当前位置:文档之家› 同步整流技术

同步整流技术

同步整流技术分享

江苏宏微科技股份有限公司 Power for the Better
同步整流技术及主要拓扑电路
宏微科技市场部
2015-9-16

Contents
? 同步整流电路概述 ? 典型电路及其特点 ? 损耗分析 ? 同步整流电路中常见问题 ? MOSFET选型设计参考
Power for the Better
1 CONFIDENTIAL





Contents
? 同步整流技术概述 ? 典型电路及其特点 ? 损耗分析 ? 同步整流电路中常见问题 ? MOSFET选型设计参考
Power for the Better
2 CONFIDENTIAL





同步整流技术概述
由于中低压MOSFET具有很小的导通电阻,在有电流通过时产生的电压降很 小,可以替代二极管作为整流器件,可以提高变换器的效率。
diode
MOSFET
MOSFET作整流器时,栅源极间电压必须与被整流电压的相位保持同步关系才 能完成整流功能,故称同步整流技术。 MOSFET是电压控制型开关器件,且没有反向阻断能力,必须在其栅-源之 间加上驱动电压来控制器漏-源极之间的导通和关断。这是同步整流设计的难 点和重点。 根据其控制方式,同步整流的驱动电路分为 ?自驱动方式; ? 独立控制电路他驱方式; ? 部分自驱+部分他驱方式结合;
Power for the Better
3 CONFIDENTIAL





第4章 同步整流(开关电源)

第4章同步整流技术 ?内容 ——意义;基本原理;驱动方式 ——同步整流电路;同步整流技术的应用?目标 ——电路的结构及工作原理、电路分析及应用

4.1 概述 ?高速超大规模集成电路的尺寸的不断减小,功耗的不断降低,要求供电电压也越来越低。 ?在低电压(低于3V)大电流输出DC-DC变换器的整流管,其功耗占变换器全部功耗的50~60%。?用通态损耗低的功率MOS管-同步整流管代替整流二极管,可提高DC-DC变换器的效率。?同步整流技术的优点:正向压降很小,阻断电压高,反向电流小等

4.2 同步整流技术的基本原理 ?功率MOS管反接作为整流管使用:源极S相当于二极管的阳极A,漏极D相当于二极管的阴极K。在门极和源极(GS)间加驱动信号。 ?门极电压与漏源极间电压变化同步,因此称为同步整流。

功率MOS管用做同步整流,三个关键参数: 1. SR的功耗: 损耗因数K: 2. SR的体二极管恢复时间t rr 3.SR的阻断电压 22 SR Frms on in GS P I R C V f =+ on in K R C =

4.3 同步整流驱动方式 ?驱动电路性质:电压型驱动、电流型驱动?驱动电压的来源:外驱动(控制驱动)、自驱动 1.外驱动同步整流技术 ?驱动电压:来自外设驱动电路 ?同步信号:主开关管的驱动信号来控制?优点:控制时序精确,SR效率较高 ?缺点:驱动电路复杂,有损耗,价格贵,开发周期长

2.电压型自驱动同步整流 ?驱动电压:SR所在回路中的某一电压 ?要求:波形转换快,时序准确,无死区 ?优点:简单,实用 ?缺点:驱动方式随电路结构而不同;受输入电压变化范围的影响;受变压器漏感影响;不能用于并联工作的SR-DC/DC变换器中;对变换器轻载时的工作有影响。

