当前位置:文档之家› 3D打印结构拓扑优化理论方法

3D打印结构拓扑优化理论方法

3D打印结构拓扑优化理论方法
3D打印结构拓扑优化理论方法

3D打印结构拓扑优化理论方法

鑫精合-孙峰、李广生

1.结构优化综述

“传统的结构设计,在某种程度上可以说是一种艺术,要求人们根据经验和通过判断去创造设计方案”[1]。目前以力学、有限元法等为理论基础的CAD/CAE技术作为校验的手段应用于结构设计中。同时,伴随着计算机技术的高速发展,各类复杂工程结构问题已广泛开展了结构分析方法的应用。相比较传统的结构设计方法而言,以有限元法为核心内容包括CAD技术、多体系统动力学等在内的现代设计方法作为更为科学的手段取代了以往的艺术行为。结构优化又称结构综合,其研究内容指综合结构分析方法和数学规划理论,在满足规定约束条件下,使设计目标达到最优。与结构分析相比,结构优化使得人们在结构设计中不再局限于被动地对给定结构方案进行分析校核,而是主动地在结构分析的基础上寻找最优结构。

尽管结构优化与有限元法几乎同时起步,但其发展却较为落后。其主要原因在于:结构优化作为结构分析的逆问题,理论与方法还不够成熟;从实际需求考虑,产品结构满足功能要求具有必须性,而进一步的结构优化要求则基于可行方案通过优选方式得以满足。近几年来,随着能源危机、环境问题的日益严重,各行各业对结构优化需求在不断提高。以整车结构为例,汽车轻量化不仅能降低燃耗、改善运动和排气等多方面性能,而且为减振降噪和实现大功率化创造了条件。车辆轻量化程度已成为汽车企业技术实力的一项综合反映。发动机发展趋势最突出的特点在于大功率和高功率密度,大幅度减小动力系统的体积和重量是发动机轻量化、具有强劲能源动力的保障。对于航天航空产品而言,结构产品对重量的敏感度更高。例如在卫星上,甚至有结构重量减少一克,则运载火箭的重量减少一吨的说法。

2.连续体结构拓扑优化理论方法综述

拓扑优化的主要思想是将寻求结构的最优拓扑问题转行为在给定的设计区域内寻求材料的最优分布问题。如图1所示,自从程耿东院士和Olhof以及Bendsoe和Kikuchi[2]相继引入材料微结构概念和均匀化方法以来,有关结构拓扑优化理论与方法的研究呈现出丰富多彩的发展局面,形成了一系列各具特色的解决方法:变密度法[3]、水平集法[4]、拓扑导数法[5]、相场法[6]、渐进结构法[7]以及中国学者隋允康等[8]提出的独立连续映射法等。曾任国际多学科优化协会主席Sigmund等[9]指出:随着这些拓扑优化手段的不断发展和进步,它们之间的差异也越来越小。因此,他建议目前各自独立的拓扑优化研究机构应该联合起来,共同致力于提出一种最优的拓扑优化手段。近年来,移动组件构件法[10-11]的提出,体现了各类方法融合统一的趋势。

图1典型拓扑优化算例

均匀化法是最先提出的连续体结构拓扑优化方法,其基本思想是将微结构引入到连续介质中,通过微结构的增减以确定最优拓扑结构。方法以微结构的尺寸参数作为设计变量,将拓扑优化问题转化为较为容易解决的尺寸优化问题。均匀化法在力学与数学理论方面较为严密,但方法设计变量数目多,微结构形状和角度变量难以确定,优化结果易产生多孔材料而不易加工制造,种种不利因素都成为均匀化法在工程应用上推广的障碍。

作为均匀化法的延伸算法,变变密度法引入单元密度与材料弹性模量等的假设函数关系,不涉及微结构设计与均匀化过程。程序实现简单且计算效率较高。常见的插值模型包括固体各向同性惩罚微结构模型(solid isotropic microstrcutres with penalization,SIMP)[12],材料属性有理近似模型(rational approximation of material properties,RAMP)[13]。为解决变密度法中存在的棋盘格现象和网格依赖性等数值问题[14],研究者提出了很多有效措施:采用高阶有限元活非协调元[15-16]、敏度过滤法[17]、密度过滤法[18]、周长约束法[19]、局部密度斜率控制[20]和最小密度下限控制[21]等。为使变密度法的优化结果更加便于工程应用,研究者们做出了大量的努力并取得了丰硕的成果。例如:Duysinx和Bensond[22]在拓扑优化中考虑了应力约束,并根据程耿东院士和郭旭[23]提出的ε松弛法消除了应力奇异现象。通过密度过滤和Heaviside投影,最初的SIMP方法演变为两场、三场类方法。例如王凤稳等[24]提出了使用多种Heaviside 映射方法,使得最终的优化结果更加清晰和稳健。此类方法的拓展研究科参考文献[25-29]

上述连续体结构拓扑优化方法中的设计变量通常假设为连续变化的物理量或数学变量,Xie和Steven提出的进化式结构优化方法(evolutionary structural optimization, ESO)是一种基于离散变量的拓扑优化方法。ESO法基本思想是通过逐步删除无效或低效的单元并使得剩余结构稳定,从而得到最优结构。ESO法的优点在于易于实现。但为了保证剩余结构稳定,通常需要进行多次结构重分析,优化效率低。Querin等[30]提出的双向进化式结构优化方法(bi-directional evolutionary structural optimization, BESO)通过同时生长和删除克服了该缺点。

同均匀化法以微孔结构尺寸为设计变量和变密度法以相对密度为设计变量不同,隋允康等[31]提出的独立连续映射(independent,continuous,mapping,ICM)法以独立于

单元具体物理参数的变量来表征单元的“有”与“无”,即“独立拓扑变量”。ICM法

将拓扑变量从尺寸、密度等低层次变量中抽象出来,以恢复拓扑变量的独立性。同时,ICM法保持了变密度法设计变量连续可微的优点,使得传统基于梯度的连续变量优化算法得以发挥应用。ICM中的mapping,即映射具有两个方面的含义:“离散-连续”映射和“连续-离散”映射。“离散-连续”映射指的是传统拓扑变量向独立连续拓扑变量的映射过程。与变密度法比较,过滤函数作用类似于密度-刚度插值格式,但同时具有一定的区别,主要体现在:(1)变密度法中的插值函数反映的是密度与材料弹性模量的关系,而ICM法中的拓扑变量是一个纯粹意义上的数学量,可直接作用于单元刚度阵等上以表征单元物理量的有无,这使得设计变量与物理量的关系更为简捷;(2)ICM法的拓扑变量采用不同的过滤函数单独作用于单元体积、单元刚度阵、单元质量阵等上,使得设计变量与物理量的关系更为灵活。上述两点不同正是反映了ICM法与变密度法在设计变量选取上的根本区别,也是ICM法中设计变量独立性的具体体现。磨光、过滤过程是ICM法映射法则的具体体现。该过程遵循了数学关系映射反演(relation mapping inverse,RMI)原理,在优化求解中,通过数学变换将原有难以求解的优化模型变换为易于求解的二次规划问题,故而具有方法论上的高度。彭细荣等[32]在过滤函数参数选取、优化模型构造、单元删除策略等上面进行了更细致的研究,使改进后的ICM法更加稳健实用。ICM这些年的研究进展集中体现在专著[33]中。

