计算 根据任务书可知初建变送容量MVA S 35001=,且预测负荷增长率%4=W 每年,所以有如下每年的负荷变化量。 MVA S 3501= MVA S W S 364350%)41(1)1(2=?+=+= 2)1(3W S +==1S 350%)41(2?+56.378=MVA 3 )1(4W S +=350%)41(13?+=S 702.393=MVA MVA S W S 450.409350%)41(1)1(544=?+=+= MVA S W S 829.425350%)41(1)1(655=?+=+= MVA S W S 862.442350%)41(1)1(766=?+=+= 576.460350%)41(1)1(877=?+=+=S W S MVA 1.2.2 主变压器台数、容量的确定 (1)台数的确定 根据变电站主变压器容量一般按5——10年规划负荷来选择。根据城市规划、负荷性质、电网结构等综合考虑确定其容量。对重要变电站,应考虑

110kV变电站电气一次部分课程设计

课程设计任务书 设计题目: 110kV变电站电气 一次部分设计 前言 变电站(Substation)改变电压的场所。是把一些设备组装起来,用以切断或接通、改变或者调整电压。在电力系统中,变电站是输电和配电的集结点。主要作用是进行高底压的变换,一些变电站是将发电站发出的电升压,这样一方面便于远距离输电,第二是为了降低输电时电线上的损耗;还有一些变电站是将高压电降压,经过降压后的电才可接入用户。对于不同的情况,升压和降压的幅度是不同的,所以变电站是很多的,比入说远距离输电时,电压为11千伏,甚至更高,近距离时为1000伏吧,这个电压经

变压器后,变为220伏的生活用电,或变为380伏的工业用电。 随着我国电力工业化的持续迅速发展,对变电站的建设将会提出更高的要求。本文通过对110KV变电站一次系统的设计,其中针对主接线形式选择,母线截面的选择,电缆线路的选择,主变压器型号和台数的确定,保护装置及保护设备的选择方法进行了详细的介绍。其中,电气设备的选择包括断路器、隔离开关、互感器的选择和方法与计算,保护装置包括避雷器和避雷针的选择。其中分析短路电流的计算方法和原因,是为了保证供电的可靠性。 目录 第1章原始资料及其分析 (4) 1原始资料 (4) 2原始资料分析 (6) 第2章负荷分析 (6) 第3章变压器的选择 (8) 第4章电气主接线 (11) 第5章短路电流的计算 (14) 1短路电流计算的目的和条件 (14) 2短路电流的计算步骤和计算结果 (15) 第6章配电装置及电气设备的配置与选择 (18) 1 导体和电气设备选择的一般条件 (18) 2 设备的选择 (19) 结束语 (25)

牵引变电所电气主接线的设计

指导教师评语修改(40) 年月

1题目:牵引变电所电气主接线的设计 1.1选题背景 某牵引变电所位于大型编组站内,向两条复线电气化铁路干线的三个方向馈电区段供电,已知列车正常情况的计算容量为12000kV A(三相变压器),并以10kV 电压给车站电力照明机务段等地区负荷供电,容量计算为3850kV A。各电压侧馈出线数目及负荷情况如下: R 10kV回路(2路备):供电电源由系统区域变电所以双回路110KV输送线供电。算;各种方案主接线的技术经济性比较。) 这类牵引变电所的电源线路,按保证牵引符合供电的需求一般有两回,主要向牵引负荷和地区负荷供电,桥型结线的中间牵引变电所还有穿越功率通过母线,并向邻近牵引变电所或地区变电所供电。由题意知,本牵引变电所担负着重要的牵引负荷供电任务(一级负荷)、馈线数目多、影响范围广,应保证安全可靠持续性的供电。10千伏地区负荷主要为编组站自动化驼峰、信号自动闭塞、照明及其自动装置等一部分为一级负荷、其他包括机务段在内的自用电和地区三相负载等均为二级负荷,也应满足有足够安全可靠供电的要求。本变电所为终端变电所,一次侧无通过功率。 2方案论证 因没有校核容量,只考虑计算容量来选择变压器,牵引变压器计算容量为12000kV A,故选择容量为12500kV A的变压器,而地区变压器选择6300kV A变压器。 根据原始资料和各种负荷对供电可靠性要求,主变压器容量与台数的选择,可能有以下两种方案:

110kV母线,(110千伏变压器最小容量为6300kV A)。 过15%,采用电压为110/25/10.5kV A,结线为Y//两台三绕组变压器同时3主接线设计 (2)可靠性:根据变电所的性质和在系统中的地位和作用不同,对变电所的主接线可靠性提出不同的要求。主接线的可靠性是接线方式和一次、二次设备可靠性的综合。对主接线可以作定量计算,但需要各种设备的可靠性指标、各级线路、母线故障率等原始数据。通常采用定性分析来比较各种接线的可靠性。 (3)经济性:经济性是在满足接线可靠性、灵活性要求的前提下,尽可能地减少与接线方式有关的投资。 (2)变电所在电力系统中的地位和作用:电力系统中的变电所有系统枢纽变电所、地区重要变电所和一般变电所三种类型。一般系统枢纽变电所汇集多个大电源,进行系统功率交换和以中压供电,电压为330—500kV;地区重要变电所,电压为220—330kV;一般变电所多为终端和分支变电所,电压为110kV,但也有220kV。 (3)负荷大小和重要性:对于一级负荷必须有两个独立电源供电,且当任何一个电源失去后,能保证对全部一级负荷不间断供电。对于二级负荷一般要有两个独立电源供电,且当任何一个电源失去后,能保证全部或大部分二级负荷的供电。 (4)系统备用容量大小:装有两台及以上主变压器的变电所,其中一台事故断

