当前位置:文档之家› 电子科学与技术专业英语(微电子技术分册)第一章译文

电子科学与技术专业英语(微电子技术分册)第一章译文

电子科学与技术专业英语(微电子技术分册)第一章译文
电子科学与技术专业英语(微电子技术分册)第一章译文

——电材专业英语课文翻译

Semiconductor Materials

? 1.1 Energy Bands and Carrier Concentration

? 1.1.1 Semiconductor Materials

?Solid-state materials can be grouped into three classes—insulators(绝缘体), semiconductors, and conductors. Figure 1-1 shows the electrical conductivities δ(and the corresponding resistivities ρ≡1/δ)associated with(相关)some important materials in each of three classes. Insulators such as fused(熔融)quartz and glass have very low conductivities, in the order of 1E-18 to 1E-8 S/cm;

固态材料可分为三种:绝缘体、半导体和导体。图1-1 给出了在三种材料中一些重要材料相关的电阻值(相应电导率ρ≡1/δ)。绝缘体如熔融石英和玻璃具有很低电导率,在10-18 到10-8 S/cm;

and conductors such as aluminum and silver have high conductivities, typically from 104 to 106 S/cm. Semiconductors have conductivities between those of insulators and those of conductors. The conductivity of a semiconductor is generally sensitive to temperature, illumination(照射), magnetic field, and minute amount of impurity atoms. This sensitivity in conductivity makes the semiconductor one of the most important materials for electronic applications.

导体如铝和银有高的电导率,典型值从104到106S/cm;而半导体具有的电导率介乎于两者之间。半导体的电导率一般对温度、光照、磁场和小的杂质原子非常敏感。在电导率上的敏感变化使得半导体材料称为在电学应用上为最重要的材料。The study of semiconductor materials began in early nineteenth century. Over the years many semiconductors have been investigated. Table 1 show a portion(部分) of the periodic(周期)table related to semiconductors. The element semiconductors, those composed of single species of atoms, such as silicon (Si) and germanium (Ge), can be found in Column Ⅳ. However, numerous compound semiconductors are composed of two or more elements. For example, gallium arsenide (GaAs) is a Ⅲ-Ⅴcompound that is a combination(合成)of gallium (Ga) from Column Ⅲand arsenic (As) from Column Ⅴ.

早在19世纪人们已经开始研究半导体材料。多年来人们研究了很多半导体材料。表1给出了与半导体相关的周期表中的部分元素。由单种元素组成的单质半导体如硅和锗在第Ⅳ族。而大量的化合物半导体有两个甚至更多元素组成。如GaAs 是Ⅲ-Ⅴ化合物是由Ⅲ族的Ga和Ⅴ族的As化合而得。

Prior to the invention of the bipolar transistor(双极二极管)in 1947,semiconductors were used only as two-terminal(电极)devices, such as rectifiers(整流器)and photodiodes(光敏二极管). In the early 1950s, germanium was the major semiconductor material.

在1947年双极晶体管发明之前,半导体仅用作双极型器件如整流器和光敏二极管。早在20世纪50年代,锗是主要的半导体材料。

However, germanium proved unsuitable in many applications because germanium devices exhibited high leakage currents(漏电流)at only moderately elevated temperatures. In addition, germanium oxide is water soluble and unsuited for device

fabrication. Since the early 1960s silicon has become a practical substitute(实际取代)and has now virtually supplanted(事实上替代)germanium as a material for semiconductor fabrication(结构)

然而锗不太适合在很多方面应用因为温度适当提高后锗器件会产生高的漏电流。另外,锗的氧化物是水溶性的不适合器件制作。所以20世纪60年代实际上锗被硅所取代,事实上硅替代锗成为半导体制作的材料之一。

The main reasons we now use silicon are that silicon devices exhibit much lower leakage currents, and high-quality silicon dioxide can be grown thermally. There is also an economic consideration. Device grade silicon costs much less than any other semiconductor material. silicon in the form of silica and silicates(硅酸盐)comprises 25% of the Earth’s crust(地表), and silicon is second only to oxygen in abundance (分布). At present, silicon is one of the most studied elements in the periodic table; and silicon technology is by far the most advanced among all semiconductor technologies

我们用硅材料的主要原因有硅器件存在非常低的漏电流且能够通过热法生长出高质量的二氧化硅。器件级硅成本远少于其它半导体材料。硅以硅石和硅酸盐形式存在并占地球地表层的25%,而且硅元素在分布中排在氧之后的第二位。当今硅是在元素周期表中研究最多的元素;硅技术是在所有半导体技术中最先进的。

Many of the compound semiconductors have electrical and optical properties that are absent(缺少)in silicon. These semiconductors, especially gallium arsenide (GaAs), are use mainly for microwave and photonic applications. Although we do not know as much about the technology of compound semiconductor as we do about that of silicon, compound semiconductor technology has advanced partly because of the advances in silicon technology. In this book we are concerned mainly with device physics and processing technology of silicon and gallium arsenide.

有很多化合物半导体具有硅所缺少的电光性能。这些半导体特别是GaAs主要用作微波和光学应用。虽然我们了解化合物半导体技术不如硅材料的多,但化合物半导体技术由于硅技术的发展而发展。在本书中我们主要介绍硅和砷化镓的器件物理和制备技术。

Crystal Structure

The semiconductor materials we will study are single crystals, that is, the atoms are arranged in a three-dimensional periodic fashion. The periodic arrangement (排布)of atoms in a crystal is called a lattice(晶格). In a crystal, an atom never stray(偏离)far from a single, fixed position. The thermal vibrations associated with the atom are centered about this position. For a given semiconductor, there is a unit cell(晶胞)that is representative of the entire lattice; by repeating the unit cell throughout the crystal, one can generate the entire lattice.

我们研究的半导体材料是单晶,也就是说,原子是按照三维周期形式排列。在晶体中原子的周期排列称为晶格。在晶体里,一个原子从不远离它确定位置。与原子相关的热运动也是围绕在其位置附近。对于给定的半导体,存在代表整个晶格的晶胞,通过在晶体中重复晶胞组成晶格。

Figure 1-2 shows some basic cubic-crystal unit cells. Figure 1-2(a) shows a simple

cubic (立方) crystal; each corner of the cubic lattice is occupied by an atom that has six equidistant (等距) nearest neighboring atoms. The dimension a is called the lattice constant. Only polonium (钋) is crystallized in the simple cubic lattice. Figure 1-2(b) is a body-centered cubic (体心立方) (bcc) crystal, where in addition to the eight corner atoms, an atom is located at center of the cube.

图1-2给出一些立方晶体晶胞。图1-2(a )给出了一个简单的立方晶体;立方晶格的每个角由一个原子占据,所以有6个等距原子。a 的大小称为晶格常数。只有金属钋明确是单立方晶体。图1-2(b )是体心立方晶体,除了8个角原子外,一个原子在其立方中心上。

In a bcc lattice, each atom has eight nearest-neighboring atoms. Crystals exhibiting bcc lattices include those of sodium (钨) and tungsten (钠). Figure 1-2(c)shows a face-centered cubic (fcc) (面心立方)crystal that has one atom at each of the six cubic faces in addition to (还有) the eight corner atoms. In an fcc lattice, each atom has 12 nearest neighboring atoms. A large number of elements exhibit the fcc lattice form, including aluminum, copper, gold, and platinum (铂).

