当前位置:文档之家› 配位化学现状及发展

配位化学现状及发展

配位化学现状及发展
配位化学现状及发展

配位化学的现状及发展

专业班级:化学(师范类)一班姓名:刘楠楠课程名称:配位化学

摘要:配位化学已成为当代化学的前沿领域之一。它的发展打破了传统的有机化学和无机化学之间的界线。其新奇的特殊性能在生产实际中得到了重大的应用,花样繁多的价健理论及空间结构引起了结构化学和理论化学家的深切关注。它和物理化学、有机化学、生物化学、固体化学、环境化学相互渗透,使其成为贯通众多学科的交叉点。本文将介绍配位化学在近几年的现状和发展。

关键词:配位化学;现状;发展

配位化学是在无机化学基础上发展起来的一门交叉学科,50年代以来配位化学以其与有机合成化学和结构化学相结合为特点,开始了无机化学的复兴时期,从而在实际上打破了传统的无机、有机和物理化学间的界限,进而成为各化学分支的结合点。配合物以其花样繁多的价键和空间结构促进了基础化学的发展,又以其特殊的性质在生产实践和科学实验中取得了重大的应用。配位化学是化学学科中最活跃的,具有很多生长点的前沿学科之一,它的近期发展趋势如下。

1.具有特殊性质和特殊结构配合物的合成、结构及性能的研究

各种大环、夹心、多核、簇状、非常氧化态、非常配位数、混合价态及各种罕见构型配合物的合成、结构、热力学、动力学和反应性的研究正在深入。其中巨型原子簇的研究已成为阐明金属原子化学和固体金属化学异同的桥梁;新型球型大环,聚邻苯酚脂大环配体对某些金属离子具有特殊高的选择性;在CO,CO

2

H 2和CH

4

等小分子配合物及活化方面,已发现用Co+ ,Li+ 双核配合物不仅可与CO

2

配位,并使其活化,而形成C—C键;此外H

2的配合物研究及H

2

的活化亦在深入。

配合物合成、结构和性能研究方面,近年来的一个引人注目的动向是配位化学和固体化学的交叉[1]。一系列具有链状、层片状和层柱状特殊结构的配合物已经合成。对它们的性质和结构,正在进行系统研究。

2.溶液配位化学研究

溶液配位化学研究正在继续深入,但已具有新的内容。在取代反应动力学及机理方面,近年工作集中在金属碳基配合物的研究上。已知配体的空间效应,电子效应和反馈键的形成以及配合物的电子结构是决定反应机理和速率的重要因素。多核、异多核碳基簇的反应机理涉及金属—金属键断裂过程,反应复杂,有待进一步研究。在催化、生命过程中更为重要的电子转移过程和机理的研究受到重视[2]。Taube对简单配合物分子间的电子过程提出了内界和外界的机理,获得了诺贝尔化学奖。但实际体系远为复杂,为简化分子间电子转移过程中包含的前期化合物生成和后期复合物分解二个过程,分子内电子转移过程已成为研究热点。

3.超分子化学研究

人们熟悉的化学主要是研究以其价键相结合的分子的合成、结构、性质和变化规律。而超分子化学则可定义为由多个分子通过分子间作用而形成的复杂但有组织的体系。事实上,超分子体系所具有的独特有序结构从配位化学观点看是以配合物分子中配体间非共价弱相互作用为基础的。目前,对这种分子间“弱相互作用”而形成的超分子研究日益受到重视,它们的键能虽然不及一般共价键的5%—10%,但它具有累加性,因而大分子间的分子间键能也可能相当大。超分子概念的根源可以追溯到100年前Werner所提出的配位化学的概念。事实上,超分子的名词,类似于生物学中的情况,它可以看成是由底物和接受体组成。其含义对应于配位化学中的受体和给体、锁和钥匙、主体与客体甚至金属与配体等概念。如果将配位化合物看作是由两种或多种可以独立存在的简单物种结合起来的一种化合物,则不难理解它和超分子间的相依关系。超分子配合物可看成是2个或2个以上简单配合物分子通过非共价分子间力(静电作用、氢键、范氏引力、疏水作用等)形成的具有明确结构和功能的“超分子”[3]。 Lehn曾经从两方面来分析超分子化学和配位化学的互补关系。即既可以把超分子化学看作是广义的配位化学,也可以把配位化学包括在超分子化学的概念中。

4.功能性配合物

功能性配位化合物中指具有光、电、磁等物理功能的配位化合物。广义地讲是指具有特定的物理、化学和生物特征的配位化合物[4]。由于配合物种类繁多、结构多变、兼具无机化合物和有机化合物的特征,可以通过无机化学和有机化学

的方法来改变它们的组成和结构,调节其性能,因而功能性配合物的研究成为当今化学和材料科学的热点。

结论

综上所述,可见,近几年来,配位化学的发展应用到不仅仅是化学方面,而是深入到各个领域,为各个领域的研究及发展提供了一定的依据,和理论知识。相信在科技不断发展的今天,配位化学所能够涉及的领域将会越来越多,也会涌现出更多的专业人才。

参考文献

[1] 唐雯霞等,化学通报,(1991):11,1

[2] 游效曾等,化学通报,(1993):12,24

[3] 超分子化学,吉林大学出版社,(1996)