变电所常用主接线

变电所常用主接线4.5.4 总降压变电所主 接线4.5.5 独立变电所主接线4.5.6 车间变电所主接线4.5.7 配电所主接线4.5.8 主接线 2.1 电气主接线及设备选择 (1) 主接线方式:农村小型变电所一般为用电末端变电所,35kV进线一回,变压器单台容量不大于5000kVA,设计规模为一台或两台变压器。35kV进线可不设开关,采用单母线方式,出线一般不超过6回。接在母线上的避雷器和电压互感器可合用一组隔离开关,接在变压器引出线上的避雷器不宜装设隔离开关。另外并联电容器补偿装置可根据具体情况决定是否设置。 (2) 主变选用低损耗、免维护变压器,为适应用电负荷变化大、农村小水电多及电压变化大等特点,按有载调压设计,调压范围为35±3×2.5%。变压器35kV侧采用户外真空断路器(亦可选择SF6型)或负荷加熔断器保护,当采用负荷加熔断器保护时,负荷开关用于正常运行时操作变压器,熔断器用于变压器保护,熔断器选用K型熔丝,因它具有全范围内有效和可靠地开断最小过负荷电流至最大故障电流;10kV侧采用户外真空断路器。 (3) 10kV出线采用户外真空断路器。10kV户外真空重合器是农村小型化变电所的新型产品,具有自动化程度高、技术性能好、适合农村电网的特点等优点。根据大量的运行经验和应用要求,变电所采用重合器作为保护开关时,应采用低压合闸线圈机构的分布式重合器。当采用断路器时,宜采用弹簧操作机构或小容量的直流操作机构。10kV设0.2级母线电压互感器一组,每回出线设0.2s电流互感器,以提高计量准确性,达到商业化运营的要求。 (4) 所用变设计:装设35/0.4kV,50kVA所用变一台,供变电所照明、检修及二次保护用电。为保证变电所内部全部停电情况下,有可靠的操作和检修电源,所用变装于35kV进线隔离开关前面。当可靠性不满足时,应在低压侧、母线侧或联络线上各设一台所用变,并能互相备用。 (5) 电压调整方式及电容器补偿方案:变电所的电压调整主要通过调整变压器分接头的方式实现。农村无功补偿应根据就地平衡的原则,采用集中补偿与分散补偿相结合的方式进行配置。电容器主要补偿变压器所耗无功,补偿容量一般取变压器容量的10%~15%,用户侧所耗无功采用配网分散补偿、就地平衡的原则。 2.2 电气平面布置 新建变电所的总平面布置按小型化方案设计,考虑节约占地。电气平面布置力求简洁、合理、少占用农田,并便于设备的检修维护。 小型化变电所采用全户外布置,变电所配电装置为户外敞开式,35kV及10kV均采用半高型布置。进所道路设在35kV及10kV配电装置之间,便于设备的运输,道路宽度为3.5m;变压器与10kV配电装置布置在一侧,便于设备的检修与维护;全站防雷保护可采用一根35m避雷针,变电所总占地面积约1350m2。 2.3 继电保护及二次回路设计 (1) 35kV常规变电所,变压器高压侧带断路器,变压器设差动、过流等保护,配置保护较多,二次回路需采用直流操作,若10kV选用户内真空开关柜、配电磁操作机构,需配置不小于65A·h的直流系统,增加了投资。小型化35kV变电所,变压器高压侧采用熔断器,并与负荷开关配合,以达到短路电流保护的目

110kva变电站电气主接线图分析

把变电站内的电气设备都要算上啊 一次设备:主变(中性点隔离开关、间隙保护、消弧线圈成套设备)、断路器(或开关柜、GIS等)、电压互感器(含保险)、电流互感器、避雷器、隔离开关、母线、母排、电缆、电容器组(电容、电抗、放电线圈等等),站用变压器(或接地变),有的变电站还有高频保护装置 二次设备:综合自动化、. 、逆变0000.、小电流接地选线、站用电、直流(蓄电池)、逆变、远动通讯等等 其他:支持瓷瓶、悬垂、导线、接地排、穿墙套管等等,消防装置、SF6在线监测装置等等 好像有点说多了,也可能有少点的,存在差异吧 35KV高压开关柜上一般都设有哪些保护各作用是什么? 过电流保护:1.速断电流保护:用于保护本开关以后的母排、电缆的短路故障。 2.定时限电流保护:用于下一电压级别的短路保护。 3.反时限电流保护:作用与2相同,但灵敏度比2高。 4.电压闭锁过电流保护:防止越级跳闸和误跳闸,提高供电可靠性。 5.纵联差动电流保护:专用于变压器内部故障保护。 6.长延时过负荷保护:用于保护专用设备或者电网的过负荷运行,首选发信,其次跳闸。 零序电流保护:1.零序电流速断保护:保护线路和线路后侧设备对地短路、严重漏电故障。 2.定时限零序电流保护:保护线路和线路后侧设备的轻微对地短路和小电流漏电,监测绝缘状况。可以选择作用于跳闸或发信。 过电压保护:1.雷电过电压保护。 2.操作过电压保护。1、2两种过电压通常都是用避雷器来保护,可防止线路或设备绝缘击穿。