在体心立方晶格中,每个原子具有8 个相近原子。呈bcc 晶格的晶体包括钨和钠晶体。图1-2(c )给出了面心立方晶体除了8个角原子外六个立方面上还有一个原子。在fcc 晶格中每个原子有12 相邻原子。大量的元素是fcc 晶格形式,包括铝、铜、金和铂。

The element semiconductors, silicon and germanium, have a diamond lattice structure (金刚石晶体结构). This structure also belongs to the cubic-crystal family and can be seen as two interpenetrating (渗透) fcc sublattices(亚点阵) with one sublattice displaced (移动) from the other by one quarter of the distance along a diagonal (对角线) of the cube (i.e.,a displacement (位移) of a ). 元素半导体如硅和锗具有金刚石晶体结构。这种结构属于金刚石结构并且视为两个互相贯穿的fcc 亚点阵结构,这个结构具有一个可以从其它沿立方对角线距离的四分之一处移动的子晶格(位移 。)

All atoms are identical in a diamond lattice, and each atom in the diamond lattice is surrounded by four equidistant (等距) nearest neighbors that lie at the corners of a tetrahedron (四面体). Most of the Ⅲ-Ⅴ compound semiconductors (e.g.,GaAs) have a zincblende (闪锌矿) lattice, which is identical (相同) to a diamond lattice except that one fcc sublattice has column Ⅲ atoms (Ga) and the other has Column Ⅴatoms (As).

在金刚石晶体所有原子都相同,且在金刚石晶体都有在四面体角上的四个等距相近原子所包围。多数每个原子Ⅲ-Ⅴ 化合物半导体具有闪锌矿结构,它有金刚石相同结构除了一个fcc 子晶格结构有一个Ⅲ 族原子Ga 和 Ⅴ族原子 As 。

? Therefore, the crystal properties along different planes are different, and the

electrical and other device characteristic are dependent on the crystal

orientation. A convenient method of defining the various planes in a crystal is

to use Miller indices (密勒指数).

因此,不同面的晶体特性也不同,且电和其它器件特性依赖于晶体取向。一种常用定义在晶体中不同晶面的方法是用密勒指数。

4

/34/3

Valence Bonds (价键)

As discussed in Section 1.1.2, each atom in a diamond lattice is surrounded by four nearest neighbors. Each atom has four electrons in the out orbit (轨道), and each atom shares these valence electrons(价电子)with its neighbors. This sharing of electrons is known as covalent bonding(共价键); each electron pair (电子对)constitutes a covalent bond. Covalent bonding occurs between atoms of the same element, or between atoms of different elements that have similar outer-shell electron configurations(结构). Each electron spends an equal amount of time with each nucleus.

如1.1.2节所述,在金刚石结构的每个原子被4个相邻原子所包围。每个原子在外轨道具有4个电子,并且每个电子与相邻原子共享价电子;每对电子组成一个共价键。共价键存在于同种原子之间或具有相同外层电子机构的不同元素的原子间。每个电子与每个原子核达到平衡需要相同时间。

However, both electrons spend most of their time between the two nuclei. The force of attraction (吸引力) for the electrons by both nuclei holds the two atoms together. For a Zincblende lattice (闪锌矿) such as gallium arsenide, the major bonding force is from the covalent bonds. However, gallium arsenide has a slight (少) ionic bonding force that is an electrostatic (静电引力) attractive force between each Ga+ ion and Its four neighboring As- ions, or between each As- ion and Its four neighboring Ga+ ions.

然而,所有电子需要很多时间在两个原子核间达到平衡。两个原子核对电子的吸引力保证两个原子在一起。对于闪锌矿结构如砷化镓主要的价键引力主要来自于共价键。当然,砷化镓也具有小的离子键引力即Ga+离子与四周 As-离子,或 As- 离子和四周 Ga+ 离子.

At low temperatures, the electrons are bound (束缚) in their respective (各自) tetrahedron (四面体) lattice; consequently, they are not available for conduction. At higher temperatures, thermal vibrations may break the covalent bonds. When a bond is broken, a free electron results that can participate (参与) in current conduction. An electron deficiency (空位) is left in the covalent bond. This deficiency may be filled by one of the neighboring electrons, which results in a shift of the deficiency location, as from location A to location B . We may therefore consider this deficiency as a particle similar to an electron. This fictitious (假想) particle is called a hole.

在低温下,电子束缚在它们各自四面体晶格中;从而不能用来导电。当一个价键断开,一个自由电子能参与电路导电。一个电子空位留在共价键中。这个空位被相邻电子填充导致空位移动,如A 到B 位置。我们可以空位认同于与电子相同的粒子。这个假想粒子称为空穴。

It carries a positive charge and moves, under the influence of an applied electric field, in the direction opposite to that of an electron. the concept of a hole is analogous (类似) to that of an electron. The concept of a hole is analogous to that of a bubble (泡沫) in a liquid. Although it is actually the liquid that moves, it is much easier to talk about the motion (移动) of the bubble in the opposite direction.

它带有正电荷在外加电场下,沿着电子运动方向相反地方移动。空穴的概念类似电子的概念。空穴的概念类似于液体中泡沫的定义。虽然它的确可与液体流动,这很容易想到泡沫移动是向相反方向。

Energy Bands

For an isolated (孤立)atom, the electrons of the atom can have only discrete (不连续) energy levels. For example, the energy levels for an isolated hydrogen atom are given by the bohr model

对于孤立原子,原子的电子有不连续的能级。如,孤立氢原子的能级可由玻尔模型得出:

Where m0 is the free-electron mass, q is the electronic charge,ε0is the free-space permittivity (电导率), h is the plank constant, and n is a positive integer (整数) called the principal quantum (量子) number. The discrete energies are -13.6eV for the ground level (n=1), -3.4eV for the first excited (n=2),etc.

eV n n h q m E h 2222040/6.13)8/(-=-=ε

式中m0 代表自由电子质量, q是电荷量,ε0是真空中电导率, h 是普朗克常数,n 是正整数称为主量子数。不连续能量在基态为-13.6eV (n=1), 第一激发态为-3.4eV (n=2),etc.

We now consider two identical(相同)atoms. When they are far apart(远离), the allowed energy levels for a given principal quantum number (e.g., n=1)consist of one doubly degenerate(双重简并)level, that is, each atom has exactly then same energy (e.g., -13.6eV for n=1). As the two atoms approach one another, the doubly degenerate energy level will spilt into two levels by the interaction (相互作用)between the atoms. When we bring N atoms together to form a crystal, the N-fold degenerate energy level will split into N separate but closely spaced levels due to atomic interaction.

我们考虑两个相同原子.当它们远离时, 对所给主量子数(e.g., n=1)的允态能级具有双重简并能级,也就是说,每个原子具有相同能级(e.g., -13.6eV for n=1).当两个原子相互靠近,这个双重简并能级将被原子间相互作用分成两个能级。当从晶体中引入N个原子,N重简并能级将会分成N个能级,但原子相互作用能级相互接近。

This results in an essentially(基本)continuous band of energy.

The detailed energy band structures of crystalline solids have been calculated using quantum mechanics(量子理论). Figure 1-3 is a schematic diagram of the formation of a diamond lattice crystal from isolated(孤立)silicon atoms. Each isolated atom has its discrete(不连续)energy levels (two levels are shown on the far right of the diagram). As the interatomic(原子间)spacing decreases, each degenerate energy level splits to form a band.

这导致一个基本连续的能带。结晶固体的详细能带结构能够用量子理论计算而得。图1-3是孤立硅原子的金刚石结构晶体形成的原理图。每个孤立原子有不连续能带(在右图给出的两个能级)。如原子间隔的减少,每个简并能级将分裂产生带。

Further decrease in spacing causes the bands originating(引起)from different discrete levels to lose their identities(同性)and merge(合并)together, forming a single band. When the distance between atoms approaches the equilibrium interatomic spacing of the diamond lattice (with a lattice constant of 0.543 nm for silicon), this band splits again into two bands.

