当前位置:文档之家› 2015届高考数学总复习(基础过关+能力训练):立体几何初步 直线与平面的位置关系(1)(含答案)

2015届高考数学总复习(基础过关+能力训练):立体几何初步 直线与平面的位置关系(1)(含答案)

2015届高考数学总复习(基础过关+能力训练):立体几何初步 直线与平面的位置关系(1)(含答案)
2015届高考数学总复习(基础过关+能力训练):立体几何初步 直线与平面的位置关系(1)(含答案)

第八章 立体几何初步第2课时 直线与平面的位置关系(1)

1. 过直线l 外两点,作与l 平行的平面,则这样的平面有________个.

答案:0,1或无数

解析:当两点所在的直线与直线l 平行时,可以作无数个平面与l 平行;当两点所确定直线与直线l 异面时,可以仅作一个平面与直线l 平行;当两点所在的直线与直线l 相交时,则不能作与直线l 平行的平面.

2. 已知直线a 平行于平面α,给出下列结论:

① 直线a 平行于平面α内的所有直线;

② 平面α内有无数条直线与a 平行;

③ 直线a 上的点到平面α的距离相等;

④ 平面α内有无数条直线与a 垂直.

其中正确的结论是______________.(填序号)

答案:②③④

解析:若直线a 平行于平面α,则α内既存在无数条直线与a 平行,也存在无数条直线与a 异面或垂直,所以①不正确,②④正确;又易证夹在相互平行的直线与平面间的平行线段相等,所以③正确.

3. 已知三条直线m 、n 、l ,两个平面β、γ.下面四个命题中,正确的有________.(填序号)

① ?????l ⊥γ,β⊥γTl ∥β;② ?????m ∥β,l ⊥m Tl ⊥β;③ ?

????m ∥γ,n ∥γTm ∥n ; ④ ?

????m ⊥γ,n ⊥γ

Tm ∥n. 答案:④ 解析:①错, ????

?l ⊥γβ⊥γTl ∥β或l ì;②错,l 与β的位置关系包括平行、相交或直线

在平面内;③错,m 与n 可能平行、相交或异面;④正确.

4. 如图,在正方体ABCD-A 1B 1C 1D 1中,给出以下结论:

① D 1C ∥平面A 1ABB 1;

② A 1D 1与平面BCD 1相交;

③ AD ⊥平面D 1DB.

其中正确的有________.(填序号)

答案:① 解析:连结A 1B ,因为D 1C ∥A 1B ,所以D 1C ∥平面A 1ABB 1,①正确;直线A 1D 1 在平面BCD 1内,故②错;若③正确,则AD 和平面D 1DB 内每一条直线都垂直,而AD 与BD 显然不垂直,故③错.

5. 若空间四边形ABCD 的两条对角线AC 、BD 的长分别是9、17,过AB 的中点E 且平行于BD ,AC 的截面四边形的周长为________.

答案:26

解析:过AB的中点E且平行于BD、AC的截面四边形是连结各边中点的平行四边形,周长为两对角线之和.所以答案为26.

6. 下列两个命题,在“________”处都缺少同一个条件,补上这个条件使其构成真命题(其中a、b为不同的直线,α、β为不重合的平面),则此条件为________.

??

?

??

a∥bTa∥α;②

??

?

??

b∥α

a∥bTa∥α.

答案:a

解析:①体现的是线面平行的判定定理,缺的条件是“a为平面α外的直线”,即“a ”.它同样适合②,故填a.

7. 过三棱柱ABCA1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.

答案:6

解析:四条棱AC、BC、A1C1

、B1C1的中点中任意两点连线均与平面ABB1A1平行,所以共有6条直线符合题意.

8. 与不共面的四点距离相等的平面个数为________.

答案:7个

解析:两个点在一边,另两个点在另一边的满足条件的面有3个,三个点在一边,一个点在另一边的满足条件的面有4个,共7个.

9. 如图,在四棱锥EABCD中,四边形ABCD为平行四边形,BE=BC,AE⊥BE,M 为CE上一点,且BM⊥平面ACE.

(1) 求证:AE⊥BC;

(2) 如果点N为线段AB的中点,求证:MN∥平面ADE.

证明:(1) 因为BM⊥平面ACE,AEì平面ACE,所以BM⊥AE.