[4] 刘祁涛等,化学通报,(1998):17,21

(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

配合物讲义-超好-经典-全面

7配位化合物 7.1 配位化合物的基本概念 7.1.1 配合物的定义 配位单元:由中心原子( 或离子) 和几个配体分子(或离子)以配位键相结合而形成的复杂离子(亦称配离子)或分子。例:[Co(NH3)6]3+,[Cr(CN)6]3-,Ni(CO)4分别称作配阳离子、配阴离子、配位分子(即中性配位分子)。 配位化合物:凡是含有配位单元的化合物,简称配合物,也叫络合物。如[Co(NH3)6]Cl3,K3[Cr(CN)6],Ni(CO)4 注意:配合物和配离子通常不作严格区分,有时配离子也叫做配合物,故判断配合物的关键在于是否含有配位单元。 7.1.2 配合物的组成 7.1.2.1 内界和外界 (1)内界:配合物中配体和中心离子通过配位键结合,成为配合物的特征部分(在配合物化学式中以方括号表明),称为配合物的内界。内界可以是配阳离子,也可以是配阴离子,还可以是中性分子。 (2)外界:与配离子带有异种电荷的方括号外的那部分称为外界,外界是简单离子。如K3[Cr(CN)6] 之中,内界是[Cr(CN)6]3-,外界是K+。 注意:配合物可以无外界(如Ni(CO)4),但不能没有内界。内界和外界之间以离子键结合,在水溶液中是完全电离的。 7.1.2.2 中心离子(或原子) 中心离子(或原子)是配合物的核心部分,又称为配合物的形成体。 形成体可以是①金属离子(尤其是过渡金属离子),如[Cu(NH3)4]2+中的Cu2+; ②中性原子,如Ni(CO)4,Fe(CO)5,Cr(CO)6中的Ni,Fe和Cr; ③少数高氧化态的非金属元素,如[BF4]-,[SiF6]2-,[PF6]-中的B(Ⅲ)、Si(Ⅳ) 、P(Ⅴ)等。 7.1.2.3 配体、配位原子和配位数 (1)配位体 定义:在配合物中与中心离子结合的阴离子或中性分子,简称配体。 特征:①能提供孤对电子或不定域(或∏键)电子。如[Cu(NH3)4]2+中的NH3;②能够提供∏键电子的配体如有机分子C2H4,乙二胺等。 (2)配位原子 定义:配体中给出孤对电子与中心离子(或原子)直接形成配位键的原子。常见的配位原子是N、C、O、S、F、Cl、Br、I等。如果在一个配体中有两个原子都有孤对电子,其中电负性较小者

配合物 习题及答案

配合物习题及答案 一、判断题: 1.含有配离子的配合物,其带异号电荷离子的内界和外界之间以离子键结合,在水中几乎完全解离成内界和外界。 .... () 2.在1.0 L 6.0 mol·L-1氨水溶液中溶解0.10 mol CuSO4固体,假定Cu2+ 全部生成[ Cu (NH3 )4 ]2+,则平衡时NH3的浓度至少为 5.6 mol·L-1 。.........................() 3.在M2+溶液中,加入含有X-和Y-的溶液,可生成MX2沉淀和[MY4]2-配离子。如果K( MX2 )和K([ MY4]2- ) 越大,越有利于生成[MY4]2-。() 4.金属离子A3+、B2+可分别形成[ A(NH3 )6 ]3+和[ B(NH3 )6 ]2+,它们的稳定常数依次为 4 ?105 和 2 ?1010,则相同浓度的[ A(NH3 )6 ]3+和[ B(NH3 )6 ]2+溶液中,A3+和B2+ 的浓度关系是c ( A3+ ) > c ( B2+ ) 。() 5.在多数配位化合物中,内界的中心原子与配体之间的结合力总是比内界与外界之间的结合力强。因此配合物溶于水时较容易解离为内界和外界,而较难解离为中心离子(或原子)和配体。.........................................................................................................................() 6. 已知K2 [ Ni (CN)4 ] 与Ni (CO)4均呈反磁性,所以这两种配合物的空间构型均为平面正方形。.....................................................................................() 7.某配离子的逐级稳定常数分别为K、K、K、K,则该配离子的不稳定常数K= K·K·K·K。.......................................................... () 8.HgS 溶解在王水中是由于氧化还原反应和配合反应共同作用的结果。............ () 9.在多数配位化合物中,内界的中心原子与配体之间的结合力总是比内界与外界之间的结合力强。因此配合物溶于水时较容易解离为内界和外界,而较难解离为中心离子(或原子)和配体。.........................................................................................................................() 二、选择题: 1.下列配离子在水溶液中稳定性大小关系中正确的是 . ()。 (A) [ Zn (OH)4 ]2- ( lg K= 17.66 ) > [Al (OH)4 ]- ( lg K= 33.03 ); (B) [ HgI4 ]2- ( lg K= 29.83 ) > [ PbI4 ]2- ( lg K= 4.47 ); (C) [ Cu (en)2 ]+ ( lg K= 10.8 ) > [ Cu (en)2 ]2+ ( lg K= 20.0 ); (D) [ Co (NH3 )6 ]2+ ( lg K= 5.14 ) > [ CoY ]2- ( lg K= 16.31) 。 2.下列配合物中,属于内轨型配合物的是.............................................()。 (A) [ V(H2O)6 ]3+,μ = 2.8 B. M.;(B) [ Mn (CN)6 ]4-,μ = 1.8 B. M.; (C) [Zn (OH)4]2-,μ= 0 B. M.;(D) [ Co(NH3)6 ]2+,μ = 4.2 B. M.。 3.在一定温度下,某配离子ML4的逐级稳定常数为K(1)、K(2)、K(3)、K(4),逐级不稳定常数为K(1)、K(2)、K(3)、K(4)。则下列关系式中错误的是.................................................................................. ()。 (A) K(1)·K(2)·K(3)·K(4) = [ K(1)·K(2)·K(3)·K(4) ]-1; (B) K(1) = [K(1) ]-1; (C) K(4) = [K(1) ]-1; (D)K(2) = [K(3) ]-1。 4.下列叙述中错误的是............................................................................... ()。 (A) 配合物必定是含有配离子的化合物; (B) 配位键由配体提供孤对电子,形成体接受孤对电子而形成; (C) 配合物的内界常比外界更不易解离; (D) 配位键与共价键没有本质区别。

配位化学讲义 第十一章 无机小分子配合物

配位化学讲义第十一章无机小分子配合物

第十一章无机小分子配体配合物 小分子配体的过渡金属配合物,已成为配位化学中发展最快的领域之一。现已证实,小分子通过与过渡金属离子的配位而活化,进而可引起许多重要的反应。 第一节金属羰基(CO)配合物 一、概述 金属羰基配合物是过渡金属元素与CO所形成的一类配合物。 1890年,Mond和Langer发现Ni(CO)4,这是第一个金属羰基配合物。 常温、常压 Ni(粉) + CO Ni(CO)4 (无色液体,m .p.= -25℃) 150℃ Ni(CO)4Ni + 4CO 这成为一种提纯Ni的工艺。 现已知道,所有过渡金属至少能生成一种羰基配合物,其中金属原子处于低价(包括零价)状态。 二、类型 1、单核羰基配合物 这类化合物都是疏水液体或易挥发的固体,能不同程度地溶于非极性溶剂。M-C-O键是直线型的。例: V(CO)6 黑色结晶,真空升华V-C, 2.008(3) ? Cr(CO)6Cr-C, 1.94(4) ? Mo(CO)6无色晶体,真空升华,Mo-C, 2.06(2)? 八面体 W(CO)6W-C, 2.06(4)? Fe(CO)5黄色液体,m.p.=20℃,Fe-C,1.810(3)?(轴向)三角 b.p.=103℃ 1.833(2)?(赤道)双锥 Ni(CO)4无色液体,m.p.= -25℃,Ni-C,1.84(4)?四面体 2、双核和多核金属羰基配合物 多核羰基配合物可以是均核的,如:Fe3(CO)12;也可以是异核的,如