在空间更多减少将导致能带从不连续能级到失去其特性并合并起来,产生一个简单的带。当原子间距离接近金刚石结构的平衡原子间距(对硅而言晶格常数0.543 nm ),这个带分为两个带区。

These bands are separated by a region which designates(指明)energies that the electrons in the solid cannot possess. This region is called the forbidden gap, or bandgap(带隙)Eg. The upper band is called the conduction band(导带), while the lower band is called valence band(价带), as shown on the far left of Figure 1-3. 这些带被固态电子不能够拥有的能量区域分开。这个区域称为禁带或带隙Eg。如图1-3左侧所示上面称为导带下面称为价带。

Figure1-4 shows the energy band diagrams of three classes of solids –insulators, semiconductors, and conductors. In an insulator such as silicon dioxide (SiO2), the valence electrons form strong bonds between neighboring atoms. These bonds are

difficult to break, and consequently(因此)there are no free electrons to participate (产生)in current conduction.

图1-4给出了三种固体(绝缘体、半导体、导体)的能带图。在绝缘体(如SiO2), 价电子在相邻原子间产生强的价键。这些键很难断开,因此没有自由电子在电流传导过程中产生。

As shown in the energy band diagram Figure1-4(a), there is a large bandgap(带隙). Note that all energy levels in the valence band are occupied(填充)by electrons and all energy levels in the conduction band are empty. Thermal energy or an applied electric field(外加电场)cannot raise the uppermost electron in the valence band to the conduction band. Therefore, silicon dioxide is an insulator, which cannot conduct current..

如图1-4(a)能带图所示,有一个大带隙。注意到所有的价带都被电子充满而导带中能级是空的。热能量和外加电场不能够提高在价带中最上层电子到导带。因此,二氧化硅是绝缘体不能导电。

As we discussed in section 1.1.3, bonds between neighboring atoms in a semiconductor are only moderately(适中)strong. Therefore, thermal vibrations(振动)will break some bonds. When a bond is broken, a free electron along with a free hole result. Figure 1-4(b) shows that the bandgap of a semiconductor is not as large as that of an insulator (e.g., Si with a bandgap of 1.12eV).

如1.1.3节所述,在半导体中相邻原子价键仅仅一定程度强。因此,热振动将断开其中的价键。当价键断开后,产生了自由电子连同自由空穴。图1-4(c)给出的半导体的带隙不如绝缘体宽。(如硅带隙1.12eV)

Because of this ,some electrons will be able to move from the valence band to the conduction band, leaving holes in the Valence band .when An electric field is applied, both the electrons in the conduction band and the holes in the valence band will gain kinetic energy(动能)and conduct electricity.

正因为此,一些电子能够从价带移动到导带,在在价带中留下空穴。当外加电场后,所有在导带中电子和在价带中的空穴将得到动能并能够导电。

In conductors such as metals, Figure 1-4(c),the conduction band either is partially (部分)filled or overlaps(重叠)the valence band so that there is no bandgap. As a consequence(结果), the uppermost electrons in the partially filled band or electrons at the top of the valence band can move to the next-higher available energy level when they gain kinetic energy (e.g., from an applied electric field(外加电场)). therefore, current conduction can readily occur in conductors.

在导体中如金属,图1-4(c)所示,导带不是部分填充即使与价带重叠以至于没有带隙结果,半满带的最上层电子以及价带顶部电子在获得动能(外加电场)可以运动到与其相应的其它较高能级。因此,电流很容易在导体中产生。

The energy band diagrams shown in Figure 1-4 indicate(说明)electron energies. When the energy of an electron is increased, the electron moves to a higher position in the band diagram. On the other hand, when the energy of a hole is increased, the hole moves downward in the valence band. (This is because a hole has a charge opposite that of an electron.)

如图1-4能带图说明了电子能量。当电子能量增加,电子将移动到带图中高的位置。相反,当空穴能量增加,空穴将移动到价带的低位置。(这是因为空穴带

电量与电子相反)

As we discussed before, the separation (间距)between the energy of the lowest conduction band and that of the highest valence is called the bandgap Eg, which is the most important parameter(参数)in semiconductor physics. We designate(设定)Ec as bottom of the conduction band; Ec corresponds to the potential energy of an electron, that is, the energy of a conduction electron that is at rest.

正如以前讨论过,最高价带能量与最低导带能量之间间距称为带隙,带隙是半导体物理中最重要的参数。我们设Ec为导带的底端;Ec与电子势能相关,也就是,静止时导电电子的能量。

the kinetic energy of an electron is measured upward from Ec. Similarly ,we designate Ev as top of the Valence band; Ev corresponds to the potential energy(势能)of a hole. the kinetic energy of a hole is measured downward from Ev.

At room temperature and under normal atmosphere, the value of the bandgap are 1.12ev for silicon and 1.42ev for gallium arsenide. The bandgap approaches 1.17ev for silicon and 1.52 ev for gallium arsenide at 0 K.

一个电子的动能可以从Ec上端测得。同样,我们设Ev为价带的上端值;Ev与空穴的势能相关。空穴的动能可从Ev下端值测得。

在室温和标准大气压下,带隙值硅(1.12ev )砷化镓(1.42ev)在0 K 带隙研究值硅( 1.17ev )砷化镓(1.52ev)

1.1.5 Density of States

当电子在半导体材料中沿着x方向前后运动时,其运动可以用驻波来描述.驻波波长和半导体的长度的关系是:

?n x是一个整数.波长可以表示为)

?h是普朗克常数,p x是晶体在x方向的动量。把方程1-2代入方程1-1得到

?每增加1,动量的增量是

?对边长为L的三维立方体,有:

?对L=1的单位立方体,动量空间中的体积于是等于h3.n变化产生一组整数(nx,ny,nz),每组整数(nx,ny,nz)相应于一个允许的能态.

?所以对于能态的动量空间的大小为h3,从p到p+dp的两个同心球之间的体积是4πp2dp (此体积中包含的能态数是2(4πp2dp)/h3 ,这里因子2计入了电子自旋。

用E代替p 得到.

?(N(E) 叫做态密度,就是每单位体积允许的能态密度.

微电子技术在医学中的应用

微电子技术在医学中的应用 随着科技的迅速发展,和医疗水平息息相关的电子技术应用也越来越广泛。微电子技术的发展大大方便了人们的生活,随着微电子技术的发展,生物医学也在快速的发展,微电子技术过去在医学中的主要是应用于各类医疗器械的集成电路,在未来主要是生物芯片。生物芯片技术在医学、生命科学、药业、农业、环境科学等凡与生命活动有关的领域中均具有重大的应用前景。微电子技术与生物医学之间有着非常紧密的联系。 生物医学电子学是由微电子学、生物和医学等多学科交叉的边缘科学,为使得生物医学领域的研究方式更加精确和科学,所以将电子学用于生物医学领域。在生物医学与电子学交叉作用部分中最活跃、最前沿、作用力最大的一项关键技术就是微电子技术。特别是随着集成电路集成度的提高和超大规模集成电路的发展,元件尺寸达到分子级,进入了分子电子学时代,用有机化合物低分子、高分子和生物分子作芯片,它们具有识别、采集、记忆、放大、开关、传导等功能,更大大促进了医学电子学的发展。 以下将主要从生物医学传感器、植入式电子系统、生物芯片这三个方面结合当前国际上最新进展来介绍两者之间的关系与发展。 一、生物医学传感器 生物医学传感器是连接生物医学和电子学的桥梁。它的作用是把人体中和生物体包含的生命现象、性质、状态、成分和变量等生理信息转化为与之有确定函数关系的电子信息。生物医学传感器技术是生物医学电子学中一项关键的技术,是发展生物技术必不可少的一种先进的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。因为生物传感器专一、灵敏、响应快等特点,为基础医学研究及临床诊断提供了一种快速简便的新型方法,在临床医学中发挥着越来越大的作用,意义极为重大。 常见的生物医学传感器主要可分为以下几种:电阻式传感器,电感式传感器,电容式传感器,压电式传感器,热电式传感器,光电传感器以及生物传感器等。 医学领域的生物传感器发挥着越来越大的作用。在临床医学中,酶电极是最早研制且应用最多的一种传感器。利用具有不同生物特性的微生物代替酶,可制成微生物传感器,广泛应用于:药物分析、肿瘤监测、血糖分析等。 生物医学传感器相较于传统医疗方式具有以下特点: 1、生物传感器采用固定化生物活性物质作催化剂,价值昂贵的试剂可以重复多次使用,克服了过去酶法分析试剂费用高和化学分析繁琐复杂的缺点。因此,这一技成本低,在连续使用时,每例测定仅需要几分钱人民币,术在很大程度上减轻病患医疗费用上的负担。

