当前位置:文档之家› 各种算法核心特征代码

各种算法核心特征代码

各种算法核心特征代码
各种算法核心特征代码

解析算法

枚举算法

排序算法:选择、冒泡

查找算法:顺序、对分

递归算法

一、解析算法

r = Val(Text1.Text)

s = 3.14 * r * r

Text2.Text = Str(s)

一、枚举算法

For x=1 to 5

For y=1 to 5

if x+y=5 and 2*x+4*y=12 then

c= x + "只鸡" + y+ "只兔子"

List1.additem c

Endif

Next y

Next x

算法的优化:

For x=1 to 5

y=5-x

if 2*x+4*y=12 then

c= x + "只鸡" + y+ "只兔子"

List1.additem c

Endif

Next x

二、排序算法------冒泡排序

从最后面的一个数据起,从后往前比较相邻的两个数据,将较小的数据换到前面。重复这个过程,直到最后两个数据处理完,这是第一遍;从最后面的一个数据起,从后往前比较相邻的两个数据,将较小的数据换到前面。重复这个过程,直到第二个数,这是第二遍,。。。

如:五个数据,要求从小到大排序

For i=1 to 4

For j= 5 to i+1 step -1

?if d(j)

?temp=d(j)

?d(j)=d(j-1)

?d(j-1)=temp

?endif

Next

Next

例:n(1)~n(6)存储号码,s(1)~s(5)存储成绩

?For i = 1 To 5

?For j = 6 To i + 1 Step -1

?If s(j) < s(j - 1) Then

?temp = s(j):s(j) = s(j - 1):s(j - 1) = temp

?temp = n(j):n(j) = n(j - 1):n(j - 1) = temp

?End If

?Next

?Next

冒泡排序的变形:

从第一个数据起,从前往后比较相邻的两个数据,将较小的数据换到前面。重复这个过程,直到最后两个数据处理完,这是第一遍;从第一个数据起,从前往后比较相邻的两个数据,将较小的数据换到前面。重复这个过程,直到倒数第二个数,这是第二遍,。。。

For i=1 to 4

For j=1 to n-i

?if d(j)>d(j+1)then

?temp=d(j)

?d(j)=d(j+1)

?d(j+1)=temp

?endif

Next

Next

三、排序算法------选择排序

找出最小数,与队列中的第一个数交换,这是第一遍

从第二个数开始,找出最小数,与队列中的第二个数交换,这是第二遍

…….

?For i = 1 To 4

?k= i

?For j = i + 1 To 5

?If d(j) < d(k Then k= j

?Next

?

?If k<> i Then

?temp = d(k)

?d(k) = d(i)

?d(i) = temp

?End If

?Next

选择排序的变形:

?For i = 1 To 4

?k=i

?For j = i + 1 To 5

?If d(j) < d(k) Then

?temp = d(k)

?d(k) = d(i)

?d(i) = temp

?End If

?Next

?Next

四、查找算法------顺序查找

? f = 0

?For i = 1 To 10

?If d(i) = Key Then f = i

?Next

?

?If f = 0 then

?text2.text=“找不到!”

?Else

?text2.text=str(f)

?Endif

六:查找算法------对分查找

?f=0

?Do while f=0 and i<=j

?m=int((i+j)/2)

?If key=d(m) then

?f=m

?Elseif key

?j=m-1

?Else

?i=m+1

?Endif

?Loop

计算机图形学裁剪算法详解

裁剪算法详解 在使用计算机处理图形信息时,计算机部存储的图形往往比较大,而屏幕显示的只是图的一部分。因此需要确定图形中哪些部分落在显示区之,哪些落在显示区之外,以便只显示落在显示区的那部分图形。这个选择过程称为裁剪。最简单的裁剪方法是把各种图形扫描转换为点之后,再判断各点是否在窗。但那样太费时,一般不可取。这是因为有些图形组成部分全部在窗口外,可以完全排除,不必进行扫描转换。所以一般采用先裁剪再扫描转换的方法。 (a)裁剪前 (b) 裁剪后 图1.1 多边形裁剪 1直线段裁剪 直线段裁剪算法比较简单,但非常重要,是复杂图元裁剪的基础。因为复杂的曲线可以通过折线段来近似,从而裁剪问题也可以化为直线段的裁剪问题。常

用的线段裁剪方法有三种:Cohen-Sutherland,中点分割算法和梁友栋-barskey 算法。 1.1 Cohen-Sutherland裁剪 该算法的思想是:对于每条线段P1P2分为三种情况处理。(1)若P1P2完全在窗口,则显示该线段P1P2简称“取”之。(2)若P1P2明显在窗口外,则丢弃该线段,简称“弃”之。(3)若线段既不满足“取”的条件,也不满足“弃”的条件,则在交点处把线段分为两段。其中一段完全在窗口外,可弃之。然后对另一段重复上述处理。 为使计算机能够快速判断一条直线段与窗口属何种关系,采用如下编码方法。延长窗口的边,将二维平面分成九个区域。每个区域赋予4位编码CtCbCrCl.其中各位编码的定义如下:

图1.2 多边形裁剪区域编码图5.3线段裁剪 裁剪一条线段时,先求出P1P2所在的区号code1,code2。若code1=0,且code2=0,则线段P1P2在窗口,应取之。若按位与运算code1&code2≠0,则说明两个端点同在窗口的上方、下方、左方或右方。可判断线段完全在窗口外,可弃之。否则,按第三种情况处理。求出线段与窗口某边的交点,在交点处把线段一分为二,其中必有一段在窗口外,可弃之。在对另一段重复上述处理。在实现本算法时,不必把线段与每条窗口边界依次求交,只要按顺序检测到端点的编码不为0,才把线段与对应的窗口边界求交。 Cohen-Sutherland裁减算法 #define LEFT 1 #define RIGHT 2 #define BOTTOM 4

计算机图形学实验--橡皮筋技术(完整代码,准确无误)

计算机图形学上机实验报告 橡皮筋技术 计算机科学与技术学院 姓名: xxx 完成日期: 2010-12-7

实验:橡皮筋技术 一、实验目的与要求 实验目的:1.学会使用OpenGL,进一步掌握基本图形的绘制方法, 2.理解glut程序框架 3.理解窗口到视区的变换 4.理解OpenGL实现动画的原理 5.学会基于鼠标和键盘实现交互的实现方法 二、实验内容: 利用OpenGL实现折线和矩形的皮筋绘制技术,并采用右键菜单实现功能的选择 实现方法:1.橡皮筋技术的实现采用双缓存技术,绘制图形时分别绘制到两个缓存,交替显示。 2.右键菜单控制选择绘制折线还是绘制矩形,实现方法:通过菜单注册函数创建一个弹出式菜单,然后使用函数加入菜单项,最后使用函数讲菜单与鼠标右键关联起来,GLUT通过为菜单提供一个整数标识符实现对菜单的管理,在main主函数通过标识符用函数指定对应的菜单为当前的菜单。 2. 折线的橡皮筋绘制技术实现:鼠标所在位置确定一个点,移动鼠标时,每次移动时将点的信息保存在数组中,连接当前鼠标所在点和前一个点的直线段。 3.矩形的橡皮筋绘制技术:每个矩形由两个点唯一确定,鼠标当前点为第一个点,移动鼠标确定第二个点的位置,由这两点的坐标绘制出举行的四条边(直线段),矩形即绘制完毕。 三、实验结果

图鼠标右键菜单 图绘制矩形 四、体会 1> 经过这次实验,逐步对opengl软件有了一定的了解,而且对于理论知识有了很好的巩固,并非仅仅会C语言就能编写画图程序,gult程序有自己特殊的框架与实现过程.在这次试验中,虽然没有完全理解其原理,但在一定程度上已经为我们今后的学习应用打下了基础. 2>初步了解了如何在OpenGL实现基本的绘图功能,以及鼠标和键 盘灯交互设备的实现,还有如何由初始生成元绘制分形物体。在这个过 程中遇到了很多问题,程序的调试也是困难重重,通过自己看书思考和 老师、同学的帮助最终完成了程序的调试,在这一过程中加深了对理论 知识的理解,以及理清了理论到实践转换的一点点思路,再一次体会到 理论与实践的结合的重要性,今后要多多提高提高动手能力。

最短路径规划实验报告

电子科技大学计算机学院标准实验报告 (实验)课程名称最短路径规划 电子科技大学教务处制表

实验报告 学生姓名:李彦博学号:2902107035 指导教师:陈昆 一、实验项目名称:最短路径规划 二、实验学时:32学时 三、实验原理:Dijkstra算法思想。 四、实验目的:实现最短路径的寻找。 五、实验内容: 1、图的基本概念及实现。 一、图的定义和术语 图是一种数据结构。 ADT Graph{ 数据对象V :V是据有相同特性的数据元素的集合,称为顶点集。 数据关系R : R={VR} VR={|v,w∈V且P(v,w), 表示从v到w的弧,P(v,w)定义了弧的意义或信息} 图中的数据元素通常称为顶点,V是顶点的有穷非空集合;VR是两个顶点之间的关系的集合,若顶点间是以有向的弧连接的,则该图称为有向图,若是以无向的边连接的则称为无向图。弧或边有权值的称为网,无权值的称为图。 二、图的存储结构 邻接表、邻接多重表、十字链表和数组。这里我们只介绍数组表示法。 图的数组表示法: 用两个数组分别存储数据元素(顶点)的信息和数据元素之间的关系(边或弧)的信息。其形式描述如下: //---------图的数组(邻接矩阵)存储表示---------- #define INFINITY INT_MAX //最大值 #define MAX_VERTEX_NUM 20 //最大顶点个数 Typedef enum{DG,DN,UDG,UDN} GraphKind; //有向图,有向网,无向图,无向网Typedef struct ArcCell{ VRType adj; //顶点关系类型,对无权图,有1或0表示是否相邻; //对带权图,则为权值类型。 InfoType *info; //弧相关信息的指针