水平集法(Level Set Method,LSM)是由Osher和Sethian[34]提出的采用高一维水平集函数(Level Set Function,LSF)隐式追踪动态界面的一种数值方法,并于2000年首次被Sethian和Wiegmann[35]引入到拓扑优化设计中。如图2所示为某结构的水平集描述。基于LSM的拓扑优化方法不仅能够设计出具有光滑边界的结果,还可避免棋盘格现象和应力奇异现象等,因此在被王煜等[36]和Allaire等[37]完善了灵敏度分析理论之后得到了迅速的发展。为实现对多相材料结构的结构拓扑优化设计,王煜和王晓明[38]创新性提出了“彩色”LSM。为了消除优化结果对初始孔洞数量的依赖性,梅玉林和王晓明[39]以及Allaire等将拓扑导数与形状导数相结合,实现了在结构中自动开孔的目的,并因此显著提高了优化收敛速率。传统基于LSM的拓扑优化方法采用的都是离散的LSF,所以在优化过程中需要求解Hamilton-Jacobi方程,这时不仅要进行速度场扩散和重新初始化等操作,还要限制优化步长以满足Courant-Friedrichs-Lewy条件。为解决这一问题,为解决这一问题,Wang、王煜、罗震和魏鹏等[40-42]先后采用全局径向基函数和紧支径向基函数插值构造出参数化的LSF,并选取基函数的插值系数为设计变量,进而通过十分简单的参数优化方式实现了对低一维结构的拓扑优化,无需求解偏微分方程。近年来,基于LSM的拓扑优化方法研究更加注重以工程实际为导向,其中比较热门的两个研究方向就是将LSM应用于非规则区域拓扑优化设计和应力相关拓扑优化设计。前一个研究方向属于弥补LSM自身的不足,相关的研究有:Chen等[43]基于布尔操作的思想利用R函数对参数化的LSF进行处理,实现了非规则设计区域内的形状拓扑联合优化;Xing等[44]使用FEM求解用于驱动拓扑优化的偏微分方程,突破了常用的有限差分法对设计区域的苛刻限制;James等[45-46]把等参映射方法应用于到拓扑优化中,将非规则设计区域拓扑优化问题转化到规则区域内求解;周明东和王煜[47]从CAD的构造实体几何(Constructive Solid Geometry,CSG)表示法得到启发并创建了基于CSG的LSF,在设计区域中成功引入了工程特征约束。后一个研究方向属于发挥LSM自身的优势,相关的研究有:郭旭等[]提出了基于LSM和XFEM的应力相关拓扑优化方法,该方法不仅能得到具有光滑边界的优化结果,还能高精度地计算结构应力响应,很好地克服了前述密度法在处理此类问题上的不足;王煜等和张维声等[48]在拓扑优化中同样使用了LSM和

XFEM的组合,并相继提出了有效的应力约束方法;夏奇等[49]采用FEM分析结构力学响应,应力计算精度通过使用与零水平集相适应的拉格朗日网格来保证。

图2结构的水平集描述

3.连续体结构拓扑优化应用

随着目前连续体结构拓扑优化方法的深入研究,相关的工程应用也在逐步开展,尤其是在一些对结构设计性能要求和产品重量控制要求较高的行业如航空航天、车辆、微机械等。近年来,随着商品化结构优化软件如Altair公司的OptiStruct,FE-Design 公司的TOSCA Structure等的引入,使拓扑优化技术的广泛应用成为可能。目前在各行业产品结构设计中,静态最大刚度设计是拓扑优化应用较为成熟领域之一,一些考虑到加工特性如拔模约束、最大最小尺寸约束、对称约束等功能在商品化软件中的实现更加使优化结果具有较强的可加工性。早期的柔性机构设计采用的是伪刚体模型,最终结果仍靠设计者模仿传统机构确定,但难免造成结构复杂而不适合微型机械的具体要求。连续体结构拓扑优化设计方法为柔性机构设计开辟了新途径。如图3所示,在此方面较为典型是丹麦的Sigmund开展结构-热-电综合设计,通过优化变形实现了微驱动器和微传感器期望的精微运动[50-51]。在综合考虑结构动静态性能要求方面,如图4所示为某弹体外壳拓扑优化设计,优化模型中包括了结构静态柔顺度与动态频率目标,并采用OptiStruct软件建立了多目标的理想点模型[52]。朱灯林等[53]以动态柔顺度为目标,实现了硬盘驱动臂的拓扑设计。舒磊等[54]提出了复合域结构的重构拓扑优化方法,方法应用于X形汽车车架设计和结构与固定装置并行设计两个设计工程问题。Kim等[55]最先将拓扑优化技术运用到梁的截面优化中,刘书田等[56]考虑到梁的翘曲效应,以梁的平均柔顺度为优化目标,实现了复杂载荷下的梁截面拓扑优化设计。

图3电热驱动的微传感器

图4某弹体外壳的拓扑优化设计

引:

[1]钱令希著.工程结构优化设计[M].北京:水利电力出版社,1983.

[2]Bendsoe MP,Kikuchi N.Generating optimal topologies in structural design using a homogenization https://www.doczj.com/doc/f511411130.html,puter Methods in Applied Mechanics and Engineering,1988,71:197-224.

[3]Bendsoe MP.Optimal shape design as a material distribution problem.Structural Optimization,1989, 1(4):193-202.

[4]Wang MY,Wang XM,Guo DM.A level set method for structural topology https://www.doczj.com/doc/f511411130.html,puter Methods in Applied Mechanics and Engineering,2003,192(1-2):227-246.

[5]Sokolowski J,Zochowski A.On the topological derivative in shape optimization.Siam Journal on Control and Optimization,1999,37(4):1251-1272.

[6]Bourdin B,Chambolle A.Design-dependent loads in topology optimization.Esaim-Control Optimisation and Calculus of Variations,2003,9(2):19-48.

[7]Xie YM,Steven GP.A simple evolutionary procedure for structural https://www.doczj.com/doc/f511411130.html,puters& Structures,1993,49(5):885-896.

[8]隋允康,杨德庆,孙焕纯.统一骨架与连续体的结构拓扑优化的ICM理论与方法.计算力学学报,2000,17(1):28-33.

[9]Sigmund O,Maute K.Topology optimization approaches.Structural and Multidisciplinary Optimization,2013,48(6):1031-1055.

[10]Zhang W,Yang W,Zhou J,Li D,Guo X.Structural topology optimization through explicit boundary evolution.Journal of Applied Mechanics,2017,84:1

[11]Zhang W,Yuan J,Zhang J,Guo X.A new topology optimization approach based on Moving Morphable Components(MMC)and the ersatz material model.Structural and Multidisciplinary Optimization,2016,53:1243-1260.

[12]Bendsoe MP,Sigmund O.Material interpolation schemes in topology opitmization.Archive of Applied Mechanics,1999,69(9-10):635-654.

[13]Stople M,Svanberg K.An alternative interpolation scheme for minimum compliance topology optimization.Structural and Multidisciplinary Optimization,2001,22(2):116-124.

[14]Sigmund O,Petersson J.Numerical instabilities in topology optimization:a survey on procedures dealing with checkerboards,mesh-dependencies and local minima.Structural Optimization,1998,16(1): 68-75.

[15]Diaz A,Sigmund O.Checkerboard patterns in layout optimization.Structural Optimization,1995, 10(1):40-45.

[16]Jog CS,Haber RB.Stability of finite element models for distributed-parameter optimization and topolgy https://www.doczj.com/doc/f511411130.html,puter Methods in Applied Mechanics and Engineering,1996,130(3-4):203-226. [17]Sigmund O,Maute K.Sensitivity filtering from a continuum mechanics perspective.Structural and Multidisciplinary Optimization,2012,46:471-475.

[18]Bourdin B.Filters in topology optimization.International Journal for Numerical Methods in Engineering,2001,50(9):2143-2158.

[19]Zhang WH,Duysinx P.Dual approach using a variant perimeter constraint and efficient sub-iteration scheme for topology https://www.doczj.com/doc/f511411130.html,puters&Structures,2003,81(22-23):2173-2181.

[20]Petersson J,Sigmund O.Slope constrained topology optimization.International Journal for Numerical Methods in Engineering,1998,41(8):1417-1434.

[21]Zhou M,Shyy YK,Thomas HL.Chekcerboard and minimum member size control in topology optimization.Stuctural and Multdisciplinary Optimization,2001,21(2):152-158.

[22]Duysinx P,Bendsoe MP.Topology optimization of continuum structures with local stress constraints.International Journal for Numerical Methods in Engineering,1998,43(8):1453-1478. [23]Cheng GD,Guo X.Epsilon-relaxed approch in structural topology optimization.Structural Optimization,1997,13(4):258-266.

[24]Wang F,Lazarov BS,Sigmund O.On projection methods,convergence and robust formulations in topology optimization.Structural and Multidisciplinary Optimization,2011,43(6):767-784.