因为AE⊥BE,且BE∩BM=B,BE、BMì平面EBC,所以AE⊥平面EBC.

因为BCì平面EBC,所以AE⊥BC.

(2) 取DE中点H,连结MH、AH.

因为BM⊥平面ACE,ECì平面ACE,所以BM⊥EC.

因为BE=BC,所以M为CE的中点.

所以MH为△EDC的中位线.

所以MH∥

1

2DC,且MH=

1

2DC.

因为四边形ABCD为平行四边形,所以DC∥AB,且DC=AB.故MH∥

1

2AB,且MH =

1

2AB.因为N为AB中点,所以MH∥AN,且MH=AN.

高中数学立体几何测试题及答案一)

高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分) 1,三个平面可将空间分成n个部分,n的取值为() A,4;B,4,6;C,4,6,7 ;D,4,6,7,8。 2,两条不相交的空间直线a、b,必存在平面α,使得() A,a?α、b?α;B,a?α、b∥α;C,a⊥α、b⊥α;D,a?α、b⊥α。 3,若p是两条异面直线a、b外的任意一点,则() A,过点p有且只有一条直线与a、b都平行;B,过点p有且只有一条直线与a、b都垂直;C,过点p有且只有一条直线与a、b都相交;D,过点p有且只有一条直线与a、b都异面。 4,与空间不共面四点距离相等的平面有()个 A,3 ;B,5 ;C,7;D,4。 5,有空间四点共面但不共线,那么这四点中() A,必有三点共线;B,至少有三点共线;C,必有三点不共线;D,不可能有三点共线。 6,过直线外两点,作与该直线平行的平面,这样的平面可有()个 A,0;B,1;C,无数;D,涵盖上三种情况。 7,用一个平面去截一个立方体得到的截面为n边形,则() A,3≤n≤6 ;B,2≤n≤5 ;C,n=4;D,上三种情况都不对。 8,a、b为异面直线,那么() A,必然存在唯一的一个平面同时平行于a、b;B,过直线b 存在唯一的一个平面与a平行;C,必然存在唯一的一个平面同时垂直于a、b;D,过直线b 存在唯一的一个平面与a垂直。 9,a、b为异面直线,p为空间不在a、b上的一点,下列命题正确的个数是() ①过点p总可以作一条直线与a、b都垂直;②过点p总可以作一条直线与a、b都相交;③

过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。 A ,1; B ,2; C ,3; D ,4。 10,异面直线a 、b 所成的角为80°,p 为空间中的一定点,过点p 作与a 、b 所成角为40° 的直线有( )条 A ,2; B ,3; C ,4; D ,6。 11,P 是△ABC 外的一点,PA 、PB 、PC 两两互相垂直,PA=1、PB=2、PC=3,则△ABC 的 面积为( )平方单位 A ,25; B ,611; C ,27; D ,2 9。 12,空间四个排名两两相交,以其交线的个数为元素构成的集合是( ) A ,{2,3,4}; B ,{1,2,3,}; C ,{1,3,5}; D ,{1,4,6}。 13,空间四边形ABCD 的各边与对角线的长都是1,点P 在AB 上移动 ,点Q 在CD 上移 动,点P 到点Q 的最短距离是( ) A ,21; B ,22; C ,23; D ,4 3。 14,在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC ,PA=8,则P 到BC 的距离是( ) A ,45; B ,43; C ,25; D ,23。 15,已知m ,n 是两条直线,α,β是两个平面,下列命题正确的是( ) ①若m 垂直于α内的无数条直线,则m ⊥α;②若m 垂直于梯形的两腰,则m 垂直于梯形所 在的平面;③若n ∥α,m ?α,则n ∥m ;④若α∥β,m ?α,n ⊥β,则n ⊥m 。 A ,①②③; B ,②③④; C ,②④; D ,①③。 16,有一棱长为1的立方体,按任意方向正投影,其投影最大面积为( )

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国 8)正六棱柱 ABCDEF -A 1B 1C 1D 1E 1F 1 底面边长为 1, 侧棱长为 2 ,则这个棱柱的侧面对角线 E 1D 与 BC 1 所成的角是 ( ) A 、90° B 、60° C 、45° D 、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国 18)如图,正方形ABCD 、ABEF 的边长都是 1,而且 平面 ABCD 、ABEF 互相垂直,点 M 在 AC 上移动,点 N 在 BF C 上移动,若 CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (3) (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