3.设备异常过电压保护:通过电压继电器和综保定值整定来实现跳闸或发信,用于保护设备在异常过压下运行造成的发热损坏。 低电压保护:瞬时低电压保护只发信不跳闸,用于避免瞬间短路或大负荷启动造成的正常设备误跳闸。俗称躲晃电。 非电量保护:1.重瓦斯保护:用于变压器内部强短路或拉弧放电的严重故障保护。选择跳闸。 2.轻瓦斯保护:用于变压器轻微故障的检测,选择发信报警。 3.温度保护:用于检测变压器顶层油温监测,轻超温发信报警,重超温跳闸。 以上都是针对一次侧设计的保护。 二次侧的保护:1.直流失压保护,用于变电所直流设备故障时防止设备在保护失灵状况下运行。一般设备通常选择发信报警。重要设备选择跳闸。 2.临柜直流消失保护,用于监测相邻高压柜的直流电压状态,选择发信报警。 随着技术的发展,继电保护的内容越来越多,供人们在不同情况下选用。 目前使用的微机型综合保护器内都设计了各种保护功能,可以通过控制字的设定很方便地选择所需要的保护功能组合。

35KV变电站继电保护课程设计(同名16366)

35KV变电站继电保护课程设计(同名16366)

广西大学行健文理学院 课程设计 题目:35kV电网的继电保护设计 学院 专业 班级 姓名 学号 指导老师: 设计时间:2015年12月28日-2016年1月8日

摘要 电力是当今世界使用最为广泛、地位最为重要的能源之一,电力系统的安全稳定运行对国民经济、人民生活乃至社会稳定都有着极为重大的影响。 电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动作于断路器跳闸或发生信号的一种自动装置。电力系统继电保护的基本作用是:全系统范围内,按指定分区实时地检测各种故障和不正常运行状态,快速及时地采取故障隔离或告警信号等措施,以求最大限度地维持系统的稳定、保持供电的连续性、保障人身的安全、防止或减轻设备的损坏。随着电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。 随着电力系统的迅速发展。大量机组、超高压输变变电的投入运行,对继电保护不断提出新的更高要求。继电保护是电力系统的重要组成部分,被称为电力系统的安全屏障,同时又是电力系统事故扩大的根源,做好继电保护工作是保证电力系统安全运行的必不可少的重要手段,电力系统事故具有连锁反应、速度快、涉及面广、影响大的特点,往往会给国民经济和人民生活造成社会性的灾难。 本次毕业设计的题目是35kv线路继电保护的设计。主要任务是为保证电网的安全运行,需要对电网配置完善的继电保护装置.根据该电网的结构、电压等级、线路长度、运行方式以及负荷性质的要求,给35KV的输电线路设计合适的继电保护。 关键词:35kv继电保护整定计算故障分析短路电流计算

课程设计(变电所)(1)

变电所设计任务书(1) 一、题目220KV区域变电所设计 二、设计原始资料: 1、变电所性质: 系统枢纽变电所,与水火两大电力系统联系 2、地理位置: 本变电所建于机械化工区,直接以110KV线路供地区工业用户负荷为主。 3、自然条件: 所区地势较平坦,海拔800m,交通方便有铁,公路经过本所附近。最高气温十38o C 最低气温-300C 年平均温度十100C 最大风速20m/s 覆冰厚度5mm 地震裂度<6级 土壤电阻率<500Ω.m 雷电日30 周围环境较清洁、化工厂对本所影响不大 冻土深度1.5m 主导风向夏南,冬西北 4、负荷资料: 220KV侧共4回线与电力系统联接 110KV侧共12回架空出线,最大综合负荷

10KV 侧装设TT —30-6型同期调相机两台 5.系统情况 设计学生:________指导教师:____________ 完成设计日期:_______________________ 4╳4╳

变电所设计任务书(2) 一、题目220KV降压变电所设计 二、设计原始资料 1.变电所性质: 本所除与水、火两系统相联外并以110及10KV电压向地方负荷供电2.地理位置: 新建于与矿区火电厂相近地区,并供电给新兴工业城市用电 3.自然条件; 所区地势较平坦,海拔600m,交通方便有铁、公路经过本所附近 最高气温十400C 最低气温—250C 年平均温度十150C 最大风速_20m/s_ 覆冰厚度10mm 地震裂度_6级 土壤电阻率>1000Ω·m 雷电日___40__ 周围环境_空气清洁_建在沿海城市地区,注意台风影响 冻土深度1·0m 主导风向夏东南风、冬西北风 4·负荷资料: 220KV侧共3回线与电力系统联接