MnRe(CO)10。 M 在这类化合物中,不仅有M-C-O 基团, 而且还有O —C 和M-M 键,且 M μ2-CO 常与M-M 键同时存在。即: O —C 例:(1)Mn 2(CO)10为黄色固体,m.p.151℃,Mn-Mn=2.93? OC CO OC CO OC M M CO M=Mn 、Tc 、Re OC CO OC CO (2) Fe 2(CO)9 金色固体,m.p.100℃(分解),难挥发 OC CO CO OC Fe Fe CO Fe 2(CO)9 OC CO OC CO (3)Fe 3(CO)12 绿黑色固体,m.p.140-150℃(分解) OC CO Fe O C OC C O OC Fe C C Fe O CO CO CO CO CO Fe 3(CO)12 (4)M 3(CO)12 M=Ru 、Os OC CO O C OC C O OC C C O CO CO CO CO CO M M M

配位化学第一组第三章作业

第三章配合物在溶液中的稳定性作业 1.下列各组中,哪种配体与同一种中心离子形成的配合物稳定性较高,为什么? (1)Cl- , F-和Al3+(2)Br-,I-和Hg2+ (3)2CH3NH2,en和Cu2+(4)Br-,F- 和Ag+ (5)RSH,ROH和Pt2+(6)Cl-,OH-和Si4+ (7)RSH,ROH和Mg2+ 解(1)F-与Al3+形成配合物更稳定,因为F-电负性大,离子半径更小(2)I-与Hg2+更稳定,因为碘离子的电负性较大,离子半径更小(3 )2CH3NH2与Cu2+形成的配合物更稳定,因为它的碱性比en更强与形成的配合物更稳定 (4)Br-与Ag+形成的配合物更稳定,因为与Ag+形成配合物Br-变形性比F-强 (5)RSH与Pt2+形成配合物更稳定,因为在与Mg2+形成配合物时S 的半径小于O的半径 (6)OH-与Si4+形成的配合物更稳定,因为在与Si4+形成配合物时OH-的电荷比更多 (7)RSH与Mg2+形成配合物更稳定,因为在与Mg2+形成配合物时S 的半径小于O的半径 2.写出下列,配体与中心离子形成的配合物的稳定次序。 解(1)CH3NH2,en,NH2-NH2,NH2-OH和Cu2+ en > CH3NH2 > NH2-NH2 > NH2OH

(2)R3CCOOH,CH3COOH,Cl3CCOOH,I3CCOOH和Fe3+ R3CCOOH > CH3COOH > I3CCOOH > Cl3CCOOH (3)NH3,NH2-NH2,NH2-OH,R-OH和Ag+ NH3 > NH2-NH2 > NH2-OH > R-OH (4)N, NH2 与Zn2+ N> NH2 (5)NH2 O2N, NH2 C H3, NH2 NO2与Cu2+ NH2 C H3> NH2 NO2> NH2 O2N (6) N OH, N OH CH3 与Ni2+ N OH CH3 > N OH CH3 3.下列二组试剂与同一种金属离子形成螯合物时,估计lg k的大小次序:

配位化学基础

配位化学基础 配位化学就是在无机化学基础上发展起来得一门具有很强交叉性得学科,配位化学旧称络合物化学,其研究对象就是配合物得合成、结构、性质与应用。配位化学得研究范围,除最初得简单无机加与物外,已包括含有金属-碳键得有机金属配位化合物,含有金属-金属键得多核蔟状配位化合物即金属簇合物,还包括有机配体与金属形成得大环配位化合物,以及生物体内得金属酶等生物大分子配位化合物。 一、配合物得基本概念 1、配合物得定义及构成 依据1980年中国化学会无机化学命名原则,配合物可以定义为:由可以给出孤对电子或多个不定域电子得一定数目得离子或分子(统称为配体)与具有接受孤对电子或多个不定域电子得空位得原子或离子(统称为中心原子),按一定得组成与空间构型所形成得化合物。结合以上规定,可以将定义简化为:由中心原子或离子与几个配体分子或离子以配位键相结合而形成得复杂分子或离子,统称为配体单元。含配体单元(又称配位个体)得化合物称为配位化合物。 配体单元可以就是配阳离子,配阴离子与中性配分子,配位阳离子与阴离子统称配离子。配离子与与之平衡电荷得抗衡阳离子或阴离子结合形成配位化合物,而中性得配位单元即时配位化合物。但水分子做配体得水合离子也经常不瞧成配离子。 配位化合物一般分为内界与外界两部分,配体单元为内界,抗衡阳离子或阴离子为外界,而含中性配位单元得配位化合物则无外界。配合物得内界由中心与配体构成,中心又称为配位化合物得形成体,多为金属,也可以就是原子或离子,配体可以就是分子、阴离子、阳离子。 2、配位原子与配位数 配位原子:配体中给出孤对电子与中心直接形成配位键得原子 配位数:配位单元中与中心直接成键得配位原子得个数配位数一般为偶数,以4、6居多,奇数较少 配位数得多少与中心得电荷、半径及配体得电荷、半径有关: 一般来说,中心得电荷高、半径大有利于形成高配位数得配位单元,如氧化数为+1得中心易形成2配位,氧化数为+2得中心易形成4配位或6配位,氧化数为+3得易形成6配位。配体得半径大,负电荷高,易形成低配位得配位单元。 配位数得大小与温度、配体浓度等因素有关: 温度升高,由于热震动得原因,使配位数减少;配体浓度增大,利于形成高配位。