同步整流电路

随着现代电子技术向高速度高频率发展的趋势,电源模块的发展趋势必然是朝着更低电压、更大电流的方向发展,电源整流器的开关损耗及导通压降损耗也就成为电源功率损耗的重要因素。而在传统的次级整流电路中,肖特基二极管是低电压、大电流应用的首选。其导通压降基本上都大于0.4V,当电源模块的输出电压随着现代电子技术发展继续降低时,电源模块的效率就低得惊人了,例如在输出电压为3.3V时效率降为80%,1.5V输出时效率不到70%,这时再采用肖特基二极管整流方式就变得不太可能了。 为了提高效率降低损耗,采用同步整流技术已成为低电压、大电流电源模块的一种必然手段。同步整流技术大体上可以分为自驱动(selfdriven)和他驱动(controldriven)两种方式。本文介绍了一种具有预测时间和超低导通电阻(低至2.8mΩ/25℃)的他驱动同步整流技术,既达到了同步整流的目的,降低了开关损耗和导通损耗,又解决了交叉导通问题,使同步整流的效率高达95%,从而使整个电源的效率也高达90%以上。 1SRM4010同步整流模块功能简介 SRM4010是一种高效率他激式同步整流模块,它直接和变压器的次级相连,可提供40A的输出电流,输出电压范围在1∽5V之间。它能够在200∽400kHz 工作频率范围内调整,且整流效率高达95%。如果需要更大的电流,还可以直接并联使用,使设计变得非常简单。 SRM4010模块是一种9脚表面封装器件,模块被封装在一个高强电流接口装置包里,感应系数极低,接线端功能强大,具有大电流低噪声等优异特性。 SRM4010引脚功能及应用方式一览表 引脚号引脚名称引脚功能应用方式 1CTCHCatch功率MOSFET漏极接滤波电感和变压器次级正端 2FWDForward功率MOSFET漏极接变压器次级负端 3SGND外控信号参考地外围控制电路公共地 4REGin内部线性调整器输入可以外接辅助绕组或悬空 5REGout5V基准输出可为次级反馈控制电路提供电压 6PGND同步整流MOSFET功率地Catch和Forward功率MOSFET公共地 7CDLY轻载复位电容端设置变压器轻载时的复位时间 8CPDT同步整流预测时间电容端Catch同步整流管设置预置时间

常用开关电源芯片大全复习课程

常用开关电源芯片大 全

常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751

27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875 40.低噪声高效率降压式电荷泵LTC1911 41.低噪声电荷泵LTC3200/LTC3200-5 42.无电感的降压式DC-DC电源转换器LTC3251 43.双输出/低噪声/降压式电荷泵LTC3252 44.同步整流/升压式DC-DC电源转换器LTC3401 45.低功耗同步整流升压式DC-DC电源转换器LTC3402 46.同步整流降压式DC-DC电源转换器LTC3405 47.双路同步降压式DC-DC电源转换器LTC3407 48.高效率同步降压式DC-DC电源转换器LTC3416 49.微型2A升压式DC-DC电源转换器LTC3426 50.2A两相电流升压式DC-DC电源转换器LTC3428 51.单电感升/降压式DC-DC电源转换器LTC3440 52.大电流升/降压式DC-DC电源转换器LTC3442 53.1.4A同步升压式DC-DC电源转换器LTC3458 54.直流同步降压式DC-DC电源转换器LTC3703 55.双输出降压式同步DC-DC电源转换控制器LTC3736 56.降压式同步DC-DC电源转换控制器LTC3770

同步整流技术总结

同步整流总结 1概述 近年来,为了适应微处理器的发展,模块电源的发展呈现两个明显的发展趋势:低 压和快速动态响应,在过去的10年中,模块电源大大改善了分布式供电系统的面貌。即使是在对成本敏感器件如线路卡,单板安装,模块电源也提供了诱人的解决方案。然而,高速处理器持续降低的工作电压需要一个全新的,适应未来的电压方案,尤其考虑到肖特级二极管整流模块不能令人满意的效率。同步整流电路正是为了适应低压输出要求应运而生的。由于一般的肖特基二极管的正向压降为0.3V以上,在低压输出时模块的效率 就不能做的很高,有资料表明采用肖特基二极管的隔离式DC-DC模块电源的效率可以 按照下式进行估算: V out V out (0.1 V out V cu V f) 0.1 V out—原边和控制电路损耗 V cu —印制板的线路损耗 V f —整流管导通压降损耗 我们假设采用0.4V的肖特基整流二极管,印制板的线路损耗为0.1V,则1.8V的模 块最大的估算效率为 72%。这意味着28%的能量被模块内部损耗了。其中由于二极管导通压降造成的损耗占了约15%。随着半导体工艺的发展,低压功率MOS管的的有着越 来越小的通态电阻,越来越低的开关损耗,现在IR公司最新的技术可以制作30V/2.5m Q的MOS管,在电流为15A时,导通压降为0.0375,比采用肖特基二极管低了一个数量级。所以近年来对同步整流电路的研究已经引起了人们的极大关注。在中大功率低压输出的DC-DC变换器的产品开发中,采用低压功率MOSFET替代肖特基二极管的方案 得到了广泛的认同。今天,采用同步整流技术的ON-BOARD 模块已经广泛应用于通讯 的所有领域。 2同步整流电路的工作原理 图1采用同步整流的正激电路示意图(无复位绕组)

