当前位置:文档之家› jiaoc第四节油液监测与诊断技术

jiaoc第四节油液监测与诊断技术

jiaoc第四节油液监测与诊断技术
jiaoc第四节油液监测与诊断技术

第四节油液监测与诊断技术

油液监测与诊断技术是近十几年迅速发展起来的用于机械设备状态监测的新技术,尤其在发动机、齿轮传动、轴承系统、液压系统等诸方面,该技术取得了显着的效益,获得了广泛的应用,如表2-11 所示。

油液监测与诊断技术通常包括油液理化性能分析技术、铁谱分析技术、光谱分析技术、颗粒计数技术等,实现对油样中所含磨粒的数量、大小、形态、成分等及其变化,油品的劣化变质程度等的分析。油液分析技术涉及的机理、分析内容及使用的仪器见表2-12 。

一、润滑剂及其质量指标

在机器的摩擦副间加入某种介质,使其减少摩擦和磨损,这种介质称为润滑材料,即润滑剂。由于摩擦副的类型和工况条件不同,相应地对润滑材料的要求和选用也不同,只有按摩擦副对润滑材料性能的要求,合理地选用润滑材料,才能达到延长设备使用寿命,保证设备正常运转及提高企业经济效益的目的。

(一)润滑剂的分类

润滑剂可分为液体润滑剂、半固体润滑剂、固体润滑剂和气体润滑剂四大类。

l.液体润滑剂例如润滑油、水、液态金属等。润滑油中矿物油来源充足、品种多,不易变质,加之一般矿物润滑油,含有极性物质,易形成吸附膜或油中加入添加剂后形成边界膜达到润滑目的,故应用最为广泛。

2.半固体润滑剂例如润滑脂,它是用稠化剂和润滑油制成,是一种介乎液体和固体之间的润滑材料,在一定意义上兼有二者的优点。主要用于长期工作而不易经常更换润滑剂的摩擦部位以及因结构关系不能使用润滑油的机器设备。

3.固休润滑剂例如石墨、二硫化铝等,依靠这些物质在摩擦表面形成低剪切强度,并与摩擦表面有较强附着力的固体润滑膜达到润滑目的。

4.气体润滑剂例如空气、氮气等,多用于高温、高速、轻载场合,例如高速磨头的空气轴承。

(二)润滑油性能指标

掌握润滑油的性能指标,能进一步熟知其适用场合,为不同工况条件选择合适的润滑油提供必要的依据。 1.粘度粘度是润滑油最重要的性能指标之一,是反映润滑油流动的粘性大小,决定润滑油油膜厚度的主要因素之一。润滑油的作用就在于使润滑油在机器作功运动的摩擦表面形成油膜,该油膜起到润滑、减震、冲洗、冷却等作用。

润滑油的粘度随温度的变化而变化。一般地讲,同一润滑油,温度越高粘度越小,温度越低粘度越大。称润滑油的这种性能为“粘温性能”,常用粘度指数表示,粘度指数高说明油品粘度随温度的变化较小,粘温性较好。

表示粘度的单位和测定粘度的方法很多,例如英美等国多采用赛氏和雷氏粘度,德国和西欧多采用恩氏粘度和运动粘度,我国主要采用运动粘度。国际标准化组织规定统一采用运动粘度。我国新的粘度牌号以N为标记,即N2、N3、N5、N7、……N460、N680、N1000、N1500,共18级。在使用中一定要注意牌号的种类,以避免差错。

运动粘度可用运动粘度测定仪测定。

2.油性和极压性油性和极压性是表示润滑油抵抗磨损能力的指标,油性表示油膜的吸附能力,极压性则表示在冲击载荷或高温重载荷作用时油膜不破裂的能力。

我国评定润滑油的极压性,主要在四球式摩擦试验机上进行。

3.酸值酸值是指中和每1克润滑油中的有机酸所消耗的氢氧化钾的毫克数,单位是KOHmg/g。当所用油品的酸值超过标准时应换用新油。

4.水分润滑油的水分是指润滑油中含水量的重量百分比数。润滑油中水分的存在,破坏润滑油形成油膜、使润滑效果变差,并加速有机酸对金属的腐蚀作用,锈蚀设备,而且使添加剂分解沉淀。

测定水分可在水分测定器上进行。

5.水溶性酸和碱水溶性酸和碱是指溶于油品中的无机酸和碱,以及低分子有机酸和碱性氧化物,它们将强烈腐蚀设备,加速油品变质,降低油品的绝缘性能。

6.机械杂质机械杂质是指润滑油中各种沉淀物、胶状悬浮物、砂土、金属粒等杂质的重量百分比,它是反映油品纯洁度的指标。油品中机械杂质的存在会加剧机器零件的磨损,加速油品老化,严重时还会堵塞油路及滤清器。

7.闪点闪点是表示润滑油蒸发性的指标。在规定的条件下加热油品,当油蒸气与周围空气形成的一定浓度的混合气体时,同火焰接触时产生短暂闪火时的最低油温即为闪点。闪点是油品的安全性指标,油品的工作

温度一般低于闪点20~30℃为宜。

闪点的测试分为开口闪点与闭口闪点两种,蒸发性较大的轻质油品一般用闭口法测定,而重质油品则常用闭口法。

8.凝点在规定条件下使油品冷却到不流动时的最高温度即为凝点。凝点是反映油品低温流动性的重要指标。通常,油品工作温度一般应比凝点高15℃~30℃为宜。

此外,还有灰分、残炭、腐蚀、抗氧化安定性、抗乳化度、抗泡沫性等性能指标。

(三)润滑脂性能指标

润滑脂是由基础油加稠化剂制成的半液体润滑剂,它适用于下面几种情况:①某些开放式润滑部位,起到润滑作用而又不会流失和滴落;②在有尘埃、水分或有害气体侵蚀的情况下,要求有良好的密封性、防护性和防腐蚀性的场合;③由于工作条件限制,而要求长期不换润滑剂的摩擦部位的润滑部位;④摩擦部位的温度和速度变化范围较大的机械的润滑以及满足某些机械设备的封存、防腐、防锈上的需要。

润滑脂的性能指标有

1.外观良好的润滑脂,其颜色和稠度都应是均匀的,没有硬块颗粒,没有析油现象,表面没有干硬的皮层和稀软糊层。

2.针入度针入度是表示油脂稠度的指标。某润滑脂的针人度是指在25℃温度下,重量为150g的标准圆锥体,在5秒钟内沉入该润滑脂试样的深度(以1/10mm为单位,表示时不标注)。脂的针入度越小,稠度就愈高,它不易进入摩擦副表面,而且内摩擦大、能耗高,但它的承载能力高,不易从摩擦面内被挤出来。

3.滴点它是决定润滑脂使用温度的指标。滴点测定仪的润滑脂被加热后,开始滴落时的温度称为润滑脂的滴点。润滑脂的使用温度一般应高于滴点20~30℃,以保证可靠的润滑效果。

4.抗腐蚀性主要反映润滑脂对金属的腐蚀程度。

除此之外,润滑脂还有胶体安定性、机械杂质、氧化安定性等性能指标。

(四)液压油

液压油的主要作用是传递液压能,其次是润滑、冷却、防锈、减震等作用,它的状态直接关系到液压机械运转的可靠性。反映液压油性能的主要指标及其测试方法与润滑油类似,不再重复。

(五)添加剂

在很多情况下,基础油很难满足摩擦副对润滑剂提出的苛刻要求。因此,为了提高油品质量和满足使用性能还必须在润滑油品中加人少量一种或几种物质,以改善油品的某些性能,所添加的物质称为添加剂。一般极少量添加剂,就能显着改变油品的质量,这样就可避免润滑油复杂加工过程,又可解决一些加工精制仍不能满足的特殊要求,从而扩大优质润滑油产品的来源。

添加剂一般不单独作润滑材料。同一种添加剂,加到不同种类的基础油或不同类型的原油炼制的油,其效果也可能不完全相同,因此使用时必须通过试验,选择最佳品种和用量。

常用的润滑油添加剂包括清净分散剂、抗氧抗腐剂、油性添加剂、极压(抗磨)添加剂、增粘剂、降凝剂、抗泡沫剂、防锈剂等等。

二、油液性能分析

对机械设备的润滑系统进行定期的油样理化性能测试分析,可以动态监测使用过程中润滑油质量变化情况,从而保证机械设备处于良好的润滑状态。同时也可以随机监测润滑油的质量指标变化情况,从而确定最合理的最经济有效的换油周期。

润滑油在使用过程中的变质和油品质量劣化,主要包括两方面。一是由于氧化、凝聚、水解、分解作用使油品产生永久性变质。可采用测量润滑油油样粘度变化、含水量、机械杂质、酸值及闪点变化等理化指标来分析判断。如果油品劣化程度超过一定限度(按质换油标准),则及时换油。表2-13 、2-14 给出了部分油品的质量界限值。二是润滑油中添加剂的消耗和变质。使用过程中,添加剂及其反应物也会发生变化。因此,必须定期对使用中的润滑油取油样进行添加剂含量的测定。发现添加剂含量减少,及时补充,以保持润滑油的特殊润滑性能。

除采用对使用中的润滑油主要理化指标变化现场作出快速鉴定外,近来国内外还出现用油液的综合质量对油液现场作出快速鉴定的技术及相应仪器。例如通过测定油液的透明度、介电常数的变化、污染度等参数来评定油液质量。

三、油液监测与诊断技术

运用油液监测与诊断技术,在设备不停机、不解体的情况下监测工况,诊断设备的异

常、异常部位、异常程度及原因,从而预报设备可能发生的故障,是提高设备管理水平、改善维护保养的一个重要手段,也是保证设备正常运转、创造经济效益的有效途径。该技术还可用于研究设备中摩擦副磨损机理和润滑机理,磨损失效过程和失效类型,用于进行润滑油品性能分析,新油品性能分析,确定油液污染程度以及油品合适的使用期限,用来确定合理的磨合工艺规范等。在对机械设备进行状态监测和故障诊断时,特别是利用振动和噪声监测诊断低速回转机械及往复机械的故障较为困难时,运用油液监测与诊断技术则较有效。

油液监测与诊断采用的具体技术包括光谱技术、铁谱技术、颗粒计数技术、磁塞技术等,它们在技术原理、仪器工作原理及结构、检测油样的制备、数据处理、结果分析和应用范围等方面各具特点,选用时应予以注意。表2-15 为常用的几种油液分析方法的性能比较。