[25]Guest JK,Prevost JH,Belytschko T.Achieving mminimum length scale in topology optimization using nodal design variables and projection functions.International Journal for Numerical Methods in Engineering,2004,61(2):238-254.

[26]Sigmund O.Morphology-based black and white filters for topology optimization.Structural and Multidisciplinary Optimization,2007,33(4-5):401-424.

[27]Sigmund O.Manufacturing tolerant topology optimization.Acta Mechanica Sinica,2009,25(2): 227-239.

[28]Xu S,Cai Y,Cheng G.Volume preserving nonlinear density filter based on Heaviside function. Structural and Multidisciplinary Optimization,2010,41(4):495-505.

[29]Zhou M,Lazarov BS,Wang F,Sigmund O.Minimum length scale in topology optimization by geometric https://www.doczj.com/doc/f511411130.html,puter Methods in Applied Mechanics and Engineering,2015,293:366-282.

[30]Young V,Querin OM,Steven GP,Xie YM.3D and multiple load case bi-directional evolutionary structural optimization(BESO).Structural Optimization,1999,18(2):183-192.

[31]隋允康.建模变换优化-结构综合方法新进展.大连:大连理工大学出版社,1996

[32]隋允康,彭细荣.结构拓扑优化ICM方法的改善.力学学报,2005,37(2):190-198

[33]隋允康,叶红玲.连续体结构拓扑优化的ICM方法.北京:科学出版社,2013

[34]Osher S,Sethian JA.Fronts propagating with curvature-dependent speed:algorithms based on Hamilton-Jacobi formulations.Journal of Computational Physics,1988,79(1):12-49.

[35]Sethian JA,Wiegmann A.Structural boundary design via level set and immersed interface method. Journal of Computational Physics,2000,163(2):489-528.

[36]Wang MY,Wang XM,Guo DM.A level set method for structural topology https://www.doczj.com/doc/f511411130.html,puter

Methods in Applied Mechanics and Engineering,2003,192(1-2):227-246.

[37]Allaire G,Jouve F,Toader AM.Structural optimization using sensitivity analysis and a level-set method.Journal of Computational Physics,2004,194(1):363-393.

[38]Wang MY,Wang XM."Color"level sets:a multi-phase method for structural topology optimization with multiple https://www.doczj.com/doc/f511411130.html,puter Methods in Applied Mechanics and Engineering,2004,193(6-8): 469-496.

[39]Mei YL,Wang XM.A level set method for structural topology optimization and its applications. Advances in Engineering Software,2004,35(7):415-441.

[40]Wang SY,Wang MY.Radial basis functions and level set method for structural topology optimization.International Journal for Numerical Methods in Engineering,2006,65(12):2060-2090. [41]Luo Z,Wang MY,Wang S,Wei P.A level set-based parameterization method for structural shape and topology optimization.International Journal for Numerical Methods in Engineering,2008,76(1): 1-26.

[42]Luo Z,Tong L,Kang Z.A level set method for structural shape and topology optimization using radial basis https://www.doczj.com/doc/f511411130.html,puters&Structures,2009,87(7-8):425-434.

[43]Chen J,Shapiro V,Suresh K,Tsukanov I.Shape optimization with topological changes and parametric control.International Journal for Numerical Methods in Engineering,2007,71(3):313-346.

[44]Xing X,Wei P,Wang MY.A finite element-based level set method for structural optimization. International Journal for Numerical Methods in Engineering,2010,82(7):805-842.

[45]James KA,Martins JRRA.An isoparametric approach to level set topology optimization using a body-fitted finite-element https://www.doczj.com/doc/f511411130.html,puters&Structures,2012,90-91:97-106.

[46]James KA,Lee E,Martins JRRA.Stress-based topology optimization using an isoparametric level set method.Finite Elements in Analysis and Design,2012,58:20-30.

[47]Zhou M,Wang M Y.Engineering feature design for level set based structural optimization. Computer-Aided Design,2013,45(12):1524-1537.

[48]Guo X,Zhang WS,Wang MY.Stress-related topology optimization via level set approach. Computer Methods in Applied Mechanics and Engineering,2011,200(47-48):3439-3452.

[49]Xia Q,Shi T,Liu S,Wang MY.A level set solution to the stress-based structural shape and topology https://www.doczj.com/doc/f511411130.html,puters&Structures,2012,90-91:55-64.

[50]Sigmund O.Design of multiphysics actuators using topology optimization–PartⅠ:One-material https://www.doczj.com/doc/f511411130.html,puter Methods in Applied Mechanics and Engineering,2001,190:6577-6604.

[51]Sigmund O.Design of multiphysics actuators using topology optimization–PartⅡ:Two-material https://www.doczj.com/doc/f511411130.html,puter Methods in Applied Mechanics and Engineering,2001,190:6605-6627.

[52]Luo Z,Yang J,Chen L.A new procedure for aerodynamic missile designs using topological optimization approach of continuum structures.Aerospace Science and Technology,2006,10:364-373.

[53]朱灯林,王安麟.基于动态柔度的硬盘驱动臂的拓扑优化.机械强度,2007,29(2):269-273.

[54]舒磊,方宗德,张国胜,等.复合域结构的重构拓扑优化方法设计及应用研究.中国机械工程,2008,19(14):1712-1715.

[55]Kim Y Y,Kim T S.Topology optimization of beam cross sections.International Journal of Solids and Structurs,2000,37(3):477-493.

[56]Liu S,An X,Jia H.Topology optimization of beam cross-section considering warping deformation. Structural and Multidisciplinary Optimization,35(5):403-411.

基于拓扑优化的车身结构研究---经典

基于拓扑优化的车身结构研究 瞿元王洪斌张林波吴沈荣 奇瑞汽车股份有限公司,安徽芜湖,241009 摘要:随着CAE技术的发展,虚拟仿真技术在汽车开发中的作用也愈来愈显著。而前期工程阶段,如何布置出合理的车身骨架架构,一直是个相对空白的地带,也是整车正向开发过程中绕不过的坎。尽管研发工程师根据经验,参照现有车型的结构特点,也能进行车身骨架架构的设定,但总是缺乏有效手段直观地反映不同车型结构布置的特点。本文用拓扑优化的方法,从结构基本特征的角度来审视这一问题,并运用该方法对某SUV车身结构进行研究,获得一些直观性的结论。 关键词:车身,前期工程,拓扑优化 1引言 随着对整车研发过程认识的加深,以及对正向开发过程的探索,在车型开发前期,对车身结构做出更合理的规划显得愈来愈重要。常规的研发思路之一是通过参考已有车型的结构,经过适当的修改,形成新的结构,并用于新车型中。但是对于原始车型的设计思路、结构布置的原因等缺乏系统的理解,或者理解不深,往往在更改过程中产生新的问题。为了部分解决上述问题,本文从结构拓扑优化的角度,对某SUV 车型车身结构的总体布置进行初步探讨,以期加深对结构布置的理解。 2研究方法概述 合理化的车身结构,是满足整车基本性能的重要保障。为了能够实现结构的最优布置,文献[1]使用了拓扑优化工具来布置车身结构。其基本思路是从造型以及车内空间布置出发,建立车身空间的基础网格模型,然后根据一定的工况要求,对基础网格进行拓扑分析,并根据拓扑结果建立梁、板壳模型,并进行多项性能的优化,从而实现车身结构的正向开发。本文借助于该思想,建立研究对象的结构空间包络,并对该包络进行拓扑分析,然后将仿真结果与原始结构进行比较,寻找车身结构中的关键点,推测初始结构可能的布置思想,从而加深对该研究思路的理解。其基本过程如下图所示:

机械优化设计大作业2011 - 副本

宁波工程学院机械工程学院 机械优化设计大作业 班级 姓名 学号 教师

机械优化设计大作业 1.题目 行星减速器结构优化设计 NGW型行星减速器应用非常广泛。 1.1结构特点 (1)体积小、重量轻、结构紧凑、传递功率大、承载能力高; (2)传动效率高,工作高; (3)传动比大。 1.2用途和使用条件 某行星齿轮减速器主要用于石油钻采设备的减速,其高速轴转速为1300r/min;工作环境温度为-20℃~60℃,可正、反两向运转。 按该减速器最小体积准则,确定行星减速器的主要参数。 2.已知条件 传动比u=4.64,输入扭矩T=1175.4N.m,齿轮材料均选用38SiMnMo钢,表面淬火硬度HRC 45~55,行星轮个数为3。要求传动比相对误差02 ?u。 .0 ≤ 弹性影响系数Z E=189.8MPa1/2;载荷系数k=1.05; 齿轮接触疲劳强度极限[σ]H=1250MPa; 齿轮弯曲疲劳强度极限[σ]F=1000MPa; =2.97;应力校正系数Y Sa=1.52; 齿轮的齿形系数Y Fa 小齿轮齿数z取值范围17--25;模数m取值范围2—6。 注: 优化目标为太阳轮齿数、齿宽和模数,初始点[24,52,5]T

3.数学模型的建立 建立数学模型见图1,即用数学语言来描述最优化问题,模型中的数学关系式反映了最优化问题所要达到的目标和各种约 束条件。 3.1设计变量的确定 影响行星齿轮减速器体积的独立参数为中心轮齿数、齿宽、模数及行星齿轮的个数,将他们列为设计变量,即: x=[x 1 x 2 x 3 x 4 ]T=[z 1 b m c]T [1] 式中:z 1ˉ ̄ 太阳轮齿数;b―齿宽(mm);m—模数(mm);行星轮的个数。通常情况下,行星轮个数根据机构类型以事先选定,由已知条件c=3。这样,设计变量为: x=[x 1 x 2 x 3 ]T=[z 1 b m]T [1] 3.2目标函数的确定 为了方便,行星齿轮减速器的重量可取太阳轮和3个行星轮体积之和来代替,即: V=π/4(d 12+Cd 2 2)b 式中:d 1--太阳轮1的分度圆直径,mm;d 2 --行星轮2的分度圆 直径,mm。 将d 1=mz 1, d 2 =mz 2 ,z 2 =z 1 (u-2)/2代入(3)式整理,目标函数 则为: F(x)=0.19635m2z 1 2b[4+(u-2)2c][1] 式中u--减速器传动比;c--行星轮个数 由已知条件c=3,u=4.64,因此目标函数可简化为: F(x)=4.891x 32x 1 2x 2

多工况应力约束下连续体结构拓扑优化设计

多工况应力约束下连续体结构拓扑优化设计ΞTOPOLOG Y OPTIMIZATION DESIGN OF THE CONTINUUM STRUCTURE FOR MU L TIPL E LOADING CON DITIONS WITH STRESS CONSTRAINTS 王 健ΞΞ (山东理工大学交通与车辆工程学院,淄博255012)  程耿东 (大连理工大学工程力学研究所,大连116024) WAN G Jian (Traffic and Vehicle Engineering School,Shandong Univer sity o f Technology,Zibo255012,China) CHEN G Gengdong (Research Institute o f Engineering Mechanics,Dalian Univer sity o f Technology,Dalian116024,China) 摘要 建立多工况应力约束条件下连续体结构拓扑优化的数学模型,给出求解方法。采用包络法处理大量的应力约束,用改进的满应力法进行求解,方法简单、实用。提出的分层优化技术能使最优结构更为清晰。分层优化方法的基本思想是按载荷大小分为几个层次,后面层次的拓扑优化以前面层次得到的最优拓扑为基础,通过逐层优化,最终得到最优结构。分层优化时主要考虑属于本层载荷的影响,避免大小载荷混在一起,最优拓扑模糊不清的问题。为解决各层优化单元厚度相差太大,易造成结构刚度矩阵奇异的问题,提出对相应参数的调整方法。算例表明该方法是有效的。 关键词 结构拓扑优化 应力约束 连续体结构 满应力法 分层优化技术 中图分类号 T B114.3 T B115 Abstract The mathematical m odel of topology optimization design of the continuum structure for multiple loading conditions with stress constraints are presented in the paper,and the s olving method is als o given.The problem is s olved by m odified fully stress method combined with a bundle method to deal with plentiful stress constraints,both the method are sim ple and practical.The multilevel opti2 mization technique is proposed in this paper to make clearer optimal topology of structures.The main idea of the multilevel optimization method is to partition the load cases into several levels according to their magnitude.In every level,we mainly consider the in fluence of the loads belonged to this level.In this way,we av oid the blending of various loads and the dim topological structure.T o s olve the prob2 lem that the single structure stiffness matrix caused by the too big dispersion of element thickness between different levels,it proposed the adjustive method of relevant parameters.Numeral com putations show that the method is effective and efficient. K ey w ords Structure topology optimization;Stress constraints;Continuum structure;Fully stress method;Multilevel optimization technique Correspondent:WANG Jian,E2mail:wangjian0721@https://www.doczj.com/doc/f511411130.html,,Fax:+86253322313164 The project supported by the Natural Science F oundation of Shandong Province,China(N o.Y96F03085). Manuscript received20010920,in revised form20011225. 1 引言 在多工况、多约束情况下,结构的最优拓扑往往是超静定的,必须考虑变形协调条件,其数学模型是一个非线性规划问题。文献[1~4]是离散结构拓扑优化方面成功采用非线性规划方法求解的范例。连续体结构拓扑优化方面也有考虑多工况情况的文章发表[5,6],但这方面的工作不多,且没有研究应力约束问题。实际工程结构多半在多种工况下工作,应力约束是最基本的约束条件,所以研究多工况应力约束下连续体结构的拓扑优化问题是非常必要的。 多工况下受到应力约束的结构拓扑优化问题的数学模型可以描述为式(1),用数学规划法求解时自然将其作为一个多约束问题来处理;连续体结构拓扑优化的设计变量很多,采用文献[1~4]中的数学规划方法求解意味着将有浩大的计算工作量,因此一般采用准则法———满应力法解决。用满应力法求解多工况问题时往往使用包络法处理大量的应力约束[7]。包络法的基本思想是把每一个应力约束先单独地考虑,求出在这个应力约束下改进后的新设计变量,然后对每一个设计变量,在所有的值中挑出最大的作为新的设计。这种方法可以保证应力约束条件满足,并且也易于将 机械强度 Journal of Mechanical Strength2003,25(1):055~057 Ξ ΞΞ王 健,男,1962年7月生,山东省济南市长清县人,汉族。山东理工大学交通与车辆工程学院院长,教授,博士,长期从事结构优化研究,发表相关论文20余篇。 20010920收到初稿,20011225收到修改稿。山东省自然科学基金资助项目(Y96F03085)。

ANSYS拓扑优化原理讲解以及实例操作

拓扑优化是指形状优化,有时也称为外型优化。 拓扑优化的目标是寻找承受单载荷或多载荷的物体的最佳材料分配方案。这种方案在拓扑优化中表现为“最大刚度”设计。与传统的优化设计不同的是,拓扑优化不需要给出参数和优化变量的定义。目标函数、状态变量和设计变量(参见“优化设计”一章)都是预定义好的。用户只需要给出结构的参数(材料特性、模型、载荷等)和要省去的材料百分比。给每个有限元的单元赋予内部伪密度来实现。这些伪密度用PLNSOL ,TOPO 命令来绘出。拓扑优化的目标——目标函数——是在满足结构的约束(V )情况下减少结构的变形能。减小结构的变形能相当于提高结构的刚度。这个技术通过使用设计变量。 结构拓扑优化的基本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻求最优材料分布的问题。通过拓扑优化分析,设计人员可以全面了解产品的结构和功能特征,可以有针对性地对总体结构和具体结构进行设计。特别在产品设计初期,仅凭经验和想象进行零部件的设计是不够的。只有在适当的约束条件下,充分利用拓扑优化技术进行分析,并结合丰富的设计经验,才能设计出满足最佳技术条件和工艺条件的产品。连续体结构拓扑优化的最大优点是能在不知道结构拓扑形状的前提下,根据已知边界条件和载荷条件确定出较合理的结构形式,它不涉及具体结构尺寸设计,但可以提出最佳设计方案。拓扑优化技术可以为设计人员提供全新的设计和最优的材料分布方案。拓扑优化基于概念设计的思想,作为结果的设计空间需要被反馈给设计人员并做出适当的修改。最优的设计往往比概念设计的方案结构更轻,而性能更佳。经过设计人员修改过的设计方案可以再经过形状和尺寸优化得到更好的方案。 优化拓扑的数学模型 优化拓扑的数学解释可以转换为寻求最优解的过程,对于他的描述是:给定系统描述和目标函数,选取一组设计变量及其范围,求设计变量的值,使得目标函数最小(或者最大)。一种典型的数学表达式为: ()()()12,,0 ,,0min ,g x x v g x x v f x v ?=??≤?? ?? && 式中,x -系统的状态变量;12g g 、-一等式和不等式的结束方程;(),f x v -目标函数; v -设计变量。 注:在上述方程中,x 作为系统的状态变量,并不是独立的变量,它是由设计变量得 出的,并且与设计变量相关。 优化拓扑所要进行的数学运算目标就是,求取合适的设计变量v ,并使得目标函数值最小。 基于ANSYS 的优化拓扑的一般过程 (进行内容排版修改) 在ANSYS 中,进行优化拓扑,一般分为6个步骤。具体流程见图5-1:

结构拓扑优化的发展现状及未来

结构拓扑优化的发展现状及未来 王超 中国北方车辆研究所一、历史及发展概况 结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算结构力学中已经被认为是最富挑战性的一类研究工作。目前有关结构拓扑优化的工程应用研究还很不成熟,在国外处在发展的初期,尤其在国内尚属于起步阶段。1904 年Michell在桁架理论中首次提出了拓扑优化的概念。自1964 年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20 世纪80 年代初,程耿东和N. Olhoff在弹性板的最优厚度分布研究中首次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化设计,开创了连续体结构拓扑优化设计研究的新局面。1993年和提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002 年罗鹰等提出三角网格进化法,该方法在优化过程中实现了退化和进化的统一,提高了优化效率。 二、拓扑优化的工程背景及基本原理 通常把结构优化按设计变量的类型划分成三个层次:结构尺寸优化、形状优化和拓扑优化。尺寸优化和形状优化已得到充分的发展,但它们存在着不能变更结构拓扑的缺陷。在这样的背景下,人们开始研究拓扑优化。拓扑优化的基本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻求最优材料的分布问题。寻求一个最佳的拓扑结构形式有两种基本的原理:一种是退化原理,另一种是进化原理。退化原理的基本思想是在优化前将结构所有可能杆单元或所有材料都加上,然后构造适当的优化模型,通过一定的优化方法逐步删减那些不必要的结构元素,直至最终得到一个最优化的拓扑结构形式。进化原理的基本思想是把适者生存的生物进化论思想引入结构拓扑优化,它通过模拟适者生存、物竞天择、优胜劣汰等自然机理来获得最优的拓扑结构。 三、结构拓扑优化设计方法 目前常使用的拓扑优化设计方法可以分为两大类:退化法和进化法。 退化法即传统的拓扑优化方法,一般通过求目标函数导数的零点或一系列迭代计算过程求最优的拓扑结构。目前常用于拓扑优化的退化法有基结构方法、均匀化方法、变密度法、变厚度法等。 基结构方法(GSA)的思路是假定对于给定的桁架节点,在每两个节点之间用杆件连结起来得到的结构称为基结构。按照某种规则或约束,将一些不必要的杆件从基本结构中删除,认为最终剩下的构件决定了结构的最佳拓扑。基结构方法更适合于桁架和框架结构的拓扑优化。基结构法是在有限的子空间内寻优,容易丢失最优解,另外还存在组合爆炸、解的奇异性等问题。 均匀化方法(HA)引入微结构的单胞,通过优化计算确定其材料密度分布,并由此得出最优的拓扑结构。均匀化方法主要应用于连续体的拓扑优化设计,它不仅能用于应力约束和位移约束,也能用于频率约束。目前用均匀化方法来进行拓扑优化设计的有一般弹性问题、热传导问题、周期渐进可展曲面问题、非线性热弹性问题、振动问题和骨改造问题等。 变密度法是一种比较流行的力学建模方式,与采用尺寸变量相比,它更能反映拓

机械结构拓扑优化设计研究现状及其发展趋势

机械结构拓扑优化设计研究现状及其发展趋势 发表时间:2018-12-27T16:17:28.400Z 来源:《河南电力》2018年13期作者:谢进芳 [导读] 机械产品应用范围相对较广,为确保机械产品在我国日常生活及企业从生产中得到有效应用,实施优化设计十分必要。 (广东科立工业技术股份有限公司广东省佛山市 528000) 摘要:随着现代科学技术的发展,市场产品竞争也越来越激烈,产品品种的换代速度加快,产品的复杂性在不断增加。所以产品生产正在以小批量、多品种的生产方式取代过去的单一品种大批量生产方式。而这种生产方式,肯定会缩短产品的生产周期,产品的成本也会降低,产品提高市场的占有率和竞争力也会提高。所以在机械结构设计中采用优化设计是满足市场竞争的需要。 关键词:机械结构拓扑;现状;发展趋势 引言 机械产品应用范围相对较广,为确保机械产品在我国日常生活及企业从生产中得到有效应用,实施优化设计十分必要。目前我国已经针对机械结构优化设计进行了研究,并取得一定成果,主要表现在船舶行业、焊工航天以及汽车行业等。机械结构的优化设计可有效提高其产品性能并增加其自身市场竞争力,对其市场发展起重要作用。 1.机械结构优化设计 随着科学技术的发展,机械产品更新换代的速度越来越快。过去,机械产品主要是大批量生产,产品相对单一。目前采用的是小批量加工方式,以保证产品的多样性。为了保证生产企业的利润,必须在保证质量的前提下,缩短生产周期,降低生产成本。优化设计能够达到上述目标,在一定程度上缩短了生产时间,降低了成本,有效地抢占了市场。机械结构优化设计已广泛应用于造船、运输、航空航天、冶金、纺织、建筑等领域。 机械结构优化设计流程主要包括:(1)针对所优化机械产品尽心目标函数优化设计,可确保机械产品相关技术指标符合优化要求。(2)设计机械产品优化函数变量,变量设计包括机械产品长度、厚度以及弧度等相关结构参数。(3)对机械产品优化设计约束条件进行设定,对计算过程中各项变量浮动范围进行限定。(4)通过以上步骤得出多种优化设计方案,分别对不同方案进行评价,根据机械结构优化设计需求选择最佳方案实施。 2.机械结构拓扑优化设计常用方法 (1)均匀化方法 常用的连续结构拓扑优化设计方法主要有均匀化方法、变密度方法、水平集方法以及进化结构优化方法等。 均匀化方法属于材料描述方式,基本思想是将微结构模型引入结构拓扑优化设计领域,以微结构的单胞尺寸参数为设计变量,根据单胞尺寸的变化实现微结构的增删,优化实体与孔的分布形成带孔洞的板,达到结构拓扑优化的目的。优化过程:①设计区域的划分;②确定设计变量;③进行拓扑优化设计;④以不同的微结构形式的分布显示连续结构的形状和拓扑状态。 图1 微结构单胞示意图 微结构的划分形式通常有空孔、实体和开孔 3种,空孔是指没有材料的微结构,其孔的尺寸为 1;实体是指具有各向同性材料的微结构,其孔的尺寸为 0;开孔是指具有正交各向异性材料的微结构,其孔的尺寸介于 0~1 且可变化。设计区域划分为空孔、实体和开孔的微结构形式。简单的二维微结构单胞示意图如图 1 所示。微结构上孔的尺寸和方位角是设计变量,其中孔的尺寸是微结构材料主方向,它可以由坐标转换矩阵体现在材料的有效弹性模量上,通过微结构的密度与有效弹性模量之间的关系曲线,把设计变量与结构各处的形态联结起来。在结构拓扑优化设计过程中,微结构中孔的尺寸和在 0~1 的变化区域就可使各微结构在空孔与实体之间变化,这样就可用连续变量对结构优化设计问题进行描述。 均匀化结构拓扑优化方法涉及的设计变量非常多,用的较多的优化算法是准则优化算法。 (2)变密度方法 变密度方法式是引入一种假想的密度在 0~1可变的材料,采用材料的密度作为优化设计变量,实现结构的拓扑变化;材料弹性模量等物理参数与材料密度间的关系也是人为假定的;这样不但将结构的拓扑优化问题转换为材料的最优分布问题,还可使优化结果尽可能具有非 0 即 1 的密度分布。变密度结构拓扑优化方法与采用尺寸变量相比,它更能反映拓扑优化的本质特征。因此,在实际工程的结构优化设计中大多采用变密度方法来解决结构优化问题。变密度结构拓扑优化方法常用的插值模型是固体各向同性惩罚微结构模型(SIMP)。由于变密度结构拓扑优化方法更能反映拓扑优化的本质特征,且概念简单、设计变量数目少,简化了计算求解过程,因此,变密度结构拓扑优化方法成为目前最常用的、也是用的最多的结构优化设计方法。 3.机械结构优化的应用趋势 随着优化方法的不断发展和完善,结构优化设计也逐渐发展起来。近年来,在结构优化算法方面,由于结构优化设计中变量较多,结构优化设计往往采用接近实际情况的复杂结构模型来模拟一些大型结构系统。因此,新的准则优化方法备受关注,但如何为一些特殊结构