计算机图形学真实图形

#include #include /* Initialize material property, light source, lighting model, * and depth buffer. */ void init(void) { GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 }; GLfloat mat_shininess[] = { 50.0 }; GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 }; GLfloat lightPos[]={0.0f,0.0f,75.0f,1.0f}; GLfloat ambientLight[]={0.0f,0.0f,75.0f,1.0f}; GLfloat specular[]={0.0f,0.0f,75.0f,1.0f}; GLfloat specref[]={0.0f,0.0f,75.0f,1.0f}; GLfloat spotDir[]={0.0f,0.0f,75.0f,1.0f}; glClearColor (0.0, 0.0, 0.0, 0.0); glShadeModel (GL_SMOOTH);//设置阴影模型 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);//镜面光分量强度glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);//镜面光反射指数glLightfv(GL_LIGHT0, GL_POSITION, light_position);//设置光源的位置 glLightModelfv(GL_LIGHT_MODEL_AMBIENT,ambientLight); glLightfv(GL_LIGHT1,GL_DIFFUSE,ambientLight); glLightfv(GL_LIGHT1,GL_SPECULAR,specular); glLightfv(GL_LIGHT1,GL_POSITION,lightPos); glLightf(GL_LIGHT1,GL_SPOT_CUTOFF,50.0f); glEnable(GL_LIGHT1); glEnable(GL_COLOR_MATERIAL); glColorMaterial(GL_FRONT,GL_AMBIENT_AND_DIFFUSE); glMaterialfv(GL_FRONT,GL_SPECULAR,specref); glMateriali(GL_FRONT,GL_SHININESS,128); glEnable(GL_LIGHTING);//启动光照 glEnable(GL_LIGHT0);//激活光源 glEnable(GL_LIGHT1);//激活光源 glEnable(GL_DEPTH_TEST); } /* 调用glut函数绘制一个球*/ void display(void) { glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

图形学实验一 三维分形(附源代码)

实验报告 实验名称:三维分形算法 姓名:陈怡东 学号:09008406 程序使用说明: 程序打开后会呈现出3次分形后的四面体,因为考虑到观察效果的清晰所以就用了3次分形作为演示。 与用户的交互: 1键盘交互:分别按下键盘上的数字键1,2,3,4可以分别改变四面体的4个面的颜色。 按下字母c(不区别大小写)可以改变视图函数,这里循环切换3种视图 函数:glOrtho,glFrustum,gluPerspective,但是改变视图函数后要窗口形状变化后才能显现出来 按下字母键q(不区别大小写)可以退出程序 2鼠标交互:打开后在绘图的区域按下鼠标左键不放便可以拖动图形的视角,这里为了展现图形的3D效果因此固定了其中一点不放,这样就可以看到3D的效果。 鼠标右击则有弹出菜单显示,其中改变颜色则是同时改变4个面的颜色,本程序中运用了8组配色方案。 改变视图函数也是上述的3种函数,这里的效果立刻显现,但是还有很多问题达不到所要的效果,希望老师能帮忙解决一下。 设计思路: 分形算法:把四面体细分成更小的四面体,先找出其6个棱的中点并连接起来,这样就在4个顶点处各有一个小的四面体,原来四面体中剩下的部分应当去掉。仿效二维的生成方法,我们对保留的四个小四面体进行迭代细分。这样细分结束后通过绘制4个三角形来绘制每一个剩下的四面体。 交互的实现:键盘交互,即通过对按键的响应写上响应函数实现对视图和颜色的改变。 鼠标交互:通过对鼠标左右按键的 实现: 该部分只做了必要的介绍,具体实现见代码(附注释) 分形算法:void tetra(GLfloat *a,GLfloat *b,GLfloat *c,GLfloat *d)函数实现的是绘制四面体并且给四个面绘上不同的颜色。以区别开来,函数的实现细节见代码,有注释介绍。 void triangle3(GLfloat *a,GLfloat *b,GLfloat *c)函数用来绘制每个平面细分后的三角形。其中顶点设置为3维坐标glVertex3fv(a); void divide_tetra(GLfloat *a,GLfloat *b,GLfloat *c,GLfloat *d,int m)细分四面体的函数实现。前四个参数为传入点的坐标,最后参数m则是细分次数。先计算六个中点的坐标mid[1][j]=(a[j]+c[j])/2;3次循环则是对x,y,z三个坐标的一次计算,然后再递归调用绘制4个小四面体。 然后是显示回调函数void mydisplay3FX();这跟程序模板差不多不做过多介绍。 分形算法中必要重要的一点是隐藏面的消除。即书上2.10.3介绍的内容。对对象进行排