2020高考数学立体几何练习题23题

2020高考数学之立体几何解答題23題 一.解答题(共23小题) 1.在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,E为AB的中点. (Ⅰ)求证:AN∥平面MEC; (Ⅱ)在线段AM上是否存在点P,使二面角P﹣EC﹣D的大小为?若存在,求出AP的长h;若不存在,请说明理由. 2.如图,三棱柱中ABC﹣A1B1C1中,点A1在平面ABC内的射影D为棱AC的中点,侧面A1ACC1为边长为2 的菱形,AC⊥CB,BC=1. (Ⅰ)证明:AC1⊥平面A1BC; (Ⅱ)求二面角B﹣A1C﹣B1的大小.

3.如图,已知四棱锥P﹣ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°. (I)求点P到平面ABCD的距离, (II)求面APB与面CPB所成二面角的大小. 4.在正三棱锥P﹣ABC中,底面正△ABC的中心为O,D是PA的中点,PO=AB=2,求PB与平面BDC所成角的正弦值.

5.如图,正三棱锥O﹣ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别相交于A1、B1、C1,已知. (1)求证:B1C1⊥平面OAH; (2)求二面角O﹣A1B1﹣C1的大小. 6.如图,在三棱锥A﹣BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形. (1)求证:AD⊥BC. (2)求二面角B﹣AC﹣D的大小. (3)在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由.

高考数学专题复习立体几何(理科)练习题

A B C D P 《立体几何》专题 练习题 1.如图正方体1111D C B A ABCD -中,E 、F 分别为D 1C 1和B 1C 1的中点, P 、Q 分别为A 1C 1与EF 、AC 与BD 的交点, (1)求证:D 、B 、F 、E 四点共面; (2)若A 1C 与面DBFE 交于点R ,求证:P 、Q 、R 三点共线 2.已知直线a 、b 异面,平面α过a 且平行于b ,平面β过b 且平行于a ,求证:α∥β. 3. 如图所示的多面体是由底面为ABCD 的长方体被截面AEFG 4=AB 1=BC 3=BE ,4=CF ,若如图所示建立空间直角坐标系. ①求EF 和点G 的坐标; ②求异面直线EF 与AD 所成的角; ③求点C 到截面AEFG 的距离. 4. 如图,三棱锥P —ABC 中, PC ⊥平面ABC ,PC=AC=2,AB=BC ,D 是PB 上一点,且CD 平面PAB . (I) 求证:AB ⊥平面PCB ; (II) 求异面直线AP 与BC 所成角的大小; (III )求二面角C-PA-B 的余弦值. 5. 如图,直二面角D —AB —E 中,四边形ABCD 是边长为2的正方形,AE=EB ,F 为CE 上的点,且BF ⊥平面ACE. (1)求证AE ⊥平面BCE ; (2)求二面角B —AC —E 的余弦值. 6. 已知正三棱柱111ABC A B C -的底面边长为2,点M 在侧棱1BB 上. P Q F E D 1C 1B 1A 1D C B A F E C B y Z x G D A

(Ⅰ)若P 为AC 的中点,M 为BB 1的中点,求证BP//平面AMC 1; (Ⅱ)若AM 与平面11AA CC 所成角为30ο,试求BM 的长. 7. 如图,在底面是矩形的四棱锥P —ABCD 中,PA ⊥底面ABCD ,PA =AB =1,BC =2. (1)求证:平面PDC ⊥平面PAD ; (2)若E 是PD 的中点,求异面直线AE 与PC 所成角的余弦值; 8. 已知:在正三棱柱ABC —A 1B 1C 1中,AB = a ,AA 1 = 2a . D 是侧棱BB 1的中点.求证: (Ⅰ)求证:平面ADC 1⊥平面ACC 1A 1; (Ⅱ)求平面ADC 1与平面ABC 所成二面角的余弦值. 9. 已知直四棱柱1111ABCD A B C D -的底面是菱形,且60DAB ∠=,1AD AA =F 为 棱1BB 的中点,M 为线段1AC 的中点. (Ⅰ)求证:直线MF //平面ABCD ; (Ⅱ)求证:直线MF ⊥平面11ACC A ; (Ⅲ)求平面1AFC 与平面ABCD 所成二面角的大小 10. 棱长是1的正方体,P 、Q 分别是棱AB 、CC 1上的内分点,满足 21==QC CQ PB AP . P A B C D E

