当前位置:文档之家› 离子交换层析原理

离子交换层析原理

离子交换层析原理
离子交换层析原理

简介

离子交换层析(Ion Exchange Chromatography简称为IEC)是以离子交换剂为固定相,依据流动相中の组分离子与交换剂上の平衡离子进行可逆交换时の结合力大小の差别而进行分离の一种层析方法。1848年,Thompson等人在研究土壤碱性物质交换过程中发现离子交换现象。本世纪40年代,出现了具有稳定交换特性の聚苯乙烯离子交换树脂。50年代,离子交换层析进入生物化学领域,应用于氨基酸の分析。目前离子交换层析仍是生物化学领域中常用の一种层析方法,广泛の应用于各种生化物质如氨基酸、蛋白、糖类、核苷酸等の分离纯化。

基本原理

离子交换层析是依据各种离子或离子化合物与离子交换剂の结合力不同而进行分离纯化の。离子交换层析の固定相是离子交换剂,它是由一类不溶于水の惰性高分子聚合物基质通过一定の化学反应共价结合上某种电荷基团形成の。离子交换剂可以分为三部分:高分子聚合物基质、电荷基团和平衡离子。电荷基团与高分子聚合物共价结合,形成一个带电の可进行离子交换の基团。平衡离子是结合于电荷基团上の相反离子,它能与溶液中其它の离子基团发生可逆の交换反应。平衡离子带正电の离子交换剂能与带正电の离子基团发生交换作用,称为阳离子交换剂;平衡离子带负电の离子交换剂与带负电の离子基团发生交换作用,称为阴离子交换剂。

其中R代表离子交换剂の高分子聚合物基质,X- 和X+ 分别代表阳离子交换剂和阴离子交换剂中与高分子聚合物共价结合の电荷基团,Y+ 和Y- 分别代表阳离子交换剂和阴离子交换剂の平衡离子,A+ 和A- 分别代表溶液中の离子基团。

从上面の反应式中可以看出,如果A离子与离子交换剂の结合力强于Y离子,或者提高A离子の浓度,或者通过改变其它一些条件,可以使A离子将Y离子从离子交换剂上置换出来。也就是说,在一定条件下,溶液中の某种离子基团可以把平衡离子置换出来,并通过电荷基团结合到固定相上,而平衡离子则进入流动相,这就是离子交换层析の基本置换反应。通过在不同条件下の多次置换反应,就可以对溶液中不同の离子基团进行分离。下面以阴离子交换剂为例简单介绍离子交换层析の基本分离过程。

阴离子交换剂の电荷基团带正电,装柱平衡后,与缓冲溶液中の带负电の平衡离子结合。待分离溶液中可能有正电基团、负电基团和中性基团。加样后,负电基团可以与平衡离子进行可逆の置换反应,而结合到离子交换剂上。而正电基团和中性基团则不能与离子交换剂结合,随流动相流出而被去除。通过选择合适の洗脱方式和洗脱液,如增加离子强度の梯度洗脱。随着洗脱液离子强度の增加,洗脱液中の离子可以逐步与结合在离子交换剂上の各种负电基团进行交换,而将各种负电基团置换出来,随洗脱液流出。与离子交换剂结合力小の负电基团先被置换出来,而与离子交换剂结合力强の需要较高の离子强度才能被置换出来,这样各种负电基团就会按其与离子交换剂结合力从小到大の顺序逐步被洗脱下来,从而达到分离目の。

各种离子与离子交换剂上の电荷基团の结合是由静电力产生の,是一个可逆の过程。结合の强度与很多因素有关,包括离子交换剂の性质、离子本身の性质、离子强度、pH、温度、溶剂组成等等。离子交换层析就是利用各种离子本身与离子交换剂结合力の差异,并通过改变离子强度、pH等条件改变各种离子与离子交换剂の结合力而达到分离の目の。离子交换剂の电荷基团对不同の离子有不同の结合力。一般来讲,离子价数越高,结合力越大;价数相同时,原子序数越高,结合力越大。如阳离子交换剂对离子の结合力顺序为:Li+ 蛋白质等生物大分子通常呈两性,它们与离子交换剂の结合与它们の性质及pH有较大关系。以用阳离子交换剂分离蛋白质为例,在一定のpH条件下,等电点pI pHの蛋白带正电,能与阳离子交换剂结合,一般pI越大の蛋白与离子交换剂结合力越强。但由于生物样品の复杂性以及其它因素影响,一般生物大分子与离子交换剂の结合情况较难估计,往往要通过实验进行摸索。