牵引变电所电气主接线设计教学教材

课程设计报告书 所属课程名称供变电技术课程设计 题目牵引变电所电气主接线设计分院 专业班级 学号 20 0210470 学生姓名 指导教师 20 年月日

课程设计任务书 专业电气工程及其自动化班级姓名 一、课程设计(论文)题目牵引变电所电气主接线设计 二、课程设计(论文)工作:自20年月日起至年月 1 日止。 三、课程设计(论文)的目的及内容要求: 1.设计课题:牵引变电所电气主接线设计 2.设计目的: ①通过该设计,使学生初步掌握交流电气化铁道牵引变电所电气主接线的设计步骤和方法; ②熟悉有关设计规范和设计手册的使用; ③基本掌握变电所主接线图的绘制方法; ④锻炼学生综合运用所学知识的能力,为今后进行工程设计奠定良好的基础。 3.设计要求:

①按给定供电系统和给定条件,确定牵引变电所电气主接线。 ②选择牵引变电所电气主接线中的主要设备。如:母线、绝缘子、隔离开关、熔断器、断路器、互感器等。选择时应优先考虑采用国内经鉴定的新产品、新技术。 ③提交详细的课程设计说明书和牵引变电所电气主接线图。 学生签名:( ) 20年月日

课程设计(论文)评阅意见 评阅人职称 20 年月日

目录 第一章牵引变电所主接线设计原则及要求 (6) 1.1 概述 (6) 1.2 电气主接线基本要求 (6) 1.3电气主接线设计应遵循的主要原则与步骤 (7) 第二章牵引变电所电气主接线图设计说明 (8) 第三章短路计算 (9) 3.1短路点的选取 (9) 3.2短路计算 (9) 第四章设备及选型 (12) 4.1硬母线的选取 (12) 4.2支柱绝缘子和穿墙导管的选取 (14) 4.3高压断路器的选取 (16) 4.4高压熔断器的选取 (17) 4.5隔离开关的选取 (18) 4.6电压互感器的选取 (19) 4.7电流互感器的选取 (20) 4.8避雷器的选取 (21) 第五章参考文献 (22)

110kV变电站电气主接线及运行方式

110kV变电站电气主接线及运行方式 变电站电气主接线是指高压电气设备通过连线组成的接受或者分配电能的电路。其形式与电力系统整体及变电所的运行可靠性、灵活性和经济性密切相关,并且对电气设备选择、配电装置的布置、继电保护和控制方式的拟定有较大影响。所以,主接线设计是一个综合性问题,应根据电力系统发展要求,着重分析变电所在系统中所处的地位、性质、规模及电气设备特点等,做出符合实际需要的经济合理的电气主接线。 一变电所主接线基本要求 1.1 保证必要的供电可靠性和电能质量。 保证供电可靠性和电能质量是对主接线设计的最基本要求,当系统发生故障时,要求停电范围小,恢复供电快,电压、频率和供电连续可靠是表征电能质量的基本指标,主接线应在各种运行方式下都能满足这方面的要求。 1. 2 具有一定的灵活性和方便性。 主接线应能适应各种运行状态,灵活地进行运行方式切换,能适应一定时期内没有预计到的负荷水平变化,在改变运行方式时操作方便,便于变电所的扩建。 1. 3 具有经济性。 在确保供电可靠、满足电能质量的前提下,应尽量节省建设投资和运行费用,减少用地面积。 1. 4 简化主接线。 配网自动化、变电所无人化是现代电网发展的必然趋势,简化主接线为这一技术的全面实施创造了更为有利的条件。 1. 5 设计标准化。 同类型变电所采用相同的主接线形式,可使主接线规范化、标准化,有利于系统运行和设备检修。 1. 6 具有发展和扩建的可能性。 变电站电气主接线应根据发展的需要具有一定的扩展性。 二变电所主接线基本形式的变化 随着电力系统的发展,调度自动化水平的提高及新设备新技术的广泛应用,变电所电气主接线形式亦有了很大变化。目前常用的主接线形式有:单母线、单母线带旁路母线、单母线分段、单母线分段带旁路、双母线、双母线分段带旁路、一个半断路器接线、桥形接线及线路变压器组接线等。从形式上看,主接线的发展过程是由简单到复杂,再由复杂到简单的过程。在当今的技术环境中, 随着新技术、高质量电气产品广泛应用,在某些条件下采用简单主接线方式比复杂主接线方式更可靠、更安全,变电所主接线日趋简化。因此,变电所电气主接线形式应根据可靠性、灵活性、经济性及技术环境统一性来决定。 三 110kV变电站的主接线选择 在电力系统和变电所设计中,根据变电所在系统中的地位和作用,可把电网中110kV变电所分为终端变电所和中间变电所两大类。下面就这两类变电所高压侧电气主接线模式作一分析。 3. 1 110kV终端变电所主接线模式分析

(110kv变电站电气主接线设计)复习过程

(110k v变电站电气主 接线设计)

110KV电气主接线设计 姓名: 专业:发电厂及电力系统 年级: 指导教师:

摘要 根据设计任务书的要求,本次设计为110kV变电站电气主接线的初步设计,并绘制电气主接线图。该变电站设有两台主变压器,站内主接线分为110kV、35kV和10kV三个电压等级。110KV电压等级采用双母线接线,35KV和10KV电压等级都采用单母线分段接线。 本次设计中进行了电气主接线的设计、短路电流计算、主要电气设备选择及校验(包括断路器、隔离开关、电流互感器、电压互感器、母线、熔断器等)、各电压等级配电装置设计。 本设计以《35~110kV变电所设计规范》、《供配电系统设计规范》、《35~110kV高压配电装置设计规范》等规范规程为依据,设计的内容符合国家有关经济技术政策,所选设备全部为国家推荐的新型产品,技术先进、运行可靠、经济合理。 关键词:降压变电站;电气主接线;变压器;设备选型