计算机图形学图形的几何变换的实现算法

实验二图形的几何变换的实现算法 班级 08 信计 学号 59 姓名 _____ 分数 _____ 一、 实验目的和要求: 1、 掌握而为图形的基本几何变换,如平移,旋转,缩放,对称,错切变换;< 2、 掌握OpenG 冲模型变换函数,实现简单的动画技术。 3、 学习使用OpenGL 生成基本图形。 4、 巩固所学理论知识,加深对二维变换的理解,加深理解利用变换矩阵可 由简单图形得到复杂图形。加深对变换矩阵算法的理解。 编制利用旋转变换绘制齿轮的程序。编程实现变换矩阵算法,绘制给出形体 的三视图。调试程序及分析运行结果。要求每位学生独立完成该实验,并上传实 验报告。 二、 实验原理和内容: .原理: 图像的几何变换包括:图像的空间平移、比例缩放、旋转、仿射变换和图像插值。 图像几何变换的实质:改变像素的空间位置,估算新空间位置上的像素值。 图像几何变换的一般表达式:[u,v ]=[X (x, y ),Y (x, y )],其中,[u,v ]为变换后图像 像素的笛卡尔坐标, [x, y ]为原始图像中像素的笛卡尔坐标。这样就得到了原始图像与变 换后图像的像素的对应关系。 平移变换:若图像像素点(x, y )平移到(x x 。,y ■ y 。),则变换函数为 u = X (x, y ) =x 沟, v 二丫(x, y ) = y ■ y 。,写成矩阵表达式为: 比例缩放:若图像坐标 (x,y )缩放到(S x ,s y )倍,则变换函数为: S x ,S y 分别为x 和y 坐标的缩放因子,其大于1表示放大, 小于1表示缩小。 旋转变换:将输入图像绕笛卡尔坐标系的原点逆时针旋转 v 角度,则变换后图像坐标为: u COST 内容: :u l :Sx k ;0 其中,x 0和y 0分别为x 和y 的坐标平移量。 其中,

基于蚁群算法的路径规划

MATLAB实现基于蚁群算法的机器人路径规划 1、问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 2 算法理论 蚁群算法(Ant Colony Algorithm,ACA),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo 提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo 博士给出改进模型(ACS),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。Stützle 与Hoos给出了最大-最小蚂蚁系统(MAX-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图2-1 所示,AE 之间有两条路ABCDE 与ABHDE,其中AB,DE,HD,HB 的长度为1,BC,CD 长度为0.5,并且,假设路上信息素浓度为0,且各个蚂蚁行进速度相同,单位时间所走的长度为1,每个单位时间内在走过路径上留下的信息素的量也相同。当t=0时,从A 点,E 点同时各有30 只蚂蚁从该点出发。当t=1,从A 点出发的蚂蚁走到B 点时,由于两条路BH 与BC 上的信息素浓度相同,所以蚂蚁以相同的概率选择BH 与BC,这样就有15 只蚂蚁选择走BH,有15 只蚂蚁选择走BC。同样的从E 点出发的蚂蚁走到D 点,分别有15 只蚂蚁选择DH 和DC。当t=2 时,选择BC 与DC的蚂蚁分别走过了BCD 和DCB,而选择BH 与DH 的蚂蚁都走到了H 点。所有的蚂蚁都在所走过的路上留下了相同浓度的信息素,那么路径BCD 上的信息素的浓度是路径BHD 上信息素浓度的两倍,这样若再次有蚂蚁选择走BC 和BH 时,或选择走DC 与DH 时,都会以较大的概率选择信息素浓度高的一边。这样的过程反复进行下去,最短的路径上走过的蚂蚁较多,留下的信息素也越多,蚁群这样就可以找到一条较短的路。这就是它们群体智能的体现。 蚁群算法就是模拟蚂蚁觅食过程中可以找到最短的路的行为过程设计的一种仿生算法。在用蚁群算法求解组合优化问题时,首先要将组合优化问题表达成与信息素相关的规范形式,然后各个蚂蚁独立地根据局部的信息素进行决策构造解,并根据解的优劣更新周围的信息素,这样的过程反复的进行即可求出组合优化问题的优化解。 归结蚁群算法有如下特点: (1)分布式计算:各个蚂蚁独立地构造解,当有蚂蚁个体构造的解较差时,并不会影响整体的求解结果。这使得算法具有较强的适应性; (2)自组织性:系统学中自组织性就是系统的组织指令是来自系统的内部。同样的蚁

计算机图形学 实验一:生成彩色立方体(含源代码)