最新-江苏高考数学立体几何真题汇编

A B C D E F 2008-2018江苏高考数学立体几何真题汇编 (2008年第16题) 在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点, 求证:(1)直线EF ∥平面ACD (2)平面EFC ⊥平面BCD 证明:(1) ??? E , F 分别为AB ,BD 的中点?EF ∥AD 且AD ?平面ACD ,EF ?平面ACD ?直线EF ∥平面ACD (2)? ?????CB =CD F 是BD 的中点 ? CF ⊥BD ? ?? AD ⊥BD EF ∥AD ? EF ⊥BD ?直线BD ⊥平面EFC 又BD ?平面BCD , 所以平面EFC ⊥平面BCD

B C? (2009年第16题) 如图,在直三棱柱ABC—A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C . 求证:(1)EF∥平面ABC (2)平面A1FD⊥平面BB1C1C 证明:(1)由E,F分别是A1B,A1C的中点知EF∥BC, 因为EF?平面ABC,BC?平面ABC,所以EF∥平面ABC (2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1, 又A1D?平面A1B1C1,故CC1⊥A1D, 又因为A1D⊥B1C,CC1∩B1C=C,CC1、B1C?平面BB1C1C 故A1D⊥平面BB1C1C,又A1D?平面A1FD, 故平面A1FD⊥平面BB1C1C

P A B C D D P A B C F E (2010年第16题) 如图,在四棱锥P —ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC , ∠BCD =90°. (1)求证:PC ⊥BC ; (2)求点A 到平面PBC 的距离. 证明:(1)因为PD ⊥平面ABCD , BC ?平面ABCD ,所以PD ⊥BC . 由∠BCD =90°,得CD ⊥BC , 又PD ∩DC =D ,PD 、DC ?平面PCD , 所以BC ⊥平面PCD . 因为PC ?平面PCD ,故PC ⊥BC . 解:(2)(方法一)分别取AB 、PC 的中点E 、F ,连DE 、DF ,则: 易证DE ∥CB ,DE ∥平面PBC ,点D 、E 到平面PBC 的距离相等. 又点A 到平面PBC 的距离等于E 到平面PBC 的距离的2倍. 由(1)知:BC ⊥平面PCD ,所以平面PBC ⊥平面PCD 于PC , 因为PD =DC ,PF =FC ,所以DF ⊥PC ,所以DF ⊥平面PBC 于F . 易知DF = 2 2 ,故点A 到平面PBC 的距离等于2. (方法二)等体积法:连接AC .设点A 到平面PBC 的距离为h . 因为AB ∥DC ,∠BCD =90°,所以∠ABC =90°. 从而AB =2,BC =1,得△ABC 的面积S △ABC =1. 由PD ⊥平面ABCD 及PD =1,得三棱锥P —ABC 的体积V =13S △ABC ×PD = 1 3 . 因为PD ⊥平面ABCD ,DC ?平面ABCD ,所以PD ⊥DC . 又PD =DC =1,所以PC =PD 2+DC 2=2. 由PC ⊥BC ,BC =1,得△PBC 的面积S △PBC = 2 2 . 由V A ——PBC =V P ——ABC ,13S △PBC ×h =V = 1 3 ,得h =2, 故点A 到平面PBC 的距离等于2.

高考数学压轴专题(易错题)备战高考《空间向量与立体几何》经典测试题及答案解析

【高中数学】单元《空间向量与立体几何》知识点归纳 一、选择题 1.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的体积为( ) A . 643 π B .8316π π+ C .28π D .8216π π+ 【答案】B 【解析】 【分析】 结合三视图,还原直观图,得到一个圆锥和一个圆柱,计算体积,即可. 【详解】 结合三视图,还原直观图,得到 故体积22221183242231633V r h r l πππππ=?+?=?+??=+,故选B . 【点睛】 本道题考查了三视图还原直观图,考查了组合体体积计算方法,难度中等. 2.如图,在长方体1111ABCD A B C D -中,13,1AB AD AA ===,而对角线1A B 上存 在一点P ,使得1AP D P +取得最小值,则此最小值为( )