(一)油液监测与诊断技术的实施步骤

1.选择对生产、产品质量、经济效益影响较大的设备为监测对象,在深入了解该设备有关情况(功能、结构、运转现状、润滑材料及润滑系统现状等)的基础上,选择并制订合理的油液监测方案及技术。

2.选取油样,这是实施技术的重要环节。原始油样是测定磨损微粒、进而数据处理和分析、最后判断故障的基础,所取的油样中必须含有表征设备主要磨损部位信息的有代表性的磨粒,能正确反映磨损真实情况;要合理地确定取样间隔时间,表2-16 给出一组取样间隔时间参考值。应严格按规定的技术规范选取原始油样。

3.制备检测油样,按照所选用的油液监测技术及仪器所规定的制备方法和步骤,认真制备。

4.将检测油样送入监测仪器,定性、定量测定有关参数。

5.进行检测数据处理与分析,视所选用的监测技术的不同,可以采用趋势法、类比法等处理数据和结果分析,进一步可应用数理统计、模糊数学等知识建立相应的计算机数据处理系统。

6.根据数据处理分析的结果,判断设备的异常、异常部位、异常程度及原因,预报可能出现的问题以及发生异常的时间、范围和后果。

7.提出改进设备异常状况的措施(包括处理异常的时间、内容、费用,具体修理方案和实施)。

(二)铁谱技术及仪器

油品铁谱分析技术利用高梯度的强磁场的作用,将润滑油样中所含的机械磨损微粒有序地分离出来,并借助不同的仪器对磨屑进行有关形状、大小、成分、数量及粒度分布等方面的定性和定量观测,从而判断机械设备的磨损状况,预报零部件的失效。铁谱技术的主要内容包括油品取样技术、铁谱仪及制谱技术、磨粒分析技术等。

根据分离、检测磨粒的不同方法,铁谱仪主要分为分析式铁谱仪、直读式铁谱仪、旋转式铁谱仪等。

1.铁谱技术的特点铁谱技术与其它技术相比,具有独特的优势,主要是

(1).应用铁谱技术能分离出润滑油中所含较宽尺寸范围的磨屑,故应用范围广。

(2).铁谱技术利用铁谱仪将磨屑重叠地沉积在基片或沉淀管中,进而对磨屑进行定性观察分析和定量测量,综合判断机械的磨损程度,同时还可对磨屑的组成元素进行分析,以判断磨屑产生地,即磨损发生的部位。

铁谱技术的缺点在于:对润滑油中非铁系颗粒的检测能力较低,例如在对含有多种材质摩擦副的机器(例如发动机)进行监测诊断时,往往感到不力;分析结果较多依赖操作人员的经验;不能理想地适应大规模设备群的故障诊断。

2.分析式铁谱仪分析式铁谱是种常用的、重要的铁谱仪器,主要由铁谱制谱仪、铁谱显微镜和铁谱读数器组成。铁谱制谱仪主要用途是分离油样中磨损微粒并制成铁谱谱片,它由微量泵、磁铁装置、玻璃基片、特种胶管及支架等部件组成。

分析式铁谱仪的工作原理如图2-27 所示。从设备润滑系统或液压系统取的原始油样经制备后,由微量泵输送到与磁场装置呈一定倾斜角度的玻璃基片上(亦称铁谱基片)。油样由上端以约15m/h的流速流过高梯度强磁场区,从基片下端流入回油管,然后排入储油杯中。在随油样流下的过程中,可磁化的磨屑在高梯度强磁场作用下,由大到小依序沉积在玻璃基片的不同位置上,沿磁力线方向(与油流方向垂直)排列成链状,经清洗残油和固定颗粒的处理之后,制成铁谱片。在铁谱显微镜下,对铁诺基片上沉积磨粒进行有关大小、形态、成分、数量方面的定性和定量分析后,就可以对被监测的设备的摩擦磨损状态作出判断。

目前国内使用的分析式铁谱仪系统主要是:美国标准石油公司(Standard Oil Company)生产的双联式铁谱仪,我国北京科学仪器厂生产的FTP-l型分析式铁谱仪和重庆光学仪器厂生产的TPF-l型分析式铁谱仪。

a)制谱仪的工作原理b)铁谱片

图2-27 分析式铁谱仪的工作原理

通过对磨粒色泽和化学辨色,可以识别出铁磁材料、有色金属和一些非金属物质;通过铁谱读数器可直接得到被测部位的磨粒覆盖面积百分数,这样分析式铁谱仪就具有定性和定量分析两种功能。

3.直读式铁谱仪直读式铁谱仪主要用来直接测定油样中磨粒的浓度和尺寸分布,只能作定量分析,能够方便、迅速而较准确地测定油样内大小磨粒的相对数量,因而能对设备状态作出初步的诊断,是目前设备监测和故障诊断的较好手段之一。如果不仅要了解磨损微粒的数量及分布情况,而且要观察分析磨粒的形态、表面形貌和成分等因素,作出较准确的诊断,就需使用分析式铁谱仪。

目前国内使用的直读式铁谱仪有美国SOHIO公司生产的DR型铁谱仪、北京科学仪器厂生产的ZTP型直读武铁谱仪和重庆光学仪器厂生产的TPD型直读式铁谱仪。

直读式铁谱仪的工作原理如图2-28a 所示。取自机器的油样,经浓度及粘度稀释后,在虹吸作用下流经位于磁铁上方的玻璃沉淀管,油样中可磁化微粒在高梯度磁场作用下,依其粒度顺序排列在沉积管内壁不同位置上。在沉积管人口处,即在l~2mm位置上沉积着大于5μm的大磨粒,而在5mm之后的位置沉积着只有l~2μm的小磨粒(见图2-28b )。

光导纤维将光线引至与上述两个位置相对应的固定测点上,并由两只光敏探头接收穿过磨粒层的光信号,经电子线路放大,A/D转换处理最终在D L和Ds两个数显屏上直接显示出磨粒沉积的覆盖值。

4.旋转式铁谱仪分析式铁谱仪、直读武铁谱仪应用较广泛,分析技术较成熟,尤其是分析式铁谱仪同时具有定量和定性分析双重功能。但是这些铁谱仪对污染严重的油样(例如煤矿机械或工程机械内的润滑油等)的定量和定性分析效果不好,主要是制谱过程中,润滑油中的污染物会滞留在铁谱片上,如果滞留数量较多,将影响对磨粒的观测。

a)直读式铁谱仪的原理b)沉积管内的磨粒排序

图2-28 直读式铁谱仪的工作原理

旋转式铁谱仪克服了上述缺点,同时又保留了分析铁谱可以分析观察磨粒形貌、尺寸大小、材质成分等优点。为避免由于磁力线垂直于基片而造成铁磁性磨屑堆积重叠的缺点,旋转式铁谱仪重新设计了磁场,它是利用永久磁铁、极靴和磁轭共同构成闭合磁路,以极靴上的3个环形气隙(0.5mm的窄缝)作为工作磁场。工作位置的磁力线平行于玻璃基片,当含有铁磁磨屑的润滑油流过玻璃基片时,铁磁磨屑在磁场力的作用下,滞留于基片上,而且沿磁力线方向(径向方向)排列。

旋转式铁谱仪的制谱原理如图2-29 所示。制谱时,

油样2由定量移液管1在定位漏斗的限位帮助下,被滴注

到固定于磁头4上端面的玻璃基片3上。磁头、基片在电

机5的带动下旋转,由于离心作用,油样沿基片四周流动。

油作中铁谱性及顺磁性磨属在磁场力、离心力、液体的粘

滞阻力、重力作用下,按磁力线方向(径向)沉积在基片

上,残油从基片边缘甩出,经收集由导油管排人贮残油杯。

基本经清洗、固定和甩干处理后,便制成了谱片。

图2-29 旋转式铁谱仪的工作原理

旋转式铁谱仪制出的铁谱片,磨屑排列为3个同心圆环,内环为大颗粒,大多数为l~50μm,最大可达几百微米,中环为l~20μm,外环≤10μrn。对于工业上磨损严重并有大量大颗粒及污染物的油样,采用旋转式铁谱仪可以不稀释油样一次制出,对于磨屑比较少的油样则可以增加制谱油样量。制出的谱片还可以在图象

分析仪上进行尺寸分布的分析。

5.磨粒分析运转中的设备的液压系统、润滑系统的油液必然受到污染,其污染物主要来源于三个方面:机械零部件在磨损过程中生成的磨损微粒;外界灰尘或水等物质侵人油液中;油液中添加剂反应后的余物。实践证明,磨损微粒是最常见、危害最严重的污染物。一方面,这些磨损微粒由各种金属、非金属材料组成,对油液起氧化、催化作用,加速油液劣化;另方面,材质较硬。又随油液流人各磨擦表面,划伤、研伤零件表面,造成间隙增大、精度下降、振动和噪声产生。在液压系统中,甚至堵塞油路、研伤高精度问芯配合面,造成更大事故。磨损颗粒的数量、尺寸大小、尺寸分布、成分和形貌特征都直接与机械零件的磨损状态密切相关,它们是机械设备状态监测、故障诊断以及初期预报的重要依据。

铁谱技术的特点在于它不但能定量测量润滑油系统内大、小磨粒的相对浓度,而且能直接考察磨粒的形态、大小和成分,后者更是它的独到之处。因此,在铁谱片上从数以百万计的千姿百态微观物质中准确地识别各类磨粒,便是每个运用铁谱技术开展设备故障诊断工作的人员所必须掌握的一门独特技术。为此,国外在总结了十几年实践经验的基础上,编辑并发表了几百张典型磨粒图谱。近几年来,我国也在一些专业领域中陆续编辑了有关轴承、齿轮、柴油机、液压系统等特定零件、系统和设备的磨粒图谱,这些都为运用铁谱技术定性分析提供了宝贵的参考资料。

(1)钢铁磨损微粒的识别实验研究表明,由于磨损机理不同,其摩擦副表面会产生出不同形态及尺寸特征的磨屑。钢或合金钢材质组成的摩擦副,在运转时磨损产生的微粒可分为以下几类。

1)正常磨损微粒正常磨损微粒是指设备在正常运行状态下,由于滑动磨损所产生的磨损微粒。

当摩擦副磨合时,磨损表面上会形成一层厚度大约为1μm的光滑表层-剪切混合层,形成稳定的剪切混合层后机器就处于正常磨损状态。在运行时,由于摩擦力的周期性作用,因疲劳而产生小片剥落,这一层不断剥落又不断产生,从而形成一个稳定的磨损状态。这时的磨屑是一些具有光滑表面的“鳞片”状颗粒,其尺寸范围是长轴尺寸从0.5μm到15μm,甚至更小,厚度在0.15~1μm之间。较大的磨屑,其长轴尺寸与厚度的比例约为10:1,长轴仅为0.5μm的小磨屑,长轴尺寸与厚度的比例约为3:l。