半桥同步整流设计报告

\ 半桥倍流同步整流电源的设计 摘要:现如今,微处理器要求更低的供电电压,以降低功耗,这就要求供电系 统能提供更大的输出电流,低压大电流技术越发引起人们的广泛关注。本电源系统以对称半桥为主要拓扑,结合倍流整流和同步整流的结构,并且使用MSP430单片机控制和采样显示,实现了5V,15A大电流的供电系统。效率较高,输出纹波小。 关键词:对称半桥,倍流整流,同步整流,SG3525 一、方案论证与比较 1 电源变换拓扑方案论证 方案一:(如下图)此电路为传统的半桥拓扑。由于MOS管只承受一倍电源电压,而不像单端类的承受两倍电源电压,且较之全桥拓扑少了两个昂贵的MOS 管,因此得到很大的应用。但在低压大电流的设计中,输出整流管的损耗无疑会大大降低效率,而且电感的设计也会变得困难,因此不适合大电流的设计。 方案二:传统半桥+同步整流。将上图半桥的输出整流管改为低导通内阻的MOSFET。如此可大大减小输出整流的损耗,提高效率。比较适合大电流的整流方案,但变压器的绕制和电感的设计较麻烦。 方案三:(如下图)半桥倍流同步整流。倍流整流很早就被人提出,它的特点是变压器输出没有中心抽头,这就大大简化了变压器的设计,并且提高了变压器的利用率。而流过变压器和输出电感的电流仅有输出电流的一半,这使得变压器和电感的制作变得简单。并且由波形分析可以知道,输出电流的纹波是互相抵消的。该电路的不足是电路时序有要求,控制稍显复杂。由上分析我们选择方案三。 2 控制方案选择 方案一:由于控制芯片SG3525输出两路互补对称的PWM信号,则可将控制信号做如下设置(如下图)。 将驱动Q1的信号与Q4同步起来,Q2和Q3的信号同步,则可以实现倍流同步整流的时序同步,方案简单易行,但由于SG3525在输出较小占空比时有较大的死区,则输出MOSFET的续流二极管会产生较大的损耗。 方案二:。。。。。反激变换。。。。将SG3525的驱动信号反向后送入输出整流MOS 管,如此可以极大的减少低占空比时的损耗,且仅需一对反向驱动,故选用方案

同步整流技术最新

同步整流技术
电源网第20届技术交流会
邹超洋
2012.11

内 容 简 介
?同步整流简介。 ?同步整流的分类。 。 ?同步整流的驱动方式 ?同步整流的 MOSFET

同步整流简介
z 高速超大规模集成电路的尺寸的不断减小,功耗的不断降低,要求
供电电压也越来越低,而输出电流则越来越大。 z 电源本身的高输出电流、低成本、高频化(500kHz~1MHz)高 功率密度、高可靠性、高效率的方向发展。 z 在低电压、大电流输出DC-DC变换器的整流管,其功耗占变换器 全部功耗的50~60%。 z用低导通电阻MOSFET代替常规肖特基整流/续流二极管,可以大大 降低整流部分的功耗,提高变换器的性能,实现电源的高效率,高功 率密度。

同步整流简介
diode
=
MOSFET 代替diode
MOSFET
D
相当于二极管的功能 ?电流从S流向D ?V/I特性,工作于3rd 象限
G S
z 用MOSFET来代替二极管在电路中的整流功能
z 相对于二极管的开关算好极小 g 控制,可以根据系统的需要, z 整流的时序受到MOSFET的Vgs 把整流的损耗做到最小

同步整流简介
? 例如:一个5V?30A输出的电源
Diode
Vf=0.45V Ploss=0.45*30=13.5W Ploss/Po=13.5/45=30% /Po=13 5/45=30% Rdson=1.2m? Ploss=0.0012*30 0 0012*302=1.08W 1 08W Ploss/Po=1.08/45=2.4%
Mosfet
MBR8040(R)
SC010N04LS

常用开关电源芯片

--------------------------------------------------------------------------- 常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725

同步整流电路分析

同步整流电路分析作者gyf2000 日期2007-4-22 20:21:00 一、传统二极管整流电路面临的问题 近年来,电子技术的发展,使得电路的工作电压越来越低、电流越来越大。低电压工作有利于降低电路的整体功率消耗,但也给电源设计提出了新的难题。 开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降,这就导致整流损耗增大,电源效率降低。 举例说明,目前笔记本电脑普遍采用3.3V甚至1.8V或1.5V的供电电压,所消耗的电流可达20A。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)P O,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC/DC变换器提高效率的瓶颈。 二、同步整流的基本电路结构 同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。 1、基本的变压器抽头方式双端自激、隔离式降压同步整流电路