微电子专业英语

微电子学专业词汇 A be absorb in 集中精力做某事 access control list 访问控制表 active attack 主动攻击 activeX control ActiveX控件 advanced encryption standard AES,高级加密标准 algorithm 算法 alteration of message 改变消息 application level attack 应用层攻击 argument 变量 asymmetric key cryptography 非对称密钥加密 attribute certificate属性证书 authentication 鉴别 authority 机构 availability 可用性 Abrupt junction 突变结 Accelerated testing 加速实验 Acceptor 受主 Acceptor atom 受主原子 Accumulation 积累、堆积 Accumulating contact 积累接触 Accumulation region 积累区 Accumulation layer 积累层 Active region 有源区 Active component 有源元 Active device 有源器件 Activation 激活 Activation energy 激活能 Active region 有源(放大)区 Admittance 导纳 Allowed band 允带 Alloy-junction device 合金结器件 Aluminum(Aluminium) 铝 Aluminum – oxide 铝氧化物 Aluminum passivation 铝钝化 Ambipolar 双极的 Ambient temperature 环境温度 Amorphous 无定形的,非晶体的 Amplifier 功放扩音器放大器Analogue(Analog) comparator 模拟比较器 Angstrom 埃 Anneal 退火

微电子技术及其发展

微电子技术及其发展 1200240227 杨晓东21世纪是高新技术时代的高速发展时期,随着科技不断进步与创新,电子行业逐渐占据重要地位。科学家们逐渐发现了微电子行业的巨大作用。那么什么是微电子呢?微电子在现代化进程中有哪些应用呢?它对一些科技发展是否起着不可或缺的作用呢?我们国家对于微电子的发展到了哪一步呢?国家又采用了什么政策呢?微电子是否和我们大学生青年息息相关呢?带着这些疑问,我们一同去探讨。 首先,到底什么是微电子呢?微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、电路及系统的电子学分支。尽管只是作为电子学的分支学科,它主要研究电子或离子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学,以实现电路的系统和集成为目的,实用性强。微电子学又是信息领域的重要基础学科,在这一领域上,微电子学是研究并实现信息获取、传输、存储、处理和输出的科学,是研究信息获取的科学,构成了信息科学的基石,其发展直接影响着整个信息技术的发展。微电子科学技术的发展水平和产业规模是一个国家经济实力的重要标志。微电子学是一门综合性很强的边缘学科,其中包括了半导体器件物理、集成电路工艺和集成电路及系统的设计、测试等多方面的内容;涉及了固体物理学、量子力学、热力学与统计物理学、材料科学、电子线路、信号处理、计算机辅助设计、测试和加工、图论、化学等多个领域。 可见微电子是一门极其复杂的电子科学。因为其广泛的应用,近年来在军事科技,通信及太空探索等方面得到迅速发展。微电子技术是高科技和信息产业的核心技术。微电子产业是基础性产业,之所以发展得如此之快,除了技术本身对国民经济的巨大贡献之外,还与它极强的渗透性有关。另外,现代战争将是以集成电路为关键技术、以电子战和信息战为特点的高技术战争。几乎所有的传统产业只要与微电子技术结合,用集成电路芯片进行智能改造,就会使传统产业重新焕发青春。例如微机控制的数控机床己不再是传统的机床;又如汽车的电子化导致汽车工业的革命,目前先进的现代化汽车,其电子装备已占其总成本的70%。进入信息化社会,集成电路成为武器的-个组成单元,于是电子战、智能武器应

微电子科学与工程专业本科培养计划

微电子科学与工程专业本科培养计划 Undergraduate Program for Specialty in Microelectronic Science and Engineering 一、培养目标 Ⅰ.Program Objectives 本专业培养掌握微电子科学与工程专业必需的基础知识、基本理论和基本实验技能,能够从事该领域的各种微电子材料、器件、封装、测试、集成电路设计与系统的科研、教学、科技开发、工程技术、生产管理等工作的高级专门人才。 This program trains advanced talents with basic knowledge, theory and experimental skills necessary for Microelectronic Science and Engineering. These talents can be engaged in various works in microelectronic materials, devices, packaging, testing, integrated circuit design and system as well as the scientific research, education, technique development, engineering technology, production management. 二、基本规格要求 Ⅱ.Learning Outcomes 毕业生应获得以下几个方面的知识和能力: 1、具有扎实的自然科学基础,良好的人文社会科学基础和外语能力; 2、掌握本专业领域较宽的基础理论知识,主要包括固体物理、半导体物理、微电子材料、微电子器件、集成电路设计等方面的基础理论知识;在本专业领域内具备从事科学研究的能力; 3、受到良好的工程实践训练,掌握各种微电子器件与集成电路的分析、设计与制造方法,具有独立进行微电子材料及器件性能分析、集成电路设计、微电子工艺流程的基本能力;具备一定的工程开发和组织管理能力; 4、了解本专业的最新发展动态和发展前景,了解微电子产业的发展状况。 The program requires that the learners have the knowledge and abilities listed as follows: 1. Have solid foundation in natural science, basic fine knowledge in humanities and social sciences

微电子技术及其应用

微电子技术及其应用 041050107陈立 一、微电子技术简介 如今,世界已经进入信息时代,飞速发展的信息产业是这个时代的特征。而微电子技术制造的芯片则是大量信息的载体,它不仅可以储存信息,还能处理和加工信息。因此,微电子技术在如今已是不可或缺的生活和生产要素。 微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、电路及系统的电子学分支。 作为电子学的分支学科,它主要研究电子或粒子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学,以实现电路的系统和集成为目的,实用性强。微电子学又是信息领域的重要基础学科,在这一领域上,微电子学是研究并实现信息获取、传输、存储、处理和输出的科学,是研究信息获取的科学,构成了信息科学的基石,其发展水平直接影响着整个信息技术的发展。微电子科学技术的发展水平和产业规模是一个国家经济实力的重要标志。 微电子学是一门综合性很强的边缘学科,其中包括了半导体器件物理、集成电路工艺和集成电路及系统的设计、测试等多方面的内容;涉及了固体物理学、量子力学、热力学与统计物理学、材料科学、电子线路、信号处理、计算机辅助设计、测试和加工、图论、化学等多个领域。 微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向。信息技术发展的方向是多媒体(智能化)、网络化和个体化。要求系统获取和存储海量的多媒体信息、以极高速度精确可靠的处理和传输这些信息并及时地把有用信息显示出来或用于控制。所有这些都只能依赖于微电子技术的支撑才能成为现实。超高容量、超小型、超高速、超高频、超低功耗是信息技术无止境追求的目标,是微电子技术迅速发展的动力。 微电子学渗透性强,其他学科结合产生出了一系列新的交叉学科。微机电系统、生物芯片就是这方面的代表,是近年来发展起来的具有广阔应用前景的新技术。 二、微电子技术核心—-集成电路技术 集成电路(integrated circuit)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,这样,整个电路的体积大大缩小,且引出线和焊接点的数目也大为减少,从而使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。它在电路中用字母“IC”。 集成电路的分类 1.按功能结构分类 集成电路按其功能、结构的不同,可以分为模拟集成电路、数字集成电路和数/模混合集成电路 模拟集成电路又称线性电路,用来产生、放大和处理各种模拟信号(指幅度随时间变化的信号。例如半导体收音机的音频信号、录放机的磁带信号等),其输入信号和输出信号成