连续体结构拓扑优化方法及存在问题分析

编号:SY-AQ-00556 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 连续体结构拓扑优化方法及存 在问题分析 Topology optimization method of continuum structure and analysis of existing problems

连续体结构拓扑优化方法及存在问 题分析 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 文章深入分析国内外连续体结构拓扑优化的研究现状,介绍了拓扑优化方法的发展及实现过程中存在的问题。对比分析了均匀化方法,渐进结构优化法,变密度法的优缺点。研究了连续体结构拓扑优化过程中产生数值不稳定现象的原因,重点讨论了灰度单元,棋盘格式,网格依赖性的数值不稳定现象,并针对每一种数值不稳定现象提出了相应的解决办法。 结构拓扑优化设计的主要对象是连续体结构,1981年程耿东和Olhof在研究中指出:为了得到实心弹性薄板材料分布的全局最优解,必须扩大设计空间,得到由无限细肋增强的板设计。此研究被认为是近现代连续体结构拓扑优化的先驱。 目前,国内外学者对结构拓扑优化问题进行了大量研究,这些

研究大多数建立在有限元法结构分析的基础上,但由于有限元法中单元网格的存在,结构拓扑优化过程中常常出现如灰度单元,网格依赖性和棋盘格等数值不稳定的现象。本文介绍了几种连续体结构拓扑优化方法及每种方法存在的问题,并提出了相应的解决办法。 1.拓扑优化方法 连续体结构拓扑优化开始于1988年Bendoe和Kikuchi提出的均匀化方法,此后许多学者相继提出了渐进结构优化方法、变密度法等拓扑优化数学建模方法。 1.1.均匀化方法 均匀化方法即在设计区域内构造周期性分布的微结构,这些微结构是由同一种各向同性材料实体和孔洞复合而成。采用有限元方法进行分析,在每个单元内构造不同尺寸的微结构,微结构的尺寸和方向为拓扑优化设计变量。1988年Bendsoe研究发现,通过在结构中引入具有空洞微结构的材料模型,将困难的拓扑设计问题转换为相对简单的材料微结构尺寸优化问题。 很多学者发展了均匀化方法,Suzhk进行了基于均匀化方法结

拓扑优化

结构拓扑优化设计现状及前景 目前, 最优化设计理论和方法在机械结构设计中得到了深入的研究和广泛的应用。所谓优化设计就是根据具体的实际问题建立其优化设计的数学模型, 并采用一定的最优化方法寻找既满足约束条件又使目标函数最优的设计方案。根据优化问题的初始设计条件, 目前结构优化技术有四大领域: 1) 尺寸优化; 2) 形状优化; 3) 拓扑与布局优化; 4) 结构类型优化。结构尺寸优化是在结构的拓扑确定的前提下, 首先用少量尺寸对结构的某些变动进行表达, 如桁架各单元的横截面尺寸、某些节点位置的变动等, 然后在此基础上建立基于这些尺寸参数的数学模型并采用优化方法对该模型进行求解得到最优的尺寸参数。在尺寸优化设计中, 不改变结构的拓扑形态和边界形状, 只是对特定的尺寸进行调整, 相当于在设计初始条件中就增加了拓扑形态的约束。而结构最初始的拓扑形态和边界形状必须由设计者根据经验或实验确定, 而不能保证这些最初的设计是最优的, 所以最后得到的并不是全局最优的结果。结构形状优化是指在给定的结构拓扑前提下, 通过调整结构内外边界形状来改善结构的性能。以轴对称零件的圆角过渡形状设计的例子。形状设计对边界形状的改变没有约束,和尺寸优化相比其初始的条件得到了一定的放宽,应用的范围也得到了进一步的扩展。拓扑优化设计是在给定材料品质和设计域内,通过优化设计方法可得到满足约束条件又使目标函数最优的结构布局形式及构件尺寸。拓扑设计的初始约束条件更少, 设计者只需要提出设计域而不需要知道具体的结构拓扑形态。拓扑设计方法是一种创新性

的设计方法, 能为我们提供一些新颖的结构拓扑。目前, 拓扑设计理论在柔性受力结构、MEMS 器件及其它柔性微操作机构的设计中得到了广泛的研究。 结构拓扑优化的发展概况 结构拓扑优化包括离散结构的拓扑优化和连续变量结构的拓扑优化。近10 年来, 结构拓扑优化设计虽然取得了一些进展, 但大部分是针对连续变量的, 关于离散变量的研究为数甚少。由于离散变量优化的目标函数和约束函数是不连续、不可微的, 可行域退化为不连通的可行集, 所以难度远大于连续变量优化问题。在离散结构中, 桁架在工程中的应用较为广泛, 由于其重要性, 也由于其分析比较简单, 桁架结构的拓扑优化在文献中研究得最多. 结构拓扑优化的历史可以追溯到1904 年Michell提出的桁架理论, 但这一理论只能用于单工况并依赖于选择适当的应变场, 不能应用于工程实际。1964 年Dorn、Gomory、Greenberg 等人提出基结构法( ground structure approach) , 将数值方法引入该领域, 此后拓扑优化的研究重新活跃起来, 陆续有一些解析和数值方面的理论被 提出来。所谓基结构就是一个由结构节点、荷载作用点和支承点组成的节点集合, 集合中所有节点之间用杆件相连的结构。该方法的基本思路是: 从基结构的模型出发, 应用优化算法( 数学规划法或准则法) , 按照某种规划或约束, 将一些不必要的杆件从基结构中删除, 例如截面积达到零或下限的杆件将被删掉, 并认为最终剩下的杆件 决定了结构的最优拓扑。因此应用基结构, 可以将桁架拓扑优化当作