倍流同步整流在DCDC变换器中工作原理分析

倍流同步整流在DC/DC变换器中工作原理分析 在低压大电流变换器中倍流同步整流拓扑结构已经被广泛采用。就其工作原理进行了详细的分析说明,并给出了相应的实验和实验结果。 关键词:倍流整流;同步整流;直流/直流变换器;拓扑 0 引言 随着微处理器和数字信号处理器的不断发展,对芯片的供电电源的要求越来越高了。不论是功率密度、效率和动态响应等方面都有了新要求,特别是要求输出电压越来越低,电流却越来越大。输出电压会从过去的3.3V降低到1.1~1.8 V之间,甚至更低[1]。从电源的角度来看,微处理器和数字信号处理器等都是电源的负载,而且它们都是动态的负载,这就意味着负载电流会在瞬间变化很大,从过去的13A/μs到将来的30A/μs~50A/μs[2]。这就要求有能够输出电压低、电流大、动态响应好的变换器拓扑。而对称半桥加倍流同步整流结构的DC/DC变 换器是最能够满足上面的要求的[3]。 本文对这种拓扑结构的变换器的工作原理作出了详细的分析说明,实验结果 证明了它的合理性。 1 主电路拓扑结构 主电路拓扑如图1中所示。由图1可以看出,输入级的拓扑为半桥电路,而输出级是倍流整流加同步整流结构。由于要求电路输出低压大电流,则倍流同步 整流结构是最合适的,这是因为: 图1 主电路拓扑 1)变压器副边只需一个绕组,与中间抽头结构相比较,它的副边绕组数只有中间抽头结构的一半,所以损耗在副边的功率相对较小; 2)输出有两个滤波电感,两个滤波电感上的电流相加后得到输出负载电流,而这两个电感上的电流纹波有相互抵消的作用,所以,最终得到了很小的输出电 流纹波;

3)流过每个滤波电感的平均电流只有输出电流的一半,与中间抽头结构相比较,在输出滤波电感上的损耗明显减小了; 4)较少的大电流连接线(high current inter-connection),在倍流整流拓扑中,它的副边大电流连接线只有2路,而在中间抽头的拓扑中有3路; 5)动态响应很好。 它唯一的缺点就是需要两个输出滤波电感,在体积上相对要大些。但是,有一种叫集成磁(integrated magnetic)的方法,可以将它的两个输出滤波电感和变压器都集成到同一个磁芯内,这样可以大大地减小变换器的体积。 2 电路基本工作原理 电路在一个周期内可分为4个不同的工作模式,如图2所示,理想的波形图 如图3所示。 (a) 模式1[t0-t1] (b) 模式2[t1-t2]

同步整流电路分析

一、传统二极管整流电路面临的问题 近年来,电子技术的发展,使得电路的工作电压越来越低、电流越来越大。低电压工作有利于降低电路的整体功率消耗,但也给电源设计提出了新的难题。 开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达~,即使采用低压降的肖特基二极管(SBD),也会产生大约的压降,这就导致整流损耗增大,电源效率降低。 举例说明,目前笔记本电脑普遍采用甚至或的供电电压,所消耗的电流可达20A。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)P O,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC /DC变换器提高效率的瓶颈。 二、同步整流的基本电路结构 同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。 1、基本的变压器抽头方式双端自激、隔离式降压同步整流电路 2、单端自激、隔离式降压同步整流电路 图1 单端降压式同步整流器的基本原理图 基本原理如图1所示,V1及V2为功率MOSFET,在次级电压的正半周,V1导通,V2关断,V1起整流作用;在次级电压的负半周,V1关断,V2导通,V2起到续流作用。同步整流电路的

轻载下的正激同步整流变换器分析_百度文库.