A .7 B .3 C .1+3 D .2 【答案】A 【解析】 【分析】 把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD 并求出,就 是最小值. 【详解】 把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD .1MD 就是1||||AP D P +的最小值, Q ||||3AB AD ==,1||1AA =,∴0113tan 3,60AA B AA B ∠==∴∠=. 所以11=90+60=150MA D ∠o o o 221111111113 2cos 13223()72 MD A D A M A D A M MA D ∴=+-∠=+-??- ??= 故选A . 【点睛】 本题考查棱柱的结构特征,考查计算能力,空间想象能力,解决此类问题常通过转化,转化为在同一平面内两点之间的距离问题,是中档题. 3.已知圆锥SC 的高是底面半径的3倍,且圆锥SC 的底面直径、体积分别与圆柱OM 的底面半径、体积相等,则圆锥SC 与圆柱OM 的侧面积之比为( ). A 10 B .3:1 C .2:1 D 102 【答案】A

全国高考理科数学:立体几何

2013年国理科数学试题分类汇编7立体几何 一、选择题 1 .(2013年新课标1(理))如图有一个水平放置的透明无盖的正方体容器容器8cm 将一个 球放在容器口再向容器内注水当球面恰好接触水面时测得水深为6cm 如果不计容器的 厚度则球的体积为 ) A 2 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的 直线,αβ是两个不同的平面下列命题正确的是( )[] A .若αβ⊥m α?n β?则m n ⊥ B .若//αβm α?n β?则//m n C .若m n ⊥m α?n β?则αβ⊥ D .若m α⊥//m n //n β则αβ⊥ 3 .(2013年上海市春季数学试卷(含答案))若两个球的表面积之比为1:4则这两个球的体积 之比为( ) A .1:2 B .1:4 C .1:8 D .1:16 4 .(2013年普通等学校招生统一试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱 1111ABCD A B C D -12AA AB =则CD 与平面1BDC 所成角的正弦值等于( ) A 5 .(2013年新课标1(理))某几何体的三视图如图所示则该几何体的体积为

( ) A .168π+ B .88π+ C .1616π+ D .816π+ 6 .(2013年湖北卷(理))一个几何体的三视图如图所示该几何体从上到下由四个简单几何 体组成其体积分别记为1V 2V 3V 4V 上面两个简单几何体均为旋转体下面两个简单几何体均为多面体则有( ) A .1243V V V V <<< B .1324V V V V <<< C .2134V V V V <<< D .2314V V V V <<< 7 .(2013年湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形则该正 方体的正视图的面积不可能...等于( ) A .1 B 8 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))某四棱台的三视图如 图所示则该四棱台的体积是

高考数学专题复习立体几何练习题

立体几何测试卷 班级 姓名 学号 一、选择题: 1.一个圆锥的侧面积是其底面积的2倍,则该圆锥的母线与底面所成的角为( ) (A )30 (B )45 (C )60 (D )75 2.两个完全相同的长方体的长、宽、高分别为5 cm 、4cm 、3cm ,把它们重叠在一起组成一个新长方体,在这些新长方体中,最长的对角线的长度是 ( ) (A )cm 77 (B )cm 27 (C )cm 55 (D )cm 210 3.等边三角形ABC 的边长为4,M 、N 分别为AB 、AC 的中点,沿MN 将AMN ?折起,使得面AMN 与面MNCB 所成的二面角为30 ,则四棱锥A —MNCB 的体积为( ) (A ) 2 3 (B )23 (C )3 (D )3 4.若二面角βα--l 为120 ,直线m α⊥,则β所在平面内的直线与m 所成角的取值范围是 ( ) (A )(] 90,0 (B )[ ] 60 ,30 (C )[] 90,60 (D )[] 90,30 5.关于直线a 、b 、l 及平面M 、N ,下列命题中正确的是 ( ) (A )若a // M,b // M,则a // b (B )若a // M,b ⊥a,则b ⊥ M (C )若a ,,M b M ??且l b l a ⊥⊥,则M l ⊥ (D )若,//,N a M a ⊥则N M ⊥ 6.棱长为a 的正方体中,连接相邻的中心,以这些线段为棱的八面体的体积为( ) (A )33a (B )43a (C )63a (D )12 3 a 7.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) (A )3π (B )4π (C )π33 (D )6π 8. 已知圆锥的底面半径为R ,高为3R ,它的所有内接圆柱中,全面积的最大值是( ) (A )22 R π (B ) 249R π (C )238R π (D )22 5 R π 9.在下列条件中,可判断平面α与β平行的是 ( ) (A )βα、都垂直于平面γ (B )α内存在不共线的三点到β的距离相等

历年全国理科数学高考试题立体几何部分精选(含答案)

1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,() 1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0, 0,{ n AB n PB ?=?= 即 3030 x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0, m 0, { PB BC ?=?= 可取m=(0,-1,3-) 27 cos ,727 m n = =- 故二面角A-PB-C 的余弦值为 27 7 -

1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 2 3 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB ⊥⊥(Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 .