2)严重滑动磨损微粒当滑动表面由于载荷或速度过大时,造成磨损表面接触应力迅速增大,这时开始发生严重滑动磨损。这时剪切混合层变得很不稳定,出现大颗粒脱落。如果表面应力继续增加,就会造成整个表面发生剥落,出现破坏性磨屑,磨损速度将迅速加快。大磨屑与小磨屑间数量比,决定于表面应力超过极限值的程度,应力值越高,大磨屑物比例就越高。

严重滑动磨损磨屑尺寸在20μm以上,长轴尺寸与厚度的比约为10:1,微粒表面有划痕,有直的棱边。随着磨损程度的加重,表面的划痕和直边也更显着。

3)切削磨损微粒切削磨损微粒类似车床切削加工产生的切屑,这种磨粒形态一般有环状、螺旋状、曲线状等。产生切削磨损微粒的原因大约有两种:一是摩擦副中较硬的一方由于安装不良或出现裂纹,造成硬的刃边,穿入较软的一方产生磨屑。这种磨屑通常都比较粗大,平均宽度为2~5μm,长度为25~100μm。另一

种是润滑系统中的外来污染颗粒或是系统内的零件磨损微粒,均可嵌入摩擦副中软的摩擦表面,在摩擦过程中产生切削磨损微粒。这种情况下产生的磨屑粒度与污染颗粒的粒度成正比,磨屑厚度可小到0.25μm,长度可达5μm。

切削磨损微粒是非正常磨损微粒,它们的存在和数量多少要仔细监测。如果系统中大多数切削磨损微粒的长度为几个μm,厚度小于lμm,可以判断润滑系统中有粒状污染物存在;如果系统中长度大于50μm的大切削微粒快速增加,零件即将可能发生失效。

4)滚动疲劳磨损微粒这种微粒通常产生于滚动轴承的疲劳过程中,它包括三种不同形态:疲劳剥离磨屑,球状磨屑和层状磨屑。

a.疲劳剥离磨屑是在点蚀时从摩擦副表面以鳞片形式分离出的扁平形微粒,表面光治,有不规则的周边。磨属的最大粒度可达100μm,其长轴尺寸与厚度之比约为10:1。如果系统中大于10μm的疲劳剥离微粒有明显的增加,这就是轴承失效的预兆,可对轴承的疲劳磨损进行初期预报。

b球状磨屑是在轴承疲劳裂纹中产生的,它的出现,表示轴承已经出现故障,所以球状微粒是滚动轴承疲劳磨损的重要标志。一般说来,球状磨屑都比较小,大量的磨屑直径小于3μm,而其它原因例如液压系统中的气穴腐蚀、焊接和磨削加工过程中产生的球形金属微粒的直径往往大于10μm,两者粒度大小的差别可作为区分依据。

c.层状磨屑是第三种滚动疲劳磨屑。其粒度在20~50μm范围内,长轴尺寸与厚度之比为30:l。这种层状磨屑被认为是因磨损微粒粘附于滚动元件的表面之后,又通过滚动接触碾压而成的。它的特征是呈片状,四周不规则,表面上有空洞。

层状磨屑在轴承的整个使用期内都会产生,特别是当疲劳剥落发生时,这种层状磨屑会大大增加,同时伴有大量球状磨屑产生。因此,如果系统中发现有大量层状磨属和球状磨屑存在,而且数量还在增加,就应当预报滚动轴承已存在导致疲劳剥离的显微疲劳裂纹了。

5)滚动-滑动复合磨损微粒滚动-滑动复合磨损也属疲劳磨损,它是齿轮副、凸轮副等摩擦副的主要损坏原因。齿轮的齿面在啮合过程中,相对滚动和滑动同时并存,所以齿轮的磨损形式包括滚动疲劳磨损和粘着磨损两种。在节线处的磨损类型主要是疲劳及胶合和擦伤。疲劳磨屑与滚动轴承所产生的磨屑有许多共同之处,它们通常均具有光滑的表面和不规则的外形,磨屑的长轴与厚度之比为4:1到10:1(由齿轮设计决定)。滚动-滑动复合磨损微粒的特点是磨屑较厚(几个微米),长轴与厚度比例较高。

齿轮胶合时,因载荷和速度过高,摩擦过热使油膜破坏,致使处于啮合的齿轮发生粘着。摩擦表面被拉毛,这就更进一步导致了磨损的加剧。胶合区域一般发生在节线与齿顶或节线与齿根之间,这一现象一旦发生就会很快影响到每一个轮齿,产生大量的磨屑。这种磨屑都具有被拉毛的表面和不规则的轮廓,在一些大磨屑上具有明显的表面划痕。由于胶合的热效应,通常有大量氧化物存在,表面出现局部氧化的迹象,在白光照射下呈棕色或蓝色的回火色,其氧化程度决定于润滑剂的组成和胶合的程度。胶合产生的大磨损微粒比例并不十分高。

以上介绍的5种主要磨屑,是钢铁磨损微粒的主要形式,其中后4种都与钢铁部件的失效相联系,通过对谱片上磨屑形状、大小的识别就可以了解到,机械的磨损原因和所处状态。不同的机械设备对部件精度要求不同,预报失效的磨屑粒度也不相同。一般机械通常出现小于5μm的小片形磨属表明机器处于正常磨损状态,当大于5μm的切削形、螺旋形、图形和弯曲形微粒大量出现时,则是严重磨损的征兆。

(2)有色金属磨粒除钢铁磨屑外,一些系统内含有色金属的部件,必须对有色金属磨屑进行识别。在铁谱片上有色金属微粒不按磁场方向排列,以不规则方式沉淀,大多数偏离铁磁性微粒链,或处在相邻两链之间,它们的尺寸沿谱片的分布与铁磁性微粒有根本的区别。

1)白色有色金属使用x射线能谱法可以准确无误地确定磨屑成分,在铁谱显微镜下不易简单地辨识白色的有色金属微粒,但用温化学分析和铁谱片加热处理方法还是能区分例如铝、银、铬、镐、镁、铝、钛和锌等。

2)铜合金铜合金有特殊的红黄色,因而易于识别。但注意与其它金属微粒的回火色相混淆,例如钢铁微粒在磁力线上可与铜合金区分。其它金属如钛、巴氏合金等呈棕色,颜色不如铜合金均匀。

3)铝、锡合金由于铝、锡合金有良好的塑性,在摩擦过程中擦伤后辗成片而不是大片剥落,同时磨屑往往是已经氧化了的,所以在铁谱片上经常可以看到许多游离的铝、锡合金磨屑。例如,如果轴承润滑不良,或者在设备起动和停车时,轴承的油膜被破坏产生氧化磨损,这时就会产生被氧化了的铝、锡合金磨屑。

铝、锡合金的另一种磨损是腐蚀磨损。例如柴油机燃料中的硫形成硫酸,汽油发动机中油氧化形成的有机酸都会腐蚀铝、锡轴承合金,造成极细的腐蚀磨损微粒,往往在铁谱片的出口端大量沉积。

(3)铁的氧化物的辨别铁谱片上出现铁的红色氧化物,表明润滑系统中有水分存在;如果铁谱片上出现黑色氧化物,说明系统润滑不良,在磨屑生成过程中曾经有过高热阶段。

1)铁的红色氧化物磨屑有两类。一类是多晶体,在白色反射光下呈桔黄色,在反射偏振光下呈饱和的桔红色,如果铁谱片上有大量此类磨屑存在(特别是大磨屑存在),说明油样中必定有水。另一类是扁平的滑动磨损微粒,在白色反射光下呈灰色,在白色透射光下呈无光的红一棕色,因反光程度高,容易与金属磨属相混淆,如果仔细观察则会发现,这种磨屑在双色照明下不如金属颗粒明亮,在断面薄处有透射光。铁谱片中有此类磨屑出现,说明润滑不良,应采取相应对策。

2)铁的黑色氧化物铁的黑色氧化物微粒外缘为表面粗糙不平的堆积物,因含有Fe3O4,α-Fe2O3,FeO 等混合物质,具有铁磁性,在铁谱片上以铁磁性微粒的方式沉积。当铁谱显微镜的分辨率接近低限时,有蓝色和桔黄色小斑点。铁谱片上存在大量黑色铁的氧化物微粒时,说明润滑严重不良。

3)深色金属氧化物局部氧化了的铁性磨屑属于这类深色金属氧化物,这些微粒是润滑不良的反应,说明在其生成过程中被过热氧化。大块的深色金属氧化物的出现,是部件毁灭性失效的征兆,而小量的较小的深色金属氧化物与正常摩擦磨损微粒一起沉积时,还不是发生毁灭性失效的表征。

(4)润滑剂的变质产物的识别

1)摩擦聚合物润滑剂在临界接触区受到超高的压力作用下,其分子发生聚合反应而生成大块凝聚物。油

样中存在摩擦聚合物的特征是细碎的金属磨损颗粒嵌在无定形的透明或半透明的基体中,这种基体就是由上述凝聚物构成的。

油样中存在摩擦聚合物可能表示有问题,这要取决于环境。若油的使用合适,油中适当会有一些摩擦聚合物可以防止胶合磨损。但摩擦聚合物过量对机器有害,它会使润滑油粘度增加,堵塞油过滤器,使大的污染颗粒和磨属进人机器的摩擦表面,造成更大的磨损。在一种通常不产生摩擦聚合物的油样中见到摩擦聚合物,意味着已出现过载现象。

2)润滑剂变质产生的腐蚀磨属是非常细小的微粒,其尺寸在亚微米级,腐蚀磨屑沉积的部位是在铁谱片的出口处。

3)二硫化钼二硫化钼是一种有效的固体润滑剂,铁谱上的二硫化钼往往表现多层剪切面,而且有带直角的直线棱边,具有金属光泽,颜色为灰紫色。二硫化钼具有反磁性,往往被磁场排斥。

4)污染颗粒污染颗粒包括新油中的污染、道路尘埃、煤尘、石棉屑、过滤器材料等,必要时可参考标准图谱识别。

五、光谱技术及仪器

油液分析的光谱技术是机械设备状态监测、故障诊断中应用最早的最成功的现代技术之一,它可以有效地监测机械设备润滑、液压系统中油液所含磨损颗粒的成份及其含量的变化,同时也可以准确地检测油液中添加剂的状况及油液污染变质的程度。润滑油液中各磨损元素的浓度与零部件的磨损状态有关,故可根据光谱监测结果来判断零部件磨损状态及发展趋势,从而达到诊断机器故障的目的。因此,光谱技术已成为机械设备油液监测的重要方法之一。

