当前位置:文档之家› 材料物理性能复习资料

材料物理性能复习资料

材料物理性能复习资料
材料物理性能复习资料

1、固体无机材料的物理性能主要包括力(可用机械性能代替)、热、光、电、磁、辐照(或写成辐射)、介电、声等方面的性能。

2、超导体的三个性能指标分别是指:临界转变温度、临界磁场强度、临界电流密度

3、导热的微观机制有:电子热导和声子热导(也可写作电子导热和声子导热)

4、光子通过固体会发生反射、折射、透过、吸收现象;

5、原子本征磁矩包括电子的轨道磁矩和电子的自旋磁矩 ;

6、顺磁性产生的基本条件:一、具有奇数个电子的原子或点陈缺陷,二、内壳层未被填满的原子或离子,这样使原子的固有磁矩不为零;

7、钛酸钡(BaTiO 3)具有哪些介电性:压电性、热释电性、铁电性;

8、热应力的来源:因热胀冷缩而产生的热应力、因温度梯度而产生热应力和多相复合材料因各相膨胀系数不同而产生的热应力;

9、光磁记录时可以采用 居里温度 和 补偿温度 两种不同温度下的写入方式

10核外电子的能量由主量子数n 、角量子数l 、磁量子数m 、自旋量子数ms 这四种量子数来确定

11理想金属的电阻来源为电子散射、声子散射

12电介质的主要性能指标有介电常数ε、介电损耗因子ε''、介电强度、品质因子()1tan -δ、介电电导率10、热膨胀来自于原子的非简谐振动;

13、可以通过居里温度点进行磁场热处理(或“冷加工”)获得磁织构;

14、电介质的击穿有电击穿、热击穿、化学击穿三种模式

15、电阻产生的本质是 晶体点阵的完整性遭到破坏的地方,电子波受到散射

16、压电体具有的最典型晶体结构特征是 无中心对称结构 ;

17、电容器的电流由 理想电容器所造成的电流;电容器真实电介质极化建立的电流;电容器真实电介质漏电流 三部分构成 18、彩色光的三个基本参量是 亮度、 色调 、色饱和度 ;

19、技术磁化可以通过磁畴的旋转和磁畴壁的迁移两种形式进行;

20、减少退磁能是产生分畴的基本动力,但却增加了畴壁能;

21、赛贝克效应和珀尔贴效应热电效应互为可逆热电效应;

22、固体热容包括晶格热容、电子热容两部分;

23、德拜温度是反映 原子间结合力 的重要物理量;

24、固体中的导热主要是由晶格振动的格波(声子)和自由电子的运动来实现

25、在计算半导体中的载流子数量时需要用到 费米-狄拉克 统计

26、自由电子至少是二重简并态

27、众所周知,纯银的导电性比纯铝好,纯铝中溶入5%的纯银后形成的合金,一般来说其导电性将 降低 ,导热性将 降低

28、离子型导体在高温区导电的特征是 本征 导电,低温区是 杂质导电

29、电介质极化的类型主要有: 位移极化 、空间电荷极化 、驰豫极化 、取向极化

30、原子磁矩包括电子轨道磁矩、电子自旋磁矩、原子核磁矩

31、磁畴的起因是 减小退磁能

32、常见的三种热电效应是 赛贝克 、帕尔贴、汤姆逊

33、只有在发生非弹性应变(表达出与此意思相同的亦可得分,如“应力与应变相差一个相位”,回答滞弹性或粘弹性只能算半对时才能产生内耗;

34、固体对所有作用力的反应的实质来自于 原子间相互作用的势能

35、固体物质中有电子、空穴、正离子、负离子四种载流子能够形成导电

36、电阻产生的波长为500 nm 的单色光相当于波数为 20000 的单色光

37、马氏体不锈钢 是 铁磁性材料,奥氏体不锈钢 不是 铁磁性材料;

38、激光器是光波谐振器,由光波放大器(或激光工作物质)、谐振腔、 泵浦系统三部分构成,激活离子的作用是 提供亚稳态能级; 39、波长与波数的换算关系式是 n 710=λ, λ:波长(nm), n: 波数(1-cm )(需指明符号的含义);

40、家用电脑光盘上的数据一般可以通过克尔 效应读出;

41、固体对所有作用力的反应的实质来自于 原子间相互作用的势能

42、固体电阻产生的基本机制是电子散射和声子散射。

43、铁磁性产生的基本条件:1、原子内部要有未填满的电子次壳层;2、v>3使交换积分A为正

44、光子与固体之间的相互作用的二种结果:电子极化和能态转变

45、如何产生磁织构:冷轧与磁控热处理

46、物质的磁性可分为顺磁性、铁磁性、抗磁性三类

47、热膨胀来自于原子的非简谐振动

名词解释

克尔效应:一束线偏振光在磁化了的介质表面反射时,反射光将成为椭圆偏振光,且以椭圆的长轴为标志的偏振面相对于入射线的偏振面将旋转一定的角度。光入射面与介质磁化方向的关系可分为极向克尔效应、横向克尔效应和纵向克尔效应。

移峰效应与展宽效应移峰效应:在铁电体中引入某种添加物使生成固溶体,以改变原来的晶胞参数和离子间的相互联系,使其居里温度向低温或高温方向移动的效应。展宽效应:为了提高铁电体材料在浑浊范围的介电常数,通常是采用移峰效应,把铁电体的居里温度室常温附近,但铁电体在居里点附近的介电常数随温度的变化率太大,不能用来制造要求比较稳定的电容器。为减少居里点处介电常数随温度的变化率,常在铁电陶瓷中加入某种添加剂,使居里点展宽展宽,从而使介电常数随的变化比较平缓

自发磁化强度在铁磁体中,具有固有磁矩的原子或离子之间存在着一种量子作用力(交换力),使这些离子的固有磁矩都趋向一致,因此即使没有外磁场,也有磁化强度存在,称为自发磁化强度。

退磁场与退极化场1、退极化场,当电介质极化后,在其表面形成了束缚电荷,这些束缚电荷形成一个新的电场,由于与电场方向相反,故称为退极化场。2、退磁场:当铁磁体表面出现磁极后,除在铁磁体周围空间产生磁场外,在铁磁体的内部也产生磁场,这一磁场与铁磁体的磁化强度方向相反,它起到退磁的作用,故称退磁场。(退磁场与退极化场并无相互联系)

荧光和磷光发光是辐射能量以可见光的形式出现,如果辐射或任何其他形式的能量,激发电子从价带进入导带,当其返回到价带时便发射出光子。如果这些光子的波长在可见光范围内,那么,便产生了发光现象。与热辐射发光相区别,称这种发光为冷光。冷光发光一般有二种类型:荧光和磷光。当激发除去后在10-8s内发的光称为荧光,其发光是被激发的电子跳回价带时,同时发射光子。发磷光则有所不同发磷光的材料往往含有杂质并在能隙附近建立了施主能级,当激发的电子从导带跳回价带时,首先跳到施主能级并被捕获。在它跳回价带时,电子必须先从捕获陷阱内选出,因此延迟了光于发射时间。

材料物理性能本质

外界因素(作用物理量)作用于某一物体,如:外力、温度梯度、外加电场磁场、光照等,引起原子、分子或离子及电子的微观运动,在宏观上表现为感应物理量,感应物理量与作用物理量呈一定的关系,其中有一与材料本质有关的常数——我们用这个常数来衡量材料的性能。

铁电体:在一定温度范围内含有能自发极化、并且自发极化方向可随外电场作可逆转动的没有对称中心的晶体,且其电位移矢量与电场强度呈电滞回线特征。

自发磁化强度:在铁磁体中,具有固有磁矩的原子或离子之间存在着一种量子作用力(交换力),使这些离子的固有磁矩都趋向一致,因此即使没有外磁场,也有磁化强度存在,称为自发磁化强度。

磁织构:在材料中大批的晶粒因某种因素而取向一致,则称为织构,如果该织构导致磁化特征一致,我们称这种织构为磁织构。

滞弹性和粘弹性:实际固体材料的应变产生与消除需要有限时间,无机材料的这种与时间有关的弹性称为滞弹性;有一些非晶体或多晶体在比较小的应力作用下可同时表现出弹性和粘性,称之为粘弹性

粘弹性与滞弹性:有一些非晶体或多晶体在比较小的应力作用下可同时表现出弹性和粘性,称之为粘弹性。实际弹性体,在弹性范围内,由于其内部存在原子扩散、位错运动、各种畴

及其运动等耗散能量因素,使得应变不仅与应力有关,而且还与时间有关,这种现在称为滞弹性。滞弹性的表现形式多样,取决于所受应力大小以及作用的频率。静态应力条件下,表现为弹性后效、弹性滞后、弹性模量随时间处长而降低以及应力松驰等。