摘要:同步整流技术的广泛应用促进了低电压大电流技术的发展,但是,使用同步整流技术会造成开关电源在轻载情况下的低效率问题。以正激式同步整流变换器为例,从电感电流连续和断续两种状态,分析了轻载工况下的工作情况。 关键词:同步整流;CCM;DCM;环路电流;振铃 O 引言 随着计算机、通讯和网络技术的迅猛发展,低压大电流DC/DC变换器成为目前一个重要的研究课题。传统的二极管或肖特基二极管整流方式,由于正向导通压降大,整流损耗成为变换器的主要损耗。功率MOSFET导通电阻低、开关时间短、输入阻抗高,成为低压大电流功率变换器首选的整流器件。根据MOSFET的控制特点,应运而生了同步整流(Synchronous rectification,SR这一新型的整流技术。 1 同步整流正激变换器 图l给出的是一种电压自驱动同步整流正激变换器,图l中两个与变压器耦合的分离辅助绕组N4、N5用来分别驱动两个同步整流管S201、S202。当主开关管导通时,变压器副边绕组上正下负,S201栅极电压为高,导通整流;主开关管截止时,副边绕组下正上负,续流S202 栅极为高,导通续流。 正激变换器中,同步整流S201的运行情况与变压器磁复位方式有关。如果采用如图1所示的辅助绕组复位电路,在复位结束过程之后,变压器电压保持为零的死区时间内,输出电流流经续流同步整流管S202,但是S202栅极无驱动电压,所以输出电流必须流经S202的体二极管。M0SFET体二极管的正向导通电压高,反向恢复特性差,导通损耗非常大,这就使采用MOSFET整流的优势大打折扣,为了解决这一问题,较为简单的做法是在S202的漏极和源极之间并联一个肖特基二极管D201,在S202截止的时间内,代替S202的体二极管续流,这 一方法增加的元件不多,线路简单,也很实用。 为了优化驱动波形,可以采用分离的辅助绕组来分别驱动两个同步整流管,比起传统的副边绕组直接驱动的同步整流变换器来说,这种驱动方式无工作电流通过驱动绕组,因此不需要建立输出电流的时间,MOSFET能够迅速开通,开通时的死区时间即体二极管导通的时间减少了一半。另一方面驱动电压不只局限于副边电压,可以通过调整辅助线圈来得到合适的驱动电压。 2 轻载条件下的同步整流 对于正激变换器,在主开关管截止的时间里,输出电流是靠输出储能电感里的能量维持的,因此变换器有两种可能的运行情况:电感电流连续模式(CCM,continuous current mode和电感电流断续模式(DCM,discontinuous current mode。

常用开关电源芯片大全

常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751 27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937

30.高压输入降压式电源转换器LT1956 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 40.低噪声高效率降压式电荷泵LTC1911 41.低噪声电荷泵LTC3200/LTC3200-5 42.无电感的降压式DC-DC电源转换器LTC3251 43.双输出/低噪声/降压式电荷泵LTC3252 44.同步整流/升压式DC-DC电源转换器LTC3401 45.低功耗同步整流升压式DC-DC电源转换器LTC3402 46.同步整流降压式DC-DC电源转换器LTC3405 47.双路同步降压式DC-DC电源转换器LTC3407 48.高效率同步降压式DC-DC电源转换器LTC3416 49.微型2A升压式DC-DC电源转换器LTC3426 50.2A两相电流升压式DC-DC电源转换器LTC3428 51.单电感升/降压式DC-DC电源转换器LTC3440 52.大电流升/降压式DC-DC电源转换器LTC3442 54.直流同步降压式DC-DC电源转换器LTC3703 55.双输出降压式同步DC-DC电源转换控制器LTC3736 56.降压式同步DC-DC电源转换控制器LTC3770 57.双2相DC-DC电源同步控制器LTC3802 58.高性能升压式DC-DC电源转换器MAX1513/MAX1514 59.精简型升压式DC-DC电源转换器MAX1522/MAX1523/MAX1524 60.高效率40V升压式DC-DC电源转换器MAX1553/MAX1554 61.高效率升压式LED电压调节器MAX1561/MAX1599 62.高效率5路输出DC-DC电源转换器MAX1565 63.双输出升压式DC-DC电源转换器MAX1582/MAX1582Y

不对称半桥同步整流 DCDC 变换器

不对称半桥同步整流DC/DC变换器 [日期:2005-4-27]来源:电源技术应用作者:华南理工大学电力学院陈保艳 王志强 [字体:大中小] 摘要:简要介绍了不对称半桥同步整流变换器的工作原理,对同步整流管的驱动方式进行了比较和选择,并在分析变换器的整流损耗的基础上,总结出了影响整流损耗和变换器效率的各种参数。 关键词:不对称半桥;同步整流;损耗 引言 目前,对低压大电流输出变换器的研究已经成为重要的课题之一,如何提高这类变换器的效率是研究的重点。在传统的DC/DC变换器中,对于低的输出电压,即使采用通态电压只有0.5V的肖特基二极管作为输出的整流器件,其输出压降造成的损耗亦相当可观。同步整流技术可有效减小整流损耗,适合同步整流技术的拓扑有多种形式,其中,采用同步整流的不对称半桥变换器具有显著优势,下面将对该变换器的工作原理,同步整流驱动方式的选择以及同步整流管损耗作详尽的分析。 1 不对称半桥变换器 不对称半桥DC/DC变换器是一种采用互补控制技术的变换器,与对称半桥变换器不同,该变换器两个主开关管的导通时间不相等,而是互补的,“不对称”由此而来。相对于其他电路拓扑,不对称半桥DC/D C变换器具有众多优点[1][2],诸如实现了软开关;开关电压应力小;结构简单,所用元器件少;由于变压器副边是中心抽头型,输出滤波电感较小。将同步整流技术与不对称半桥变换器结合使用,可使变换器适合高频工作,并能获得很高效率。