光谱技术的局限性在于不能识别磨粒的形貌、尺寸,不能判断磨损类型。

用于油液监测与诊断的光谱技术目前主要是原子发射光谱技术和原子吸收光谱技术。

(一)原子发射光谱技术和仪器

各种元素都是由原子组成的,原子又由原子核及绕核旋转的电子组成,每个电子处在一定的能级上,具有一定的能量。在正常情况下,原子处于稳定状态,这种状态称为基态,当物质受到外界能量(电能、热能等)作用时,校外电子就跃迁到高能级,处于高能态的原子很不稳定,被称为激发态。激发态原子可存在时间约108 s,当它从高能态跃迁至基态或较低能级时,多余的能量便以光的形式释放出来,若使辐射光通过棱镜或光栅,就能得到按一定波长顺序排列的图谱,即光谱。

气体的原子或离子,受激发后辐射的光谱,是一些单一波长的光,即线光谱。利用物质受电能或热能激发后辐射出的特征线光谱来判断物质组成的技术,就是原子发射光谱技术。根据特征谱线是否出现来判断某物质是否存在,根据特征谱线的强弱来判断该物质含量的多少。

采用光电直读光谱仪测定润滑油中各种金属元素的浓度,其工作原理是:用电极产生的电火花作光源,激发油中金属元素辐射发光,将辐射出的线光谱由出射狭缝引出,由光电倍增管将光能变成电能,再向积分电容

器充电,通过测量积分电容器上的电压达到测量试油内金属含量浓度的目的,如果测量和数据处理由微机控制,则速度更快。

图2-30 是美国Baird公司MOA型直读式发射光谱仪的原理图。它是目前较为先进的润滑油分析发射光谱仪。仪器工作原理是:激发光源采用电弧,一极是石墨棒,另一极是缓慢旋转的石墨圆盘。石墨圆盘的下半都浸入盛在油盘样的被分析油样中,当它旋转时,便把油样带到两极之间。电弧穿透油膜使油样中微量金属元素受激发发出特征辐射线,经光栅分光,各元素的特征辐射照到相应的位置上,由光电倍增管接受辐射信号,再经电子线路的信号处理,便可直接检出和测定油样中各元素的含量(ppm)。

该仪器分析容量大,精度高,分析可靠,分析速度快。仪器操作简单,原始油样不须处理即可直接送检,环境条件要求低。特别适合大规模含有多种材质摩擦副(例如,内燃机发动机、飞机发动机等)的设备群体监测。

图2-30 直读式发射光谱仪的工作原理

(二)原子吸收光谱技术和仪器

原子吸收光谱技术是将待测元素的化合物(或溶液)在高温下进行试样原子化,使其变为原子蒸气。当锐线光源(单色光或称特征辐射线)发射出的一束光,穿出一定厚度的原子蒸气时,光的一部分被原子蒸气中待测元素的基态原子吸收。透过光经单色器将其它发射线分离掉,检测系统测量特征辐射线减弱后的光强度。根据光吸收定律就能求得待测元素的含量。

图2-31 是原子吸收光谱仪工作原理图。润滑油试样经过预处理后送入仪器,由雾化器将试液喷成雾状,与燃料气及助燃气一起进入燃烧器的光焰中。在高温下,试样经去溶剂化作用。挥发及离解,润滑油中的待测物质(例如铁元素)转变为原子蒸气。由待测含量的物质(例如铁)相同元素做成的空心阴极灯辐射出一定波长(例如铁元素为3720?)的特征辐射光,当它通过火焰后,一部分光被待测物质(例如铁)的基态原子吸收。测量吸光度后,利用标准系列试样作出的吸光度——浓度工作曲线图上,可查出未知油样待测物质(例如铁元素)的含量。

图2-31 原子吸收光谱仪的工作原理

1-电源,2-光源,3-试样,4-火焰原子化器,5-光学系统,6-光电元件,7-放大器,8-读数系统该技术的优点在于分析灵敏度高,适用范围广,取样量少,多采用微机进行数据处理,分析精度高,分析功能强,价格适中。但测一种元素需要更换一种元素灯,油样预处理较发射光谱仪繁琐,用燃料气加热试样不方便也不安全(先进的仪器采用石墨加热炉加热)。美国生产的PE型系列原子吸收光谱仪,可同时测几种元素,油作预处理较为简便,微机处理数据,有石墨炉电源与自动取样器等。

(三)油液光谱分析技术的应用

通过油样光谱分析可以得知油样含有的各种元素成分。从机械设备润滑系统中,定期地、持续地采取油样并进行光谱分析,就可以获得反映设备工作状态的各种信息及其变化。因此,目前油样光谱分析技术已广泛而

有效地被应用于监测设备零部件磨损趋势、机械设备的故障诊断,以及大型重要设备的随机监测方面。通过磨合过程的油样光谱分析,监测磨合过程,摩擦副表面元素的变化趋势,从而可以合理确定最佳磨合规范。通过油样光谱分析可以确定合理的换油限,给出油中含水量、添加剂元素变化情况。

六、其它油液监测技术

(一)显微镜颗粒计数技术

该技术最常用,也较简单。其基本原理是将油样经滤膜过滤,然后将带污染颗粒的滤膜烘干,放在普通显微镜下统计不同尺寸范围的污染颗粒数目和尺寸。

该技术的优点是能直接观察和拍摄磨损微粒的形状、尺寸和分布情况,从而定性了解磨损类型和磨损微粒来源。同时装备简单、费用低廉、应用广泛。世界各国都制订有显微计数法油液颗粒污染物分析标准,国内也制订有相类似的标准。但操作较费时,人工计数误差较大,再现性差,对操作人员技术熟练要求苛刻。

(二)自动颗粒计数技术

随着颗粒计数技术的发展,各种类型的、先进的自动颗粒计数器研制成功,它们不需从样液中将固体颗粒分离出来,而是自动地对样液中的颗粒尺寸测定和计数。

可以鉴别颗粒的大小,并由计数器计数。可以同时对不同尺寸范围内的颗粒计数,以得到粒度分布的情况。这样可以测试到大的微粒的发展趋势,可以早期预报机器中部件的磨损以至失效。可用于实验室内进行的污染分析以及在线污染监测。

(三)磁塞技术

磁塞技术是种简单而有效的油液监测与诊断技术。它的基本原理是用带磁性的探头插人润滑系统或液压系统的管道内,收集油液中的铁磁性磨损微粒,再用放大镜或光学显微镜观察磨损颗粒的大小、数量和形状,从而判断机器零件的磨损状态。

(四)重量分析技术

重量分析技术是将油样用滤膜过滤,烘干后称重,用滤膜过滤前后的重量之差作为油样中的污染微粒重量.

该技术特别适用于油液中含磨损微粒浓度较大时进行油液分析,所需装备简单。但由于磨损微粒重量仅几毫克甚至零点几毫克,当外部环境、过滤方法、油样稀释液种类、冲洗条件、烘干条件稍有变化时,就会发生较大偏差,测试精度较低。另外也不能获得磨损微粒尺寸分布、形态等信息,所以只能用于润滑状态粗略判断。

油液监测与诊断技术

油液监测与诊断技术 油液监测与诊断技术是近十几年迅速发展起来的用于机械设备状态监测的新技术,尤其在发动机、齿轮传动、轴承系统、液压系统等诸方面,该技术取得了显著的效益,获得了广泛的应用,如表所示。 油液监测与诊断技术通常包括油液理化性能分析技术、铁谱分析技术、光谱分析技术、颗粒计数技术等,实现对油样中所含磨粒的数量、大小、形态、成分等及其变化,油品的劣化变质程度等的分析。油液分析技术涉及的机理、分析内容及使用的仪器见表。 一、润滑剂及其质量指标 (一)润滑剂的分类 润滑剂可分为液体润滑剂、半固体润滑剂、固体润滑剂和气体润滑剂四大类。 l.液体润滑剂例如润滑油、水、液态金属等。 2.半固体润滑剂例如润滑脂,它是用稠化剂和润滑油制成,是一种介乎液体和固体之间的润滑材料,在一定意义上兼有二者的优点。 3.固休润滑剂例如石墨、二硫化铝等,依靠这些物质在摩擦表面形成低剪切强度,并与摩擦表面有较强附着力的固体润滑膜达到润滑目的。 4.气体润滑剂例如空气、氮气等,多用于高温、高速、轻载场合,例如高速磨头的空气轴承。 (二)润滑油性能指标 1.粘度粘度是润滑油最重要的性能指标之一,是反映润滑油流动的粘性大小,决定润