实验一 实验目的:生成彩色立方体 实验代码://ColorCube1.java import java.applet.Applet; //可以插入html import java.awt.BorderLayout; //窗口采用BorderLayout方式布局import com.sun.j3d.utils.applet.MainFrame; //application import com.sun.j3d.utils.geometry.ColorCube;//调用生成ColorCube的Utility import com.sun.j3d.utils.geometry.Primitive; import com.sun.j3d.utils.universe.*; //观测位置的设置 import javax.media.j3d.*; //核心类 import javax.vecmath.*; //矢量计算 import com.sun.j3d.utils.behaviors.mouse.*; public class ColorCube1 extends Applet { public BranchGroup createSceneGraph() { BranchGroup objRoot=new BranchGroup(); //BranchGroup的一个对象objRoot(放置背景、灯光)BoundingSphere bounds=new BoundingSphere(new Point3d(0.0,0.0,0.0),100.0);//有效范围 TransformGroup objTrans=new TransformGroup(); objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); objRoot.addChild(objTrans); MouseRotate behavior = new MouseRotate(); behavior.setTransformGroup(objTrans); objRoot.addChild(behavior); behavior.setSchedulingBounds(bounds); MouseZoom behavior2 = new MouseZoom(); behavior2.setTransformGroup(objTrans); objRoot.addChild(behavior2); behavior2.setSchedulingBounds(bounds); MouseTranslate behavior3 = new MouseTranslate(); behavior3.setTransformGroup(objTrans); objRoot.addChild(behavior3); behavior3.setSchedulingBounds(bounds);

计算机图形学实验C++代码

一、bresenham算法画直线 #include #include #include void draw_pixel(int ix,int iy) { glBegin(GL_POINTS); glVertex2i(ix,iy); glEnd(); } void Bresenham(int x1,int y1,int xEnd,int yEnd) { int dx=abs(xEnd-x1),dy=abs(yEnd-y1); int p=2*dy-dx; int twoDy=2*dy,twoDyMinusDx=2*dy-2*dx; int x,y; if (x1>xEnd) { x=xEnd;y=yEnd; xEnd=x1; } else { x=x1; y=y1; } draw_pixel(x,y); while(x

} void myinit() { glClearColor(0.8,1.0,1.0,1.0); glColor3f(0.0,0.0,1.0); glPointSize(1.0); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluOrtho2D(0.0,500.0,0.0,500.0); } void main(int argc,char **argv ) { glutInit(&argc,argv); glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB); glutInitWindowSize(500,500); glutInitWindowPosition(200.0,200.0); glutCreateWindow("CG_test_Bresenham_Line example"); glutDisplayFunc(display); myinit(); glutMainLoop(); } 二、中点法绘制椭圆 #include #include #include inline int round(const float a){return int (a+0.5);} void setPixel(GLint xCoord,GLint yCoord) { glBegin(GL_POINTS); glVertex2i(xCoord,yCoord); glEnd(); } void ellipseMidpoint(int xCenter,int yCenter,int Rx,int Ry) { int Rx2=Rx*Rx; int Ry2=Ry*Ry; int twoRx2=2*Rx2; int twoRy2=2*Ry2; int p; int x=0; int y=Ry; int px=0; int py=twoRx2*y; void ellipsePlotPoints(int,int,int,int);

一种快速神经网络路径规划算法概要

文章编号 2 2 2 一种快速神经网络路径规划算法α 禹建丽? ∏ √ 孙增圻成久洋之 洛阳工学院应用数学系日本冈山理科大学工学部电子工学科 2 清华大学计算机系国家智能技术与系统重点实验室日本冈山理科大学工学部信息工学科 2 摘要本文研究已知障碍物形状和位置环境下的全局路径规划问题给出了一个路径规划算法其能量函数 利用神经网络结构定义根据路径点位于障碍物内外的不同位置选取不同的动态运动方程并针对障碍物的形状设 定各条边的模拟退火初始温度仿真研究表明本文提出的算法计算简单收敛速度快能够避免某些局部极值情 况规划的无碰路径达到了最短无碰路径 关键词全局路径规划能量函数神经网络模拟退火 中图分类号 ×°文献标识码 ΦΑΣΤΑΛΓΟΡΙΤΗΜΦΟΡΠΑΤΗΠΛΑΝΝΙΝΓ ΒΑΣΕΔΟΝΝΕΥΡΑΛΝΕΤ? ΟΡΚ ≠ 2 ? ? ≥ 2 ≥ ∏ ΔεπαρτμεντοφΜατηεματιχσ ΛυοψανγΙνστιτυτεοφΤεχηνολογψ Λυοψανγ