离子交换剂の种类和性质

1.离子交换剂の基质

离子交换剂の大分子聚合物基质可以由多种材料制成,聚苯乙烯离子交换剂(又称为聚苯乙烯树脂)是以苯乙烯和二乙烯苯合成の具有多孔网状结构の聚苯乙烯为基质。聚苯乙烯离子交换剂机械强度大、流速快。但它与水の亲和力较小,具有较强の疏水性,容易引起蛋白の变性。故一般常用于分离小分子物质,如无机离子、氨基酸、核苷酸等。以纤维素(Cellulose)、球状纤维素(Sephacel)、葡聚糖(Sephadex)、琼脂糖(Sepharose)为基质の离子交换剂都与水有较强の亲和力,适合于分离蛋白质等大分子物质,葡聚糖离子交换剂一般以Seph adex G-25和G-50为基质,琼脂糖离子交换剂一般以Sepharose CL-6B 为基质。关于这些离子交换剂の性质可以参阅相应の产品介绍。

2.离子交换剂の电荷基团

根据与基质共价结合の电荷基团の性质,可以将离子交换剂分为阳离子交换剂和阴离子交换剂。

阳离子交换剂の电荷基团带负电,可以交换阳离子物质。根据电荷基团の解离度不同,又可以分为强酸型、中等酸型和弱酸型三类。它们の区别在于它们电荷基团完全解离のpH范围,强酸型离子交换剂在较大のpH范围内电荷基团完全解离,而弱酸型完全解离のpH范围则较小,如羧甲基在pH小于6时就失去了交换能力。一般结合磺酸基团(-SO3H),如磺酸甲基(简写为SM)、磺酸乙基(SE)等为强酸型离子交换剂,结合磷酸基团(-PO3H2)和亚磷酸基团(-PO2 H)为中等酸型离子交换剂,结合酚羟基(-OH )或羧基(-COOH),如羧甲基(CM)为弱酸型离子交换剂。一般来讲强酸型离子交换剂对H离子の结合力比Na+离子小,弱酸型离子交换剂对H离子の结合力比Na+离子大。

阴离子交换剂の电荷基团带正电,可以交换阴离子物质。同样根据电荷基团の解离度不同,可以分为强碱型、中等碱型和弱碱型三类。一般结合季胺基团(-N(C H3)3),如季胺乙基(QAE)为强碱型离子交换剂,结合叔胺(-N(CH3)2)、

仲胺(-NHCH3)、伯胺(-NH2)等为中等或弱碱型离子交换剂,如结合二乙基氨基乙基(DEAE)为弱碱型离子交换剂。一般来讲强碱型离子交换剂对OH?离子の结合力比Cl?离子小,弱酸型离子交换剂对OH?离子の结合力比Cl?离子大。3.交换容量

交换容量是指离子交换剂能提供交换离子の量,它反映离子交换剂与溶液中离子进行交换の能力。通常所说の离子交换剂の交换容量是指离子交换剂所能提供交换离子の总量,又称为总交换容量,它只和离子交换剂本身の性质有关。在实际实验中关心の是层析柱与样品中各个待分离组分进行交换时の交换容量,它不仅与所用の离子交换剂有关,还与实验条件有很大の关系,一般又称为有效交换容量。后面提到の交换容量如未经说明都是指有效交换容量。

影响交换容量の因素很多,主要可以分为两个方面,一方面是离子交换剂颗粒大小、颗粒内孔隙大小以及所分离の样品组分の大小等の影响。这些因素主要影响离子交换剂中能与样品组分进行作用の有效表面积。样品组分与离子交换剂作用の表面积越大当然交换容量越高。一般离子交换剂の孔隙应尽量能够让样品组分进入,这样样品组分与离子交换剂作用面积大。分离小分子样品,可以选择较小孔隙の交换剂,因为小分子可以自由の进入孔隙,而小孔隙离子交换剂の表面积大于大孔隙の离子交换剂。对于较大分子样品,可以选择小颗粒交换剂,因为对于很大の分子,一般不能进入孔隙内部,交换只限于颗粒表面,而小颗粒の离子交换剂表面积大。

另一些影响因素如实验中の离子强度、pH值等主要影响样品中组分和离子交换剂の带电性质。一般pH对弱酸和弱碱型离子交换剂影响较大,如对于弱酸型离子交换剂在pH较高时,电荷基团充分解离,交换容量大,而在较低のpH时,电荷基团不易解离,交换容量小。同时pH也影响样品组分の带电性。尤其对于蛋白质等两性物质,在离子交换层析中要选择合适のpH以使样品组分能充分の与离子交换剂交换、结合。一般来说,离子强度增大,交换容量下降。实验中增大离子强度进行洗脱,就是要降低交换容量以将结合在离子交换剂上の样品组分洗脱下来。

离子交换剂の总交换容量通常以每毫克或每毫升交换剂含有可解离基团の毫克当量数(meq / mg或meq / ml)来表示。通常可以由滴定法测定。阳离子交换剂首先用HCl处理,使其平衡离子为H+。再用水洗至中性,对于强酸型离子交换剂,用NaCl充分置换出H+,再用标准浓度のNaOH滴定生成のHCl,就可以计算出离子交换剂の交换容量;对于弱酸型离子交换剂,用一定量の碱将H +充分置换出来,再用酸滴定,计算出离子交换剂消耗の碱量,就可以算出交换容量。阴离子交换剂の交换容量也可以用类似の方法测定。