滑油油膜厚度的主要因素之一。润滑油的作用就在于使润滑油在机器作功运动的摩擦表面形成油膜,该油膜起到润滑、减震、冲洗、冷却等作用。

2.油性和极压性油性和极压性是表示润滑油抵抗磨损能力的指标,油性表示油膜的吸附能力,极压性则表示在冲击载荷或高温重载荷作用时油膜不破裂的能力。 3.酸值酸值是指中和每1克润滑油中的有机酸所消耗的氢氧化钾的毫克数,单位是KOHmg/g。当所用油品的酸值超过标准时应换用新油。 4.水分润滑油的水分是指润滑油中含水量的重量百分比数。润滑油中水分的存在,破坏润滑油形成油膜、使润滑效果变差,并加速有机酸对金属的腐蚀作用,锈蚀设备,而且使添加剂分解沉淀。 5.水溶性酸和碱水溶性酸和碱是指溶于油品中的无机酸和碱,以及低分子有机酸和碱性氧化物,它们将强烈腐蚀设备,加速油品变质,降低油品的绝缘性能。 6.机械杂质机械杂质是指润滑油中各种沉淀物、胶状悬浮物、砂土、金属粒等杂质的重量百分比,它是反映油品纯洁度的指标。油品中机械杂质的存在会加剧机器零件的磨损,加速油品老化,严重时还会堵塞油路及滤清器。 7.闪点闪点是表示润滑油蒸发性的指标。在规定的条件下加热油品,当油蒸气与周围空气形成的一定浓度的混合气体时,同火焰接触时产生短暂闪火时的最低油温即为闪点。闪点是油品的安全性指标,油品的工作温度一般低于闪点20~30℃为宜。 8.凝点在规定条件下使油品冷却到不流动时的最高温度即为凝点。凝点是反映油品低温流动性的重要指标。通常,油品工作温度一般应比凝点高15℃~30℃为宜。 此外,还有灰分、残炭、腐蚀、抗氧化安定性、抗乳化度、抗泡沫性等性能指标。 (三)润滑脂性能指标 润滑脂是由基础油加稠化剂制成的半液体润滑剂,它适用于下面几种情况:①某些开放式润滑部位,起到润滑作用而又不会流失和滴落;②在有尘埃、水分或有害气体侵蚀的情况下,要求有良好的密封性、防护性和防腐蚀性的场合;③由于工作条件限制,而要求长期不换润滑剂的摩擦部位的润滑部位;④摩擦部位的温度和速度变化范围较大的机械的润滑以及满足某些机械设备的封存、防腐、防锈上的需要。 润滑脂的性能指标有 1.外观良好的润滑脂,其颜色和稠度都应是均匀的,没有硬块颗粒,没有析油现象,表面没有干硬的皮层和稀软糊层。 2.针入度针入度是表示油脂稠度的指标。 3.滴点它是决定润滑脂使用温度的指标。 4.抗腐蚀性主要反映润滑脂对金属的腐蚀程度。 除此之外,润滑脂还有胶体安定性、机械杂质、氧化安定性等性能指标。 (四)液压油 液压油的主要作用是传递液压能,其次是润滑、冷却、防锈、减震等作用,它的状态直接关系到液压机械运转的可靠性。反映液压油性能的主要指标及其测试方法与润滑油类似,不再重复。 (五)添加剂 在很多情况下,基础油很难满足摩擦副对润滑剂提出的苛刻要求。因此,为了提高油品质量和满足使用性能还必须在润滑油品中加人少量一种或几种物质,以改善油品的某些性能,所添加的物质称为添加剂。一般极少量添加剂,就能显著改变油品的质量,这样就可避免润滑油复杂加工过程,又可解决一些加工精制仍不能满足的特殊要求,从而扩大优质润滑油产品的来源。 二、油液性能分析 对机械设备的润滑系统进行定期的油样理化性能测试分析,可以动态监测使用过程中润滑油质量变化情况,从而保证机械设备处于良好的润滑状态。同时也可以随机监测润滑油的质量指标变化情况,从而确定最合理的最经济有效的换油周期。

在线监测--油液分析的未来之路

在线监测—油液分析的未来之路 陈闽杰曾安李秋秋贺石中 (广州机械科学研究院设备状态检测研究所,广东广州,510701) 摘要:研究了油液分析未来的发展趋势与方向。通过对基于实验室检测的油液分析技术目前在各个行业领域的应用状况与国内外在线传感器发展情况的分析,说明在线监测将以其时效性与便于维护性而成为未来油液监测的主流。另一方面,分析了在线监测目前仍存在的不足,提出了一种监测系统的构建模型,讨论了在线油液监测未来的发展方向。 关键词:实时监测,油液分析,视情维护,专家系统 Online Monitoring - the road ahead of Oil Analysis CHEN Min-jie, ZENG An, LI Qiu-qiu, HE Shi-zhong (GMERI Equipment Condition Detect institute Guangzhou 510701, China) Abstract: The trend and direction of oil analysis is discussed based on the analysis on the application of lab based oil analysis technology in commercial and military area and the online sensor development to indicate that the online monitoring will be the mainstream by its real time and easy to service characteristics. On the other hand, analyze the deficiency of online monitoring, put forward a construction model of monitoring system and discuss the development of online oil monitoring in future. Key words: real time monitoring; oil analysis; condition based maintenance; expert system 1. 前言 油液状态监测的首要目的是对油品劣化、污染和机械磨损的早期发现与预警。首先,机械磨损的早期发现是设备视情维修的基础,可以在设备发生严重磨损与失效之前安排检修,减少设备损坏;其次,根据设备状态合理安排检修时间,减少故障停机与定期检修对生产的影响;再次,提高了设备的平均故障间隔时间,提高了生产率。此外,对油品的劣化与污染的早期发现与预警,是从根源上切断 作者简介:陈闽杰,(1983-),男,硕士学历,工程师,主要研究方向:设备润滑故障诊断与状态检测技术研究。

油液分析

油液分析技术 油夜分析技术又称为设备磨损工况监测技术,是一种新型的设备维护技术,它利用油液所携带的设备工况信息来对设备的当前工作状况以及未来工作状况作出判断,从而为设备的正确维护提供了有效的依据,达到预防性维修的目的。油液在设备中的各个运动部位循环流动时,设备的运行信息会在油液中留下痕迹,这些信息主要包括以下三个方面: 1、油液本身的物理和化学性质的变化 2、油液中设备磨损颗粒的分布 3、油液中外侵物质的构成以及分布 设备润滑与磨损状态监测(以下简称油液监测)是设备开展润滑管理、设备状态维修的重要基础工作,是提高设备可靠性、保证设备安全运行的重要手段。 油液监测技术就是通过对设备在用润滑油的理化性能指标、磨损金属和污染杂质颗粒的定期跟踪监测,及时了解掌握设备的润滑和磨损状态信息,诊断设备磨损故障的类型、部位和原因,为设备维修提供科学依据,指导企业进行设备的状态维修和润滑管理,从而预防设备重大事故发生的发生,降低设备维护费用。 油液分析技术,就是抽取在用油油样并测定其劣化变质程度及油液中磨损磨粒的特性,来分析判断机械零部件的磨损过程,部位,磨损机理,失效类型及磨损程度等,得到机械零部件运转的信息。磨损磨粒的特性主要指磨粒的含量,尺寸,成分,形态,表面形貌及粒度分布等。油样分析技术通常包括油液理化性能分析技术,铁谱分析技术,光谱分析技术,颗粒技术技术,磁塞技术等。 对设备故障所作的统计资料表明: 设备的失效80%是因为润滑故障导致异常磨损所引起; 柴油机中大约70%是因为油品污染引起,而其中50%是磨损造成的; 滚动轴承中大约40%的失效与损坏是由于润滑不当而导致; 齿轮中大约51%的故障与润滑不良和异常磨损有关; 液压系统中大约70%的故障来自于液压介质被污染,污染度等级过高所致; 摩擦消耗的能源占总能源消耗的1/3-2/3; 油液分析技术的步骤: 1.收集设备原始资料、考察设备现场 2.制定监测计划和取样规范 3.按规范取样 4.样品分析 5.数据处理

汽车检测与诊断技术知识点总结复习过程

1.汽车检测与诊断技术是汽车检测技术与汽车故障诊断技术的统称。汽车检测是指为了确定汽车技术状况或工作能力所进行的检查与测量。汽车诊断是指在不解体(或仅拆下个别小件)的情况下,确定汽车的技术状况,查明故障部位及故障原因 2.汽车检测分类 1.安全性能检测 2.综合性能检测 3.汽车故障检测 4.汽车维修检测 汽车维修检测包括汽车维护检测和汽车修理检测,汽车维护检测主要是指汽车二级维护检测,它分为二级维护前检测和二级维护竣工检测。汽车修理检测主要是指汽车大修检测,它分为修理前,修理中及修理后检测 3.随机误差是指误差的大小和符号都发生变化而且没有规律可循的测量误差,不可避免 4.粗大误差是指由于操作者的过失而造成的测量误差 ,可以避免 5.汽车检测系统通常由电源,传感器,变换及测量装置,记录及显示装置,数据处理装置的组成 传感器是一种能够把被测量的某种信息拾取出来,并将其转换成有对应关系的,便于测量的电信号装置 变换及测量装置是一种将传感器送来的电信号变换成易于测量的电压或电流信号的装置 6.检测系统的基本要求:1.具有适当的灵敏度和足够的分辨力 2.具有足够的检测精度另外,检测系统还应具备良好的动态特性 灵敏度是指输出信号变化量与输入信号变化量的比值 分辨力是指检测系统能测量到最小输入量变化的能力,即能引起输出量发生变化的最小输入变化量 7.智能化检测系统的特点:1自动零位校准和自动精度校准 2自动量程切换 3功能自动选择 4自动数据处理和误差修正 5自动定时控制 6.自动故障诊断 7功能越来越强大 8使用越来越方便 8.诊断参数分类 诊断参数可分为三大类:工作过程参数,伴随过程参数,几何尺寸参数 (1)工作过程参数:指汽车工作时输出的一些可供测量的物理量、化学量,或指体现汽车功能的参数,如汽车发动机功率、燃油消耗率、最高车速和制动距离等。从工作参数本身就能表诊断对象总的技术状况,适合于总体诊断 (2)伴随过程参数:伴随过程参数一般并不直接体现汽车或总成的功能,但却能通过其在汽车工作过程中的变化,间接反映诊断对象的技术状况,如工作过程中出现的振动、噪声、发热和异响等。伴随过程参数常用于复杂系统的深入诊断。 (3)几何尺寸参数:几何尺寸参数能够反映诊断对象的具体结构要素是否满足要求,可提供总成、机构中配合零件之间或独立零件的技术状况,如配合间隙、自由行程、圆度和圆柱度等。 9.诊断参数选用原则: (1)单值性 (2)灵敏性 (3)稳定性 (4)信息性 10.诊断参数标准的组成:(1)初始标准值 (2)极限标准值 (3)许用标准值 11.诊断周期 汽车诊断周期是汽车诊断的间隔期,以行使里程或使用时间表示,诊断周期的确定,应满足技术和经济两方面的条件,获得最佳诊断周期。 最佳诊断周期,是能保证车辆的完好率最高而消耗的费用最少的诊断周期。

Jiao-C-4第四节 油液监测与诊断技术

第四节油液监测与诊断技术 油液监测与诊断技术是近十几年迅速发展起来的用于机械设备状态监测的新技术,尤其在发动机、齿轮传动、轴承系统、液压系统等诸方面,该技术取得了显著的效益,获得了广泛的应用,如表2-11所示。 油液监测与诊断技术通常包括油液理化性能分析技术、铁谱分析技术、光谱分析技术、颗粒计数技术等,实现对油样中所含磨粒的数量、大小、形态、成分等及其变化,油品的劣化变质程度等的分析。油液分析技术涉及的机理、分析内容及使用的仪器见表2-12。 一、润滑剂及其质量指标 在机器的摩擦副间加入某种介质,使其减少摩擦和磨损,这种介质称为润滑材料,即润滑剂。由于摩擦副的类型和工况条件不同,相应地对润滑材料的要求和选用也不同,只有按摩擦副对润滑材料性能的要求,合理地选用润滑材料,才能达到延长设备使用寿命,保证设备正常运转及提高企业经济效益的目的。