不对称半桥DC/DC变换器如图1所示[3]。图中,S1及S2为主开关;D1及C1和D2及C2分别为S1及S2的寄生元器件;n1及n2分别为两个次级与初级的匝数比;SR1及SR2为次级同步整流管,其工作方式等效于整流二极管;Lr为变压器漏感;Lm为励磁电感,所有的电压与电流已在图中标出。 为了简化分析,作如下假设: 1)滤波电感足够大,工作于电流连续模式; 2)变压器励磁电感和漏感都折算到原边; 3)开关寄生电容为常量,不随电压变化; 4)所有开关管和二极管都是理想的; 5)电容Cp上的电压在一个开关周期内保持不变。 1.1 工作原理 设占空比为D,开关周期为T,S1在DT时间内导通。一个开关周期内S2上的平均电压为DVin,由于变压器的平均电压为零,因此Cp上的电压也为DVin,可将变换器的工作过程分为4个阶段,图2为主要的电压电流波形。

轻载下的正激同步整流变换器分析

轻载下的正激同步整流变换器分析 摘要:同步整流技术的广泛应用促进了低电压大电流技术的发展,但是,使用同步整流技术会造成开关电源在轻载情况下的低效率问题。以正激式同步整流变换器为例,从电感电流连续和断续两种状态,分析了轻载工况下的工作情况。 关键词:同步整流;CCM;DCM;环路电流;振铃 O 引言 随着计算机、通讯和网络技术的迅猛发展,低压大电流DC/DC变换器成为目前一个重要的研究课题。传统的二极管或肖特基二极管整流方式,由于正向导通压降大,整流损耗成为变换器的主要损耗。功率MOSFET导通电阻低、开关时间短、输入阻抗高,成为低压大电流功率变换器首选的整流器件。根据MOSFET的控制特点,应运而生了同步整流(Synchronous rectification,SR)这一新型的整流技术。 1 同步整流正激变换器 图l给出的是一种电压自驱动同步整流正激变换器,图l中两个与变压器耦合的分离辅助绕组N4、N5用来分别驱动两个同步整流管S201、S202。当主开关管导通时,变压器副边绕组上正下负,S201栅极电压为高,导通整流;主开关管截止时,副边绕组下正上负,续流S202栅极为高,导通续流。 正激变换器中,同步整流S201的运行情况与变压器磁复位方式有关。如果采用如图1所示的辅助绕组复位电路,在复位结束过程之后,变压器电压保持为零的死区时间内,输出电流流经续流同步整流管S202,但是S202栅极无驱动电压,所以输出电流必须流经S202的体二极管。M0SFET体二极管的正向导通电压高,反向恢复特性差,导通损耗非常大,这就使采用MOSFET整流的优势大打折扣,为了解决这一问题,较为简单的做法是在S202的漏极和源极之间并联一个肖特基二极管D201,在S202截止的时间内,代替S202的体二极管续流,这一方法增加的元件不多,线路简单,也很实用。

同步整流电源 同步电源 高频同步电源

同步整流电源同步电源高频同步电源 同步整流高频开关电源节能环保省电,采用全铜压器,同步电子管整流,霍尔传感器取样,发热量比市场常规产品低30%,比普通高频电源节电15%。适用于五金电镀、塑料电镀、PCB线路板电镀、硬铬电镀等表面处理工艺;电解冶炼、气体加热电解、电解水处理、铜箔电解、电化学电解等环保电解工艺。

【技术参数】 【产品展示】

【产品优势】 超高效、超节能(电能转换效率可达94%,普通高频电源是89%),温升低,更稳定耐用。提高电源的电能转换效率可明显降低使用方的生产成本,同时该系列电源输出纹波系数小,特性稳定,工艺处理效果更优越,提高了生产企业的市场竞争力。同时我司针对生产方式集中控制的需求,可配置各种远程数字控制系统,节省多台电源控制的人工成本,使集中控制更智能化、人性化、自动化。 【电源尺寸表】