ΔεπαρτμεντοφΕλεχτρονιχΕνγινεερινγ ΦαχυλτψοφΕνγινεερινγ ΟκαψαμαΥνι?ερσιτψοφΣχιενχε 2 Ριδαι2χηο 2 ?απαν ΔεπαρτμεντοφΧομπυτερΣχιενχε Τεχηνολογψ ΣτατεΚεψΛαβοφΙντελλιγεντΤεχηνολογψ Σψστεμσ ΤσινγηυαΥνι?ερσιτψ Βει?ινγ ΔεπαρτμεντοφΙνφορματιον ΧομπυτερΕνγινεερινγ ΦαχυλτψοφΕνγινεερινγ ΟκαψαμαΥνι?ερσιτψοφΣχιενχε 2 Ριδαι2χηο 2 ?απαν Αβστραχτ ∏ √ √ √ × ∏ ∏ ∏ ∏ ∏ ∏ 2 ∏ √ × ∏ ∏ ∏ ∏ √ ∏ Κεψωορδσ ∏ ∏ ∏ 1引言Ιντροδυχτιον 机器人路径规划问题可以分为两种一种是基于环境先验完全信息的全局路径规划≈ 另一种是基于传感器信息的局部路径规划≈ ?后者环境是未知或者部分未知的全局路径规划已提出的典型方法有可视图法 ! 图搜索法≈ ! 人工势场法等可视图法的优点是可以求得最短路径但缺乏灵活性并且存在组合爆炸问题图搜索法比较灵活机器人的起始点和目标点的改变不会造成连通图的重新构造但不是任何时候都可以获得最短路径可视图法和图搜索法适用于多边形障碍物的避障路径规划问题但不适用解决圆形障碍物的避障路径规划问题人工势场法的基本思想是通过寻找路径点的能量函数的极小值点而使路径避开障碍物但存在局部极小值问题且不适于寻求最短路径≈ 文献≈ 给出的神经网络路径规划算法我们称为原算法引入网络结构和模拟退火等方法计算简单能避免某些局部极值情况且具有并行性及易于从二维空间推广到三维空间等优点对人工势场法给予了较大的改进但在此算法中由于路径点的总能量函数是由碰撞罚函数和距离函数两部分的和构成的而路径点 第卷第期年月机器人ΡΟΒΟΤ? α收稿日期

计算机图形学实验_透视茶壶源代码

#include #include #include using namespace std; float fTranslate; float fRotate; float fScale=1.0f;//set inital scale value to 1.0f bool bPersp=false; bool bAnim=false; bool bWire=false; int wHeight=0; int wWidth=0; //todo //hint:some additional parameters may needed here when you operate the teapot void Draw_Leg() { glScalef(1,1,3); glutSolidCube(1.0f); //glutWireCone(1.0f); } //定义操作茶壶的操作参数 int tx=1; int ty=0; int tz=0; int tangle=90; //定义设置scale的参数 float sx=0.3f; float sy=0.3f; float sz=0.3f; void Draw_Scene() { glPushMatrix(); glTranslatef(0,0,5); glRotatef(tangle,tx,ty,tz); // glutSolidTeapot(1); glutSolidSphere(1.0f,10,10);

glPopMatrix(); glPushMatrix(); glTranslatef(0,0,3.5); glScalef(5,4,1); glutSolidCube(1.0); glPopMatrix(); //leg1 glPushMatrix(); glTranslatef(1.5,1,1.5); Draw_Leg(); glPopMatrix(); //leg2 glPushMatrix(); glTranslatef(-1.5,1,1.5); Draw_Leg(); glPopMatrix(); //leg3 glPushMatrix(); glTranslatef(1.5,-1,1.5); Draw_Leg(); glPopMatrix(); //leg4 glPushMatrix(); glTranslatef(-1.5,-1,1.5); Draw_Leg(); glPopMatrix(); } void updateView(int width,int height) { glViewport(0,0,width,height);//reset the current viewport glMatrixMode(GL_PROJECTION);//select the projection matrix glLoadIdentity();//reset the projection matrix float whRatio=(GLfloat)width/(GLfloat)height; if(bPersp) { //todo when 'p'operation ,hint:use function glupersPective } else glOrtho(-3,3,-3,3,-100,100); glMatrixMode(GL_MODELVIEW);//select the modelview matrix

计算机图形学 直线的生成算法的实现

实验二 直线的生成算法的实现 班级 08信计2班 学号 59 姓名 分数 一、实验目的和要求 1.理解直线生成的基本原理。 2.掌握几种常用的直线生成算法。 3.利用Visual C++实现直线生成的DDA 算法。 二、实验内容 1.了解直线的生成原理,尤其是Bresenham 画线法原理。 2.掌握几种基本的直线生成算法:DDA 画线法、Bresenham 画线法、中点画线法。 3.利用Visual C++实现直线生成的DDA 算法,在屏幕上任意生成一条直线。 三、实验步骤 1.直线的生成原理: (1)DDA 画线法也称数值微分法,是一种增量算法。是一种基于直线的微分方程来生成直线的方法。 (2)中点画线法原理 以下均假定所画直线的斜率[0,1]k ∈,如果在x 方向上的增量为1,则y 方向上的增量只能在01 之间。中点画线法的基本原理是:假设在x 坐标为p x 的各像素点中,与直线最近者已经确定为(,)p p P x y ,用小实心圆表示。那么,下一个与直线最近的像素只能是正右方的1(1,)p p P x y +,或右上方的2(1,1)p p P x y ++,用小空心圆表示。以M 为1P 和2P 的中点,则M 的坐标为(1,0.5)p p x y ++。又假设Q 是理想直线与垂直线1p x x =+的交点。显然,若M 在Q 的下方,则2P 离直线近,应取2P 为下一像素点;若M 在Q 的上方,则1P 离直线近,应取1P 为下一像素点。 (3)B resenham 画线法原理 直线的中点Bresenham 算法的原理:每次在主位移方向上走一步,另一个方向上走不走步取决于中点偏差判别式的值。 给定理想直线的起点坐标为P0(x0,y0),终点坐标为P1(x1,y1),则直线的隐函数方程为: 0b kx y y)F(x,=--= (3-1) 构造中点偏差判别式d 。 b x k y y x F y x F d i i i i M M -+-+=++==)1(5.0)5.0,1(),(