材料的组织结构:原子结构、原子间的结合状态、键型或电子结构、晶体结构、相的体系及其结合,它们尺寸因素各类缺陷的存在及分布等。

0F E :0K 时的金属费米能,表示0K 时基态系统电子所占有的能级最高的能量,能量小于

0F E 的能级全部被电子占满,能量大于0F E 的能级全部空着。

原子本征磁矩:材料的磁性来源于原子磁矩。原子磁矩包括电子轨道磁矩、电子自旋磁矩和原子核磁矩,一般情况下不考虑原子核磁矩。原子中电子的轨道磁矩和电子的自旋磁矩构成了原子固有磁矩。

德拜温度:德拜温度的定义式为k h D max

ν=Θ(1),德拜温度是反映原子间结合力的重要

物理量。当材料内部结合力强,原子质量较轻时,德拜温度较高(1)。一般可通过32137a M

D MV T =Θ求出(1)

品质因素Q :材料的品质因数。在电介质中,是指损耗角正切的倒数,用来表征高频绝缘应用条件下能量的损耗;在磁性材料中表征在交频磁场作用下导致的能量损耗;在弹性材料中用来衡量内耗。

magnetic hysteresis loop :磁致回线,是磁性材料在交频磁场中的典型特征,一般磁性材料具有饱和磁化强度、剩余磁化强度、矫顽力这样的特征值。

克尔效应:一束线偏振光在磁化了的介质表面反射时,反射光将成为椭圆偏振光,且以椭圆的长轴为标志的偏振面相对于入射线的偏振面将旋转一定的角度。光入射面与介质磁化方向的关系可分为极向克尔效应、横向克尔效应和纵向克尔效应。

磁滞回线图 克尔效应图

简答题

1、什么是压电性,具有压电性的晶体有什么特征?(5分)

答:压电性分正压电效应与逆压电效应。正压电效应:电介质材料在外力作用下,在某些相对应的表面上产生等量异号电荷,由形变产生电极化。P=d σ(不具有对称中心的晶体)(水晶、罗息盐、闪锌矿)逆压电效应:在外电场作用下晶体发生形变,可将电能转变成机械能的现象 S=dtE 。不具有自发极化特性,但为中心不对称结构,在外力的作用下,产生极化。无对称中心,且本身具有自发极化特性的结构

2、无机固体材料的结构包括哪些内容。

答:材料的结构包括:原子结构、原子间的结合状态、键型或电子结构、晶体结构、相的体系及其结合,它们尺寸因素各类缺陷的存在及分布等。

3、光通过固体会产生哪些现象,具体如何表现。

通过透过、折射、反射、吸收四个方面回答(能够答出透过、折射、反射、吸收这四点最多能得3分,每一条必须作出相应的解释)

4、举例说明电阻测量的应用。

答:建立相图、测量固溶度、测量合金时效、合金的有序无序转变、淬火钢的回火、疲劳过程的研究、磁性转变等(答案不唯一,任意回答出四条即可)

5、举出至少四种日常生活中常见的可作为照明的光源形式,并简要说明其发光原理。 答:1、火焰,热致发光2、白炽灯,热致发光3、半导体激光器,电子与空穴复合发光4、日光灯,光致发光5、日光,核聚变发光

6、高压汞灯 气体放电发光

7、卤化物灯 气体放电发光

8、氙灯

9、太阳

6、塞贝克效应及其应用。

答:塞贝克效应是热电效应的一种,当两种不同材料A 、B 组成回

路,且两接触处温度不同时,则在回路中存在电动势:T S E AB AB ?=,

其中B A AB S S S -=。塞贝克效应主要用在制作热电偶以用来测量温

度,还可以利用其实现温差发电。

7、试简要分析材料折射率的影响因素;

答:光子进入材料,其能量将受到损失,因此光子的速度将要发生改变。因而在材料内部凡是能够影响光子能量的因素都将会影响其折射率,而决定材料内部结构的是原子排列密集度,故凡影响材料排列密集度的因素也必影响折射率。表现如下:a 、构成材料的原子或离子半径;b 、材料的结构与晶型;c 、材料的内应力;d 、同质异构体。

8、产生磁性和铁磁性的条件分别是什么?

答:产生磁性的条件就是要求原子的固有磁矩不为零,原子的固有磁矩不为零要满足两个条件,其一是具有奇数个电子的原子或点陈缺陷,其二为内壳层未被填满的原子或离子; 铁磁性产生的条件:1、原子内部要有未填满的电子次壳层; 2、v>3使交换积分A 为正。前者指的是本征磁矩不为零,后者指的是要有一定的晶体结构。

9、什么是材料的各向异性,并表现在哪些方面,试举例说明?

答:晶体材料在宏观上表现为沿晶体不同方向上对同一物理量具有不同的量值。

1、力:沿晶体不同方向具有不同的弹性模量;

2、磁:在微观上表现为沿晶体不同方向上具有不同的磁化功,一般在晶体密堆积程度大的地方具有更大的磁化功,即在这样的方向上更难磁化;

3、光:光线沿晶体不同方向上传播时具有不同的折射率,一般在晶体密堆积程度大的地方具有更大的折射率;

4、热:沿晶体不同方向具有不同的热传导率;

5、电:沿晶体或材料不同方向上电子平均自由程并不相同;

6、介电:如在晶体的不同方向具有不同的压电性,极性晶体只有在特定晶向上才具有压电性。

10、电介质的极化机制。

答:a ,位移极化,正负电荷中心发生相对位移形成电偶极矩;b ,松驰极化 松弛质点由于热运动使之分布混乱,电场力使之按电场规律分布,在一定温度下发生极化,如电子由低能级跃迁到高能级;c 、取向极化 具有恒定偶极矩的极性分子在外加电场作用下,偶极子发生转向,趋于和外加电场方向一致,与极性分子的热运动达到统计平衡状态,整体表现为宏观偶极矩;d ,空间电荷极化 在不均匀介质中,如介质中存在晶界、相界、晶格畸变、杂质、气泡等缺陷区,都可成为自由电子运动的障碍,也是阻碍电介质材料被击穿的壁垒。在障碍处,自由电子积聚,形成空间电荷极化,一般为高压式极化。

11、什么是克尔效应?如何实现其在信息存储器上的应用。

答;一束线偏振光在磁化了的介质表面反射时, 反射光将成为椭圆偏振光,且以椭圆的长轴为标志的偏振面相对于入射线的偏振面将旋转一定的角度。光入射面与介质磁化方向的关系可分为极向克尔效应、横向克尔效应和纵向克尔效应。

例如磁光盘是利用磁畴的取向来进行信息存储的,磁畴的磁化方向不同,自然存储有不同的信息,我们利用克尔效应,不同的磁畴将导致偏振光偏转角度不同,利用检偏器检出偏振光偏转的角度,就可读出光盘中存储的信息。

12、简述材料的磁性分类。

13、作图说明软磁材料和硬磁材料特征和区别。

答:软磁材料的特点是高的磁导率、低的矫顽力和低铁芯损耗。硬磁

材料是指材料被外磁场磁化后,去掉外磁场后仍然保持着较强剩磁的

磁性材料,特点是剩余磁感应强度和矫顽力大。

14、什么是磁织构,可以通过什么方式获得磁织构?

答:晶粒取向一致将形成织构,如果取向一致的晶粒在同一相同晶向

磁化,将形成磁织构。可以通过冷轧和磁场诱导热处理这两种方式获

得磁织构)

15、试证明应力弛豫时,弹性模量与弛豫时间的关系式εσττ=R u M M ,并指出各物理量的含义。

证明:将()σετεετσ

σ +=+R M 积分(1分): ??