(一)润滑剂的分类 润滑剂可分为液体润滑剂、半固体润滑剂、固体润滑剂和气体润滑剂四大类。 l.液体润滑剂例如润滑油、水、液态金属等。润滑油中矿物油来源充足、品种多,不易变质,加之一般矿物润滑油,含有极性物质,易形成吸附膜或油中加入添加剂后形成边界膜达到润滑目的,故应用最为广泛。 2.半固体润滑剂例如润滑脂,它是用稠化剂和润滑油制成,是一种介乎液体和固体之间的润滑材料,在一定意义上兼有二者的优点。主要用于长期工作而不易经常更换润滑剂的摩擦部位以及因结构关系不能使用润滑油的机器设备。 3.固休润滑剂例如石墨、二硫化铝等,依靠这些物质在摩擦表面形成低剪切强度,并与摩擦表面有较强附着力的固体润滑膜达到润滑目的。 4.气体润滑剂例如空气、氮气等,多用于高温、高速、轻载场合,例如高速磨头的空气轴承。 (二)润滑油性能指标 掌握润滑油的性能指标,能进一步熟知其适用场合,为不同工况条件选择合适的润滑油提供必要的依据。 1.粘度粘度是润滑油最重要的性能指标之一,是反映润滑油流动的粘性大小,决定润滑油油膜厚度的主要因素之一。润滑油的作用就在于使润滑油在机器作功运动的摩擦表面形成油膜,该油膜起到润滑、减震、冲洗、冷却等作用。 润滑油的粘度随温度的变化而变化。一般地讲,同一润滑油,温度越高粘度越小,温度越低粘度越大。称润滑油的这种性能为“粘温性能”,常用粘度指数表示,粘度指数高说明油品粘度随温度的变化较小,粘温性较好。 表示粘度的单位和测定粘度的方法很多,例如英美等国多采用赛氏和雷氏粘度,德国和西欧多采用恩氏粘度和运动粘度,我国主要采用运动粘度。国际标准化组织规定统一采用运动粘度。我国新的粘度牌号以N为标记,即N2、N3、N5、N7、……N460、N680、N1000、N1500,共18级。在使用中一定要注意牌号的种类,以避免差错。 运动粘度可用运动粘度测定仪测定。 2.油性和极压性油性和极压性是表示润滑油抵抗磨损能力的指标,油性表示油膜的吸附能力,极压性则表示在冲击载荷或高温重载荷作用时油膜不破裂的能力。 我国评定润滑油的极压性,主要在四球式摩擦试验机上进行。 3.酸值酸值是指中和每1克润滑油中的有机酸所消耗的氢氧化钾的毫克数,单位是K

油色谱在线监测系统调试手册

ES-2010 变压器油色谱在线监测系统 使 用 手 册 第一章 基本说明 福州亿森电力设备有限公司非常感谢您选用 ES-2010 变压器油色谱在线监测系统。为确保安全正确的使用本系统,请在使用前一定详细阅读本使用手册。阅读后请妥善保存,以便必要时查阅。 本使用手册在安全规程上采用如下三种方式强调一些重要事项: 警告 这种警示栏是指对生命和健康有一定危险的提示。忽视这种警告可能导致严重的或 致命的伤害。 1.1 规定用途 ES-2010 变压器油色谱在线监测系统是用于电力变压器油中溶解气体的在线分析与故障诊断,适用于 110kV 及以上电压等级的电力变压器、电弧炉变压器、电抗器以及互感器等油浸式高压设备。 当心 ES-2010系统是否只用于规定的用途,由用户负责。为了安全起见,在系统的安装、改进投入运行和更新过程中,事前未经本公司同意不能进行其他未授权的作业。 否则可能危害本系统和变压器的安全运行。在变压器油的处置上一定要遵守当地的 环境保护条例。 警告 必须严格遵守所有有关的防火规程。 当心 这种警示栏是指对本设备和用户的其他设备有一定危险的提示,但不会导致严重的 或致命的伤害。 注意 这种提示是对某一事项的重要说明。

1.2相关标准 本设备引用下列标准,通过引用标准中的相关条文构成本标准的条文。由此规定了本设备的技术要求、验收规则、检验方法、适用范围、包装要求、标志、运输及储存。 (1 )GB1094 -1996 电力变压器 (2 )GB2536 -1990 变压器油 (3 )GB7597 -1987 电力用油取样方法 (4 )GB/T507 -1986 绝缘油介电强度测定法 (5 )GB/T7601 -1987 运行中变压器油水分测定法 (6 )GB/T14542 -93 运行中变压器油的维护管理规定 (7 )DL/T 596 -1996 (2005 复审)电力设备预防性试验规程 (8 )DL/T 572 -1995 (2005 复审)电力变压器运行规程 (9 )GB /T 7252 --- 2001 变压器油中溶解气体分析和判断导则 (10 )GB/T17623 -1998 绝缘油中溶解气体组份含量的气相色谱测定法 (11 )GB/T 2423 -2001 电工电子产品环境试验 (12 )GB/T 17626 -1998 电磁兼容试验和测量技术 (13 )GB/T 13384 -1992 机电产品包装通用技术要求 (14 )GB190 — 1990 危险货物包装标志 (15 )GB5099 -1994 钢质无缝气瓶 (16 )GB/T 9361 -1988 计算站场地安全要求 (17 )GB 4943 -2001 信息技术设备的安全 (18 )GB/T 2887 -2000 电子计算机场地通用规范 (19 )GB 4208 -1993 外壳防护等级(IP 代码) 1.3安全规程 从事本设备的安装、投入运行、操作、维护和修理的所有人员 ◆必须有相应的专业资格。 ◆必须严格遵守各项使用说明。 ◆不要在数据处理服务器上玩电子游戏、浏览网页。 ◆不要在数据处理服务器上任意安装软件,避免不必要的冲突。 违章操作或错误使用可能导致: ◆降低设备的使用寿命和监测精度。 ◆损坏本设备和用户的其他设备。 ◆造成严重的或致命的伤害。

油液监测技术

机械设备的油液监测技术 摘要:简要介绍了油液监测的基本方法,并用案例说明油液监测所获得的状态参数能很好反映设备的润滑磨损状态,实现设备的预知性维修和主动性维修。 前言 随着机械设备日益向高速、大型、自动化与多功能化方向发展,对设备的可靠性提出了更高的要求。设备运行后,对其进行合理的维修保养至关重要。为满足现代大型机械设备的维修需求,工业界提出了视情维修的概念。为实现设备的视情维修,必须依托设备的状态监测技术。根据国外相关统计数据,机械设备70%以上的故障与磨损有关,而油液分析所获得状态参数能很好地判断设备的润滑磨损状态,因而在国外被广泛采用。 油液监测技术能有效判断机械设备产生磨损故障的原因及部位,从而使设备劣化趋势及时得到矫正,避免恶性事故的发生和发展,实现设备的预知性维修。另一方面,油液监测能及时发现油质劣变原因和污染状态,及时采取对应措施,使设备长期处于良好的润滑状态,减少故障发生概率,延长其使用寿命,实现设备的主动性维护[1]。 1 油液分析三个方面的内容 机械设备的磨损总是不可避免的。磨损过程一般分为三个阶段,即磨合磨损、稳定磨损和剧烈磨损。如果过快或过早出现异常磨损,则应查明原因,及时消除。引发设备出现异常磨损的主要原因[2]如下:(1) 零部件材料加工及装配质量(如不平衡、不对中); (2) 用油不当(如牌号不对、添加了与在用油不相溶的油液); (3) 油液劣变导致品质下降,不能满足设备润滑要求; (4) 环境应力(如温度、湿度等)或机械应力过大; (5) 设备维护不当(如空气滤效率下降导致进入粉尘增加)。 油液监测的目的是控制设备的磨损速率,因此应能涵盖引发异常磨损的所有因素,油液监测技术主要包括三方面的内容: ● 磨损颗粒分析(简称WDA) ● 污染监测与控制 ● 润滑油品质监测 磨损颗粒分析目的是了解设备的磨损状态及原因,属于预知性维修范畴,其它两方面监测的目的是为了延长设备的使用寿命,属于主动性维修范畴。 1.1 磨损颗粒分析 磨损颗粒分析是通过分析油样、过滤器、磁塞中固体颗粒的成分、含量及尺寸等信息,探究设备的

油液分析

机械故障诊断技术大作业 班级:姓名:学号: 第一题、 焦炉除尘风机是铁焦作业区的环保风机,其测点位置、振动值和振动趋势图如下, 试分析并回答下列问题: 1. 该系统信号采样时采用的窗函数是哪种,有何特点; 2. 试选择合适的方法分析风机的运行状态并给出需要采取的应对措施(要求给出相应的判断依据)。 图1 风机及测点分布示意图 机组技术规格: 电机为6极异步电机 电机功率1100KW 电机转速约为985rpm 电机轴承类型:6234CM、NU224CM。 表1 1#导焦风机振动值

图1 测点2水平方向时域、频域波形 图2 测点3水平方向时域、频域波形

解: (1)该系统信号采样时采用的窗函数是汉宁(Hanning)窗又称升余弦窗,汉宁窗可以看作是3个矩形时间窗的频谱之和,从而使旁瓣互相抵消,消去高频干扰和漏能。该函数按函数式从0缓慢地上升,直到中间点才上升到最大(有的是1,有的修正到1),再缓慢下降到终点0。 (2)表1为08年1月份以来该设备的振动值。由表中数据可知,1月份以来该设备各测点水平方向的振动值有上升趋势,风机负荷侧的轴向振动也有所增大。测点2、3波形图显示风机负荷侧振动以转频为主。 在一般情况下,当设备对中不良时,表现为联轴器两端轴向振动增大且以转频及其谐频为主。该设备振动最大处在风机负荷测轴向,经仪器测试发现振动成份以转频为主,并且联轴器两端有近180度的相位差。初步判断:造成联轴器两端轴向振动大的原因是机组对中不良;风机两侧水平方向振动以转频为主,主要与风机转子不平衡有关。风机水平方向振动值在几个月中持续增大,而轴向振动先是变化缓慢,3月风机负荷侧突然增大。分析认为,该设备由于风机转子平衡状态持续劣化,从而引起联轴器对中明显变差,转子不平衡是其振动增大的根本原因。 根据上述分析,该设备由于风机转子平衡状态持续劣化,从而引起联轴器对中明显变差,转子不平衡是其振动增大的根本原因,建议现场点检对风机转子进行平衡校正。 第二题、 挤压机减速箱是石化行业常见的设备,该设备为重载设备,内部有大量斜齿轮,润滑油路为外部润滑,只有一个出油口和回油口,其铁谱定量分析数据及最后一次定性分析结果如下,试分析设备状态并回答以下问题: 1. 下图1~3中W-G表示什么; 2. 下图1~3中异常磨粒有哪几种并写出判断依据; 3. 试选择合适的方法分析减速箱的运行状态并给出需要采取的应对措施(要求给出相应的判断依据)。