目录 1.1主接线的设计原则和要求 (1) 1.1.1 主接线的设计原则 (1) 1.1.2 主接线设计的基本要求 (2) 1.2主接线的设计 (3) 1.2.1 设计步骤 (3) 1.2.2 初步方案设计 (3) 1.2.3 最优方案确定 (4) 1.3主变压器的选择 (5) 1.3.1 主变压器台数的选择 (5) 1.3.2 主变压器型式的选择 (5) 1.3.3 主变压器容量的选择 (6) 1.3.4 主变压器型号的选择 (6) 1.4站用变压器的选择 (9) 1.4.1 站用变压器的选择的基本原则 (9) 1.4.2 站用变压器型号的选择 (9) 2 短路电流计算 (10) 2.1短路计算的目的、规定与步骤 (10) 2.1.1 短路电流计算的目的 (10) 2.1.2 短路计算的一般规定 (10) 2.1.3 计算步骤 (11) 2.2变压器的参数计算及短路点的确定 (11) 2.2.1 变压器参数的计算 (11) 2.2.2 短路点的确定 (12) 2.3各短路点的短路计算 (12) 2.3.1 短路点d-1的短路计算(110KV母线) (12) 2.3.2 短路点d-2的短路计算(35KV母线) (13) 2.3.3 短路点d-3的短路计算(10KV母线) (14) 2.3.4 短路点d-4的短路计算 (14) 2.4绘制短路电流计算结果表 (15) 3 电气设备选择与校验 (16) 3.1电气设备选择的一般规定 (16) 3.1.1 一般原则 (16) 应满足正常运行、检修、短路和过电压情况下的要求,并考虑远景发展的需要。 (16) 3.1.2 有关的几项规定 (16) 3.2各回路持续工作电流的计算 (16) 3.3高压电气设备选择 (17) 3.3.1 断路器的选择与校验 (17) 3.3.2 隔离开关的选择及校验 (21)

发电厂课程设计变电所Word

发电厂电气部分试题 一.填空题(20分) 1.火力发电厂可分为()和()。 2.发电厂中生产和分配电能的设备称为()。 3.主接线中,为了检修出线断路器,不致中断该回路供电,可增设()和( )。 4.变电所中,联络变压器为了布置和引线方便,通常只选一台,在中性点接地方式允许条件下,以选()为宜。 5.发电厂厂用电系统接线通常采用()。 6.对于容量在()及以上的发电机-变压器单元的连接母线采用全连式分相封闭母线。 7.导体的散热过程,就其物理本质而言,可分为()、()和()。 8.电弧燃烧过程中,去游离的两种形式为()和()。 9.隔离开关的主要用途有()、()和()。 10.电流互感器按照安装方式可分为()、()和()。 11.对电气主接线的基本要求,概括地说应该包括()、()和()三个方面。 二.选择题(10分) 1.枢纽变电所的特点是:() a.全所停电后将引起终端用户停电; b. 全所停电后将引起区域电网解列; c. 全所停电后将引起地区供电中断; d. 全所停电将引起系统解列,甚至出现瘫痪。2.同一回路的断路器与隔离开关的操作顺序为:() a.送电时先合隔离开关,后合断路器;停电时先断开断路器,后断开隔离开关; b.送电时先合断路器,后合隔离开关;停电时先断开隔离开关,后断开断路器; c.都对; d. 都不对。 3.具有二条进线与二条出线时,采用3/2接线和4角形接线相比较:()a.3/2接线多用二台断路器; b. 3/2接线少用二台断路器; c. 两种接线断路器数量相同; d.都不对。 4. 水电厂和变电所中,厂用备用电源的设置方式通常为:() a.明备用方式; b. 暗备用方式; c.都有; d. 都不对。 5.短路电流在三相导体中产生的最大电动力在:() a. A相; b. B相; c. C相; d. 都不对。 6.导体正常工作时,产生的损耗有:() a.介质损耗; b. 电阻损耗; c. 磁滞损耗和涡流损耗; d. 都有。 7.电流互感器的误差与二次负载阻抗的关系为:() a.与二次负载阻抗平方成正比; b. 与二次负载阻抗成正比; c.与二次负载阻抗平方成反比; d. 与二次负载阻抗成反比。 8.熄灭交流电弧的条件-介质强度大于恢复电压是在:() a.整个灭弧过程中; b. 触头分离瞬间; c. 电弧开始瞬间; d. 电弧熄灭瞬间。 9.安全净距中的E值是指:() a.无遮拦裸导体至地面的距离; b. 带电部分与建筑物之间的距离; c.通向屋外的出线套管至屋外通道的距离; d. 不同相带电部分之间距离。 10.通过分析导体长期通过电流的发热过程,可以计算出导体的() a.载流量; b. 最高温度; c. 最大电动力; d. 截面积。