? ??+=+????????εσσεετεστσ0000d dt M d dt t R t

和()ετεστσσε?+?=?+?t M t R 当0→?t 时,ετστσε?=?R M , 而当0→?t 时,可认为不发生弛豫,εσ??=u M 所以ε

σττ=R u M M (2分),其中M u 表示弛豫模量(0.5分),M R 表示未弛豫弹性模量(0.5分),στ表示在恒应力作用下蠕变过程的弛豫时间(1分),ετ表示在恒应变条件下,应力弛豫过程进行的弛豫时间(1分)。

16、二维晶格点陈为a 、b ,夹角为90度,请作出其第二布里渊区。(4分)

答:点陈常数为a 、b 的二维晶格,其倒易矢为:b a ππ2,

2

(2分)

17、激光器的基本构成与激光产生原理。(5分)

答:激光器一般由三部分构成:光波放大器(也称为激光工作物质)、谐振腔、泵浦系统,激光的产生需要激光工作物质具有至少三个能级,在泵浦系统作用下在亚稳态能级上能够实现粒子数反转。大量处于亚稳态能级上的电子返回基态时产生激光。

18、以BaTiO3的晶体结构(要求能够画出其晶胞并略作说明)为例,说明其具有压电性的原因。(7分)

答:晶胞结构如左图。在温度低于居里温度时,位于体心Ti4+实际上偏离体心位置(表达出这个意思得2分),这样导致正离子偏离电荷中心,形成电偶极矩,表现为自发极化,故而具有压电性。(1分)作图3分,表达出c/a>1得1分

19、试从α-Fe的晶体结构出发说明磁晶各向异性

α-Fe为面心立方结构,沿原子密排方向更难以磁化。

20、以CD光盘、圆珠笔和盖碗茶杯为例,充分说明这三者是由哪些材料做成,利用了这些材料的哪些性能?圆珠笔的核心部件是什么,又具有什么样的特性?(10分)

答:光盘一般包括基板、记录层、反射层、保护层、印刷层,各层均由不同材料制成,每种材料实现不同的功能。基板主要起承载作用,另外还要求透明,实现光学与力学性能;记录层一般使用磁性材料,利用光磁原理进行记录,体现为光磁性能;

圆珠笔一般由笔筒笔帽笔芯三个主要部件组成,笔筒笔帽一般用高分子材料做成,主要起着结构件的作用,利用的是其力学性能。笔芯又由芯管、笔头及圆珠构成,其中圆珠为其核心部件,要求高硬耐磨且强韧性好。

盖碗茶杯除了功能上作为茶具还用作工艺品,主要两胚质层与釉层构成。胚质层主要用作容器,同时要耐热,所以具有力热两方面的性能。而表面的釉彩一方面使茶具表面致密光亮,另一方面还使茶具显现各种光学效应,呈现出赏心悦目的艺术效果。

21、p型和n 型半导体及其能级。

答:如往Si本征半导体中加入P、Sb等具致使价键上具有多余电子的元素作为杂质,形成的晶体结构与本征半导体并无区别的掺杂半导体,称为n型半导体,相反加入Al、B等使得其中一个价健缺少一个电子的掺杂半导体,称为P型半导体。它们的能级结构分别为:

施主能级图(n型)受主能级图(P型)

其中Eg表示本征半导体的禁带宽度,Ec导带底,Ev 价带顶,Ed施主能级,EA受主能级。

22、如何实现磁写入光读出。

答:如图示,光激光作用在磁畴上时,使材料的温度达到居里居里温度以上或补偿温度以上,该区域在弱磁场的作用下,当该区域在磁场的作用下冷却下来时就会发生磁畴翻转,这样就可使信号记录下来(见左下图所示)。

光读出如右上图示。

23、图示说明技术磁化过程及其形式。

答:技术磁化:在外磁场作用下,铁磁体从完全退磁状态发生磁化的内部过程和宏观效果,即外加磁场对磁畴的作用过程,也是外加磁场把各个磁畴的磁矩方向转到外磁场方向的过程。技术磁化通过两种形式进行:一是磁畴壁的迁移,一是磁畴的旋转。技术磁化分为三个过程:磁畴可逆迁移阶段、不可逆迁移阶段,磁畴旋转阶段。

24、以BaTiO3的晶体结构(要求能够画出其晶胞并略作说明)为例,说明其具有压电性的原因,画出块体BaTiO3材料电极化曲线与电滞回线图并对其进行说明。(11分)

答:单胞结构如下图,在温度低于居里温度时,位于体心Ti4+实际上偏离体心位置(表达出这个意思得2分),这样导致正离子偏离电荷中心,形成电偶极矩,表现为自发极化,故而具有压电性。大量Ti4+的偏离方向一致时,就可在局部区域形成铁电畴。当有外电场作用时,可以改变Ti4+的偏离方向,当某个铁电畴的所有Ti4+改变方向时,就实现了铁电畴的翻转,这时块体材料出现电极化现象,随着电场强度的增大,极化强度进一步增大Em,直到达到饱和极化强度。当把电场撤除后,电极化并不完全消失,具有剩余极化强度Pr,加上矫顽力即反向电场强度Ec后才能消去剩余极化。当所加电场强度E=Emcost时,就会

呈现出电滞回线的现象。

25、请说明我们用得最多的且每天时时与之打交道的热性能人工材料是什么,这种材料的热性能是如何体现出来的?这种材料还具有哪些其它常见的物理性能,这些物理性能又是如何体现的?

答:衣料或布料力:使织物成为一个整体

热:隔热(表明衣料的声子能量大,导电性差,所以能量不能通过自由电子形成有效传输),透气

光:隔光(对可见光的吸收作用和反射作用)、显色(对特定波段的光反射加强,主要是吸收别的光后通过声子驰豫将光转变成特定波长的光,如白色则因为衣料对几乎所有光的反射作用一致,而黑色则表示衣料对所有的光都有很强的吸收)

四、简述什么是压电性、热释电性、铁电性、各向异性,并以四方BaTiO3的晶体结构为例说明其具有铁电性的原因(要求作出四方BaTiO3的晶体结构示意图)和其各向异性表现在哪些性能方面(要求至少列出六条)。(16分)

答:压电性:电介质材料在外力作用下,在某些相对应的表面上产生等量异号电荷,由形变产生电极化。

热释电效应:在热平衡条件下,电介质因自发极化而产生表面束缚电荷,这种电荷被来自空气中附集于电介质表面上的自由电荷所补偿,其电量不能显现出来,当温度发生变化,电介质的极化状态发生改变,这种改变不能及时被来自电介质表面上的自由电荷所补偿,使电介质对外显电性。

铁电性:在一定温度范围内具有自发极化,在外

电场作用下,自发极化能重新取向,其电位移矢

量与电场强度间的关系呈电滞回线特征。(具有

自发极化的晶体)

各向异性:主要指材料的某种或几种性能沿晶体

不同指向时具有不同的量值。各向异性在弹性

模量、电极化、磁化、光折射、导电性、导热性

晶胞结构如下图。在温度低于居里温度时,位于

体心Ti4+实际上偏离体心位置,这样导致正离子

偏离电荷中心,形成电偶极矩,表现为自发极化,故而具有压电性。

26、软磁材料与硬磁材料的特点及其磁滞回线图。(5分)

答:软磁材料的特点是高的磁导率、低的矫顽力和低铁芯损耗(1分)。硬磁材料是指材料被外磁场磁化后,去掉外磁场后仍然保持着较强剩磁的磁性材料,特点是剩余磁感应强度和矫顽力大(1分,两个图各1.5分)。

27、手机使用了哪些类别的材料,并分别利用了这些材料哪些方面的性能,请至少说明八种不同类别的材料及其应用性能。(8分)

答:外壳,作为结构件,起着支持其他各功能件的作用,是利用这种材料的力学性能;

导线:传输电荷,电导功能材料,导电性能;

液晶:电致发光材料;

存储器:铁磁性材料,提供均匀磁畴形成存储单元;

激光写入磁头:激光材料,提供特定波长的激光并加热铁磁性材料实现磁畴翻转;

耳机中的扬声器里的压电振子:压电材料,将电信号置换成声波,介电性;

电池:离子导电,提供能源;

各种二极管、三极管、芯片:半导体材料;

电池连接件:电触点材料;

显示屏幕透明高分子:结构材料,光透过材料;

各种封装材料;

(此题可算作主观题,答案不固定,要求至少能说出八种不同类别并具有不同功能的材料及其性能)

28、图示说明半导体激光器的发光特征。(5分)

答:特点是体积小、效率高、运行简单便宜,但缺点是单色性差。设半导体温度处于0K,电子受某种激发从价带跃迁到导带。当导带电子和价带中空穴复合时,形成受激辐射,电子的跃迁发生在能量分布较广的许多能级之间,不像其它激光器跃迁只发生在两个相当确定的能级间,因而单色性差。

29、标出镍单晶(fcc)难易磁化方向。(4分)

材料无机材料物理性能考试及答案

材料无机材料物理性能考试及答案

————————————————————————————————作者:————————————————————————————————日期:

无机材料物理性能试卷 一.填空(1×20=20分) 1.CsCl结构中,Cs+与Cl-分别构成____格子。 2.影响黏度的因素有____、____、____. 3.影响蠕变的因素有温度、____、____、____. 4.在____、____的情况下,室温时绝缘体转化为半导体。 5.一般材料的____远大于____。 6.裂纹尖端出高度的____导致了较大的裂纹扩展力。 7.多组分玻璃中的介质损耗主要包括三个部分:____、________、____。 8.介电常数显著变化是在____处。 9.裂纹有三种扩展方式:____、____、____。 10.电子电导的特征是具有____。 二.名词解释(4×4分=16分) 1.电解效应 2.热膨胀 3.塑性形变 4.磁畴 三.问答题(3×8分=24分) 1.简述晶体的结合类型和主要特征: 2.什么叫晶体的热缺陷?有几种类型?写出其浓度表达式?晶体中离子电导分为哪几类? 3.无机材料的蠕变曲线分为哪几个阶段,分析各阶段的特点。 4.下图为氧化铝单晶的热导率与温度的关系图,试解释图像先增后减的原因。 四,计算题(共20分) 1.求熔融石英的结合强度,设估计的表面能为1.75J/m2;Si-O的平衡原子间距为1.6×10-8cm,弹性模量值从60 到75GPa。(10分) 2.康宁1273玻璃(硅酸铝玻璃)具有下列性能参数: =0.021J/(cm ·s ·℃);a=4.6×10-6℃-1;σp=7.0kg/mm2,

材料物理性能期末复习题

期末复习题 一、填空(20) 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈 介电常数一致,虚部表示了电介质中能量损耗的大小。 .当磁化强度M为负值时,固体表现为抗磁性。8.电子磁矩由电子的轨道磁矩和自旋磁矩组成。 9.无机非金属材料中的载流子主要是电子和离子。 10.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)2x。11.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 12.对于中心穿透裂纹的大而薄的板,其几何形状因子。 13.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 14.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 15.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。16.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 17.当温度不太高时,固体材料中的热导形式主要是声子热导。 18.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 19.电滞回线的存在是判定晶体为铁电体的重要根据。 20.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 21. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 22.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 23.晶体发生塑性变形的方式主要有滑移和孪生。 24.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。 25.自发磁化的本质是电子间的静电交换相互作用。 二、名词解释(20) 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性 能等。

材料物理性能考试复习资料

1. 影响弹性模量的因素包括:原子结构、温度、相变。 2. 随有温度升高弹性模量不一定会下降。如低碳钢温度一直升到铁素体转变为 奥氏体相变点,弹性模量单调下降,但超过相变点,弹性校模量会突然上升,然后又呈单调下降趋势。这是在由于在相变点因为相变的发生,膨胀系数急剧减小,使得弹性模量突然降低所致。 3. 不同材料的弹性模量差别很大,主要是因为材料具有不同的结合键和键能。 4. 弹性系数Ks 的大小实质上代表了对原子间弹性位移的抵抗力,即原子结合 力。对于一定的材料它是个常数。 弹性系数Ks 和弹性模量E 之间的关系:它们都代表原子之间的结合力。因为建立的模型不同,没有定量关系。(☆) 5. 材料的断裂强度:a E th /γσ= 材料断裂强度的粗略估计:10/E th =σ 6. 杜隆-珀替定律局限性:不能说明低温下,热容随温度的降低而减小,在接近 绝对零度时,热容按T 的三次方趋近与零的试验结果。 7. 德拜温度意义: ① 原子热振动的特征在两个温度区域存在着本质差别,就是由德拜温 度θD 来划分这两个温度区域: 在低θD 的温度区间,电阻率与温度的5次方成正比。 在高于θD 的温度区间,电阻率与温度成正比。 ② 德拜温度------晶体具有的固定特征值。 ③ 德拜理论表明:当把热容视为(T/θD )的两数时,对所有的物质都具有 相同的关系曲线。德拜温度表征了热容对温度的依赖性。本质上, 徳拜温度反应物质内部原子间结合力的物理量。 8. 固体材料热膨胀机理: (1) 固体材料的热膨胀本质,归结为点阵结构中质点间平均距离随温度升 高而增大。 (2) 晶体中各种热缺陷的形成造成局部点阵的畸变和膨胀。随着温度升 高,热缺陷浓度呈指数增加,这方面影响较重要。 9. 导热系数与导温系数的含义: 材料最终稳定的温度梯度分布取决于热导率,热导率越高,温度梯度越小;而趋向于稳定的速度,则取决于热扩散率,热扩散率越高,趋向于稳定的速度越快。 即:热导率大,稳定后的温度梯度小,热扩散率大,更快的达到“稳定后的温度梯度”(☆) 10. 热稳定性是指材料承受温度的急剧变化而不致破坏的能力,故又称为抗热震 性。 热稳定性破坏(即抗热振性)的类型有两种:抗热冲击断裂性和抗热冲击损伤性。 11. 提高材料抗热冲击断裂性能的措施 ①提高材料强度σ,减小弹性模量E ,σ/E 增大,即提高了材料柔韧性,这样可吸收较多的应变能而不致于开裂。晶粒较细,晶界缺陷小,气孔少且分散者,强度较高,抗热冲击断裂性较好。

材料物理性能复习总结

1、 ?拉伸曲线: ?拉伸力F-绝对伸长△L的关系曲线。 ?在拉伸力的作用下,退火低碳钢的变形过程四个阶段: ?1)弹性变形:O~e ?2)不均匀屈服塑性变形:A~C ?3)均匀塑性变形:C~B ?4)不均匀集中塑性变形:B~k ?5)最后发生断裂。k~ 2、弹性变形定义: ?当外力去除后,能恢复到原形状或尺寸的变形-弹性变形。 ?弹性变形的可逆性特点: ?金属、陶瓷或结晶态的高分子聚合物:在弹性变形内,应力-应变间具有单值线性 关系,且弹性变形量都较小。 ?橡胶态高分子聚合物:在弹性变形内,应力-应变间不呈线性关系,且变形量较大。 ?无论变形量大小和应力-应变是否呈线性关系,凡弹性形变都是可逆变形。 3、弹性比功:(弹性比能、应变比能),用a e 表示, ?表示材料在弹性变形过程中吸收弹性变形功的能力。 ?一般用材料开始塑性变形前单位体积吸收的最大弹性变形功表示。 ?物理意义:吸收弹性变形功的能力。 ?几何意义:应力σ-应变ε曲线上弹性阶段下的面积。 4、理想弹性材料:在外载荷作用下,应力-应变服从虎克定律,即σ=Eε,并同时满足3个条件,即: ?①应变对于应力的响应是线性的; ?②应力和应变同相位; ?③应变是应力的单值函数。

?材料的非理想弹性行为: ?可分为滞弹性、伪弹性及包申格效应等几种类型 5、滞弹性(弹性后效) ?滞弹性:是指材料在弹性范围内快速加载或卸载后,随时间的延长而产生的附加弹 性应变的现象。 6、实际金属材料具有滞弹性。 ?1)单向加载弹性滞后环 ?在弹性区内单向快速加载、卸载时,加载线与卸载线会不重合(应力和应变不同步), 形成一封闭回线,称为弹性滞后环。 ?2)交变加载弹性滞后环 ?交变载荷时,若最大应力<宏观弹性极限,加载速率比较大,则也得到弹性滞后环(图 b)。 ?3)交变加载塑性滞后环 ?交变载荷时,若最大应力>宏观弹性极限,则得到塑性滞后环(图c)。 7、材料存在弹性滞后环的现象说明:材料加载时吸收的变形功> 卸载时释放的变形功,有一部分加载变形功被材料所吸收。 ?这部分在变形过程中被吸收的功,称为材料的内耗。 ?内耗的大小:可用滞后环面积度量。 8、金属材料在交变载荷(振动)下吸收不可逆变形功的能力,称为金属的循环韧性,也叫金属的“内耗”。 ?严格说,循环韧性与内耗是有区别的,但有时常混用。 ?循环韧性: ?指材料在塑性区内加载时吸收不可逆变形功的能力。 ?内耗: ?指材料在弹性区内加载时吸收不可逆变形功的能力 9、循环韧性:也是金属材料的力学性能,因它表示在交变载荷(振动)下吸收不可逆变形功的能力,故又称为消振性。 ?材料循环韧性越高,则自身的消振能力就越好。 ?高的循环韧性可减振:如汽轮机叶片(1Cr13),机床材料、发动机缸体、底座等选 用灰铸铁制造。 ?低循环韧性可提高其灵敏度:如仪表和精密机械、重要的传感元件。 ?乐器所用材料的循环韧性越低,则音质越好。 10、伪弹性有些合金如(Au金-Cd镉,In铟-Tl铊等)在受一定应力时会诱发形成马氏体,相应地产生应变,应力去除后马氏体立即逆变为母相,应变回复 11、当材料所受应力超过弹性极限后,开始发生不可逆的永久变形,又称塑性变形。 12、单晶体受力后,外力在任何晶面上都可分解为正应力和切应力。 ?正应力:只能引起弹性变形及解理断裂。 ?只有在切应力的作用下,金属晶体才能产生塑性变形。 13、金属材料常见的塑性变形方式:滑移和孪生两种。 14、滑移现象: ?表面经抛光的金属单晶体在拉伸时,当应力超过屈服强度时,在表面会出现一些与 应力轴成一定角度的平行细线。 ?在显微镜下,此平行细线是一些较大的台阶(滑移带)。 ?滑移带:又是由许多小台阶组成,此小台阶称为滑移线