具有多种约束的连续体结构拓扑优化

文章编号:1004Ο8820(2003)02Ο0138206 具有多种约束的连续体结构拓扑优化 江允正,王子辉,初明进 (烟台大学土木工程系,山东烟台264005) 摘要:对于具有多种约束条件的连续体结构的拓扑优化设计,本文提出一种通用优化方 法:首先用优化方法确定微孔或称为基点的位置,然后再扩大微孔并确定其边界.文中对 于具有应力和位移约束的几个平面问题进行拓扑优化,计算结果十分令人满意. 关键词:结构拓扑优化;结构优化;连续体; 中图分类号:TP391.72 文献标识码:A 近年来,Bendsoe 和K ikuchi [1]等广泛采用连续体拓扑优化的均匀方法.首先从连续介质中人为地引进某一形式的微结构,例如周期性分布的微孔洞;然后用以数学中扰动理论为基础的均匀化方法这一数学工具建立材料的宏观弹性性质和微结构尺寸的关系,连续介质的拓扑优化就转化为决定微结构尺寸最优分布的尺寸优化问题,可以采用成熟的尺寸优化算法.迄今为止的均匀化方法还不能给出带有微观结构的材料的宏观许用应力和微结构尺寸的关系,因此到目前为止均匀优化方法可以求解的拓扑优化问题还很有限.均匀化方法的另一缺点是求得的最终设计可能具有很不清晰的拓扑,即结构中有的区域是相对密度介于0和1之间的多孔介质;文献[2]提出修改的满应力法来求解受应力约束的平面弹性体的拓扑优化问题,也仅能考虑应力约束问题;文献[3]提出统一骨架与连续体的结构拓扑优化的ICM 理论与方法.这些方法,基本上都采用有限元法进行结构分析,为了使边界光滑,不得不划分很细的单元,对于一般平面问题,单元数目都在数千个之上,计算效率低.总之,拓扑优化是最具挑战性而又困难的问题,优化方法仍然处在发展初期.这一领域迫切需要取得进展,开发通用的算法仍是挑战. 如上所述,采用均匀方法时,首先从连续介质中人为地引进某一形式的微结构,例如周期性分布的微孔洞.我们认为微孔洞的数量和位置应该用优化方法确定.并称这种微孔的中心叫做删除区的基点.然后扩大微孔,用优化方法确定孔的边界.于是,连续体结构的拓扑优化,可以归结为确定删除区的基点位置及其边界的问题. 1 方 法 对于一个二维连续体,当给定外载和支承位置时,满足应力、位移等各种约束条件下的结构最优拓扑问题,都可以按如下步骤来求解: 收稿日期:2002-12-17 作者简介:江允正(1942-),男,湖南衡阳人,教授,主要从事结构优化方向教学与研究工作. 第16卷第2期 烟台大学学报(自然科学与工程版)Vol.16No.22003年4月Journal of Y antai University (Natural Science and Engineering Edition ) Apr.2003

机械结构优化设计

机械结构优化设计 ——周江琛2013301390008 摘要:机械优化设计是一门综合性的学科,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。本文重点介绍机械优化设计方法的同时,对其原理、优缺点及适用范围进行了总结,并分析了优化方法的最新研究进展。关键词:优化方法约束特点函数 优化设计是一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立

目标函数和约束条件,并使目标函数获得最优值一种现代设计方法,目前机械优化设计已广泛应用于航天、航空和国防等各部门。优化设计是20世纪60年代初发展起来的,它是将最优化原理和计算机技术应用于设计领域,为工程设计提供一种重要的科学设计方法。利用这种新方法,就可以寻找出最佳设计方案,从而大大提高设计效率和质量。因此优化设计是现代设计理论和方法的一个重要领域,它已广泛应用于各个工业部门。优化方法的发展经历了数值法、数值分析法和非数值分析法三个阶段。20世纪50年代发展起来的数学规划理论形成了应用数学的一个分支,为优化设计奠定了理论基础。20世纪60年代电子计算机和计算机技术的发展为优化设计提供了强有力的手段,使工程技术人员把主要精力转到优化方案的选择上。最优化技术成功地运用于机械设计还是在20世纪60年代后期开始,近年来发展起来的计算机辅助设计(CAD),在引入优化设计方法后,使得在设计工程中既能够不断选择设计参数并评选出最优设计方案,又可加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新日益所以今天,把优化设计方法与计算机辅助设计结合起来,使设计工程完全自动化,已成为设计方法的一个重要发展趋势。 优化设计方法多种多样,主要有以下几种:1无约束优化设计法;无约束优化设计是没有约束函数的优化设计,无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法,如最速下降法、共轭梯度法、牛顿法及变尺度法等。另一类是只利用目标函数值的无约束优化方法,如坐标轮换法、单形替换法及鲍威尔法等。此法具有计算

连续体结构拓扑优化方法及存在问题分析(最新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 连续体结构拓扑优化方法及存在问题分析(最新版) Safety management is an important part of production management. Safety and production are in the implementation process

连续体结构拓扑优化方法及存在问题分析 (最新版) 文章深入分析国内外连续体结构拓扑优化的研究现状,介绍了拓扑优化方法的发展及实现过程中存在的问题。对比分析了均匀化方法,渐进结构优化法,变密度法的优缺点。研究了连续体结构拓扑优化过程中产生数值不稳定现象的原因,重点讨论了灰度单元,棋盘格式,网格依赖性的数值不稳定现象,并针对每一种数值不稳定现象提出了相应的解决办法。 结构拓扑优化设计的主要对象是连续体结构,1981年程耿东和Olhof在研究中指出:为了得到实心弹性薄板材料分布的全局最优解,必须扩大设计空间,得到由无限细肋增强的板设计。此研究被认为是近现代连续体结构拓扑优化的先驱。 目前,国内外学者对结构拓扑优化问题进行了大量研究,这些

研究大多数建立在有限元法结构分析的基础上,但由于有限元法中单元网格的存在,结构拓扑优化过程中常常出现如灰度单元,网格依赖性和棋盘格等数值不稳定的现象。本文介绍了几种连续体结构拓扑优化方法及每种方法存在的问题,并提出了相应的解决办法。 1.拓扑优化方法 连续体结构拓扑优化开始于1988年Bendoe和Kikuchi提出的均匀化方法,此后许多学者相继提出了渐进结构优化方法、变密度法等拓扑优化数学建模方法。 1.1.均匀化方法 均匀化方法即在设计区域内构造周期性分布的微结构,这些微结构是由同一种各向同性材料实体和孔洞复合而成。采用有限元方法进行分析,在每个单元内构造不同尺寸的微结构,微结构的尺寸和方向为拓扑优化设计变量。1988年Bendsoe研究发现,通过在结构中引入具有空洞微结构的材料模型,将困难的拓扑设计问题转换为相对简单的材料微结构尺寸优化问题。 很多学者发展了均匀化方法,Suzhk进行了基于均匀化方法结构

机械结构优化设计

机械结构优化设计 ——周江琛 2013301390008 摘要:机械优化设计是一门综合性的学科,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。本文重点介绍机械优化设计方法的同时,对其原理、优缺点及适用范围进行了总结,并分析了优化方法的最新研究进展。关键词:优化方法约束特点函数 优化设计是一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立

目标函数和约束条件,并使目标函数获得最优值一种现代设计方法,目前机械优化设计已广泛应用于航天、航空和国防等各部门。优化设计是20世纪60年代初发展起来的,它是将最优化原理和计算机技术应用于设计领域,为工程设计提供一种重要的科学设计方法。利用这种新方法,就可以寻找出最佳设计方案,从而大大提高设计效率和质量。因此优化设计是现代设计理论和方法的一个重要领域,它已广泛应用于各个工业部门。优化方法的发展经历了数值法、数值分析法和非数值分析法三个阶段。20世纪50年代发展起来的数学规划理论形成了应用数学的一个分支,为优化设计奠定了理论基础。20世纪60年代电子计算机和计算机技术的发展为优化设计提供了强有力的手段,使工程技术人员把主要精力转到优化方案的选择上。最优化技术成功地运用于机械设计还是在20世纪60年代后期开始,近年来发展起来的计算机辅助设计(CAD),在引入优化设计方法后,使得在设计工程中既能够不断选择设计参数并评选出最优设计方案,又可加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新日益所以今天,把优化设计方法与计算机辅助设计结合起来,使设计工程完全自动化,已成为设计方法的一个重要发展趋势。 优化设计方法多种多样,主要有以下几种:1无约束优化设计法;无约束优化设计是没有约束函数的优化设计,无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法,如最速下降法、共轭梯度法、牛顿法及变尺度法等。另一类是只利用目标函数值的无约束优化方法,如坐标轮换法、单形替换法及鲍威尔法等。此法具有计算