【天骐公司目前产品主要有】 高频开关电源,可控硅整流器,大功率直流电源,同步电源,同步整流高频电源、氧化电源,阳极硬质氧化电源,交流着色电源,电泳电源,电泳涂装电源设备,各种电解电源,冶炼电源,电解铜电源,电解稀土电源,各种电镀电源,镀硬铬电源,实验电源,测试电源,加热电源,等离子抛光电源,老化电源,化成电源,水处理电源、污水处理电源、废水处理电源等各种高频直流电源,可按客户要求定做~天骐电源产品已销往各城市包括:广东、广西、湖北、湖南、江西、北京、天津、辽宁、江苏、浙江、山东、福建、云南、贵州、四川、重庆、河南、河北、陕西、甘肃等地区,并出口马来西亚、韩国、新加坡、印尼、巴西、越南、南非、泰国等国。 【天骐公司可根据客户需求各种规格大小功率电源整流器设备】 可控硅整流器系列:(电流:10~100000A;电压:1~2000V) 高频开关电源系列:(电流:10~50000A;电压:1~1000V) 【售后服务】 凡购买天骐公司所有标准产品均免费保修一年,终身维护; 公司目前在国内共设有7个售后维护点,包括顺德的生产基地、佛山分公司基地、中山办事处、川渝办事处、浙江办事处、江西办事处、苏州办事处,各地售后驻点,可随时为客户提供到场技术维护服务。 最后主要主品有同步电解电源同步电镀电源同步高频电源

同步整流的基本工作原理

同步整流的基本工作原理 https://www.doczj.com/doc/f66954743.html,文章出处:发布时间:2008/10/09 | 6869 次阅读| 1次推荐| 0条留言 Samtec连接器完整的信号来源开关,电源限时折扣最低45折每天新产品时刻新体验ARM Cortex-M3内核微控制器最新电子元器件资料免费下载完整的15A开关模式电源首款面向小型化定向照明应用代替 图1(a)所示为N沟道功率MOS管构成的同步整流管SR和SBD整流二极管的电路图形符号,整流二极管有两个极:即阳极A和阴极K。功率MOS管有三个极:即漏极D、源极S和门极G。在用做同步整流管时,将功率MOS管反接使用,即源极S接电源正端,相当于二极管的阳极A;漏极D接电压负端,相当于二极管的阴极K;当功率MOS管在门极G信号的作用下导通时,电流电源极S流向漏极D。而功率MOS管作为开关使用时,漏极D接电源正端,源极S接电压负端;导通时,相当于开关闭合,电流由漏极D流向源极S。 图1 同步整流管和整流二极管 同步整流管SR及整流二极管构成的半波整流电路如图1(b)所示。当SR的门极驱动电压ug,与正弦波电源电压仍同步变化时,则负载R上得到的是与二极管整流电路相同的半波正弦波电压波形1fR。 同步整流管的源一漏极之间有寄生的体二极管,还有输出结电容(未画出),驱动信号加在门极和源极(G-S)之间,是一种可控的开关器件。皿关断时,电流仍然可以由体二极管流通。不过m体二极管的正向导通压降和反向恢复时间都比SBD大得多,因此,一旦电流流过SR的体二极管,则整流损耗将明显增加。

由于同步整流是由可控的三端半导体开关器件来实现的,因此必须要有符合一定时序关系的门极驱动信号去控制它,使其像一个二极管一样地导通和关断。驱动方法对银的整体性能影响很大,因此,门极驱动信号往往是设计同步整流电路时必须要解决的首要问题。例如,SR开通过早或关断过晚,都可能造成短路,而开通过晚或关断过早又可能使SR的体二极管导通,使整流损耗和器件应力增大。 综上所述,当功率MOS管反接时可以作为SR使用,其特点如下: (1)SR是一个可控的三极开关器件,在门极和源极之间加人驱动信号时,可以控制功率MOS管源极S和漏极D之间的通/断。 (2)门极驱动信号和源极电压同步,如源极为高电平时,驱动信号也是高电平则MOS 管导通;反之,源极为低电平时,驱动信号也是低电平,则MOS管关断;这样就自然实现了整流,而且电流也只能由源极s流向漏极D。由于是通过门极信号和源极电压同步来实现整流的,因此把这种整流方式称为同步整流。 (3)用于PWM开关转换器中的同步整流管SD代替SBD作为整流管或续流工作时,必须保证门极有正确的控制时序,使其工作与PWM开关转换器的主开关管同步协调工作。因此不同的开关转换器主电路,其同步整流管的控制时序也是不同的。同步整流开关管的控制时序将在后面进行介绍。 (4)在功率MOS管反接的情况下,其固有的体二极管极性却是正向的。有时要利用它先导通,以便过渡到功率MOS管进入整流状态。但由于体二极管的正向压降较大,常常不希望它导通或导通时问过长。