无机材料物理性能课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=,V 2=。则有 当该陶瓷含有5%的气孔时,将P=代入经验计算公式E=E 0+可得,其上、下限弹性模量分别变为 GPa 和 GPa 。 1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度 τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

材料物理性能心得

学材料物理性能心得 本学期我们学了材料物理性能,对材料的微观结构有了更充分的了解,全书一共有六章.第一章为材料的热学性能,包括热容、热膨胀、热传导、热稳定性等;第二章为材料的电学性能,包括材料的导电性、超导电性、介电性、磁电性、热电性、接触电性、热释电性和压电性、光学性等;第三章为材料的磁学性能,介绍有关的磁学理论、磁性的测量和磁性分析法在材料研究中的主要应用;第四章为材料的光学性质,介绍光传播电磁理论、光的折射与反射、光的吸收与色散、晶体的双折射和二向色性、介质的光散射、发光材料等;第五章为材料的弹性及内耗、内耗产生的物理本质、影响弹性模量的因素、弹性模量的测量及应用、滞弹性与内耗、内耗产生的机制、内耗的测量方法和度量、内耗分析的应用等;第六章为核物理检测方法及应用,主要介绍穆斯堡尔、核磁共振、正电子湮没和中子散射等现代物理方法。 在学习过程中对材料的磁学性能印象最深刻,物质的磁学性能在研究中非常重要,这是因为磁性是一切物质的基本属性之一,它存在的范围很广,小至微观粒子大到宇宙天体几乎丢存在着磁现象。磁性不只是一个宏观的物理量,而且与物质的微观结构密切相关;它不仅取决于物质的原子结构,还取决于原子间的相互作用,即键合情况和晶体结构等。因此,研究磁性是研究物质内部微观结构的重要方法之一。 随着现代科学技术和工业的发展,磁性材料的应用越来越广泛,特别是电子技术的发展,对磁性材料又提出了心得要求。因此,研究

有关磁性的理论、发现新型的磁性材料是材料科学的一个重要方向。下面主要介绍磁性材料的内容。 磁性材料是一种新兴的基础功能材料。虽然我们人类早在几千年前就发现了磁石相吸和磁石吸铁的现象,但我们对于磁性材料的开发研究还不足100年。经过不断的发现研究,磁性材料已经成为一个庞大的家族。早在公元前四世纪、人们就发现了天然的磁石,我国古代人民最早用磁石和钢针制成了指南针、并将它用于军事和航海。对物质磁性的研究具有悠久的历史、是在十七世纪末期和十九世纪开始发展起来的。近代物理学大发展,电流的磁效应、电磁感应等相继被发现和研究,同时磁性材料的理论出现,涌现了像法拉第等大批电磁学大师。20世纪,法国的外斯提出了著名的磁性物质的分子场假说,奠定了现代磁学的基础。 磁性材料具有磁有序的强磁性物质,广义还包括可应用其磁性和磁效应的弱磁性及反铁磁性物质。磁性是物质的一种基本属性。物质按照其内部结构及其在外磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。铁磁性和亚铁磁性物质为强磁性物质,抗磁性和顺磁性物质为弱磁性物质。磁性材料按性质分为金属和非金属两类,前者主要有电工钢、镍基合金和稀土合金等,后者主要是铁氧体材料。按使用又分为软磁材料、永磁材料和功能磁性材料。功能磁性材料主要有磁致伸缩材料、磁记录材料、磁电阻材料、磁泡材料、磁光材料,旋磁材料以及磁性薄膜材料等,反应磁性材料基本磁性能的有磁化曲线、磁滞回线和磁损耗等。

无机材料物理性能期末复习题资料

无机材料物理性能期 末复习题

期末复习题参考答案 一、填空 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈 介电常数一致,虚部表示了电介质中能量损耗的大小。 7.无机非金属材料中的载流子主要是电子和离子。 8.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)9.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 2x。 10.对于中心穿透裂纹的大而薄的板,其几何形状因子。 11.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 12.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 13.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。 14.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 15.当温度不太高时,固体材料中的热导形式主要是声子热导。 16.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 17.电滞回线的存在是判定晶体为铁电体的重要根据。 18.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 19. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 20. 复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。

材料物理性能复习思考题汇总

材料物理性能复习思考题汇总 第一章绪论及材料力学性能 一.名词解释与比较 名义应力:材料受力前面积为A,则δ。=F/A,称为名义应力 工程应力:材料受力后面积为A。,则δT =F/A。,称为工程应力 拉伸应变:材料受到垂直于截面积方向大小相等,方向相反并作用在同一条直线上的两个拉伸应力时发生的形变。 剪切应变:材料受到平行于截面积大小相等,方向相反的两个剪切应力时发生的形变。 结构材料:以力学性能为基础,以制造受力构件所用材料 功能材料:具有除力学性能以外的其他物理性能的材料。 晶须:无缺陷的单晶材料 弹性模量:材料发生单位应变时的应力 刚性模量:反映材料抵抗切应变的能力 泊松比:反映材料横向正应变与受力方向线应变的比值。(横向收缩率与轴向收缩率的比值) 形状因子:塑性变形过程中与变形体尺寸,工模具尺寸及变形量相关参数。 平面应变断裂韧性:一个考虑了裂纹尺寸并表征材料特征的常数 弹性蠕变:对于金属这样的实际弹性体,当对它施加一定的应力时,它除了产生一个瞬时应变以外,还会产生一个随时间而变化的附加应变(或称为弛豫应变),这一现象称为弹性蠕变。 蠕变:在恒定的应力δ作用下材料的应变随时间增加而逐渐增大的现象 材料的疲劳:裂纹在使用应力下,随着时间的推移而缓慢扩展。 应力腐蚀理论:在一定环境温度和应力场强度因子作用下,材料中关键裂纹尖端处,裂纹扩展动力与裂纹扩展阻力的比较,构成裂纹开裂和止裂的条件。 滑移系统:滑移面族和滑移方向为滑移系统 相变增韧:利用多晶多相陶瓷中某些相成分在不同温度的相变,从而增韧的效果,统称相变增韧 弥散强化:在基体中渗入具有一定颗粒尺寸的微细粉料,达到增韧效果,这称为弥散增韧 屈服强度:屈服强度是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力 法向应力:导致材料伸长或缩短的应力 切向应力:引起材料切向畸变的应力 应力集中:受力构件由于外界因素或自身因素导致几何形状、外形尺寸发生突变而引起局部范围内应力显著增大的现象。