电气化铁路牵引变电所的主接线与变压器设计

电气化铁路牵引变电所的主接线与变压器设计 牵引变电所是电气化铁路牵引供电系统的心脏,它的主要任务是将电力系统输送来的三相高压电变化成适合电力机车使用的电能。而电气主接线反映牵引变电所设施的主要电气设备以及这些设备的规格、型号、技术参数以及在电气上是如何连接的,高压侧有几回进线、几台牵引变压器,有几回接触网馈电线。通过电气主接线可以了解牵引变电所等设施的规模大小、设备情况。 标签:牵引变电所;铁路;牵引变压器 1 牵引变电所主结线的选择 牵引变电气主接线是变电所设计的首要部分,也是构成电力系统的重要环节。主接线的确定与电力系统整体及变电所本身运行的可靠性,灵活性和经济性是密切相关的,而且对电气设备的选择,配电装置布置,继电保护和控制方式的拟定有较大影响。因此必须合理的确定主接线。 电气主结线应满足的基本要求 ①首先保证电力牵引负荷,运输用动力,信号负荷安全,可靠供电的需要和电能质量。 ②具有必要的运行灵活性,使检修维护安全方便。 ③应有较好的经济性,力求减小投资和运行费用。 ④应力求接线简捷明了,并有发展和扩建的余地。 1.1 高压侧电气主结线的基本形式 1.1.1 单母线接线 如图1-1所示,单母线接线的的特点是整个的配电装置只有一组母线,每个电源线和引出线都经过开关电器接到同一组母线上。同一回路中串接的隔离开关和断路器,在运行操作时,必须严格遵守以下操作顺序:对馈线送电时必须先和1QS和2QS在投入1QF;如欲停止对其供电必须先断开1QF然后断开1QS和2QS。 单母线结线的特点是:(1)结线简单、设备少、配电装置费用低、经济性好并能满足一定的可靠性。(2)每回路断路器切断负荷电流和故障电流。检修任一回路及其断路器时,仅该回路停电,其他回路不受影响。(3)检修母线和与母线相连的隔离开关时,将造成全部停电。母线发生故障时,将是全部电源断开,待修复后才能恢复供电。

Kv变电站课程设计报告

目录 一、前言 (2) 1、设计内容:(原始资料16) (2) 2、设计目的 (2) 3、任务要求 (3) 4、设计原则、依据 (3) 原则:. (3) 5、设计基本要求 (3) 二、原始资料分析 (3) 三、主接线方案确定 (4) 1 主接线方案拟定 (4) 2 方案的比较与最终确定 (5) 四、厂用电(所用电)的设计 (5) 五、主变压器的确定 (6) 六、短路电流的计算 (7) 七、电气设备的选择 (8) 八、设计总结 (11) 附录 A 主接线图另附图 (12) 附录 B 短路电流的计算 (12) 附录C :电气校验 (15)

、尸■、■ 前言 1、设计内容:(原始资料16) 1)待设计的变电站为一发电厂升压站 (2)计划安装两台200MW汽轮发电机机组 发电机型号:QFSN-200-2 U e=15750V cos =0.85 X g=14.13% P e=200MW (3)220KV出线五回,预留备用空间间隔,每条线路最大输送容量200MVA T max=200MW (4)当地最高温度41.7 C,最热月平均最高温度32.5 C,最低温度-18.6 C, 最热月地面下0.8米处土壤平均温度25.3 C。 (5)厂用电率为8%厂用电电压为6KV发电机出口电压为15.75KV。 6)本变电站地处8度地震区。 7)在系统最大运行方式下,系统阻抗值为0.054。 (8)设计电厂为一中型电厂,其容量为2X 200 MW=40MW最大机组容量200 MW 向系统送电。 (9)变电站220KV与系统有5回馈线,呈强联系方式。 2、设计目的 发电厂电气部分课程设计是在学习电力系统基础课程后的一次综合性训练,通过课程设计的实践达到: 1)巩固“发电厂电气部分” 、“电力系统分析”等课程的理论知识。 2)熟悉国家能源开发策略和有关的技术规范、规定、导则等。 3)掌握发电厂(或变电所)电气部分设计的基本方法和内容。 4)学习工程设计说明书的撰写。 (5)培养学生独立分析问题、解决问题的工作能力和实际工程设计的基本技能。

牵引变电所电气主接线设计

精品文档 课程设计报告书 所属课程名称供变电技术课程设计 题目牵引变电所电气主接线设计分院 专业班级 学号 20 0210470 学生姓名 指导教师 20 年月日

课程设计任务书 专业电气工程及其自动化班级姓名 一、课程设计(论文)题目牵引变电所电气主接线设计 二、课程设计(论文)工作:自20年月日起至年月 1 日止。 三、课程设计(论文)的目的及内容要求: 1.设计课题:牵引变电所电气主接线设计 2.设计目的: ①通过该设计,使学生初步掌握交流电气化铁道牵引变电所电气主接线的设计步骤和方法; ②熟悉有关设计规范和设计手册的使用; ③基本掌握变电所主接线图的绘制方法; ④锻炼学生综合运用所学知识的能力,为今后进行工程设计奠定良好的基础。 3.设计要求:

①按给定供电系统和给定条件,确定牵引变电所电气主接线。 ②选择牵引变电所电气主接线中的主要设备。如:母线、绝缘子、隔离开关、熔断器、断路器、互感器等。选择时应优先考虑采用国内经鉴定的新产品、新技术。 ③提交详细的课程设计说明书和牵引变电所电气主接线图。 学生签名: ( ) 20 年月日