拓扑优化

一种新的优化方法——拓扑优化。是一种以多种使用条件为目标优化参数的优化方式,可以提高零件的真正使用效益,更加准确的反映了设计的优化过程。 优化设计可以在很大程度上改善和提高铸造件、锻造件和冲压件的性能,并减轻产品重量。然而,优化设计特别是拓扑优化很少应用在实际工程中。一方面是因为工程问题的复杂性和高度非线性,拓扑优化技术目前还无法实现这些系统优化问题,但更重要的是一门新的技术和方法很难取代人们已经习惯多年的思维模式和工作方式。 工程设计人员需要有更系统、更科学的设计思想和方法,以达到提高产品开发效率、节约原材料、降低成本及提高产品质量的目的,结构优化设计则是实现这些目的较佳手段[1]。由于设计变量类型的不同,结构优化设计可以分为由易到难的四个不同层次:尺寸优化、形状优化、形貌优化和拓扑布局优化。由于拓扑优化设计的难度较大,被公认为是当前结构优化领域内最具有挑战性的课题之一。但是在工程应用中,拓扑优化可以提供概念性设计方案,取得的经济效益比尺寸优化、形状优化更大,因此,拓扑优化技术对工程设计人员更具吸引力,已经成为当今结构优化设计研究的一个热点。 发动机运转期间,主轴承座承受多种载荷,这些载荷包括:螺栓预紧载荷、轴瓦过盈载荷及曲轴动载荷等。目前,主轴承座的主要评价指标是结构的强度、刚度是否满足设计需求。在明确主轴承座承载情况和设计要求的前提下,作者对某大马力发动机原有主轴承座进行了最大爆发压力工况下的有限元分析。分析模型及主轴承座轴瓦径向变形量见图1(a)、图1 (b)和图1(c)。通过主轴承座的强度分析和动态疲劳安全系数分析可以得知:主轴承座的动态疲劳安全系数为1.843,远远大于安全系数阀值1,所以主轴承座的强度足以满足设计需求。而从图1(b)可以得知轴瓦在变形后水平方向径向减小0.0739mm ,已经接近曲轴、轴瓦径向间隙最小值0.079mm,这容易导致曲轴与轴瓦间缺少油膜润滑,形成干摩擦,最终导致曲轴磨损加剧,发动机动载荷增加,甚至机毁人亡的悲剧;另外从图1(c)可以得知轴瓦在变形后上下方向径向增加0.0971mm ,小于轴瓦径向变形许可值0.147mm 。所以,根据有限元分析结果可以判断:主轴承座在水平方向的刚度不足够,应该改进现有结构,提高其刚度性能。

机械结构优化设计分析

机械结构优化设计分析 摘要:机械结构优化设计具有综合性和专业性的特点,在设计过程中涉及方面很多,对设计人员的综合素质很高。因此,本文就结合实际情况,如何做好机械结构优化设计展开论述。 关键词:机械结构;设计流程;优化设计 一、机械设计的流程 机械的设计是开发和研究重要组成部分。设计人员在设计过程中,要提高自身设计水平,加快技术创新,为社会发展设计出质量优良的生产和机械。第一,要确立良好的设计目标。机械设计与开发要满足实际需要,能够发挥其自身的功能。第二,要严格遵守设计标准和要求,对具体的内容进行提炼,从而有效的设计任务和目标。第三,在承接设计任务书以后,要坚持合适的原则,明确设计责任;还要组织设计方案,对设计方案进行讨论,重视设计样品机械的关键环节和重要步骤,从而形成最初的设计。第四,要组建优秀的项目团队,对方案进行深入讨论,不断优化设计方案,控制方案变更。第五,要组织专家对设计图纸进行严格的审核,保证设计质量,在图纸完成交付以后,要针对存在的问题做好记录,为以后设计提供借鉴和帮助。第六,在机械创建完成后,要做好机械的验收,设计师要对机械进行检查,保证在发现问题能够及时有效的解决,只有在质量验收合格后,才能进行最后的交付使用。第七,在进行机械安装过程中,设计人员要在安装现场进行全程的监督和控制,做好技术指导。第八,为了保证机电和安装质量,要进行生产鉴定和调试,根据机械使用的效果进行合理的评价和鉴定。在以上设计流程中,缺一不可,需要设计人员不断提高自身设计水平,采用先进的设计理念,保证设计质量。 二、机械设计过程中需要注意的问题 为了保证机械设计质量,设计人员要不断总结经验教训,根据实际情况,树立质量第一的理念,实现机械结构的优化设计。 (一)在机械制造阶段,设计水平直接影响到预期的效果,甚至导致机械不能正常投入使用。因此,在设计过程中,设计人员要与制造人员进行协调,多深入生产现场,认真听取制造工人和设计人员的意见、建议,不断优化机械结构,提高机械的精密度。

连续体结构拓扑优化方法评述_夏天翔

第2卷第1期2011年2月航空工程进展 A DV A N CES IN A ERON A U T ICA L SCIEN CE A N D EN GIN EERIN G Vo l 12N o 11Feb 1 2011 收稿日期:2010-12-01; 修回日期:2011-01-20基金项目:教育部长江学者创新团队项目(Irt0906)通信作者:姚卫星,w xyao@https://www.doczj.com/doc/f511411130.html, 文章编号:1674-8190(2011)01-001-12 连续体结构拓扑优化方法评述 夏天翔,姚卫星 (南京航空航天大学飞行器先进设计技术国防重点学科实验室,南京 210016) 摘 要:连续体结构拓扑优化在优化中能产生新的构型,对实现自动化智能结构设计具有重要意义。目前,连续体结构拓扑优化方法主要有:均匀化方法、变厚度法、变密度法、渐进结构优化方法、水平集法、独立连续映射方法。本文首先系统回顾了以上方法的发展历程,介绍了它们的研究现状。其次,通过对比以上拓扑优化方法对若干典型算例的优化结果,表明以上方法都有较好的减重效果。最后,对以上方法进行了总结,列出了它们的优缺点和发展方向。 关键词:拓扑优化;均匀化方法;变厚度法;变密度法;渐进结构优化方法;水平集法;独立连续映射方法中图分类号:V 211.7 文献标识码:A A Survey of Topology Optimization of Continuum Stru cture Xia Tianx iang ,Yao Weix ing (K ey L abor ator y of F undamental Science fo r N atio nal Defense -adv anced Design T echno lo gy of F lig ht V ehicle,Nanjing U niver sity o f A eronautics and A st ronautics,N anjing 210016,China) Abstract:A s the to po log y optim izat ion o f continuum structure can pr oduce new config ur atio ns during the optim-i zatio n,it is significant for automatic str ucture design.A t present,the most commo nly used t opolo gy o ptimiza -t ion methods of continuum st ructur e ar e:the ho mog enization method,var iable t hickness method,v ariable dens-i t y metho d,evo lutio nar y str uctur al o pt imizatio n met ho d,lev el set metho d,independent co ntinuous mapping method.Firstly,the develo pment pro cesses of above metho ds ar e sy stematically review ed,their cur rent r e -sear ch is br iefly intro duced in this paper.T hen,these methods ar e com par ed and discussed t hr ough a number of typical ex amples.T he typical ex amples show that all of above methods have gr eat abilities to r educe w eig ht.F-i nally ,the adv ant ag es,disadv ant ag es and dev elo pment directio ns of abov e metho ds ar e discussed. Key words:to po lo gy o ptimization;homog enizat ion metho d;va riable thickness method;var iable density method;evolutionar y structure optimization metho d;lev el set method;independent continuo us mapping method 0 引言 按照设计变量的不同,结构优化可分为以下三个层次:尺寸优化、形状优化和拓扑优化。结构拓 扑优化能在给定的外载荷和边界条件下,通过改变结构拓扑使结构在满足约束的前提下性能达到最优。与尺寸优化、形状优化相比,结构拓扑优化的经济效果更为明显,在优化中能产生新的构型,是 结构实现自动化智能设计所必不可少的。 按照优化对象的性质,拓扑优化可分为离散体拓扑优化和连续体拓扑优化两种。连续体拓扑优化与离散体拓扑优化相比,在应用范围更广的同 时,模型描述困难,设计变量多,计算量大。在过去很长一段时间里,连续体拓扑优化发展得十分缓慢,直到1988年Bendso e 等人[1] 提出均匀化方法之后,它才得到了迅速发展。目前,国内外学者对结构拓扑优化问题已经进行了大量研究[2-9]。目前最常用的连续体拓扑优化方法有均匀化方法、变厚 度法、变密度法、渐进结构优化方法(ESO)、水平集法(Level set)、独立连续映射方法(ICM)等。从拓

相关主题
文本预览
相关文档 最新文档