材料物理性能复习总结

第一章电学性能 1.1 材料的导电性 ,ρ称为电阻率或比电阻,只与材料特性有关,而与导体的几何尺寸无关,是评定材料导电性的基本参数。ρ的倒数σ称为电导率。 一、金属导电理论 1、经典自由电子理论 在金属晶体中,正离子构成了晶体点阵,并形成一个均匀的电场,价电子是完全自由的,称为自由电子,它们弥散分布于整个点阵之中,就像气体分子充满整个容器一样,因此又称为“电子气”。它们的运动遵循理想气体的运动规律,自由电子之间及它们与正离子之间的相互作用类似于机械碰撞。当对金属施加外电场时,自由电子沿电场方向作定向加速运动,从而形成了电流。在自由电子定向运动过程中,要不断与正离子发生碰撞,使电子受阻,这就是产生电阻的原因。 2、量子自由电子理论 金属中正离子形成的电场是均匀的,价电子与离子间没有相互作用,可以在整个金属中自由运动。但金属中每个原子的内层电子基本保持着单个原子时的能量状态,而所有价电子却按量子化规律具有不同的能量状态,即具有不同的能级。 0K时电子所具有最高能态称为费密能E F。 不是所有的自由电子都参与导电,只有处于高能态的自由电子才参与导电。另外,电子波在传播的过程中被离子点阵散射,然后相互干涉而形成电阻。 马基申定则:′,总的电阻包括金属的基本电阻和溶质(杂质)浓度引起的电阻(与温度无关);从马基申定则可以看出,在高温时金属的电阻基本取决于,而在低温时则决定于残余电阻′。 3、能带理论 能带:由于电子能级间隙很小,所以能级的分布可看成是准连续的,称为能带。 图1-1(a)、(b)、(c),如果允带内的能级未被填满,允带之间没有禁带或允带相互重叠,在外电场的作用下电子很容易从一个能级转到另一个能级上去而产生电流,具有这种能带结构的材料就是导体。 图1-1(d),若一个满带上面相邻的是一个较宽的禁带,由于满带中的电子没有活动的余地,即便是禁带上面的能带完全是空的,在外电场作用下电子也很难跳过禁带,具有这种能带结构的材料是绝缘体。

无机材料物理性能期末复习题

期末复习题参考答案 一、填空 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈低。 5.电介质材料中的压电性、铁电性与热释电性是由于相应压电体、铁电体和热释电体都是不具有对称中心的晶体。 6.复介电常数由实部和虚部这两部分组成,实部与通常应用的介电常数一致,虚部表示了电介质中能量损耗的大小。 7.无机非金属材料中的载流子主要是电子和离子。 8.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)2x。9.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 10.对于中心穿透裂纹的大而薄的板,其几何形状因子Y= 。 11.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 12.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 13.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。14.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 15.当温度不太高时,固体材料中的热导形式主要是声子热导。 16.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 17.电滞回线的存在是判定晶体为铁电体的重要根据。 18.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 19. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 20.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 21.晶体发生塑性变形的方式主要有滑移和孪生。 22.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。 23.自发磁化的本质是电子间的静电交换相互作用。 二、名词解释 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性 能等。 滞弹性:当应力作用于实际固体时,固体形变的产生与消除需要一定的时间,这种与时间有关的弹性称为滞弹性。 格波:处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波,格波的一个

东南大学-材料物理性能复习题(2008)

材料物理性能复习题 第一章 1、C v 、C p 和c 的定义。C pm 和C vm 的关系,实际测量得到的是何种量?Cvm 与温度(包括ΘD )的关系。自由电子对金属热容的贡献。合金热容的计算。 2、哪些相变属于一级相变和二级相变?其热容等的变化有何特点? 3、撒克斯法测量热容的原理。何谓DTA 和DSC ?DTA 测量对标样有何要求?如何根据DTA 曲线及热容变化曲线判断相变的发生及热效应(吸热或放热)? 4、线膨胀系数和体膨胀系数的表达式及两者的关系。证明c b a v αααα++=(采用与教材不同的方法) 5、金属热膨胀的物理本质。热膨胀和热容与温度(包括ΘD )的关系有何类似之处?为何金属熔点越高其膨胀系数越小?为何化合物和有序固溶体的膨胀系数比固溶体低?奥氏体转变为铁素体时体积的变化及机理。膨胀测量时对标样有何要求? 6、比容的定义(单位重量的体积,为密度的倒数)。奥氏体、珠光体、马氏体和渗碳体的比容相对大小。 7、钢在共析转变时热膨胀曲线的特点及机理。如何根据冷却膨胀曲线计算转变产物的相对量? 8、傅里叶定律和热导率、热量迁移率。导温系数的表达式及物理意义。 9、金属、半导体和绝缘体导热的物理机制。魏德曼-弗兰兹定律。 10、何谓抗热冲击断裂性和抗热冲击损伤性?热应力是如何产生的,与哪些因素有关?提高材料的抗热冲击断裂性可采取哪些措施? 第二章 1、电阻、电阻率、电导率及电阻温度系数的定义及相互关系。 2、电阻的物理意义。为何温度升高、冷塑性变形和形成固溶体使金属的电阻率增加,形成有序固溶体使电阻率下降?马基申定律的表达式及各项意义。为何纯金属的电阻温度系数较其合金大?如何获得电阻温度系数很低的精密电阻合金? 3、对层片状组织,证明教材中的关系式(2.25)和(2.26)。 4、双电桥较单电桥有何优点?用电位差计测量电阻的原理。用电阻分析法测定铝铜合金时效和固溶体的溶解度的原理。 5、何谓本征半导体?其载流子为何?证明关系式J=qnv 和ρ=E/J (J 和E 分别为电流密度和电场强度)。 6、为何掺杂后半导体的导电性大大增强?为何有电子型和空穴型两种半导体。N 型和P 型半导体中的多子和少子。为何PN 结有单向导电性? 7、温差电势和接触电势的物理本质,热电偶的原理。 8、何谓压电效应?电偶极矩的概念。压电性产生的机理。 9、何谓霍尔效应和霍尔系数?推导出教材中的关系式(2.83)~(2.85)。如何根据霍尔效应判断半导体中载流子是电子还是空穴? 第三章 1、M 、P m 的关系。M 、H 的关系。μ0,μ,χ的概念。B 、H 的关系。磁化曲线

江大材料物理性能复习资料

第一章 材料的热学性能 1.热容的概念(P42):热容是分子或原子热运动的能量随温度变化而变化的物理量,其定义是物体温度升高1K 所需增加的能量。温度不同,物体的热容不一定相同,温度T 时物体热容为:)/()(K J T Q C T T ??=(简单点就直接用这个吧:T Q C ??=) PS :物理意义:吸收热量提高点阵振动能量,对外做功,加剧电子运动 比热容(单位质量):T m Q C ???= 2.晶体热容的经验定律(P42): 杜隆—珀替定律:恒压下元素的原子热容为25J/(K ·mol) 奈曼—柯普定律:化合物热容等于构成此化合物各元素原子热容之和 3.从材料结构比较金属、无机非金属、高聚物的热容大小(P46): A 金属:a 纯金属:热容由点阵振动和自由电子运动两部分组成: T T C C C e V L V V γα+=+=3 b 合金金属:符合奈曼—柯普定律∑==+++=n i im i nm n m m m C x C x C x C x C 12121Λ B 无机非金属:a 符合热容理论,一般都是从低温时的一个低数值增加到1273K 左右近似于 25J/(K ·mol)的数值;b 无机材料热容与材料结构关系不大,但单位体积热容与气孔率有关,多孔质轻热容小;c 当材料发生相变:一级相变:体积突变,有相变潜热,温度Tc 热容无穷大,不连续变化;二级相变:无体积突变,无相变潜热,在转变点热容达到有限极大值(P47 C 高聚物:多为部分结晶或无定型结构,热容不一定符合理论式,热容相对较大,且由化学结构决定,温度升高链段振动加剧,改变链运动状态(主链、支链(链节、侧基))。 4.从材料结构比较金属、无机非金属、高聚物的热传导机制(P53): A 金属:有大量自由电子,且电子质轻,实现热量迅速传递,热导率一般较大。纯金属温度升高使自由程减小作用超过温度直接作用,热导率随温度上升而下降;合金热传导以自由电子和声子为主,因异类原子存在,温度本身起主导作用,热导率随温度上升增大。 B 无机非金属:晶格振动为主要传导机制,即声子热导为主,约为金属热传导的三十分之一。 C 高聚物:热导率与温度关系比较复杂,但总体来说热导率随温度的增加而增加。高聚物主要依靠链段运动传热为主,而高分子链段运动比较困难,热导能力比较差。 5.材料热膨胀物理本质:热膨胀是指物体体积或长度随温度升高而增大的现象。膨胀是原子间距(晶格结点原子振动的平衡位置间的距离)增大的结果,温度升高,原子平衡位置移动,原子间距增大,导致膨胀。双原子模型:P49 图2- 6. 图2-5 热焓、热容与加热温度的关系)。