微电子专业英语词汇

A Abrupt junction 突变结Accelerated testing 加速实验Acceptor 受主 Acceptor atom 受主原子Accumulation 积累、堆积Accumulating contact 积累接触Accumulation region 积累区Accumulation layer 积累层Active region 有源区 Active component 有源元Active device 有源器件Activation 激活 Activation energy 激活能Active region 有源(放大)区Admittance 导纳 Allowed band 允带 Alloy-junction device 合金结器件 Aluminum(Aluminium) 铝Aluminum – oxide 铝氧化物Aluminum passivation 铝钝化Ambipolar 双极的 Ambient temperature 环境温度Amorphous 无定形的,非晶体的Amplifier 功放扩音器放大器Analogue(Analog) comparator 模拟比较器 Angstrom 埃 Anneal 退火 Anisotropic 各向异性的 Anode 阳极 Arsenic (AS) 砷 Auger 俄歇 Auger process 俄歇过程Avalanche 雪崩 Avalanche breakdown 雪崩击穿Avalanche excitation 雪崩激发B brute-force attack 强力攻击Background carrier 本底载流子Background doping 本底掺杂Backward 反向 Backward bias 反向偏置Ballasting resistor 整流电阻 Ball bond 球形键合 Band 能带 Band gap 能带间隙Barrier 势垒 Barrier layer 势垒层 Barrier width 势垒宽度 Base 基极 Base contact 基区接触 Base stretching 基区扩展效应 Base transit time 基区渡越时间 Base transport efficiency 基区输 运系数 Base-width modulation 基区宽度 调制Basis vector 基矢 Bias 偏置 Bilateral switch 双向开关 Binary code 二进制代码 Binary compound semiconductor 二元化合物半导体 Bipolar 双极性的 Bipolar Junction Transistor (BJT) 双极晶体管 Bloch 布洛赫 Blocking band 阻挡能带 Blocking contact 阻挡接触 Body - centered 体心立方 Body-centred cubic structure 体 立心结构 Boltzmann 波尔兹曼 Bond 键、键合 Bonding electron 价电子 Bonding pad 键合点 Bootstrap circuit 自举电路 Bootstrapped emitter follower 自 举射极跟随器 Boron 硼 Borosilicate glass 硼硅玻璃 Boundary condition 边界条件 Bound electron 束缚电子 Breadboard 模拟板、实验板 Break down 击穿 Break over 转折 Brillouin 布里渊 Brillouin zone 布里渊区 Built-in 内建的 Build-in electric field 内建电场 Bulk 体/ 体内 Bulk absorption 体吸收 Bulk generation 体产生 Bulk recombination 体复合 Burn - in 老化 Burn out 烧毁 Buried channel 埋沟 Buried diffusion region 隐埋扩散 区 C Caesar cipher 凯撒加密法 capacitance 电容 capture categorize 分类 chaining mode 链接模式 challenge 质询 cipher feedback 加密反馈 collision 冲突 combine 集成 compatibility n.[计]兼容性 component 原件 confidentiality 保密性 constraint 约束 corresponding to 相应的 Cryptography 密码学 Can 外壳Capacitance 电容 Capture cross section 俘获截面 Capture carrier 俘获载流子 Carrier 载流子、载波 Carry bit 进位位 Carry-in bit 进位输入 Carry-out bit 进位输出 Cascade 级联 Case 管壳 Cathode 阴极 Center 中心 Ceramic 陶瓷(的) Channel 沟道 Channel breakdown 沟道击穿 Channel current 沟道电流 Channel doping 沟道掺杂 Channel shortening 沟道缩短 Channel width 沟道宽度 Characteristic impedance 特征阻 抗 Charge 电荷、充电 Charge-compensation effects 电 荷补偿效应 Charge conservation 电荷守恒 Charge neutrality condition 电中 性条件 Charge drive/exchange/sharing/transfer/st 1

微电子中英文专业词汇

Abrupt junction 突变结 Accelerated testing 加速实验 Acceptor 受主 Acceptor atom 受主原子 Accumulation 积累、堆积 Accumulating contact 积累接触 Accumulation region 积累区 Accumulation layer 积累层 Active region 有源区 Active component 有源元 Active device 有源器件 Activation 激活 Activation energy 激活能 Active region 有源(放大)区 Admittance 导纳 Allowed band 允带 Alloy-junction device合金结器件 Aluminum(Aluminium)铝 Aluminum - oxide 铝氧化物 Aluminum passivation 铝钝化 Ambipolar 双极的 Ambient temperature 环境温度 Amorphous 无定形的,非晶体的 Amplifier 功放扩音器放大器 Analogue(Analog) comparator 模拟比较器 Angstrom 埃 Anneal 退火 Anisotropic 各向异性的 Anode 阳极 Arsenic (AS)砷 Auger 俄歇 Auger process 俄歇过程 Avalanche 雪崩 Avalanche breakdown 雪崩击穿 Avalanche excitation雪崩激发 Background carrier 本底载流子 Background doping 本底掺杂 Backward 反向 Backward bias 反向偏置 Ballasting resistor 整流电阻 Ball bond 球形键合 Band 能带 Band gap 能带间隙 Barrier 势垒 Barrier layer 势垒层 Barrier width 势垒宽度 Base 基极 Base contact 基区接触 Base stretching 基区扩展效应 Base transit time 基区渡越时间 Base transport efficiency基区输运系数 Base-width modulation基区宽度调制 Basis vector 基矢 Bias 偏置 Bilateral switch 双向开关 Binary code 二进制代码 Binary compound semiconductor 二元化合物半导体 Bipolar 双极性的 Bipolar Junction Transistor (BJT)双极晶体管