历年全国理科数学高考试题立体几何部分精选(含答案)

(一) 1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

(一) 1.D 2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,()1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0,0,{n AB n PB ?=?= 即 30 30x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0,m 0,{PB BC ?=?= 可取m=(0,-1,3-) 27cos ,727 m n ==- 故二面角A-PB-C 的余弦值为 27-

(二) 1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 23 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1, DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC . (Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 .

2019-2020年高考数学大题专题练习——立体几何

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

历年江苏高考数学立体几何真题汇编含详解

历年江苏高考数学立体几何真题汇编(含详解) (2008年第16题) 在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点, 求证:(1)直线EF ∥平面ACD (2)平面EFC ⊥平面BCD 证明:(1) ? ??? ?E ,F 分别为AB ,BD 的中点?EF ∥AD 且AD ?平面ACD ,EF ?平面ACD ?直线EF ∥平面ACD (2)??????? ?? ?CB =CD F 是BD 的中点 ? CF ⊥BD ? ??? ?AD ⊥BD EF ∥AD ? EF ⊥BD ?直线BD ⊥平面EFC 又BD ?平面BCD , 所以平面EFC ⊥平面BCD (2009年第16题) 如图,在直三棱柱ABC —A 1B 1C 1中,E ,F 分别是A 1B ,A 1C 的中点,点D 在B 1C 1上, A 1D ⊥ B 1 C . 求证:(1)EF ∥平面ABC (2)平面A 1FD ⊥平面BB 1C 1C 证明:(1)由E ,F 分别是A 1B ,A 1C 的中点知EF ∥BC , 因为EF ?平面ABC ,BC ?平面ABC ,所以EF ∥平面ABC (2)由三棱柱ABC —A 1B 1C 1为直三棱柱知CC 1⊥平面A 1B 1C 1, 又A 1D ?平面A 1B 1C 1,故CC 1⊥A 1D , 又因为A 1D ⊥B 1C ,CC 1∩B 1C =C , CC 1、B 1C ?平面BB 1C 1C 故A 1D ⊥平面BB 1C 1C ,又A 1D ?平面A 1FD , 故平面A 1FD ⊥平面BB 1C 1C (2010年第16题)

2021-2022年高考数学专题复习导练测 第八章 立体几何阶段测试(十)理 新人教A版

2021年高考数学专题复习导练测 第八章 立体几何阶段测试(十)理 新人教A 版 一、选择题 1.空间中四点可确定的平面有( ) A .1个 B .3个 C .4个 D .1个或4个或无数个 答案 D 解析 当这四点共线时,可确定无数个平面;当这四点不共线且共面时,可确定一个平面;当这四点不共面时,其中任三点可确定一个平面,此时可确定4个平面. 2.一个长方体被一个平面所截,得到的几何体的三视图,如图所示,则这个几何体的体积为( ) A .8 B .4 C .2 D .1 答案 C 解析 根据该几何体的三视图知,该几何体是一个平放的三棱柱;它的底面三角形的面积为S 底面=1 2×2×1=1,棱柱高为h =2,∴棱柱的体积为S 棱柱=S 底面·h =1×2=2. 3.下列命题中,错误的是( ) A .三角形的两条边平行于一个平面,则第三边也平行于这个平面 B .平面α∥平面β,a ?α,过β内的一点B 有唯一的一条直线b ,使b ∥a C .α∥β,γ∥δ,α、β、γ、δ所成的交线为a 、b 、c 、d ,则a ∥b ∥c ∥d D .一条直线与两个平面成等角,则这两个平面平行