监测诊断技术分解

设备状态监测与故障诊断技术 一、概述 设备状态监测与故障诊断技术70年代初形成于英国,由于其实用性以及为社会和企业带来的效益,日益受到企业和政府主管部门的重视。特别是近20年来,随着科学技术的不断进步和发展,尤其是计算机技术的迅速发展和普及,它已逐步形成为一门较为完整的新兴边缘综合工程学科。该学科以设备的管理、状态监测和故障诊断为内容,以建立新的维修体制为目标,在欧美、日本以不同形式获得了推广,成为国际上一大热门学科。 过去一般只有在机器运行出现问题,或者拆开检查才知道机器的某部分发生了故障。为了确保机器的正常运行,不得不规定定期维修检查制度,既不经济又不合理。故障诊断技术是依据设备在运行过程中,伴随故障必然产生的振动、噪声、温度、压力等物理参数的变化来判断和识别设备的工作状态和故障,对故障的危害进行早期预报、识别,防患于未然,做到预知维修,保证设备安全、稳定、长周期、满负荷优质运行,避免“过剩维修”造成的不经济、不合理现象。 随着计算机技术、信号分析与数据处理技术、测试技术、控制理论、振动和噪声理论及其它相关学科的发展,随着工业生产逐步向大型化、高速化、自动化方向迈进,为设备故障诊断技术开辟了广阔的应用前景,在实际生产中将发挥越来越大的作用。 二、故障诊断的技术环节 设备故障诊断技术,其实质是了解和掌握设备在运行过程中的状态;预测设备的可靠性;确定其整体或局部是正常或异常;早期发现故障,并对其原因、部位、危险程度等进行识别和评价;

预报故障的发展趋势,并针对具体情况作出实施维护决策的技术。 设备故障诊断技术主要包括以下三个基本环节: 1、信息采集 设备故障诊断技术属于信息技术的范畴。其诊断依据是被诊断对象所表征的一切有用的信息,比如说振动、噪声、转速、温度、压力、流量等信息。没有信息,故障诊断就无从谈起。对设备来说,主要是通过传感器,如振动传感器、温度传感器、压力传感器等来采集信息。人的感官也是一种特殊的传感器,因此,传感器的类型、性能和质量、安装方法、位置以及人的思维和判断往往是决定诊断信息是否会失真或泄露的关键。 2、分析处理 由传感器或人的感官所获取的信息往往是杂乱无章的,其特征不明显、不直观,很难加以判断。分析处理的目的是把采集的信息通过一定的方法进行变换处理,从不同角度获取最敏感、最直观、最有用的特征信息。分析处理可用专门的分析仪或计算机进行,一般可从多重分析域、多重角度来观查这些信息。人的感官所获取的信息,是在人的大脑中进行分析处理的。分析处理方法的选择、结果的准确性以及表示的直观性都会对诊断的结论产生较大的影响。 3、故障诊断 故障诊断包括对设备运行状态的识别、判断和预报。它充分利用分析处理所提供的特征信息参数,运用各种知识和经验,其中包括对设备及其零部件故障或失效机理方面的知识,以及设备结构原理、运动学和动力学、设计、制造、安装、运行、维修等

《汽车检测与诊断技术》试题一答案

《汽车检测与诊断技术》试题一答案 一、填空题 1.对于模拟信号输出型热模式空气流量传感器来说,如果传感器电压过高,会造成混合气过浓、点火正时过晚,造成发动机的动力性、经济性和排放性能下降。 2、对于工作正常的氧化锆式氧传感器(O2S)来说,其电压信号从稀到浓、或从浓到稀的反应时间应小于100毫秒。 3、对于工作正常的氧化锆式氧传感器(O2S)来说,其最低电压应大约为-175mv到75mv之间,最高电压应大约为850mv。 4、从氧传感器送来的信号空燃比过稀信号持续时间大于规定值时,按照正常的控制程序,如果氧传感器输送给发动机控制模块的信号表明混合气偏稀,那喷油器就会在闭环控制程序的作用下_会适当增加_其喷油脉冲宽,以此来_增加_混合气的浓度,如果氧传感器正常、如果发动机处于闭环控制状态,那传感器应该能检测到混合气变浓的情况,否则说明_氧传感器损坏_、氧传

感器与_发动机控制模块_之间的电路连接有故障、发动机控制模块_没有闭环控制程序_或_闭环控制的条件没有满足。 5、从氧传感器送来的信号空燃比过浓信号持续时间大于规定值时,按照正常的控制程序,如果氧传感器输送给发动机控制模块的信号表明混合气偏浓,那喷油器就会在闭环控制程序的作用下_会适当减小_其喷油脉冲宽,以此来_降低_混合气的浓度,如果氧传感器正常、如果发动机处于闭环循环控制状态,那传感器应该能检测到混合气变稀的情况,否则说明_氧传感器损坏_、氧传感器与_发动机控制模块_之间的电路连接有故障、发动机控制模块_没有闭环控制程序_或_闭环控制的条件没有满足。 6、在利用喷油器试验台对喷油器进行测试时,我们应重点从(单位时间内的喷油量是否符合要求)、(喷油器的喷射角度是否合适)、(喷油器是否泄漏)三方面进行分析。 7、氧传感器的信号波形上杂波过多的原因是:(由于点火系统的原因而造成缺缸)、(由于燃油喷射系统的原因而造成缺缸)、(由于汽缸压缩不良而造成缺缸)、(由于真空泄露而造成缺缸)等等。

车用润滑油在线监测方法与监测系统.

第 39卷第 6期吉林大学学报 (工学版 Vol. 39 No. 62009年 11月 Journal o f Jilin U niv ersity (Engineering and T echnolo gy Edition Nov. 2009 收稿日期 :2009-01-17. 基金项目 : 863 国家高技术研究发展计划项目 (2006A A 04Z10 ; 长春市科技基金项目 (06G J14 . 作者简介 :刘玉梅 (1966- , 女 , 教授 . 研究方向 :车辆智能检测与诊断 , 车辆性能监测与虚拟测试技术 . 车用润滑油在线监测方法与监测系统 刘玉梅 1, 王庆年 2, 曹晓宁 1, 熊伟 3, 李雪海 1 (1. 吉林大学交通学院 , 长春 130022; 2. 吉林大学汽车工程学院 , 长春 130022; 3. 长春轨道客车股份有限公司 , 长春 130025 摘要 :通过理论和试验分析的方法确定了介电常数作为润滑油品质衰变评价指标的可行性 , 研发了准确检测润滑油介电常数的玻璃管型车载电容传感器及脉冲调宽式振荡检测电路 , 并以此为基础开发了润滑油综合性能在线监测系统 , 从而实现了车用润滑油的按质换油 , 克服了观察换油或按期换油的弊端。 关键词 :车辆工程 ; 润滑油 ; 介电常数 ; 电容式传感器 ; 在线监测系统中图分类号 :U 473. 6 文献标识码 :A 文章编号 :1671-5497(2009 06-1441-05 Vehicle lubrication oil on -line monitoring method and monitoring system LIU Yu -mei 1, WANG Qing -nian 2, CAO Xiao -ning 1, XION G Wei 3, LI Xue -hai 1

汽车检测与诊断技术试题6

《汽车检测与诊断技术》试题七 一.填空题(12分) 1.诊断参数选用的原则有灵敏性、单值性、稳定性、信息性、 经济性。 2. 汽车前轮定位包括前轮外倾、前轮前束、主销后倾、主销内倾。 3.汽车诊断参数包括工作过程参数、__ 伴随过程参数 __、几何 尺寸参数。 4润滑油在工作元件上形成油膜的3个条件有工作表面必须连续充满润滑油、工作表面必须有相对运动、有碶形间隙。 5汽车整车性能的检测包括汽车的动力性、燃油经济性、加速性、滑行性、制动性。 二.判断题(12分) 1. 汽车行驶时,车轮轴线至路面的垂直距离称为滚动半径( N ) 2. 发动机的经济性和动力性指标是以曲轴对外输出的功率为基础( N ) 3.汽车传感器的使用电压来源于发动机,所以一般为12V( N ) 4.在发光源发光强度不变的情况下,物体离开光源越远,被照明的程度越差,照度越低。 ( Y ) 5.汽车动力性的检测一般使用无负荷测功原理来测试。( Y ) 6.发动机产生爆燃现象的原因是混合气浓度过低。( Y ) 7.制动系的诊断参数有制动力、制动距离、制动协调时间等。( Y ) 8.气缸压力是指活塞到达压缩终了上止点时气缸的压缩压力。( Y ) 9.润滑油的牌号一般是由黏度和适用的温度组成。( N ) 10. 点火波形排列分为多缸平列波、多缸并列波、多缸重叠波、单缸选缸波。( Y ) 11. 发动机必须暖机后才能使用尾气分析仪进行尾气检测( Y ) 12.检测传动系游动角度在汽车传动系里面不是重要的内容。( N ) 三.选择题(30分) 1. 汽车修理质量的评价指标( D ) A动力性能、燃料经济性 B滑行性能、制动性能 C汽车的噪声与排放污染 D以上全是

机械设备监测诊断技术综述

机械设备监测诊断技术综述 一设备故障诊断技术 产品在工作中,因某种原因,“丧失规定功能”的现象,称之为故障。这里所指的“产品”,可以是元件、部件、装置、系统或设备。这里所指的“规定的功能”是在产品的技术文件中明确规定的功能,“故障”有时也称之为“失效”,在一般情况下两者是同义词。在上述国标规定中指出,对于可修复的产品通常称之为故障。 根据机器设备出现故障后能不能予以消除的想法,可以把产品划分为可修复的和不可修复的两大类。而在机械设备中,大多数产品是属于可修复的产品。 设备故障诊断技术:是一种了解和掌握设备在使用过程中的状态,确定某整体或局部是正常运转还是发生了异常现象,早期发现故障及其原因,并预报故障发展趋势的技术。通俗的说法,它是一种给机器“看病”的技术。这当中包含“监测”和“诊断”两层意思。设备故障诊断技术,又称机械设备状态监测和故障诊断技术,通常简称为设备诊断技术。 设备诊断技术属于信息技术范畴,因此,它包括信息的采集、信息的分析处理(数据处理)和状态识别(包括判断和预报)三个基本环节。然而,信息技术不等于诊断技术。为了开展设备诊断工作还必须具备有关设备及其零部件故障或失效机理方面的知识,以及被诊断对象的有关知识。设备诊断技术所涉及的有关问题如图1.1所示。