聚酰亚胺在微电子领域的应用及研究进展 王正芳

聚酰亚胺在微电子领域的应用及研究进展王正芳 发表时间:2019-10-23T14:56:28.063Z 来源:《电力设备》2019年第10期作者:王正芳张馨予 [导读] 摘要:随着科技的深入发展,半导体和微电子工业已经成为国民经济的支柱性产业。 (天津环鑫科技发展有限公司天津市 30000) 摘要:随着科技的深入发展,半导体和微电子工业已经成为国民经济的支柱性产业。微电子工业的发展,除了设计、加工等本身技术的不断更新外,各种与之配套的材料的发展也有着十分重要的支撑作用。电子产品的轻量化、高性能化和多功能化使得其对高分子材料的要求也越来越高。聚酰亚胺(PI)可以说是目前电子化学品中最有发展前途的有机高分子材料之一。其优异的综合性能可满足微电子工业对材料的苛刻要求,因此得到了广泛的重视。 关键词:聚酰亚胺;PI薄膜;应用 信息产业的迅速发展除了技术的不断更新外,各种配套材料的发展同样占据着十分重要的地位。为微电子工业配套的专用化学材料通常称为“电子化学品”,其主要包括集成电路和分立器件用化学品、印刷电路板配套化学品、表面组装用化学品和显示器件用化学品等。电子化学品具有质量要求高、用量少、对生产及使用环境洁净度要求高和产品更新换代快等特点。同时PI具有比无机介电材料二氧化硅、氮化硅更好的成膜性能和力学性能,对常用的硅片、金属和介电材料有很好的粘结性能,聚酰亚胺(PI)薄膜具有良好的耐高低温性能、环境稳定性、力学性能以及优良的介电性能,在众多基础工业与高技术领域中均得到广泛应用。 一、PI发展及在微电子领域的应用 截至目前,PI已经成为耐热芳杂环高分子中应用最为广泛的材料之一,其大类品种就有20多种,较为著名的生产厂家包括通用电气公司GE、美国石油公司等,由于具有很好的热力学稳定性、机械性能及电性能,PI被广泛应用于半导体及微电子行业。可以说,微电子产业的发展水平,离不开PI材料的贡献。PI主要的应用包括下面方面。 1、α粒子的屏蔽层航空航天、军用集成电路在辐射环境中,遭受射线辐射后会发生性能劣化或失效,进而导致仪器设备的失控,因此其抗辐射的性能非常重要。高纯度(低杂质)的PI涂层是一种重要的耐辐射遮挡材料。在元器件外壳涂覆PI遮挡层,可有效防止由微量放射性物质释放的射线而造成的存储器错误。 2、元器件的金属层间介质以及先进封装的再布线技术材料。PI在微电子领域的很多应用,都是出于其优良的综合性能而不是单一特性,某些类似的应用可以发生在不同的领域中,一些应用情况也可以有多重的目的以及名称,因此在介绍文章的描述中,容易产生混乱。由于PI较低的介电常数减少电路时延和串扰,与其他材料的较好的粘附性防止脱离,常用金属材料在其中较低的扩散可靠性,挥发放气极低,以及良好的成膜和填平性,因此可作为多层金属互联结构的层间介质材料(ILD),缓和应力,提高集成电路的速度、集成度和可靠性。类似的考虑也导致其作为先进封装的再布线RDL技术的首选介质材料,用于一般晶圆级的封装WLP中的扇入(Fan-in)和扇出(Fan-out)技术,以及多芯片组件(MCM)等技术中的再布线工艺。 3、微电子器件的钝化层\缓冲\填充\保护层。PI涂层作为钝化层,可有效地改善界面状况,阻滞电子迁移、降低漏电流,防止后序工艺和使用过程中的机械刮擦和表面污染,也可有效地增加元器件的抗潮湿能力。作为缓冲层(Stress Buffer)可有效地降低由于热应力和机械应力引起的电路崩裂断路。单层PI膜,往往同时起到化学钝化、机械保护、空间填充/平坦化的多重功能。此外,PI在微电子产业中的重要潜在应用还有:生物微电极(良好的生物相容性),以及光电材料(波导、开关器件),微电机(MEMS)工艺材料等。这些都是目前发展十分迅速的新兴技术领域,预示着这种介质材料的光明市场前景。尽管PI材料在微电子领域的市场前景十分广阔,且该领域与其他传统材料领域的也有很大不同,体现在初期体量小成本高,对材料的性能质量要求苛刻,而且呈现多样性特点,比如希望进一步降低介电常数,提高/降低玻璃化转变温度,降低吸水率等。在技术方面,它还面临着其他类似材料比如苯并环丁烯(BCB)聚合物,聚苯并唑(PBO)等的激烈竞争。 4、含氟PI在光波导材料中的应用。近年来,关于聚合物光波导材料的开发研究日益受到人们的重视。与传统的无机光波导材料相比,有机聚合物光波导材料具有如下特点:(1)较高的电光耦合系数;较低的介电常数;较短的响应时间和较小的热损耗;(2)加工工艺简单经济,无须高温加热处理,只要通过匀胶、光刻等工艺即可制得复杂的光电集成器件,而且器件具有轻巧、机械性能好的特点,适用于制作大型光学器件和挠性器件。目前研究较多的聚合物光波导材料包括氟代、氘代的聚甲基丙烯酸甲酯、含氟聚酰亚胺、含氟聚芳醚以及聚硅氧烷等[1]。含氟聚酰亚胺不仅具有传统聚酰亚胺材料所具有的耐高温、耐腐蚀、机械性能优良等性质,而且还具有溶解性能优异、低介电常数、低吸水率、低热膨胀系数等特性,因此非常适于制造光波导材料。 5、含氟PI在非线性光学材料中的应用。常用的非线性光学材料包括无机材料,如铌酸锂(LiNbO3)和有机聚合物材料,如聚酰亚胺等。聚合物作为非线性光学材料具有比无机材料更为明显的非线性光学效应、更快的响应速度以及低得多的介电常数。同时聚合物材料还具有结构多样、加工性能优越、与微电子技术和光纤技术具有良好适应性等特点,因此应用越来越广泛。与无机材料相比,PI材料具有非线性系数大、响应时间短、介电常数低、频带宽、易合成等特性,同时还具有优良的热性能、电性能、机械性能以及环境稳定性能等,而且可以与现有的微电子工艺良好地兼容,可在各种基材上制备器件,特别是可以制作多层材料,达到垂直集成,这是现有的铌酸锂等无机材料做不到的。含氟PI在保持PI固有的优良特性的同时,极大地改善了PI的溶解性,这就避免了聚酰胺酸在热亚胺化过程中,由于脱除小分子水留下“空穴”而引起光散射。 二、PI超薄膜未来发展趋势 PI超薄膜是近年才发展起来的一类高性能高分子薄膜材料,优异的综合性能很快确立了其在有机薄膜材料家族中的顶端地位。目前,PI超薄膜的发展方向主要体现在两个方面:一是标准型Kapton薄膜的超薄化;另一个是功能性PI超薄膜的研制与开发。对于前者而言,Kapton薄膜本身优良的热学与力学性能保证了其在超薄化过程中性能的稳定,其主要技术瓶颈更多地在于制备设备与制膜工艺参数的优化与调整。而对于功能性PI超薄膜而言,其性能不仅与设备和工艺有着密切的关系,而且树脂结构的分子设计以及新合成方法的研究也起着至关重要的作用。如何在保证特种功能的前提下,尽可能地保持PI薄膜固有的力学性能、热性能等是一项极具挑战性的研究课题,也是未来一项主要研究课题。 超薄型PI薄膜在现代工业领域中具有广泛的应用前景。国外十分重视这类材料的研制与开发,已经有批量化产品问世。由于PI超薄膜的应用领域较为特殊,国外对该材料的出口限制十分严格,某些品种甚至是对我国禁售的,这就需要国内尽早开展相关研究与产业化工

你该知道的微电子技术知识

你该知道的微电子技术知识 二大爷公司笨笨收集 微电子技术是十九世纪末,二十世纪初开始发展起来的以半导体集成电路为核心的高新电子技术,它在二十世纪迅速发展,成为近代科技的一门重要学科。微电子技术作为电子信息产业的基础和心脏,对航天航空技术、遥测传感技术、通讯技术、计算机技术、网络技术及家用电器产业的发展产生直接而深远的影响。尤其是微电子技术是军用高技术的核心和基础。军用高技术的迅猛发展,武器装备的巨大变革,在某种意义来说就是微电子技术迅猛发展和广泛应用的结果。微电子技术的渗透性最强,对国民经济和现代科学技术发展起着巨大的推动作用,其发展水平和发展规模已成为衡量一个国家军事、经济实力和技术进步的重要标志。正因为如此、世界各国都把微电子技术作为最要害的技术列在高技术的首位,使其成为争夺技术优势的最重要的领域。 一、基本概念 简介:微电子技术是随着集成电路,尤其是超大规模集成电路而发展起来的一门新的技术。它包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,是微电子学中的各项工艺技术的总和。微电子技术是在电子电路和系统的超小型化和微型化过程中逐渐形成和发展起来的,其核心是集成电路,即通过一定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互联,采用微细加工工艺,集成在一块半导体单晶片(如硅和砷化镓)上,并封装在一个外壳内,执行特定电路或系统功能。与传统电子技术相比,其主要特征是器件和电路的微小型化。它把电路系统设计和制造工艺精密结合起来,适合进行大规模的批量生产,因而成本低,可靠性高。