答案D 解析A正确,三角形可以确定一个平面,若三角形两边平行于一个平面,而它所在的平面与这个平面平行,故第三边平行于这个平面;B正确,两平面平行,一面中的线必平行于另一个平面,平面内的一点与这条线可以确定一个平面,这个平面与已知平面交于一条直线,过该点在这个平面内只有这条直线与a平行;C正确,利用同一平面内不相交的两直线一定平行判断即可确定C是正确的;D错误,一条直线与两个平面成等角,这两个平面可能是相交平面,故应选D. 4.在空间四边形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,则△ABC的形状是( ) A.锐角三角形B.直角三角形 C.钝角三角形D.不能确定 答案B 解析作AE⊥BD,交BD于E, ∵平面ABD⊥平面BCD, ∴AE⊥平面BCD,BC?平面BCD,∴AE⊥BC, 而DA⊥平面ABC,BC?平面ABC,∴DA⊥BC, 又∵AE∩AD=A,∴BC⊥平面ABD, 而AB?平面ABD,∴BC⊥AB, 即△ABC为直角三角形.故选B. 5.在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上的一点,它的正视图和侧视图如图所示,则下列命题正确的是( )

2019届高考理科数学专题 高考中的立体几何问题

2019届高考理科数学专题 高考中的立体几何问题 一、选择题(每小题5分,共30分) 1.一个多面体的三视图如图4-1所示,则此多面体的表面积是() 图4-1 A.22 B.24- C.22+ D.20+ 2.如图4-2,网格纸上小正方形的边长为1,粗线画的是某组合体的三视图,则该组合体的体积 是() 图4-2 A.+π B.+π C.4+π D.+π 3.已知正方体ABCD-A1B1C1D1的所有顶点均在球O的表面上,E,F,G分别为AB,AD,AA1的中点,若平面EFG截球O所得圆的半径为,则该正方体的棱长为() A. B. C.3 D.2 4. [数学文化题]如图4-3为中国传统智力玩具鲁班锁,它起源于中国古代建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四棱柱 的底面正方形的边长为2,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器的表 面积的最小值为56π,则正四棱柱的高为()

A. B.2 C.6 D.2 5. [数学文化题]中国古代计时器的发明时间不晚于战国时代(公元前476年~前222年),其中沙漏就是古代利用机械原理设计的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道流到下部容器.如图4-4所示,某沙漏由上、下两个圆锥形容器组成,圆锥形容器的底面圆的直径和高均为8 cm,细沙全部在上部时,其高度为圆锥形容器高度的(细管长度忽略不计).若细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,则此圆锥形沙堆的高为() 图4-4 A.2 cm B.cm C.cm D.cm 6.如图4-5,在正三棱柱ABC-A1B1C1中,AA1=AB,E,F分别为BC,BB1的中点,M,N分别为 AA1,A1C1的中点,则直线MN与EF所成角的余弦值为() 图4-5 A. B. C. D. 二、填空题(每小题5分,共10分) 7.若侧面积为8π的圆柱有一外接球O,则当球O的体积取得最小值时,圆柱的表面积 为. 8.如图4-6,在棱长为1的正方体ABCD-A1B1C1D1中,作以A为顶点,分别以AB,AD,AA1为轴,底面圆半径为r(0

立体几何 高考真题全国卷

(2018 文 I )在平行四边形中,,,以为折痕将折起,使点到达点的位置,且. ⑴证明:平面平面; ⑵为线段上一点,为线段上一点,且,求三棱锥的体积. (2018 文 I I )如图,在三棱锥中,, ,为的中点. (1)证明:平面; (2)若点在棱上,且,求点到平面的距离. ABCM 3AB AC ==90ACM =?∠AC ACM △M D AB DA ⊥ACD ⊥ABC Q AD P BC 2 3 BP DQ DA ==Q ABP -P ABC -AB BC ==4PA PB PC AC ====O AC PO ⊥ABC M BC 2MC MB =C POM A B C P O M

(2018 文 III )如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. ⑴证明:平面AMD ⊥平面BMC ; ⑵在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由. (2017 文 I )如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠= (1)证明:平面PAB ⊥平面PAD ; (2)若PA=PD=AB=DC,90APD ∠=,且四棱锥P-ABCD 的体积为8 3 ,求该四棱锥的侧面积.

(2017 文 II )如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD , 1 ,2 AB BC AD BAD == ∠90.ABC =∠=? (1)证明:直线BC ∥平面PAD ; (2)若△PCD 的面积为P ABCD -的体积. (2017 文 III )如图,四面体ABCD 中,△ABC 是正三角形,AD=CD . (1)证明:AC ⊥BD ; (2)已知△ACD 是直角三角形,AB=BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.