课程设计(论文)评阅意见 评阅人职称 20 年月日

目录 第一章牵引变电所主接线设计原则及要求 (6) 1.1 概述 (6) 1.2 电气主接线基本要求 (6) 1.3 电气主接线设计应遵循的主要原则与步骤 (7) 第二章牵引变电所电气主接线图设计说明 (8) 第三章短路计算 (9) 3.1短路点的选取 (9) 3.2短路计算 (9) 第四章设备及选型 (12) 4.1硬母线的选取 (12) 4.2支柱绝缘子和穿墙导管的选取 (14) 4.3高压断路器的选取 (16) 4.4高压熔断器的选取 (17) 4.5隔离开关的选取 (18) 4.6电压互感器的选取 (19) 4.7电流互感器的选取 (20) 4.8避雷器的选取 (21) 第五章参考文献 (22)

变电所设计课程设计说明书

青岛理工大学琴岛学院 课程设计说明书 课题名称:工厂供电课程设计 系部:机电工程系 专业班级: 学号: 学生: 指导老师: 青岛理工大学琴岛学院教务处 2017年7 月2 日

目录 1绪论 (1) 2 110kV变电所线路设计 (2) 2.1 变电站在电力系统中的作用 (2) 2.2主接线的选择 (2) 3设计电力变压器 (3) 3.1负荷计算 (4) 3.2变电所变压器的选择 (5) 4主接线图及仿真 (6) 5变电所电气设备选择 (8) 5.1断路器与隔离开关的选择 (8) 5.2互感器的选择 (8) 5.3熔断器的选择 (9) 5.4母线的选择 (9) 结论 (11) 致谢 (13) 参考文献 (14)

1 绪论 本次设计为110kv变电所设计,变电所是发电厂与用电负荷的重要联系,用来升降电压、聚集以及分流电能的作用。变电站的安全性能的运转与人民生产生活密切相关。变压 器与主接线的方案的确定是本次变电所设计规划的核心的一个环节,设计连线体现变电所的应用,建造消耗,是否正常没失误的动作,能够检查处理的目的要求;我对其主要分析跟探讨了110KV变电所线路连线的重点和要求,主要研究110kV变电所要求的目的、看点、设计重点、如何区别工具等。

2 110kV变电所线路设计 2.1 变电站在电力系统中的作用 变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全厂(所)电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。 本次设计建设一座110KV降压变电站,首先,根据主接线的经济可靠、运行灵活的要求选择各个电压等级的接线方式,在技术方面和经济方面进行比较,选取灵活的最优接线方式。 其次进行短路电流计算,根据各短路点计算出各点短路稳态电流和短路冲击电流,从三相短路计算中得到当短路发生在各电压等级的工作母线时,其短路稳态电流和冲击电流的值。 最后,根据各电压等级的额定电压和最大持续工作电流进行设备选择。 本工程初步设计内容包含变电所电气设计,变电所从110KV侧某变电所受电,其负荷分为35KV和10KV两个电压等级。 2.2主接线的选择 根据本次设计要求,以惜福镇为地点,建一座110KV变电所,调查,研究查资料,35KV的用电要求,基本满足二级供电要求可采用内桥式接线和单母线分段接线。

高速铁路牵引变电所电气主接线的设计课程设计

高速铁路牵引变电所电气主接线的设计 摘要:牵引变电所是电气化铁路牵引供电系统的心脏,它的主要任务是将电力系统输送来的三相高压电变化成适合电力机车使用的电能。而电气主接线反映牵引变电所设施的主要电气设备以及这些设备的规格、型号、技术参数以及在电气上是如何连接的,高压侧有几回进线、几台牵引变压器,有几回接触网馈电线。通过电气主接线可以了解牵引变电所等设施的规模大小、设备情况。 1.2 电气化铁路的国内外现状 变电所是对电能的电压和电流进行变换、集中和分配的场所。在电能是社会生产和生活质量中最为重要的能源和动力的今天,变电所的作用是很重要的当前我国进行的输变电建设和城乡电网的建设与改造,对未来电力工业发展有着重要的作用。因此,产品技术要先进,产品质量要过硬,应达到30~40年后也能适用的水平;而且产品必须要国产化。现阶段我过主要是使用常规变电所。常规变电所即采用传统模式进行设计、建造和管理的变电所,一般为有人值班或驻所值班,有稳定的值班队伍。继电保护为电磁型,电器就地控制,不具备四遥、远方操作功能,需要一支训练有素的运行与检修队伍和一整套相应的管理机构、制度进行管理,以满足安全运行的要求。这种模式有许多不足之处。我国的近期目标是既要充分利用原有设备,又要能够适应微机远动自动化系统;既要实现无人值班,又要满足安全经济运行的要求。 国外的变电所研究已经远远超过我国,他们在变电站的运行管理模式上, 已经能做到无人值守。 1.3 牵引变电所 1.3.1 电力牵引的电流制 电力牵引按牵引网供电电流的种类可分为三种电流制,即直流制、低频单相交流制和工频单相交流制。 (1) 直流制 即牵引网供电电流为直流的电力牵引电流制。电力系统将三相交流电送到牵引变电所一次侧,经过牵引变电所降压并整流变成直流电,再通过牵引网供给电力机车使用。直流制发展最早,目前有些国家的电气化铁路仍在应用。我国仅工矿、城市电车和地下铁道采用。牵引网电压有1200V,1500V,3000V和600V,750V等,后两种分别用于城市电车、地下铁道。直流制存在