配位化学讲义 第五章 配合物的电子光谱

配位化学讲义第五章配合物的电子光谱

第五章过渡金属配合物的电子光谱第一节概论 一、什么是电子光谱? 定义:当连续辐射通过配合物时,配合物选择性地吸收某些频率的光,会使电子在不同能级间发生 跃迁,形成的光谱称为电子吸收光谱(简称电 子光谱)。 二、配合物电子光谱所包含的成份 1、电荷迁移光谱(荷移光谱) 由于电子在金属与配体间迁移产生的光谱。 2、d—d跃迁光谱 电子在金属离子d轨道间跃迁产生的光谱。 3、异号离子光谱 外界抗衡离子的吸收光谱。如[Cu(NH3)4](NO3)2中

NO3-的吸收。 4、配体光谱 配体本身的吸收光谱。如[Ti(H2O)6]3+中H2O的吸收。 第二节电荷迁移光谱、异号离子光谱及配体光谱 一、电荷迁移光谱 1、L→M的跃迁 以[MCl6]n-为例,分子轨道能级图: e g* e g* Δo t2g* t2gν1 ν2 ν4 ν3 低能充满配体 t2g t2gπ群轨道 e g e g、t2g主要成份为配体轨道;而t2g*、e g*主要成份为 金属离子轨道。 四种跃迁:ν1 = t2g t2g*

ν2 = t2g e g* ν3 = e g t2g* ν4 = e g e g* 2、M→L的跃迁 ν1 e g* e g* Δo ν2 t2g配体高能空轨道 t2g t2g、e g*主要为金属离子轨道成份,而t2g*主要为配体轨道。 例:[Co(CN)6]3-, M→L跃迁, ν1=49500cm-1 二、异号离子光谱 可分为三种情况: 1、在紫外区有吸收,如NO3—,NO2—;

2、在可见区有吸收,如CrO42—、MnO4—; 3、无吸收,如Cl—、SO42—、ClO4—。 由于ClO4—既无吸收,配位能力又差。因此测定 水合离子的光谱时,为防止水解现象,常加入 HClO4。如测定[Ti(H2O)6]3+的光谱时,若在 HCl中进行,则吸收峰移向长波方向。 三、配体光谱 配体如水、有机分子通常在紫外区有吸收。形成配合物后,这些谱带仍保留在配合物的光谱中,吸收峰位置有可能发生移动。 第三节d—d跃迁光谱 一、概论 不考虑d电子间相互作用时,d2组态的能态分析:基态激发态1 激发态2

配位化学的早期历史

第一章配位化学的早期历史及 Werner配位理论 第一节早期研究及链式理论 一、早期研究 1、配合物的发现 最早有记录的配合物:1704年,德国Diesbach得到的普鲁士蓝KCN.Fe(CN)2.Fe(CN)3。 真正标志研究开始:1793年Tassaert 发现CoCl3.6NH3

无法解释CoCl3和NH3为何要结合成新化合物。 2、配合物性质研究 Cl-沉淀实验(用AgNO3) Ag+ + Cl?= AgCl↓ 配合物 CoCl3.6NH3 +AgNO3 3AgCl ↓ CoCl3.5NH3 +AgNO3 2AgCl ↓

CoCl3.4NH3 +AgNO3 AgCl ↓ IrCl3.3NH3 +AgNO3╳ 二.链式理论(Chain theory) 1869年瑞典Lund大学Blomstrand及Jorgensen提出链式理论。

当时认为元素只有一种类型的价——氧化态,N为5价,Co为3价,Cl为1价。 前提:(1) 与Co相连的Cl不易解离 (2) 与NH3相连的Cl可解离

Co NH3 NH3 NH3 NH3 NH3 NH3 Cl Cl Cl CoCl36NH3 CoCl35NH3 CoCl34NH3 IrCl33NH3Co Cl NH3 NH3 NH3 NH3 NH3 Cl Cl Co Cl NH3 NH3 NH3 NH3Cl Cl Ir Cl NH3 NH3 NH3Cl Cl

Co NH 3NH 3 NH 3NH 3NH 3 NH 3 Cl Cl Cl 更合理的结构? . Co NH 3NH 3 NH 3NH 3 NH 3 Cl Cl Cl

配合物习题答案 - 化学化工学院

第四章配位化合物 配合物思考题与答案 1.设计一些实验,证明粗盐酸的黄色是Fe3+与Cl-的络离子而不是铁的水合离子或者羟合离子的颜色。(略) 2.配位化学创始人维尔纳发现,将等物质的量的黄色CoCl3.6NH3﹑紫红色CoCl3.5NH3﹑绿色CoCl3.4NH3和紫色CoCl3.4NH3四种配合物溶于水,加入硝酸银,立即沉淀的氯化银分别为3 ﹑2 ﹑1 ﹑1mol,请根据实验事实推断它们所含的配离子的组成。答:配离子分别是[Co(NH3)6]3+, [Co(NH3)5Cl]2+ , [Co(NH3)4Cl2] +, [Co(NH3)4Cl2] +,颜色不同的原因是有同分异构体。 3.实验测得Fe(CN)64-和Co(NH3) 63+均为反磁性物质(磁矩等于零),问它们的杂化轨道类型。 答:中心二价Fe2+亚铁离子外层价电子排布是3d6,有4个未成对电子,测得Fe(CN)64-为抗磁性物质,说明中心的铁离子的外层价电子排布发生变化,进行了重排,使得内层3d轨道上没有未成对电子,所以应采取的是d2sp3杂化方式。三价Co离子外层价电子排布也是3d6,也有4个未成对电子,测得Co(NH3) 63+为反磁性物质,原理同上,也是d2sp3杂化方式。 4.实验证实,Fe(H2O)63+和Fe(CN) 63-的磁矩差别极大,如何用价键理论来理解?答:Fe(H2O)63+的中心离子铁是采用sp3d2杂化方式,外轨型配合物,高自旋,有5个成单电子,磁矩高;而Fe(CN) 63-采用的是d2sp3杂化方式,内轨型配合物,低自旋,只有1个成单电子,所以磁矩低。 5.上题的事实用晶体场理论又作如何理解? 略 6.用晶体场理论定性地说明二价和三价铁的水合离子的颜色不同的原因。 略 7.FeF63-为 6 配位,而FeCl4-为四配位,应如何解释? 答:三价Fe的外层价电子层电子排布是3d3,d轨道上有2个空轨道。同样作为中心离子,作为负电荷的配体之间的排斥力是需要重点考虑的。其中6个配位的F离子, 1