GIS环境下的最短路径规划算法

GIS 环境下的最短路径规划算法 ―――此处最短路理解为路径长度最小的路径 02计算机1班刘继忠 学号:2002374117 1.整体算法说明: 将图的信息用一个邻接矩阵来表达,通过对邻接矩阵的操作来查找最短路进,最短路径的查找采用迪杰斯特拉算法,根据用户给出的必经结点序列、起点、终点进行分段查找。 2.各函数功能及函数调用说明。 1).void Welcome() 程序初始化界面,介绍程序的功能、特点及相关提示 2) void CreatGraph(MGraph *G,char buf[]) 把图用邻接矩阵的形式表示,并进行 初始化。 3).int ShortestPath(MGraph *G,int jump,int end,int avoid[],int P[MAXSIZE][MAXSIZE],int Dist[],int ShPath[])根据用户给出的起点、终点、必经结点、避开结点进行最短路径的分段查找。 4).void Print(int jump,int end,int Dist[],int ShPath[]) 输出找到的最短路径所经的 结点和路径长度。 函数调用图: 3.各函数传入参数及返回值说明: 1).void Welcome() 无传入和返回值 2) void CreatGraph(MGraph *G,char buf[ ]) MGraph *G为主函数中定义的指向存放图的信息的指针变量。 char buf[ ]为主函数中定义的用来存放在图的相关信息录入时的界面信息的数组,以便以后调用查看各结点的信息。

无返回值。 3).int ShortestPath(MGraph *G,int jump,int end,int avoid[],int P[MAXSIZE][MAXSIZE],int Dist[ ],int ShPath[ ]) MGraph *G指向存放图的信息的指针变量。 int jump起点,int end终点,int avoid[ ] 避开结点序列。 int P[MAXSIZE][MAXSIZE]用来记录各点当前找到的最短路径所经过 的结点。 int Dist[ ] 记录各结点的当前找到的最短路径的长度。 int ShPath[ ]用来存放用户需要的最短路径所经的各结点。 返回最短路径查找是否成功的信息。(return SUCCEED;return ERROR)4).void Print(int jump,int end,int Dist[],int ShPath[]) int jump起点,int end终点。 int Dist[ ] 记录各结点的当前找到的最短路径的长度。 int ShPath[ ]用来存放用户需要的最短路径所经的各结点。 无返回值。 4.用户说明: ①源程序经编译连接后运行,出现程序的初始化界面,其内容为介绍程序的 功能、特点及相关提示。如下: Welcome to shortest path searching system. Instructions Function: 1. Personal travelling route choosing. 2. Assistan helper in city's traffic design. 3. Shortes path choose in the comlicated traffic net of the city. Characteristic: It is convient,you could set vital point you must travel,and the point you must avoid. Prompt: If the condition is too secret ,maybe there will have no path available. Designer: Liu jizhong. Complate-data: 2004. 3. 21 CopyRight: Shared program,welcome to improve it. Press anykey to enter the program... ②按任意键进入图的信息录入界面根据提示即可完成图的信息的录入。

计算机图形学实验--完整版-带结果--vc++实现

计算机图形学实验报告信息学院计算机专业20081060183 周建明 综括: 利用计算机编程语言绘制图形,主要实现以下内容: (1)、中点算法生成任意斜率直线,并设置线型线宽。 (2)、中点算法生成圆 (3)、中点算法生成椭圆 (4)、扫描算法实现任意多边形填充 (5)、Cohen_Sutherland裁剪 (6)、自由曲线与曲面的绘制 (7)、二维图形变换 (8)、三视图变换 实验一、直线的生成 一、实验内容 根据提供的程序框架,修改部分代码,完成画一条直线的功能(中点画线法或者Bresenham画线法任选一),只要求实现在第一象限内的直线。 二、算法原理介绍 双击直线生成.dsw打开给定的程序,或者先启动VC++,文件(file)→打开工作空间(open workspace)。打开直线生成view.cpp,按注释改写下列函数: 1.void CMyView::OnDdaline() (此为DDA生成直线) 2.void CMyView::OnBresenhamline()(此为Bresenham画直线) 3.void CMYView::OnMidPointLine()(此为中点画线法) 三、程序源代码 1.DDA生成直线画法程序: float x,y,dx,dy,k; dx=(float)(xb-xa); dy=(float)(yb-ya); k=dy/dx; x=xa; y=ya;

if(abs(k)<1) { for (x=xa;x<=xb;x++) { pdc->SetPixel(x, int(y+0.5),COLOR); y=y+k; } } if(abs(k)>=1) { for(y=ya;y<=yb;y++) { pdc->SetPixel(int(x+0.5),y,COLOR); x=x+1/k; } } //DDA画直线结束 } 2.Bresenham画直线源程序: float b,d,xi,yi; int i; float k; k=(yb-ya)/(xb-xa); b=(ya*xb-yb*xa)/(xb-xa); if(k>0&&k<=1) for(i=0;i=0) { xi=xa+1; yi=ya; xa++; ya=ya+0.5; } if(d<0) { xi=xa+1; yi=ya+1; xa++; ya=ya+1.5; } pdc->SetPixel(xi,yi,COLOR); }