(完整word版)110KV变电站课程设计说明书DOC

成绩 课程设计说明书 题目110/10kV变电所电气部分课程设计 课程名称发电厂电气部分 院(系、部、中心)电力工程学院 专业继电保护 班级 学生姓名 学号 指导教师李伯雄 设计起止时间: 11年 11月 21日至 11年 12 月 2日

目录 一、对待设计变电所在系统中的地位和作用及所供用户的分 析 (1) 二、选择待设计变电所主变的台数、容量、型式 (1) 三、分析确定高、低压侧主接线及配电装置型式 (3) 四、分析确定所用电接线方式 (6) 五、进行互感器配置 (6) 六.短路计算 (9) 七、选择变电所高、低压侧及10kV馈线的断路器、隔离开关 (10) 八、选择10kV硬母线 (13)

一、对待设计变电所在系统中的地位和作用及所供用户的分析 1.1、待设计变电所在系统中的地位和作用 1.1.1 变电所的分类 枢纽变电所、中间变电所、地区变电所、终端变电所 1.1.2 设计的C变电所类型 根据任务书的要求,从图中看,我设计的C变电所属于终端变电所。 1.1.3 在系统中的作用 终端变电所,接近负荷点,经降压后直接向用户供电,不承担功率转送任务。电压为110kV及以下。全所停电时,仅使其所供用户中断供电。 1.2、所供用户的分析 1.2.1 电力用户分类、对供电可靠性及电源要求 (1)I类负荷。I类负荷是指短时(手动切换恢复供电所需的时间)停电也可能影响人身或设备安全,使生产停顿或发电量大量下降的负荷。I类负荷任何时间都不能停电。对接有I类负荷的高、低压厂用母线,应有两个独立电源,即应设置工作电源和备用电源,并应能自动切换;I类负荷通常装有两套或多套设备;I类负荷的电动机必须保证能自启动。 (2)II类负荷。II类负荷指允许短时停电,但较长时间停电有可能损坏设备或影响机组正常运行的负荷。II类负荷仅在必要时可短时(几分钟到几十分钟)停电。对接有II类负荷的厂用母线,应有两个独立电源供电,一般采用手动切换。 I类、II类负荷均要求有两个独立电源供电,即其中一个电源因故停止供电时,不影响另一个电源连续供电。例如,具备下列条件的不同母线段属独立电源:①每段母线接于不同的发电机或变压器;②母线段间无联系,或虽然有联系,但其中一段故障时能自动断开联系,不影响其他段供电。所以,每个I类、II 类负荷均应由两回接于不同母线段的馈线供电。 (3)III类负荷。III类负荷指较长时间(几小时或更长时间)停电也不致直接影响生产,仅造成生产上的不方便的负荷。III类负荷停电不会造成大的影响,必要时可长时间停电。III类负荷对供电可靠性无特殊要求,一般由一个电源供电,即一回馈线供电。 1.2.2 估算C变电所的回路数目 根据上述要求,重要负荷(I类、II类)比例是55%,重要负荷需用双回线,每回10kV馈线输送功率1.5~2MW,经计算,高压侧回路数为2,低压侧回路数为18÷1.5=12。

35kv变电所电气部分设计—课程设计

课程设计(论文) 题目 学院名称 指导教师 职称 班级 学号 学生姓名 2013年6月14日

目录 摘要 (iii) Abstract ...................................................................................................iV 引言 (1) 1.变压器的选择 (2) 1.1主变压器形式的选择 (2) 1.2主变台数的确定 (2) 1.3主变容量的确定 (2) 1.4主变型号的选择 (3) 1.5所变压器台数的确定 (3) 1.6所变压器容量的确定 (3) 1.7所变压器型号的选择 (4) 2.电气主接线的设计 (4) 2.1电气主接线概述 (4) 2.2主接线的设计原则 (4) 2.3主接线设计的基本要求 (4) 2.4主接线设计及方案论证 (5) 2.5所接线的设计 (6) 3.短路电流的计算 (7) 3.1概述 (7) 3.2短路电流计算的方法 (8) 3.3短路电流的计算 (8) 3.4三相短路电路计算结果表 (10) 4.电气设备的选择 (10) 4.1 电气设备选择的一般原则 (10) 4.2高压断路器的参数 (11) 4.3电气设备选择的技术条件 (12) 4.4断路器和隔离开关的选择 (13) 4.5选择的断路器和隔离开关型号表 (17) 参考文献 (18)

附录 (19)

摘要:随着电力行业的不断发展,人们对电力供应的要求越来越高,特别是供稳固性、可靠性和持续性。然而电网的稳固性、可靠性和持续性往往取决于变电所的合理设计和配置。一个典型的变电站要求变电设备运行可靠、操作灵活、经济合理、扩建方便。出于这几方面的考虑,本论文设计了一个35kV降压变电站,此变电站有三个电压等级,一个是35kV,一个是10kV以及一个0.38KV。同时对于变电站内的主设备进行合理的选型。本设计选择选择四台主变压器,其他设备如断路器,隔离开关, 关键词: 35kV 变电所设计

相关主题
文本预览
相关文档 最新文档