配位化学总结

1 配位化学导论总结 1. 配位化学 1) 定义:金属或金属离子同其他分子或离子相互结合的化学。 2) 基础:无机化学 3) 重要性:与其他学科互相渗透的交叉性学科 4) 发展: ● 近代配位化学: “键理论”等理论无法全面说明形成机理与成键方式. ● 现代配位化学理论:建立:1893年,瑞士化学家维尔纳提出了现代的配位键、配位数和配位化合物结构的基本概念,并用立体化学观点成功地阐明了配合物的空间构型和异构现象。 2. 配合物的基本概念 1) 定义:由具有接受孤对电子或多个不定域电子的空位原子或离子(中心体)与可以给出孤对电子或多个不定域电子的一定数目的离子或分子(配体)按一定的组成和空间构型所形成的物种称为配位个体,含有配位个体的化合物成为配合物。 2) 组成: 内界、外界、中心体、配体、配位原子 3) 配体分类: 4) 中心原子的配位数: ● 定义:单齿配体:配位数等于内界配体的总数。多齿配体:各配体的配位原子数与配体个数乘积之和。 ● 影响中心原子的配位数因素: A 、按配 体所含配 位原子的 数目分两 种: B 、根据 键合电子 的特征分 为三种:

3. 配合物的分类 4. 配合物的命名 原则是先阴离子后阳离子,先简单后复杂。 一、简单配合物的命名: (1)先无机配体,后有机配体 cis - [PtCl2(Ph3P)2] 顺-二氯 二?(三苯基磷)合铂(II) (2) 先列出阴离子,后列出阳离子,中性分子(的名称) K[PtCl3NH3] 三氯?氨合铂(II)酸钾 (3) 同类配体(无机或有机类)按配位原子元素符号的英文字母顺序排列。 [Co(NH3)5H2O]Cl3 三氯化五氨?一水合钴(III) 中心离子 对配位数 的影响 配体对配 位数的影 响1、按中心原 子数目分为: 2、按配合物 所含配体种 类分为: 3、按配体的 齿数分类: 4、按配合物 地价键特点 分类:

配位化学基础

配位化学基础 配位化学是在无机化学基础上发展起来的一门具有很强交叉性的学科,配位化学旧称络合物化学,其研究对象是配合物的合成、结构、性质和应用。配位化学的研究范围,除最初的简单无机加和物外,已包括含有金属-碳键的有机金属配位化合物,含有金属-金属键的多核蔟状配位化合物即金属簇合物,还包括有机配体与金属形成的大环配位化合物,以及生物体内的金属酶等生物大分子配位化合物。 一、配合物的基本概念 1.配合物的定义及构成 依据1980年中国化学会无机化学命名原则,配合物可以定义为:由可以给出孤对电子或多个不定域电子的一定数目的离子或分子(统称为配体)和具有接受孤对电子或多个不定域电子的空位的原子或离子(统称为中心原子),按一定的组成和空间构型所形成的化合物。结合以上规定,可以将定义简化为:由中心原子或离子和几个配体分子或离子以配位键相结合而形成的复杂分子或离子,统称为配体单元。含配体单元(又称配位个体)的化合物称为配位化合物。 配体单元可以是配阳离子,配阴离子和中性配分子,配位阳离子和阴离子统称配离子。配离子与与之平衡电荷的抗衡阳离子或阴离子结合形成配位化合物,而中性的配位单元即时配位化合物。但水分子做配体的水合离子也经常不看成配离子。 配位化合物一般分为内界和外界两部分,配体单元为内界,抗衡阳离子或阴离子为外界,而含中性配位单元的配位化合物则无外界。配合物的内界由中心和配体构成,中心又称为配位化合物的形成体,多为金属,也可以是原子或离子,配体可以是分子、阴离子、阳离子。 2.配位原子和配位数 配位原子:配体中给出孤对电子与中心直接形成配位键的原子 配位数:配位单元中与中心直接成键的配位原子的个数配位数一般为偶数,以4、6居多,奇数较少 配位数的多少和中心的电荷、半径及配体的电荷、半径有关: 一般来说,中心的电荷高、半径大有利于形成高配位数的配位单元,如氧化数为+1的中心易形成2配位,氧化数为+2的中心易形成4配位或6配位,氧化数为+3的易形成6配位。配体的半径大,负电荷高,易形成低配位的配位单元。 配位数的大小与温度、配体浓度等因素有关: 温度升高,由于热震动的原因,使配位数减少;配体浓度增大,利于形成高配位。 配位数的大小与中心原子价电子层结构有关: 价电子层空轨道越多一般配位数较高 配位数的大小与配体位阻和刚性有关: 配体的位阻一般都会使中心原子的配位数降低,位阻越大、离中心原子越近,配位数的降低程度也就越大。配体的刚性不利于配体在空间中的取向,长回事中心原子的配位数降低。 3.配体的类型

配位化学讲义 第八章 配合物的制备

配位化学讲义第八章配合物的制备

第八章配合物的制备 第一节利用配体取代反应合成配合物 1、水溶液中的取代反应 1)用金属盐水溶液直 接与配体反应 [Cu(H2O)4]SO4+ 4NH3 [Cu(NH3)4]SO4 向反应混合物中加入乙醇,就可得到深蓝 色的结晶。

不适合与Fe3+、Al3+、Ti4+ 2) 煮沸 K3[RhCl6] +3K2C2O4 K3[Rh(C2O4)3] + 6KCl 2、非水溶剂中的取代反应 使用非水溶剂的原因: A、防止水解(如 Fe3+、Al3+、Ti4+); B、使不溶于水的配

体可溶解; C、配体的配位能力 不及水。 1)[Cr(en)3]Cl3的合成 在水中反应时 CrCl3.6H2O + en Cr(OH)3↓ 可在乙醚中,按如 下方法合成: en KI AgCl 无水Cr2(SO4)3溶液 [Cr(en)3]I3 [Cr(en)3]Cl3 2)[Ni(phen)3]Cl2(phen为邻菲咯啉)

NiCl2·6H2O + phen [Ni(phen)3]Cl2 3)[Ni(EtOH)6](ClO4)2的合成 NaClO4 无水NiCl2 + EtOH [Ni(EtOH)6]Cl2 [Ni(EtOH)6](ClO4)2 在水溶液中: [Ni(EtOH)6]2++ H2O [Ni(H2O)6]2+ + EtOH 3、固体配合物热分解(固态 取代反应) 1)[Cu(H2O)4]SO4.H2O =