图1 微电子技术中元器件发展演变 特点:微电子技术当前发展的一个鲜明特点就是:系统级芯片(System On Chip,简称SOC)概念的出现。在集成电路(IC)发展初期,电路都从器件的物理版图设计入手,后来出现了IC单元库,使用IC设计从器件级进入到逻辑级,这样的设计思路使大批电路和逻辑设计师可以直接参与IC设计,极大的推动了IC产业的发展。由于IC设计与工艺技术水平不断提高,集成电路规模越来越大,复杂程度越来越高,已经可以将整个系统集成为一个芯片。正是在需求牵引和技术推动的双重作用下,出现了将整个系统集成在一个IC芯片上的系统级芯片的概念。其进一步发展,可以将各种物理的、化学的和生物的敏感器(执行信息获取功能)和执行器与信息处理系统集成在一起,从而完成从信息获取、处理、存储、传输到执行的系统功能,这是一个更广义上的系统集成芯片。很多研究表明,与由IC组成的系统相比,由于SOC设计能够综合并全盘考虑整个系统的各种情况,可以在同样的工艺技术条件下实现更高性能的系统指标。微电子技术从IC 向SOC转变不仅是一种概念上的突破,同时也是信息技术发展的必然结果。目前,SOC技术已经崭露头角,21世纪将是SOC技术真正快速发展的时期。 微电子技术的另一个显着特点就是其强大的生命力,它源于可以低成本、大批量地生产出具有高可靠性和高精度的微电子结构模块。这种技术一旦与其他学科相结合,便会诞生出一系列崭新的学科和重大的经济增长点。作为与微电子技术成功结合的典型例子便是MEMS(微电子机械系统或称微机电系统)技术和生物芯片等。前者是微电子技术与机械、光学等领域结合而诞生的,后者则是与生物工程技术结合的产物。 应用领域:

微电子科学与工程专业

微电子科学与工程专业 一、培养目标 本专业培养德、智、体等方面全面发展,具备微电子科学与工程专业扎实的自然科学基础、系统的专业知识和较强的实验技能与工程实践能力,能在微电子科学技术领域从事研究、开发、制造和管理等方面工作的专门人才。 二、专业特色 微电子科学与工程是在物理学、电子学、材料科学、计算机科学、集成电路设计制造学等多个学科和超净、超纯、超精细加工技术基础上发展起来的一门新兴学科。微电子技术是近半个世纪以来得到迅猛发展的一门高科技应用性学科,是21世纪电子科学技术与信息科学技术的先导和基础,是发展现代高新技术和国民经济现代化的重要基础,被誉为现代信息产业的心脏和高科技的原动力。本专业主要学习半导体器件物理、功能电子材料、固体电子器件,集成电路设计与制造技术、微机械电子系统以及计算机辅助设计制造技术等方面的基础知识和实践技能,培养出来的学生在微电子技术领域初步具有研究和开发的能力。 三、培养标准 本专业学生要求在物理学、电子技术、计算机技术和微电子学等方面掌握扎实的基础理论,掌握微电子器件及集成电路的原理、设计、制造、封装与应用技术,接受相关实验技术的良好训练,掌握文献资料检索基本方法,具有较强的实验技能与工程实践能力,在微电子科学与工程领域初步具有研究和开发的能力。 毕业生应获得以下几方面的知识和能力: 1. 具有较好的人文科学素养、创新精神和开阔的科学视野; 2. 树立终身学习理念,具有较强的在未来生活和工作中继续学习的能力; 3. 具有较扎实的自然科学基本理论基础; 4. 具备微电子材料、微电子器件、集成电路、集成系统、计算机辅助设计、封装技术和测试技术等方面的理论基础和实验技能; 5. 了解本专业领域的科技发展动态及产业发展状况,熟悉国家电子信息产业政策及国内外有关知识产权的法律法规; 6.掌握文献检索及运用现代信息技术获取相关信息的基本方法; 7.具有归纳、整理和分析实验结果以及撰写论文、报告和参与学术交流的能力。 77

微电子技术在生物医学中的应用

微电子技术在生物医学中的应用 摘要:微电子技术与生物学之间有着非常紧密的联系。一方面微电子技术的发展,将大大地推动生物医学的发展,另一方面生物医学的研究成果同样也将对微电子技术的发展起着巨大的促进作用。在这里我将主要从生物医学传感器、植入式电子系统、生物芯片这三个方面结合当前国际上最新进展来介绍两者之间的关系与发展。 关键字:微电子技术生物医学 一、引言 生物医学电子学是由微电子学、生物和医学等多学科交叉的边缘科学,为使得生物医学领域的研究方式更加精确和科学,所以将电子学用于生物医学领域。在生物医学与电子学交叉作用部分中最活跃、最前沿、作用力最大的一项关键技术就是微电子技术。特别是随着集成电路集成度的提高和超大规模集成电路的发展,元件尺寸达到分子级,进入了分子电子学时代,用有机化合物低分子、高分子和生物分子作芯片,它们具有识别、采集、记忆、放大、开关、传导等功能,更大大促进了医学电子学的发展。下面将主要从生物医学传感器、植入式电子系统、生物芯片这三个方面结合当前国际上最新进展来介绍两者之间的关系与发展。 二、生物医学传感器 生物医学传感器的作用是把生物体和人体中包含的生命现象、状态、性质、变量和成分等生理信息(包括物理量、化学量、生物量等)转化为与之有确定函数关系的电信息。生物医学传感器是生物医学电子学中最关键的技术,它是连接生物医学和电子学的桥梁。主要可分为如下几类:电阻式传感器,电容式传感器,电感式传感器,压电式传感器,光电传感器,热电式传感器,光线传感器,电化学传感器以及生物传感器等。它通过各种化学、物理信号转换器捕捉目标物与敏感膜之间的反应,然后将反应程度用连续的电信号表达出来,从而得出被检测样品的浓度。生物医学传感器的微型化和集成化是其中最重要的发展方向之一,其主要原因:1)它是实现生物医学设备微型化、集成化的基础;2)将使得生物医学测量和控制更加精确——达到分子和原子水平。是生物体成分(酶、抗原、抗体、激素、DNA) 或生物体本身(细胞、细胞器、组织),它们能特异地识别各种被测物质并与之反应;后者主要有电化学电极、离子敏场效应晶体管( ISFET ) 、热敏电阻器、光电管、光纤、压电晶体(PZ) 等,其功能为将敏感元件感知的生物化学信号转变为可测量的电信号。因而它具有快速大量处理信息的能力,和诊断精确的特点。 常见的生物医学传感器主要可分为以下几种:电阻式传感器,电感式传感器,电容式传感器,压电式传感器,热电式传感器,光电传感器以及生物传感器等。 医学领域的生物传感器发挥着越来越大的作用。在临床医学中,酶电极是最