材料物理性能复习重点

经典自由电子理论推导 推导各向同(异)性材料的体膨胀系数和线膨胀系数的关系 二、计算题 在500单晶硅中掺有的硼,设杂质全部电离球该材料的电阻率,(设u= ,硅密度2.33g/cm^3,硼原子量为10.8) 假设X射线用铝材屏蔽,如果要是95%的X射线能量不能透过,则铝材的厚度至少要多少?铝的吸收系数为0.42cm-1 三、名词解释 马基申定则:总的电阻包括金属的基本电阻和溶质浓度引起的电阻(与温度无关)。 本征半导体:纯净的无结构缺陷的半导体单晶 介质损耗:电介质在电场作用下,单位时间内因发热而消耗的能量成为电介质的介质损耗磁化:任何物质处于磁场中,均会使其所占有的空间的磁场发生变化,这是由于磁场的作用使物质表现出一定的磁性,该现象称为磁化(单位体积的磁矩称为磁化强度)本征磁矩:原子中电子的轨道磁矩和自旋磁矩构成的原子固有磁矩称为本征磁矩 自发磁化:在铁磁物质内部存在着很强的与外磁场无关的“分子场”,在这种分子场作用下,原子磁矩趋于同向平行排列,即自发的磁化至饱和, 磁畴:居里点下,铁磁体自发磁化成若干个小区域,称为磁畴 磁晶各向异性:在单晶体的不同晶向上,磁性能是不同的,称为~ 形状各向异性:不同形状的试样磁化行为是不同的,该现象称为~ 磁致伸缩:铁磁体在磁场中被磁化时,其形状和尺寸都会发生变化这种现象称为~ 技术磁化:在外磁场作用下铁磁体从完全退磁状态磁化至饱和状态的内部变化过程 双光束干涉:两束光相遇后,在光叠加区,光强重新分布,出现明暗相间,稳定的干涉条纹(条件:频率相同振动方向一致,并且有固定的相位关系) 衍射:光波遇到障碍物时,在一定程度上能绕过障碍物进入几何阴影区。 色散:材料的折射率随入射光的波长而变化 折射率的色散:材料的折射率随入射光的频率减小而减小的性质 双折射:由一束入射光折射后分成两束光的现象。符合折射率的是寻常光,不然是非常光二向色性:晶体结构的各向异性不仅能产生折射率的各向异性(双折射),而且能产生吸收率的各向异性 四、问答题 1.经典自由电子理论与量子自由电子理论异同 同:金属晶体中,正离子形成的电场是均匀的,价电子是自由的, 异:经典理论认为没有施加外电场时,自由电子沿各个方向运动的几率相同,不产生电流? 量子理论认为每个原子的内层电子基本保持着单个原子时的能量状态,所有价电子有不同的能级。 2.评价电介质的主要电学性能指标有哪些? 介电常数、耐电常数、损耗因数、体电阻率和表面电阻率、前三个属于介电性,后者导电性3.电介质的极化基本形式 电子式极化、离子式极化、偶极子极化、空间电荷极化

材料物理性能复习题

μυσρ22/1e n m **==材料物理性能复习题 一. 概念题 压电体:某些电介质施加机械力而引起它们内部正负电荷中心相对位移,产生极化,从而导致介质两端表面内出现符 号相反的束缚电荷。在一定应力范围内,机械力与电荷呈线性可逆关系这类物质 导体:在外电场的作用下,大量共有化电子很易获得能量,集体定向流动形成电流的物体 半导体:能带结构的满带与空带之间也是禁带,但是禁带很窄,导电性能介于导体和半导体之间的物体 绝缘体:在外电场的作用下,共有化电子很难接受外电场的能量,难以导通电流的物体 热电效应:当材料存在电位差时会产生电流,存在温度差时会产生热流的这种现象 电光效应:铁电体的极化能随E 而改变,因而晶体的折射率也将随E 改变,这种由外电场引起晶体折射率的变化 一般吸收:在光学材料中,石英对所有可见光几乎都透明的,在紫外波段也有很好的透光性能,且吸收系数不变的这 种现象 选择吸收: 对于波长范围为3.5—5.0μm 的红外光却是不透明的,且吸收系数随波长剧烈变化的这种现象 发光效率:发光体把受激发时吸收的能量转换为光能的能力 受激辐射:当一个能量满足hv =E 2-E 1的光子趋近高能级E 2的原子时,入射的光子诱导高能级原子发射一个和自己性 质完全相同的光子的过程 二、 简答题 (1) 电介质导电的概念、详细类别、来源。 概念:并不是所有的电介质都是理想的绝缘体,在外电场作用下,介质中都会有一个很小的电流 类别:一类是源于晶体点阵中基本离子的运动,称为离子固有电导或本征电导,这种电导是热缺陷形成的,即是由离子自身随着热运动的加剧而离开晶格点阵形成。另一类是源于结合力较弱的杂质离子的运动造成的,称为杂质电导 来源(导电方式):电子与空穴(电子电导);移动额正负离子电导(离子电导)。对于离子电导,必须需要指出的是:在较低场强下,存在离子电导;在高场强下,呈现电子电导。 (2) 正常情况下,为什么金属的电导率随着温度的升高而降低(电阻升高)。 金属材料随温度升高,离子热振动的振幅增大,电子就愈易受到散射,可认为μ与温度成正比,则ρ也与温度成正比。 (3) 为什么金属化合物的导电性要低于单一金属,请基于电离势能方面的差异进行简要说明。 (1)晶体点阵畸变;(2)杂质对理想晶体的破坏;(3)影响了能带结构,移动费米面及电子能态密度和有效电导电子数;(4)影响了弹性常数。过渡金属与贵金属两组元固溶时:电阻异常高,原因它们的价电子可以转移到过渡金属的尚未被填满的d-或f-壳层中,从而使有效电导的电子数目减少。原子键合的方式发生了变化,其中至少一部分由金属键变为共价键获离子键,使导电电子减少。 (4) 简述本证硅的导电机理。 导电机理:在热、光等外界条件的影响下,满带上的价电子获得足够的能量,跃过禁带跃迁至空带而成为自由电子,同时在满带中留下电子空穴,自由电子和电子空穴在外加电场的作用下定向移动形成电流。 (5) 简述硅中掺杂硼的导电机理(要有示意图) 在本征半导体中,掺入3价元素的杂质(硼,铝,镓,铟),就可以使晶体中空穴浓度大 大增加。因为3价元素的原子只有3个价电子,当它顶替晶格中的一个4价元素原子, 并与周围的4个硅(或锗)原子组成4个共价键时,缺少一个价电子,形成一个空位。 因为,3价元素形成的空位能级非常靠近价带顶的能量,在价电子共有化运动中,相邻的 原子上的价电子就很容易来填补这个空位(较跃迁至禁带以上的空带容易的多),从而产 生一个空穴。所以每一个三价杂质元素的原子都能接受一个价电子,而在价带中产生一 个空穴。 (6) 简述硅中掺杂砷的导电机理(要有示意图) 本征半导体中掺入5价元素(磷,砷,锑)就可使晶体中的自由电子的浓度极大地增 加。因为5价元素的原子有5个价电子,当它顶替晶格中的一个4价元素的原子时, 余下了1个价电子变成多余的,此电子的能级非常靠近导带底,非常容易进入导带成 为自由电子,因而导带中的自由电子较本征半导体显著增多,导电性能大幅度提高。 (7) 简述介质损耗的几种形式及造成这几种损耗的原因。 介质损耗形式:

武汉理工材料物理性能复习资料

第一章 一、基本概念 1.塑性形变及其形式:塑性形变是指一种在外力移去后不能恢复的形变。晶体中的塑性形变有两种基本方式:滑移和孪晶。 2.蠕变:当对粘弹性体施加恒定压力σ0时,其应变随时间而增加,这种现象叫做蠕变。弛豫:当对粘弹性体施加恒定应变ε0时,其应力将随时间而减小,这种现象叫弛豫。 3.粘弹性:一些非晶体,有时甚至多晶体在比较小的应力时可以同时表现出弹性和粘性,称为粘弹性,所有聚合物差不多都表现出这种粘弹性。 4.滞弹性:对于理想的弹性固体,作用应力会立即引起弹性应变,一旦应力消除,应变也随之消除,但对于实际固体这种弹性应变的产生与消除需要有限时间,无机固体和金属这种与时间有关的弹性称为滞弹性。 二、基本理论 1.金属材料和无机非金属材料的塑性变形机理:○1产生滑移机会的多少取决于晶体中的滑移系统数量。○2对于金属,金属键没有方向性,滑移系统多,所以易于滑移而产生塑性形变。对于无机非材料,离子键和共价键有明显的方向性,同号离子相遇,斥力极大,只有个别滑移系统才能满足几何条件与静电作用条件。晶体结构越复杂,满足这种条件就越困难,所以不易产生滑移。○3滑移反映出来的宏观上的塑性形变是位错运动的结果,无机材料不易形成位错,位错运动也很困难,也就难以产生塑性形变,材料易脆断。 金属与非金属晶体滑移难易的对比 金属非金属 由一种离子组成组成复杂 金属键物方向性共价键或离子键有方向性 结果简单结构复杂 滑移系统多滑移系统少 2.无机材料高温蠕变的三个理论 ○1高温蠕变的位错运动理论:无机材料中晶相的位错在低温下受到障碍难以发生运动,在高温下原子热运动加剧,可以使位错从障碍中解放出来,引起蠕变。当温度增加时,位错运动加快,除位错运动产生滑移外,位错攀移也能产生宏观上的形变。热运动有助于使位错从障碍中解放出来,并使位错运动加速。当受阻碍较小时,容易运动的位错解放出来完成蠕变后,蠕变速率就会降低,这就解释了蠕变减速阶段的特点。如果继续增加温度或延长时间,受阻碍较大的位错也能进一步解放出来,引起最后的加速蠕变阶段。 ○2扩散蠕变理论:高温下的蠕变现象和晶体中的扩散现象类似,并且把蠕变过程看成是外力作用下沿应力作用方向扩散的一种形式。 ○3晶界蠕变理论:多晶陶瓷中存在着大量晶界,当晶界位向差大时,可以把晶界看成是非晶体,因此在温度较高时,晶界粘度迅速下降,外力导致晶界粘滞流动,发生蠕变。 第二章 一、基本概念 1.裂纹的亚临界生长:裂纹除快速失稳扩展外,还会在使用应力下,随着时间的推移而缓慢扩展,这种缓慢扩展也叫亚临界生长,或称为静态疲劳。 2.裂纹扩展动力:物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能,反之,前者小于后者,则裂纹不会扩展。将上述理论用于有裂纹的物体,物体内储存的弹性应变能的降低(或释放)就是裂纹扩展动力。

无机材料物理性能复习资料

一、名词解释 塑性形变:指一种在外力移去后不能恢复的形变 延展性:材料在经受塑性形变而不破坏的能力称为材料的延展性 黏弹性:一些非晶体和多晶体在受到比较小的应力作用时可以同时表现出弹性和粘性,这种现象称为黏弹性 滞弹性:对于实际固体,弹性应变的产生与消除都需要有限的时间,无机固体和金属表现出的这种与时间有关的弹性称为滞弹性 蠕变:当对黏弹性体施加恒定压力σ0时,其应变随时间增加而增加。这种现象叫蠕变,此时弹性模量Ec也将随时间而减小 Ec(t)=σ0/ε(t) 弛豫:如果施加恒定应变ε0,则应力将随时间而减小,这种现象叫弛豫。此时弹性模量Er也随时间降低Er=σ(t)/ε0 Grffith微裂纹理论:实际材料中总是存在许多细小的裂纹或缺陷;在外力作用下,这些裂纹和缺陷附近产生应力集中现象;当应力到达一定程度时,裂纹的扩展导致了材料断裂。(为什么某物质尖端易断?) 攀移运动:位错在垂直于滑移面方向的运动称为攀移运动。 热容:描述材料中分子热运动的能量随温度而变化的一个物理量,定义为使物体温度升高1K所需要外界提供的能量。 德拜热容理论(德拜三次方定律):在高于德拜温度θD时,热容趋于常数25 J/(mol·K),而在低于θD时热容则与T3成正比。 热稳定性:是指材料承受温度急剧变化而不破坏的能力,又称抗热震性。 抗热冲击断裂性能:材料发生瞬时断裂,抵抗这类破坏的性能为~ 抗热冲击损伤性能:在热冲击循环作用下,材料表面开裂、剥落,并不断发展,

最终破裂或变质,抵抗这类破坏的性能为~ 本征电导(固有电导):晶体点阵中基本离子的运动,称为~ 电介质的极化:电介质在电场作用下产生束缚电荷,也是电容器贮存电荷能力增强的原因。 居里温度:是指材料可以在铁磁体和顺磁体之间改变的温度,即铁磁体从铁磁相转变成顺磁相的相变温度。也可以说是发生二级相变的转变温度。低于居里点温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里点温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。 二、填空 晶体中的塑性形变有两种方式:滑移和孪晶 滑移系统包括滑移方向和滑移面 影响粘度的因素:温度、时间、组成 影响热导率的因素:温度、显微结构、化学组成、 反射分为:全反射、漫反射、镜面反射 载流子:电子、空穴、正离子、负离子、空位 金属材料电导的载流子是自由电子 无机非金属材料电导的载流子可以是电子、电子空穴、或离子、离子空位、 非金属材料按其结构状态可以分为晶体材料与玻璃态材料 杂质半导体:n型半导体(五价元素原子取代四价原子),p型半导体(三价元素原子取代四价原子) 超导特性:完全抗磁性在超导体永远保持磁感应强度为零迈斯纳效应与零电阻现象是超导体的两个基本特性 提高材料透明度:细:细化晶粒密:减小气孔纯:减少杂质

材料物理性能期末复习重点-田莳

1.微观粒子的波粒二象性 在量子力学里,微观粒子在不同条件下分别表现出波动或粒子的性质。这种量子行为称为波粒二象性。 2.波函数及其物理意义 微观粒子具有波动性,是一种具有统计规律的几率波,它决定电子在空间某处出现的几率,在t 时刻,几率波应是空间位置(x,y,z,t)的函数。此函数 称波函数。其模的平方代表粒子在该处出现的概率。 表示t 时刻、 (x 、y 、z )处、单位体积内发现粒子的几率。 3.自由电子的能级密度 能级密度即状态密度。 dN 为E 到E+dE 范围内总的状态数。代表单位能量范围内所能容纳的电子数。 4.费米能级 在0K 时,能量小于或等于费米能的能级全部被电子占满,能量大于费米能级的全部为空。故费米能是0K 时金属基态系统电子所占有的能级最高的能量。 5.晶体能带理论 假定固体中原子核不动,并设想每个电子是在固定的原子核的势场及其他电子的平均势场中运动,称单电子近似。用单电子近似法处理晶体中电子能谱的理论,称能带理论。 6.导体,绝缘体,半导体的能带结构 根据能带理论,晶体中并非所有电子,也并非所有的价电子都参与导电,只有导带中的电子或价带顶部的空穴才能参与导电。从下图可以看出,导体中导带和价带之间没有禁区,电子进入导带不需要能量,因而导电电子的浓度很 大。在绝缘体中价带和导期隔着一个宽的禁带E g ,电子由价带到导带需要外界供给能量,使电子激发,实现电子由价带到导带的跃迁,因而通常导带中导电电子浓度很小。半导体和绝缘体有相类似的能带结构,只是半导体的禁带较窄(E g 小) ,电子跃迁比较容易 1.电导率 是表示物质传输电流能力强弱的一种测量值。当施加电压于导体的两 端 时,其电荷载子会呈现朝某方向流动的行为,因而产生电流。电导率 是以欧姆定律定义为电流密度 和电场强度 的比率: κ=1/ρ 2.金属—电阻率与温度的关系 金属材料随温度升高,离子热振动的振幅增大,电子就愈易受到散射,当电子波通过一个理想品体点阵时(0K),它将不受散射;只有在晶体点阵完整性遭到破坏的地方,电子被才受到散射(不相干散射),这就是金属产生电阻的根本原因。由于温度引起的离子运动(热振动)振幅的变化(通常用振幅的均方值表示),以及晶体中异类原于、位错、点缺陷等都会使理想晶体点阵的周期性遭到破坏。这样,电子波在这些地方发生散射而产生电阻,降低导电性。 金属电阻率在不同温度范围与温度变化关系不同。一般认为纯金属在整个温度区间产生电阻机制是电子-声子(离子)散射。在极低温度下,电子-电子散射构成了电阻产生的主要机制。金属融化,金属原子规则阵列被破坏,从而增强了对电子的散射,电阻增加。 3.离子电导理论 离子电导是带有电荷的离子载流子在电场作用下的定向移动。一类是晶体点阵的基本离子,因热振动而离开晶格,形成热缺陷,离子或空位在电场作用下成为导电载流子,参加导电,即本征导电。另一类参加导电的载流子主要是杂质。 离子尺寸,质量都远大于电子,其运动方式是从一个平衡位置跳跃到另一个平衡位置。离子导电是离子在电场作用下的扩散。其扩散路径畅通,离子扩散系数就高,故导电率高。 4.快离子导体(最佳离子导体,超离子导体) 具有离子导电的固体物质称固体电解质。有些

相关主题
文本预览
相关文档 最新文档