[CuSO4]+5H2O (加热) 2)2[Co(H 2O)6]Cl2 = Co[CoCl4] +12H2O (加热) 变色硅胶的原理(粉红、蓝色) 第二节利用氧化还原反应合成配合物 1、金属的氧化 最好的氧化剂是O2或H2O2,不会引入杂质。

配位化学

配位聚合物在光电磁材料中的应用 摘要:配位聚合物由于其特殊的结构及其在光电磁等方面优异的性能引起了科学家的广泛关注。本文综述了金属有机化合物在光电磁材料中的应用,并对新型多功能材料在设计、合 成与应用方面的广阔前景作了展望。 关键词:配位聚合物;多功能材料;非线性光学;材料化学 引言: 配位聚合物(coordination polymers)或金属-有机框架(metal-organic frameworks,简称 MOFs)是指利用金属离子与有机桥联配体通过配位键合作用而形成的一类具有一维,二维或三维无限网络结构的配位化合物[1]。近年来,配位聚合物作为一种新型的功能化分子材料以其良好的结构可裁性和易功能化的特性引起了研究者浓厚的兴趣。配合物有无机的金属离子和有机配体,因此它兼有无机和有机化合物的特性,而且还有可能出现无机化合物和有机化合物均没有的新性质。配位聚合物分子材料的设计合成、结构及性能研究是近年来十分活跃的研究领域之一,它跨越了无机化学、配位化学、有机化学、物理化学、超分子化学、材料化学、生物化学、晶体工程学和拓扑学等多个学科领域,它的研究对于发展合成化学、结构化学和材料化学的基本概念及基础理论具有重要的学术意义,同时对开发新型高性能的功能分子材料具有重要的应用价值[2-7]。并对分子器件和分子机器的发展起着至关重要的作用。配位聚合物在新的分子材料中将发挥重要的作用。配位化学理论在材料的分子设计中也将起着重要的指导作用。 材料按其性能特征和用途大致可划分为结构材料和功能材料两大类。功能材料种类繁多,功能各异,其共同的特点和发展趋势是:(1) 性能优异;(2) 分子化;(3) 巨大的应用前景。金属有机光电磁材料综合了这几方面特点,将发展成为新一代材料,其结构和性能决定了它的应用越来越广泛。以下是金属有机化合物分别在光电磁材料中的应用。 1配位聚合物在光学材料中的应用 配位聚合物的光学性质研究主要集中在光致发光、电致发光以及非线性光学等方面

配位化学论文设计---分子轨道理论

配位化学论文 分子轨道理论的发展及其应用 160113004 2013级化教一班马慧敏 一、前言 价建理论、分子轨道理论和配位场理论是三种重要的化学键理论。三、四十年代,价键理论占主要的地位。五十年代以来由于分子轨道理论容易计算且得到实验(光电能谱)的支持,取得了巨大的发展,逐渐占优势。价建理论不但在理论化学上有重要的意义(下文中将详细介绍)。在应用领域也有重要的发展,如分子轨道理论计算有机化合物的吸收光谱用于染料化学;前线分子轨道理论在选矿中的研究等等。 二、简介 1、分子轨道理论产生和发展 在分子轨道理论出现以前,价键理论着眼于成键原子间最外层轨道中未成对的电子在形成化学键时的贡献,能成功地解释了共价分子的空间构型,因而得到了广泛的应用。但如能考虑成键原子的层电子在成键时贡献,显然更符合成键的实际情况。1932年,美国化学家 Mulliken RS和德国化学家HundF 提出了一种新的共价键理论——分子轨道理论(molecular orbital theory),即MO法。该理论注意了分子的整体性,因此较好地说明了多原子分子的结构。目前,该理论在现代共价键理论中占有很重要的地位。 以下是各个年代提出的关于分子轨道理论的一些重要理论和方法,是分子轨道理论发展过程中的几个里程碑! 1926-1932年,在讨论分子光谱时,Mulliken和Hund提出了分子轨道理论。 认为:电子是在整个分子轨道中运动,不是定域化的。他们还提出能级图、成键、反键轨道等重要的概念。 1931-1933年,Hukel提出了一种简单的分子轨道理论,用于讨论共轭分子的性质,相当成功。 1950年,Boys用Guass函数研究原子轨道,解决了多中心积分问题,是今天广为利用的自洽场分子轨道理论的基础,在量子化学的研究中占有重要地位。 1951年,Roothaan在Hartree-Fock方程的基础上,把分子轨道写成原子轨道的线性组合,得到Roothaan方程。 1952年,福井谦一提出前线分子轨道理论,用以讨论分子的化学活性和分子间相互作用等,可以解释许多实验结果。 1965年,Woodward和Hoffman提出分子轨道对称守恒原理,发展成讨论基元反应发生可能性的重要规则。用于指导某些复杂化合物分子的合成。 2、分子轨道理论的含义和一些重要分子轨道的构成方法 1)分子轨道理论的含义

配位化学讲义 第九章 配位催化

配位化学讲义第九章配位催化

第九章配位催化 在催化反应中,催化剂与反应物分子配位,使反应分子在其上处于有利于进一步反应的活泼状态,从而加速反应的进行,最后产物自催化剂的中心金属上释放,此即为配位催化作用。 R C + M C……M* C……M—R C + M—R 特点:反应过程中催化剂活性中心与反应物配位,因而可通过电子效应(如反位效应),空间阻碍效应等因素对反应的历程、速率以及选择性起着控制作用。配位催化的许多过程已广泛用于工业生产。 第一节配位催化中的几个关键反应 1、插入反应 所谓插入反应是指:与中心金属配位的烯、炔、CO、CO2等分子插入到M —C、M—H键中去的过程。 例:Ln—M—R Ln—M—C —C—R O ║ Ln—M—R Ln—M—C—R CO 要使上述反应易于进行,要求M—R键有适当的强度。若过于不稳定,则难以配位上去;过于稳定又使插入反应难以进行。 一般认为上述反应是经过极化的环状过渡态进行的。 C R δ—R……Cδ+ C Ln—M……║Ln—M……C Ln—M—C—C—R C δ+δ— C 2、氧化加成和还原消去反应 氧化加成是指:配位不饱和的过渡金属配合物中的中心原子被中性分子XY 氧化,X和Y分别加到空的配位位置上的反应。 特点:中心金属原子的氧化数和配位数均增加。