同步整流技术目前存在问题

同步整流专利面临问题 1、同步整流MOS晶体管在栅极电荷未被及时泄放情况下可双向导通; 2、由于MOSFET晶体管反向导通,滤波电容与滤波电感将谐振,使DC-DC变换器输出产生负压,对输入端的有极性电容和负载造成损伤,甚至使敏感负载发生逻辑错误。 3、死区时间的调整控制。 4、同步整流电路的缺点是,由于功率转换器的次级侧的接地切换操作所导致的切换损失以及电磁波干扰问题。 5、自驱动有源钳位正激变换器,其整流管和续流管在关断的时候,其栅极驱动电压是负值,这可能由于整流管和续流管的反向漏电流而产生额外的损耗,从而造成整体变换器效率的下降;另外整流管和续流管的驱动信号之间同样没有死区时间,整流管及续流管共同导通的现象依然没有解决。 6、因寄生效应而在晶体管开关上所产生的电压尖峰或高频振铃 7、由于MOSFET开通后可以双向导电,区别于二极管,因此对电路的工作带来影响。通常的电压模式的驱动方式由于不检测流过MOSFET的电流,因此,在电路中存在电流反向的可能,其驱动信号也是在电路中变压器、电感或者其他相关点得到的波形,会引起轻载条件下效率低下等其他问题。 8、传统的采用电流互感器的方式,其取样电流消耗的能量在电路中直接消耗,导致驱动电路效率低下。在实际应用中,通常的电流互感器驱动方案需要每个MOSFET带一个电流互感器检测其电流,导致电路成本上升、体积变大。 9、通常自驱动电路采用一个次级辅助绕组来为同步整流管和续流管提供驱动电压,但是,此种驱动方式由于辅助绕组藕合漏感与MOS管的栅极结电容产生振荡,致使驱动波形上升沿和平顶部分振荡,导致驱动损耗增大。 10、在大电流条件下开关电源同步整流电路结构及连接方式存在的连接、散热困难和额外发热等问题。 11、一般用变压器的副边绕组直接驱动MOS管。这时在占空比比较小的情况下,会出现续流的同步MOS管导通不足的问题。负载电流会流过MOS管的体二极管,造成较大的损耗。 12、门极通过辅助MOS管Sa至零电位,而同步整流MOS管的门极导通电压一般比较低(2~3V),所以容易受到外界千扰,也会造成共态导通的问题。 13、由于场效应管导通之后,电流可以通过该场效应管双向流动如流过负向电流。因负向电流的存在,当空载时开关信号占空比不变,使得空载时损耗增大、效率降低;另外当多个电源并联对负载进行供电时,电源的热拔插或是输出电流的瞬变容易导致电流从一个电源倒灌

同步整流电路分析

同步整流电路分析 一、传统二极管整流电路面临的问题 近年来,电子技术的发展,使得电路的工作电压越来越低、电流越来越大。低电压工作有利于降低电路的整体功率消耗,但也给电源设计提出了新的难题。 开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降,这就导致整流损耗增大,电源效率降低。 举例说明,目前笔记本电脑普遍采用3.3V甚至1.8V或1.5V的供电电压,所消耗的电流可达20A。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)P O,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC/DC变换器提高效率的瓶颈。 二、同步整流的基本电路结构 同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。 1、基本的变压器抽头方式双端自激、隔离式降压同步整流电路

2、单端自激、隔离式降压同步整流电路 图1 单端降压式同步整流器的基本原理图 基本原理如图1所示,V1及V2为功率MOSFET,在次级电压的正半周,V1导通,V2关断,V1起整流作用;在次级电压的负半周,V1关断,V2导通,V2起到续流作用。同步整流电路的功率损耗主要包括V1及V2的导通损耗及栅极驱动损耗。当开关频率低于1MHz时,导通损耗占主导地位;开关频率高于1MHz时,以栅极驱动损耗为主。 3、半桥他激、倍流式同步整流电路

相关主题
文本预览
相关文档 最新文档