由于信息的多样性,使诊断技术的理论基础非常广泛,它涉及到数学、物理、化学、机械、电子技术、传感技术、计算机以及数字信号处理、统计模式识别等技术,因此说设备诊断技术是实用性强多学科交叉的新技术。 设备诊断技术是一门正在不断完善和发展中的新技术,它可以从各技术领域中吸收最新成果推动自己的发展,不断提高技术水平,目前虽然已有不少行之有效的方法和手段,但与工业生产发展的水平和实际的需要相比,尚存在很大差距,设备诊断技术毕竟还是比较年轻的,需要各行各业共同去开发创新。 表1.1归纳整理了目前已经开发和正在开发的诊断技术及其适用范围。 二设备状态监测与故障诊断 设备状态监测与故障诊断是设备诊断中的两个过程,两者既有密切联系又有区别。设备状

油液在线监测系统产品手册

油液在线监测系统产品手册 “油液在线监测系统”采用先进的磨粒探测技术和流体传感技术,能实时监测设备在用油液的劣化状态、污染状态、磨损状态,还能监测设备滑动轴承油膜厚度、受力状态等机械性能指标。“广研检测”根据众多企业设备润滑磨损状态在线监测的需要,专门组建了由教授级高工、博士、硕士组成的“油液在线监测研发室”,在实验室离线监测技术的基础上,开发了多系列“油液在线监测系统”,获得多项国家专利,已在船舶、电力、石化、冶金等行业的大型机组上得到广泛应用。 产品介绍 在线油液监测系统由1台控制计算机(简称:上位机)与多台(根据用户需要配置)采集器(简称:下位机)组成,可同时实现监测多台机械设备在用润滑油的黏度、水分、温度等信息;液压油污染度信息;在用油中的磨损颗粒(图像)信息。对监测获取的油液定量信息与自动提取出的磨粒图像参数化信息进行趋势分析,根据实际机组的工况设置故障预警,并通过液晶显示屏实时显示。

产品型号 ? GTIO-0502型柴油机油在线监测仪 该型号可用于大型柴油机的状态监测。采用流体振动传感技术、介电常数传感技术和铁磁磨粒感应技术,可以及时发现柴油机由于机械故障或破损发生燃油稀释或冷却液污染,检测发动机中钢、铸铁摩擦部件的磨损情况。 1、基本参数 ●外观尺寸:256*200*151mm ●重量:7.4kg ●工作压力:<20 bar ●工作介质温度:-40~85℃ ●工作环境温度:-30~70℃ ●测试参数与范围: 40℃黏度:5~50cst 铁磁颗粒>70μm;非铁磁颗粒>200μm 水含量>0.5%wt ●IP等级:IP67

●工作环境相对湿度:95%max ●介质黏度范围:2~400 cSt ●介质流量:<8L/min ●供电:24VDC(或选配220VAC电源箱) ●功率损耗:8 W 2、技术指标 (1)油品粘度:采用流体振动传感技术,检测内燃机油的黏度变化,当内燃机由于机械故障或破损发生燃油稀释或冷却液污染时,便可及时发现报警。 (2)污染水分:采用液体介电常数传感技术,检测发动机油中的水分含量变化。当发动机由于机械故障或破损发生冷却液污染时,便可及时发现报警。 (3)磨损颗粒:采用磨粒探测技术,检测内燃机缸体、活塞、轴承等润滑运动部件的磨损情况。 (4)系统配置:可根据客户需要,以上传感技术可单独采用或多传感技术联合使用,以获得内燃机组的全面油质与污染状态信息。 3、应用场合 ●大型船舶柴油主机 ●海上钻井平台柴油机 ●陆地柴油发电机(企业自备电源) ●其他需要监测的内燃机

电气设备状态监测与故障诊断技术

电气设备状态监测与故障诊断技术 1 前言 1.1 状态监测与故障诊断技术的含义 电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。 “监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。“诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。设备的“故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。简言之,“状态监测”是特征量的收集过程,而“故障诊断”是特征量收集后的分析判断过程。 广义而言,“诊断”的含义概括了“状态监测”和“故障诊断”:前者是“诊”;后者是“断”。 1.2 状态监测与故障诊断技术的意义 电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。但这样会导致制造成本增加。此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那“用过即丢”。因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。 早期是对设备使用直到发生故障,然后维修,称为事故维修。但是,如前所述,对于大型设备,突发性事故将造成巨大损失。 其后,发展成定期试验和维修,即预防性维修。现在,定期预防性试验和维修已在电力部门形成制度,对减少和防止事故的发生起到了很好的作用。但预防性试验是离线进行的,有很多不足之处: 1) 离线试验需停电进行,而不少重要电力设备轻易不能停止运行。 2) 停电后设备状态(如作用电压、温度等)和运行中不符,影响判断准确度。 3) 由于是周期性定期检查,而不是连续地随时监测,设备仍可能在试验间隔期间发生故障,即造成维修不足。 4) 由于是定期检查和维修,设备状态即使良好时,按计划仍需进行试验和维修,造成人力物力浪费,甚至可能因拆卸组装过多而造成损坏,即造成所谓维修过度。 因此,目前正在发展以状态监测(通常是在线监测)和故障诊断为基础的状态维修。其基本

各种油液监测技术的优劣比较

各种油液监测技术的优劣比较 油液监测诊断技术是通过监测设备用油,来获取设备摩擦副的润滑油状况和故障先兆信息,为设备维修提供依据,从而预防设备重大事故的发生,它是设备的“保健医生”,油液监测技术是对设备所需的润滑油、液压油实施状态监测,通过判断油液的性能变化和所携带的颗粒进行分析,从而来判断设备的运行状态。具体来说就是,从油液的理化性能和其中包含的磨损磨粒的形态、大小、色泽等方面来进行分析,来获得设备的润滑和磨损状态信息,评价设备工况和预测故障,并确定故障原因、类型的技术。但要注意的是,油液监测技术适用于低速重载、环境恶劣(如噪声大、振源多、外界干扰明显)、往复运动和采用液体或半液体润滑且以磨损为主要形式的设备状态监测。因此,油液监测技术可以指导设备的换油周期,延长设备使用寿命,并通过及时预报潜在的故障避免灾难性损坏或延长设备的正常运行时间来获得经济效益。 油液的监测技术方法很多,主要的有以下六种: 1、理化分析技术4、污染度测试(颗粒计数) 2、磁塞检测法5、光谱技术 3、红外光谱技术6、铁谱技术 监测技术都是利用系统的一种输出来反推系统的状态。铁谱技术在颗粒粒度为1~1000μm 时,分析效率可达100%,即这个粒度区间的磨粒是比较完全地被检出的。这个区间正是机械产生磨粒的特征粒度范围。因此,采用铁谱技术开展机械的监测是比较有效的。光谱分析对0.1~1μm级的磨粒分析效率最高,实际上光谱数据所测得的数值时再润滑系统中具有较长寿命的小磨粒浓度累计值。在实际监测中,人们在努力发掘一种检测技术潜力的同时,必须寻求多种检测技术的联合使用。例如,普遍采用常规理化分析、铁谱技术和光谱技术的联合使用。 通过对工作油液(脂)的合理采样,并进行必要的分析处理后,就能取得关于该机械设备各摩擦副的磨损状况:包括磨损部位、磨损机理以及磨损程度等方面的信息,从而对设备所处工况作出科学的判断。油样分析技术的共性是都可用作铁磁性物质颗粒(光谱分析不仅限于铁磁性物质)的收集和分析,但各有不同的尺寸敏感范围,油样分析方法的检测效率随颗粒尺寸的变化情况。光谱技术、铁谱技术以及磁塞这三种油样分析技术对铁磁性颗粒的

《汽车检测与诊断技术》模拟试题及答案

《汽车检测与诊断技术》模拟试题一 一、填空题(每空一分共34分) 1、对于模拟信号输出型热模式空气流量传感器来说,如果传感器电压过高,会造成混合气(过浓)、点火正时(过晚),造成发动机的动力性、经济性和排放性能下降。 2、对于工作正常的氧化锆式氧传感器(O2S)来说,其电压信号从稀到浓、或从浓到稀的反应时间应小于(100 )毫秒。 3、对于工作正常的氧化锆式氧传感器(O2S)来说,其最低电压应大约为( -175mv)到( 75mv)之间,最高电压应大约为(850mv )。 4、从氧传感器送来的信号空燃比过稀信号持续时间大于规定值时,按照正常的控制程序,如果氧传感器输送给发动机控制模块的信号表明混合气偏稀,那喷油器就会在闭环控制程序的作用下(适当增加)其喷油脉冲宽,以此来(增加)混合气的浓度,如果氧传感器正常、如果发动机处于闭环控制状态,那传感器应该能检测到混合气变浓的情况,否则说明(氧传感器损坏)、氧传感器与(发动机控制模块)之间的电 6、在利用喷油器试验台对喷油器进行测试时,我们应重点从(单位时间内喷油量是否符合要求)、(喷油器的喷射角是否合适)、(喷油器是否泄漏)三方面进行分析。 7、氧传感器的信号波形上杂波过多的原因是:(由于点火系统的原因而造成缺缸)、(由于燃油喷射系统的原因而造成缺缸)、(由于气缸压缩不良而造成缺缸)、(由于真空泄漏而造成缺缸)等等。 8、次级点火的燃烧电压的大小取决于(点火能量)、(混合气浓度)、(气缸压力)等等。 9、在分析汽缸压力的测试结果时,我们应重点分析(各缸压力是否达到量的要求)和(各缸压力是否均匀)。 10、当某汽缸的火花塞不能点火时,汽缸中的燃烧总量将减少,因而导致CO的排放量会(适当减少),而CH化合物的排放量将(增大)。 11、测量氧传感器工作性能是否合格的方法主要包括:(丙烷气体测试法)和(猛踏油门测试法)。 二、简答题(每题4分共24分) 1、三元催化转换器的测试有那些方法? 温度测试法、氧传感器信号测试法、尾气分析测试法 2、在对电控发动机进行诊断时,如果我们想确定发动机各缸的功率是否能达到平衡,通常有那些方法? (次级点火波形的并列显示功能)和(发动机综合分析仪的功率平衡检查功能)。 3、在电控发动机中,限制碳氢化合物排放的控制措施有那些?

相关主题
文本预览
相关文档 最新文档