Cl Ph3P CO 氧化加成Ph3P CO Ir + HCl Ir Cl PPh3还原消去Cl PPh3 H Ir氧化数由+1变为+3,配位数由4变为6;还原消去反应为氧化加成反应的逆反应。还原消去反应中,失去配体的同时,中心原子的氧化数下降。 3、β—H转移反应 在β碳上连接有H,并以σ键键合的有机金属配合物,其β碳位上的C-H 键易断裂形成金属氢化物,有机配体则在端基形成双键而离开配合物,这个过程称为β—H转移。 δ—H……CHRδ+ M—CH2CH2—R M……CH2M—H + RCH=CH2 δ+δ— 这个过程是聚合反应的一个关键步骤,聚合反应产物的分子量与β—H转移难易有关。β—H转移要求中心金属原子有空的配位位置,否则β—H转移难以进行。 4、重排 金属-烯丙基配位有两种不同的方式: Ln-M-CH2-CH=CH2Ln-M- σ键合π键合 这两种形式可相互转化(重排)。 第二节催化剂的配位活化机理 1、通过σ-π配位使含有重键或孤对电子的分子活化 M C O M C C (Ⅰ)端基(Ⅱ)側基 第一种情况,反应分子作为端基配位,相当于非键的孤对电子部分激发到分子的π*反键轨道,使分子处于激发状态,为进一步反应创造了条件。

中级无机化学[第三章配位化学] 山东大学期末考试知识点复习

第三章配位化学 1.配合物 配合物:由提供孤对电子或多个不定域电子的一定数目的离子或分子(配体)和接受孤对电子或多个不定域电子的原子或离子(统称中心原子)按一定组成和空间构型所形成的化合物。其中,与中心原子直接相连的原子称为配位原子,与同一中心原子连接的配位原子数目称为配位数;由中心金属离子和配体构成的络合型体称为内界,通常用“[]”标出。 配合物的命名:配体名称在先,中心原子名称在后。阴离子名称在先,阳离子名称在后,两者间用“化”或“酸”相连。不同配体名称的顺序与化学式的书写顺序相同,相互间以圆点隔开,最后一种配体名称之后加“合”字。配体个数在配体名称前用中文数字表示。中心原子的氧化态在元素名称之后用括号内的罗马数字表示。 2.配合物的异构 立体异构:包括几何异构和旋光异构。配合物内界中两种或两种以上配体在空间的排布方式不同所产生的异构现象称为几何异构。若由配体在空间的排布方式不同所产生的异构体之间互为对映体,则这种异构现象称为旋光异构。 电离异构:配合物在溶液中电离时,由于内界和外界配体发生交换而生成不同配离子的异构现象称为电离异构。 键合异构:含有多种配位原子的单齿配体用不同的配位原子参与配位而产生的异构现象称为键合异构。 配位异构:在配阴离子与配阳离子形成的配合物盐中,配阴离子与配阳离子中配体与中心离子出现不同组合的现象称为配位异构。 3.配合物的常用制备方法 加成反应:路易斯酸碱之间直接反应,得到酸碱加合型配合物。加成后配位

数增大。 取代反应:用一种适当的配体(通常是位于光谱化学序列右边的配体)取代配合物中的某些配体(通常是位于光谱化学序列左边的配体)。取代后配位数通常不变。 氧化还原反应:伴随有中心金属氧化态变化的制备反应,在许多情况下同时伴随有配体的取代反应。 热解反应:在升高温度时,配合物中易挥发的配体失去,外界阴离子占据失去配体的配位位置,相当于固相取代反应。 4.配合物的化学键理论 (1)晶体场理论理论要点: (a)中心金属离子具有电子结构,配体视为无电子结构的阴离子或偶极子,二者之间存在的静电吸引作用产生配位键。 (b)中心金属离子的电子与配体电子之间存在排斥作用。由于配体在中心离子周围的分布具有方向性,配体的静电场作用使中心离子的d轨道发生能级分裂。分裂的方式与分裂的程度取决于配位场的类型及配体、中心离子的性质。 (c)中心离子的电子在配位场能级中的占据结果,使配合物获得一个晶体场稳定化能(CFSE)。 晶体场理论可以定性解释配合物的吸收光谱、稳定性、磁性、结构畸变等,但无法解释金属与配体间的轨道重叠作用,不能很好地解释光谱化学序列。 (2)配位场理论理论要点:配体的存在使中心金属离子与配体之间存在的化学键作用既包括静电作用也包括共价作用(既有σ成键作用也有π成键作用)。金属离子的d电子局限在金属原子核附近运动,不进入配体范围,但是配位场负电荷的影响使中心金属离子的d轨道能级分裂。在配位场中,分裂能既决定于静电作用,又决定于共价作用(其中首先包括σ成键作用,其次包括π成键作用)。

化学发展史的五个时期

化学发展史的五个时期 自从有了人类,化学便与人类结下了不解之缘。钻木取火,用火烧煮食物,烧制陶器,冶炼青铜器和铁器,都是化学技术的应用。正是这些应用,极大地促进了当时社会生产力的发展,成为人类进步的标志。今天,化学作为一门基础学科,在科学技术和社会生活的方方面面正起着越来越大的作用。从古至今,伴随着人类社会的进步,化学历史的发展经历了哪些时期呢? 远古的工艺化学时期。这时人类的制陶、冶金、酿酒、染色等工艺,主要是在实践经验的直接启发下经过多少万年摸索而来的,化学知识还没有形成。这是化学的萌芽时期。 炼丹术和医药化学时期。从公元前1500年到公元1650年,炼丹术士和炼金术士们,在皇宫、在教堂、在自己的家里、在深山老林的烟熏火燎中,为求得长生不老的仙丹,为求得荣华富贵的黄金,开始了最早的化学实验。记载、总结炼丹术的书籍,在中国、阿拉伯、埃及、希腊都有不少。这一时期积累了许多物质间的化学变化,为化学的进一步发展准备了丰富的素材。这是化学史上令我们惊叹的雄浑的一幕。后来,炼丹术、炼金术几经盛衰,使人们更多地看到了它荒唐的一面。化学方法转而在医药和冶金方面得到了正当发挥。在欧洲文艺复兴时期,出版了一些有关化学的书籍,第一次有了“化学”这个名词。英语的chemistry起源于alchemy,即炼金术。chemist至今还保留着两个相关的含义:化学家和药剂师。这些可以说是化学脱胎于炼金术和制药业的文化遗迹了。 燃素化学时期。从1650年到1775年,随着冶金工业和实验室经验的积累,人们总结感性知识,认为可燃物能够燃烧是因为它含有燃素,燃烧的过程是可燃物中燃素放出的过程,可燃物放出燃素后成为灰烬。 定量化学时期,既近代化学时期。1775年前后,拉瓦锡用定量化学实验阐述了燃烧的氧化学说,开创了定量化学时期。这一时期建立了不少化学基本定律,提出了原子学说,发现了元素周期律,发展了有机结构理论。所有这一切都为现代化学的发展奠定了坚实的基础。 科学相互渗透时期,既现代化学时期。二十世纪初,量子论的发展使化学和物理学有了共同的语言,解决了化学上许多悬而未决的问题;另一方面,化学又向生物学和地质学等学科渗透,使蛋白质、酶的结构问题得到逐步的解决。 这里主要讲述近二百多年来的化学史故事。这是化学得到快速发展的时期,是风云变幻英雄辈出的时期。让我们一道去体验当年化学家所经历的艰难险阻,在近代化学史峰回路转的曲折历程中不倦跋涉,领略他们拨开重重迷雾建立新理论、发现新元素、提出新方法时的无限风光。 中国化学史上的“世界第一” 1.公元前100年中国发明造纸术。公元105年东汉蔡伦总结并推广了纸技术,而欧洲人还在用羊皮抄书呢!