【新课标】备战高考数学专题复习测试题_立体几何(文科)

高考第一轮复习专题素质测试题 立体几何(文科) 班别______学号______姓名_______评价______ (考试时间120分钟,满分150分,试题设计:隆光诚) 一、选择题(每小题5分,共60分. 以下给出的四个备选答案中,只有一个正确) 1.(10全国Ⅱ)与正方体1111ABCD A BC D -的三条棱 AB 、1CC 、11A D 所在直线的距离相等的点( ) A.有且只有1个 B.有且只有2个 C.有且只有3个 D.有无数个 2.(09福建)设,m n 是平面α内的两条不同直线;12,l l 是平面β内的两条相交直线, 则//αβ的一个充分而不必要条件是( ) A. 1////m l βα且 B. 12////m l l 且n C. ////m n ββ且 D. 2////m n l β且 3.(08四川)直线l α?平面,经过α外一点A 与l α、都成30?角的直线有且只有( ) A.1条 B.2条 C.3条 D.4条 4.(08宁夏)已知平面α⊥平面β,α∩β= l ,点A ∈α,A ?l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...成立的是( ) A. AB ∥m B. AC ⊥m C. AB ∥β D. AC ⊥β 5.(10湖北)用a 、b 、c 表示三条不同的直线,y 表示平面,给出下列命题: ①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ;③若a ∥y ,b ∥y ,则a ∥b ; ④若a ⊥y ,b ⊥y ,则a ∥b .其中真命题是( ) A. ①② B. ②③ C. ①④ D.③④ 6.(10新课标)设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积 为( ) A.3πa 2 B.6πa 2 C.12πa 2 D. 24πa 2 7.(08全国Ⅱ)正四棱锥的侧棱长为32,侧棱与底面所成的角为?60,则该棱锥的体积

上海高中数学之立体几何练习(打印).

立体几何练习题 一、选择题 1.已知平面α外不共线的三点,,A B C 到α的距离都相等,则正确的结论是 A. 平面ABC 必平行于α B. 平面ABC 必与α相交 C. 平面ABC 必不垂直于α D. 存在ABC ?的一条中位线平行于α或在α内 2.若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上” 的 (A )充分非必要条件; (B )必要非充分条件; (C )充要条件; (D )非充分非必要条件. 3.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”。在一个 正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是 (A )48 (B )18 (C )24 (D )36 4.已知二面角l αβ--的大小为0 60,m n 、为异面直线,且 m n αβ⊥⊥,,则m n 、所成的角为 (A )0 30 (B )0 60 (C )0 90 (D )0 120 5.已知球O 半径为1,A 、B 、C 三点都在球面上,A 、B 两点和A 、C 两点的球面距离都是4 π,B 、C 两点的球面距离是3π,则二面角B C OA --的大小是 (A ) 4π (B )3π (C )2π (D )23 π 7.设m 、n 是两条不同的直线,α、β是两个不同的平面.考查下列命题,其中正确的命 题是 A .βαβα⊥?⊥? ⊥n m n m ,, B .n m n m ⊥?⊥βαβα//,,// C .n m n m ⊥?⊥⊥βαβα//,, D .ββαβα⊥?⊥=⊥n m n m ,,I 8.设A 、B 、C 、D 是空间四个不同的点,在下列命题中,不正确... 的是 A .AC 与BD 共面,则AD 与BC 共面 B .若A C 与B D 是异面直线,则AD 与BC 是异面直线 C .若AB =AC ,DB =DC ,则AD =BC D .若AB =AC ,DB =DC ,则AD ⊥BC 9.若l 为一条直线,αβγ,,为三个互不重合的平面,给出下面三个命题: ①αγβγαβ⊥⊥?⊥,;②αγβγαβ⊥?⊥,∥;③l l αβαβ⊥?⊥,∥. 其中正确的命题有 A .0个 B .1个 C .2个 D .3个 10.如图,O 是半径为1的球心,点A 、B 、C 在球面上,OA 、OB 、OC 两两垂直,E 、F 分别是大圆弧 ?AB 与? AC 的中点,则点E 、F 在该球面上的球面距离是

相关主题
文本预览
相关文档 最新文档