微电子技术的发展与应用研究

微电子技术的发展与应用研究 微电子技术的发展与应用研究,电子科学, 于功成约2612字 [摘要]微电子技术的迅速发展极大地推动了社会的进步,其应用领域也越来越广泛,现在已经成为衡量一个国家科学技术和综合国力的重要标志。论述微电子技术的发展现状及应用情况,并指明其未来的发展方向。 [关键词]微电子技术硅基CMOS 芯片 中图分类号:TN4文献标识码:A文章编号:1671,7597(2008)0420018,01 1946年2月美国莫尔学院研制成功的第一台电子数值积分器和计算器,是一个由18000个电子管组成,占地150平方米,重30吨的庞然大物。而现代社会由于微电子技术的发展,已进人系统集成芯片的时代,可将整个系统或子系统集成在一个硅芯片上。与传统电子技术相比,微电子技术的主要特征是器件和电路的微小型化。在21世纪,微电子技术已经成为改变生产和生活面貌的先导技术。 一、微电子技术的发展现状 在1948年贝尔实验室的科学家们发明了晶体管,这是微电子技术发展中第一个里程碑,1958年硅平面工艺的发展和集成电路的发明是第二个理程碑,1971年微机的问世是微电子技术第三个里程碑,之后出现了今天这样的以集成电路技术为基础的电子信息技术和产业。 微电子技术的核心是集成电路( IC),它将继续沿着集成电路特征尺寸,不断缩小,集成电路( IC) 向着系统集成(SOC) 发展的道路走下去。以存储技术为代表的半导体集成电路遵守著名的Moore定律,即:在过去的30多年里,大约每三年集成度增加四倍,特征尺寸缩小为原尺寸的倍,而且在可以预知的未来,这种趋势仍将继续保持下去。(见表1 微电子技术的进步)。

微电子行业前景与就业形势

微电子行业前景与就业形势 当前,我们正在经历新的技术革命时期,虽然它包含了新材料、新能源、生物工程、海洋工程、航空航天技术和电子信息技术等等,但是影响最大,渗透性最强,最具有新技术革命代表性的乃是以微电子技术为核心的电子信息技术。 自然界和人类社会的一切活动都在产生信息,信息是客观事物状态和运动特征的一种普通形式,它是为了维持人类的社会、经济活动所需的第三种资源(材料、能源和信息)。社会信息化的基础结构,是使社会的各个部分通过计算机网络系统,连结成为一个整体。在这个信息系统中由通讯卫星和高速大容量光纤通讯将各个信息交换站联结,快速、多路地传输各种信息。在各信息交换站中,有多个信息处理中心,例如图形图像处理中心、文字处理中心等等;有若干信息系统,例如企事业单位信息系统,工厂和办公室自动化系统,军队连队信息系统等等;在处理中心或信息系统中还包含有许多终端,这些终端直接与办公室、车间、连队的班排、家庭和个人相连系。像人的神经系统运行于人体一样,信息网络系统把社会各个部分连结在信息网中,从而使社会信息化。海湾战争中,以美国为首的多国部队的通讯和指挥系统基本上也是这样一个网络结构,它的终端是直接武装到班的膝上(legtop)计算机,今后将发展到个人携带的PDA(Person-al Date Assistant)。 实现社会信息化的关键部件是各种计算机和通讯机,但是它的基础都是微电子。当1946年2月在美国莫尔学院研制成功第一台名为电子数值积分器和计算器(Electronic Numlerical Inte-grator and Computer)即ENIAC问世的时候,是一个庞然大物,由18000个电子管组成,占地150平方米,重30吨,耗电140KW,足以发动一辆机车,然而不仅运行速度只有每秒5000次,存储容量只有千位,而且平均稳定运行时间才7分钟。试设想一下,这样的计算机能够进入办公室、企业车间和连队吗所以当时曾有人认为,全世界只要有4台ENIAC就够了。可是现在全世界计算机不包括微机在内就有几百万台。造成这个巨大变革的技术基础是微电子技术,只有在1948年Bell实验室的科学家们发明了晶体管(这可以认为是微电子技术发展史上的第一个里程碑),特别是1959年硅平面工艺的发展和集成电路的发明(这可以认为是微电子技术第二个里程碑),才出现了今天这样的以集成电路技术为基础的电子信息技术和产业。而1971年微机的问世(这可以认为是微电子技术第三个里程碑),使全世界微机现在的拥有率达到%,在美国每年由计算机完成的工作量超过4000亿人年的手工工作量。美国欧特泰克公司总裁认为:微处理器、宽频道连接和智能软件将是下世纪改变人类社会和经济的三大技术创新。 当前,微电子技术发展已进入“System on Chip”的时代,不仅可以将一个电子子系统或整个电子系统“集成”在一个硅芯片上,完成信息加工与处理的功能,而且随着微电子技术的成熟与延拓,可以将各种物理的、化学的敏感器(执行信息获取的功能)和执行器与信息处理系统“集成”在一起,从而完成信息获取、处理与执行的系统功能,一般称这种系统为微机电系统(MEMS:Micro Electronics Machinery System),可以认为这是微电子技术又一次革命性变革。集成化芯片不仅具有“系统”功能,并且可以以低成本、高效率的大批量生产,可靠性好,耗能少,从而使电子信息技术广泛地应用于国民经济、国防建设乃至家庭生活的各个方面。在日本每个家庭平均约有100个芯片,它已如同细胞组成人体一样,成为现代工农业、国防装备和家庭耐用消费品的细胞。集成电路产业产值以年增长率≥13%,在技术上,集成度年增长率46%的速率持续发展,世界上还没有一个产业能以这样高的速度持续地增长。1990年日本以微电子为基础的电子工业产值已超过号称为第一产业的汽车工业而成为第一大产业。2000年电子信息产业,将成为世界第一产业。集成电路的原料主

微电子技术在医学中的应用

微电子技术在医学中的应用 管思旭 096314 自动化 摘要: 微电子技术是现代电子信息技术的直接基础。现代微电子技术就是建立在以集成电路为核心的各种半导体器件基础上的高新电子技术。微电子技术的发展大大方便了人们的生活。它主要应用于生活中的各类电子产品,微电子技术的发展对电子产品的消费市场也产生了深远的影响。微电子技术过去在医学中的主要是应用于各类医疗器械的集成电路,在未来主要是生物芯片。生物芯片技术在医学、生命科学、药业、农业、环境科学等凡与生命活动有关的领域中均具有重大的应用前景。 一、微电子技术 1.定义 微电子技术,顾名思义就是微型的电子电路。它是随着集成电路,尤其是超大规模集成电路而发展起来的一门新的技术。 微电子技术是在电子电路和系统的超小型化和微型化过程中逐渐形成和发展起来的,其核心是集成电路,即通过一定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互联,采用微细加工工艺,集成在一块半导体单晶片(如硅和砷化镓) 上,并封装在一个外壳内,执行特定电路或系统功能。与传统电子技术相比,其主要特征是器件和电路的微小型化。它把电路系统设计和制造工艺精密结合起来,适合进行大规模的批量生产,因而成本低,可靠性高。它的特点是体积小、重量轻、

可靠性高、工作速度快,微电子技术对信息时代具有巨大的影响。它包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,是微电子学中的各项工艺技术的总和。 2.发展历史 微电子技术是十九世纪末,二十世纪初开始发展起来的新兴技术,它在二十世纪迅速发展,成为近代科技的一门重要学科。它的发展史其实就是集成电路的发展史。1904 年,英国科学家弗莱明发明了第一个电子管——二极管,不就美国科学家发明了三极管。电子管的发明,使得电子技术高速发展起来。它被广泛应用于各个领域。1947 年贝尔实验室制成了世界上第一个晶体管。体积微小的晶体管使集成电路的出现有了可能。之后,美国得克萨斯仪器公司的基比尔按其思路,于1958 年制成了第一个集成电路的模型,1959 年德州仪器公司宣布发明集成电路。至此集成电路便诞生了。集成电路发明后,其发展非常迅速,其制作工艺不断进步,规模不断扩大。至今集成电路的集成度已提高了500 万倍,特征尺寸缩小200 倍,单个器件成本下降100 万倍。 3.微电子技术的应用 微电子技术广泛应用于民用、军方、航空等多个方面。现在人类生产的电子产品几乎都应用到了微电子技术。可以这么说微电子技术改变了我们的生活方式。 微电子技术对电子产品的消费市场也产生了深远的影响。价廉、可靠、

相关主题
文本预览
相关文档 最新文档