计算机图形学课程教学大纲

《计算机图形学》课程教学大纲一、课程基本信息 课程代码:110053 课程名称:计算机图形学 英文名称:Computer Graphics 课程类别:专业课 学时:72 学分: 适用对象:信息与计算科学专业本科生 考核方式:考试(平时成绩占总成绩的30%) 先修课程:高级语言程序设计、数据结构、高等代数 二、课程简介 中文简介: 计算机图形学是研究计算机生成、处理和显示图形的学科。它的重要性体现在人们越来越强烈地需要和谐的人机交互环境:图形用户界面已经成为一个软件的重要组成部分,以图形的方式来表示抽象的概念或数据已经成为信息领域的一个重要发展趋势。通过本课程的学习,使学生掌握计算机图形学的基本原理和基本方法,理解图形绘制的基本算法,学会初步图形程序设计。 英文简介: Computer Graphics is the subject which concerned with how computer builds, processes and shows graphics. Its importance has been shown in people’s more and more intensively need for harmony human-machine interface. Graphics user interface has become an important part of software. It is a significant trend to show abstract conception or data in graphics way. Through the learning of this course, students could master Computer Graphics’basic theories and methods,understand graphics basic algorithms and learn how to design basic graphics program. 三、课程性质与教学目的 《计算机图形学》是信息与计算科学专业的一门主要专业课。通过本课程的学习,使学生掌握基本的二、三维的图形的计算机绘制方法,理解光栅图形生成基本算法、几何造型技术、真实感图形生成、图形标准与图形变换等概念和知识。学会图形程序设计的基本方法,为图形算法的设计、图形软件的开发打下基础。 四、教学内容及要求 第一章绪论 (一)目的与要求 1.掌握计算机图形学的基本概念; 2.了解计算机图形学的发展、应用; 3.掌握图形系统的组成。

计算机图形学实验指导(含源码附报告模板)

计算机图形学实验指导 目录 实验1 直线的绘制 (2) 实验2 圆和椭圆的绘制 (4) 实验3 图形填充 (7) 实验4 二维图形几何变换 (10) 实验5 二维图形裁剪 (13) 实验6 曲线生成算法的实现 (18) 附录:实验报告模板 (20)

实验1 直线的绘制 实验目的 1、通过实验,进一步理解和掌握DDA和Bresenham算法; 2、掌握以上算法生成直线段的基本过程; 3、通过编程,会在TC环境下完成用DDA或中点算法实现直线段的绘制。实验环境 计算机、Turbo C或其他C语言程序设计环境 实验学时 2学时,必做实验。 实验内容 用DDA算法或Besenham算法实现斜率k在0和1之间的直线段的绘制。实验步骤 1、算法、原理清晰,有详细的设计步骤; 2、依据算法、步骤或程序流程图,用C语言编写源程序; 3、编辑源程序并进行调试; 4、进行运行测试,并结合情况进行调整; 5、对运行结果进行保存与分析; 6、把源程序以文件的形式提交; 7、按格式书写实验报告。 实验代码:DDA: # include # include void DDALine(int x0,int y0,int x1,int y1,int color) { int dx,dy,epsl,k; float x,y,xIncre,yIncre; dx=x1-x0; dy=y1-y0; x=x0; y=y0; if(abs(dx)>abs(dy)) epsl=abs(dx); else epsl=abs(dy);

xIncre=(float)dx/(float)epsl; yIncre=(float)dy/(float)epsl; for(k=0;k<=epsl;k++) { putpixel((int)(x+0.5),(int)(y+0.5),4); x+=xIncre; y+=yIncre; } } main(){ int gdriver ,gmode ; gdriver = DETECT; initgraph(&gdriver , &gmode ,"C:\\TC20\\BGI"); DDALine(0,0,35,26,4); getch ( ); closegraph ( ); } Bresenham: #include #include void BresenhamLine(int x0,int y0,int x1,int y1,int color) { int x,y,dx,dy,e; dx=x1-x0; dy=y1-y0; e=-dx;x=x0;y=y0; while(x<=x1){ putpixel(x,y,color); x++; e=e+2*dy; if(e>0){ y++; e=e-2*dx; } } } main(){ int gdriver ,gmode ; gdriver = DETECT; initgraph(&gdriver , &gmode ,"c:\\TC20\\BGI"); BresenhamLine(0, 0 , 120, 200,5 ); getch ( ); closegraph ( ); }

相关主题
文本预览
相关文档 最新文档