无机化学 第12章 配位化学基础习题及全解答

第12章 配位化学基础 1 M 为中心原子,a, b, d 为单齿配体。下列各配合物中有顺反异构体的是 (A ) (A ) Ma 2bd (平面四方)(B ) Ma 3b (C ) Ma 2bd (四面体)(D ) Ma 2b (平面三角形) 2 在下列配合物中,其中分裂能最大的是 (A ) (A ) Rh(NH 3)36+ (B )Ni(NH 3) 36+ (C ) Co(NH 3)36+ (D ) Fe(NH 3)36+ 3 在八面体强场中,晶体场稳定化能最大的中心离子d 电子数为 (B ) (A ) 9 , (B ) 6 , (C )5 , (D )3 4 化合物[Co(NH 3)4Cl 2]Br 的名称是 溴化二氯?四氨合钴(III ) ; 化合物[Cr(NH 3)(CN)(en)2]SO 4的名称是 硫酸氰?氨?二乙二胺合铬(III )。 5 四硫氰·二氨合铬(Ⅲ)酸铵的化学式是 NH 4[Cr (SCN )4(NH 3)2] ; 二氯·草酸根·乙二胺合铁(Ⅲ)离子的化学式是[Fe Cl 2(C 2O 4)en]- 4 。 6. 下列物质的有什么几何异构体,画出几何图形 (1)[Co(NH 3)4Cl 2]+ (2)[Co(NO 2)3(NH 3)3] 答:(1)顺、反异构(图略),(2)经式、面式异构(图略)。 7.根据磁矩,判断下列配合物中心离子的杂化方式,几何构型,并指出它们属于何类配合物(内/外轨型。 (1)[Cd (NH 3)4]2+ μm =0 ; (2)[Ni(CN)4]2- μm =0 ; (3)[Co(NH 3)6]3+ μm =0 ; (4)[FeF 6]3- μm =μB ; 答:

配位化学的发展进程

配位化学论文

工业中的配位化学 摘要:配位化学从1704年发展至今,不断创造出许多富有生命力的新领域,为化学工业的发展带来新的契机。配位化学在化学化工方面显示出了不可替代的实用优越性。配位化学又称络合物化学,它是近三十年来发展最迅速的化学学科之一,其研究已渗透到无机化学、分析化学、有机化学、生物化学、电化学等学科中,并在金属的提取和富集、工业分析、催化、制药、染料、水质处理等方面得到广泛的应用。本文综述了配位化学在工业方面的应用,浅议配位化学的新发展及其近几年在化学化工工业中的发展前景。 关键词: 配位化学;配合物;发展;化学化工;应用 1前言 配位化学又称络合物化学,配位化合物简称配合物或络合物。配合物是由一个或几个中心原子或中心离子与围绕着它们并与它们键合的一定数量的离子或分子(这些称为配位体)所组成的。本世纪五十年代后,配位化学的发展突飞猛进,大量新配合物的制得及其结构研究,配合物中价键理论的研究,配合物的反应动力学的研究等方面在世界化学文献中占有重要的地位。配位化学之所以有今日的进展,固然和近代科学技术及侧试设备的进步有关,而更重要的是配位化学在科学技术及工农业生产上有极广泛和重要的应用。在工业生产中,多数应用到金属(或金属离子)的部门、工艺技以及原料、产品的分析皆或多或少地涉及到配合物。由于配位化学在工业中的应用面广、量大不能一一详述,下面拟几个方面做扼要介绍。 2 配位化学的前期发展历程 配合物在自然界中普遍存在,历史上最早有记载的是1704年斯巴赫(Die sib ach)偶然制成的普鲁士蓝KCN·Fe(CN)2·Fe(CN)3,其后1798 年塔斯赫特(T assert)合成[Co(NH3)6]Cl3。十九世纪末二十世纪初,A. W e r n e r创立了配位学说,成为化学历史中重要的里程碑。 二十世纪以来,配位化学作为一门独立的学科,以其蓬勃发展之势,使传统的无机化学和有机化学的人工壁垒逐渐消融,并不断与其他学科如物理化学、材料科学及生命科学交叉、渗透,孕育出许多富有生命力的新兴边缘学科,为化学学科的发展带来新的契机[2]。 1缓蚀剂原则上讲,缓蚀剂的缓蚀作用,是由子水中加入它后,在金属材质表面形成了钝化型膜、沉淀型膜或吸附型膜,因而有效地阻止或降低水中腐蚀介质对金属的腐蚀速度。多数情况下成膜和形成配合物有关。例如,长久以来,应用铬酸盐作为缓蚀剂,它形成钝化型膜迅速、膜层牢固、缓蚀率高,但由于它对许多水生物有毒性,故近年来,国内外都在研究用钼酸盐、钨酸盐来代替铬酸盐,当水中存在一定量的O2时,钼酸盐在金属表面的成膜机理可表示为:

相关主题
文本预览
相关文档 最新文档