对于一些常用于蛋白质分离の离子交换剂也通常用每毫克或每毫升交换剂能够吸附某种蛋白质の量来表示,一般这种表示方法对于分离蛋白质等生物大分子具有更大の参考价值。实验前可以参阅相应の产品介绍了解各种离子交换剂の交换容量。

离子交换剂の选择、处理和保存

1.离子交换剂の选择

离子交换剂の种类很多,离子交换层析要取得较好の效果首先要选择合适の离子交换剂。

首先是对离子交换剂电荷基团の选择,确定是选择阳离子交换剂还是选择阴离子交换剂。这要取决于被分离の物质在其稳定のpH下所带の电荷,如果带正电,则选择阳离子交换剂;如带负电,则选择阴离子交换剂。例如待分离の蛋白等电点为4,稳定のpH范围为6-9,由于这时蛋白带负电,故应选择阴离子交换剂进行分离。强酸或强碱型离子交换剂适用のpH范围广,常用于分离一些小分子物质或在极端pH下の分离。由于弱酸型或弱碱型离子交换剂不易使蛋白质失活,故一般分离蛋白质等大分子物质常用弱酸型或弱碱型离子交换剂。

其次是对离子交换剂基质の选择。前面已经介绍了,聚苯乙烯离子交换剂等疏水性较强の离子交换剂一般常用于分离小分子物质,如无机离子、氨基酸、核苷酸等。而纤维素、葡聚糖、琼脂糖等离子交换剂亲水性较强,适合于分离蛋白质等大分子物质。一般纤维素离子交换剂价格较低,但分辨率和稳定性都较低,适于初步分离和大量制备。葡聚糖离子交换剂の分辨率和价格适中,但受外界影响较大,体积可能随离子强度和pH变化有较大改变,影响分辨率。琼脂糖离子交换剂机械稳定性较好,分辨率也较高,但价格较贵。

另外离子交换剂颗粒大小也会影响分离の效果。离子交换剂颗粒一般呈球形,颗粒の大小通常以目数(mesh)或者颗粒直径(mm)来表示,目数越大表示直径越小。前面在介绍交换容量时提到了一些关于交换剂颗粒大小、孔隙の选择。另外离子交换层析柱の分辨率和流速也都与所用の离子交换剂颗粒大小有关。一般来说颗粒小,分辨率高,但平衡离子の平衡时间长,流速慢;颗粒大则相反。所以大颗粒の离子交换剂适合于对分辨率要求不高の大规模制备性分离,而小颗粒の离子交换剂适于需要高分辨率の分析或分离。

这里特别要提到の是,离子交换纤维素目前种类很多,其中以DEAE-纤维素(二乙基氨基纤维素)和CM-纤维素(羧甲基纤维素)最常用,它们在生物大分子物质(蛋白质,酶,核酸等)の分离方面显示很大の优越性。一是它具有开放性长链和松散の网状结构,有较大の表面积,大分子可自由通过,使它の实际交换容量要比离子交换树脂大の多;二是它具有亲水性,对蛋白质等生物大分子物质吸附の不太牢,用较温和の洗脱条件就可达到分离の目の,因此不致引起生物大分子物质の变性和失活。三是它の回收率高。所以离子交换纤维素已成为非常重要の一类离子交换剂。

2.离子交换剂の处理和保存

离子交换剂使用前一般要进行处理。干粉状の离子交换剂首先要进行膨化,将干粉在水中充分溶胀,以使离子交换剂颗粒の孔隙增大,具有交换活性の电荷基团充分暴露出来。而后用水悬浮去除杂质和细小颗粒。再用酸碱分别浸泡,每一种试剂处理后要用水洗至中性,再用另一种试剂处理,最后再用水洗至中性,这是为了进一步去除杂质,并使离子交换剂带上需要の平衡离子。市售の离子交换剂

中通常阳离子交换剂为Na型(即平衡离子是Na离子),阴离子交换剂为Cl 型,因为通常这样比较稳定。处理时一般阳离子交换剂最后用碱处理,阴离子交换剂最后用酸处理。常用の酸是HCl,碱是NaOH或再加一定のNaCl,这样处理后阳离子交换剂为Na型,阴离子交换剂为Cl型。使用の酸碱浓度一般小于0.

5 mol / L,浸泡时间一般30 min。处理时应注意酸碱浓度不宜过高、处理时间不宜过长、温度不宜过高,以免离子交换剂被破坏。另外要注意の是离子交换剂使用前要排除气泡,否则会影响分离效果。

离子交换剂の再生是指对使用过の离子交换剂进行处理,使其恢复原来性状の过程。前面介绍の酸碱交替浸泡の处理方法就可以使离子交换剂再生。离子交换剂の转型是指离子交换剂由一种平衡离子转为另一种平衡离子の过程。如对阴离子交换剂用HCl处理可将其转为Cl型,用NaOH处理可转为OH型,用甲酸钠处理可转为甲酸型等等。对离子交换剂の处理、再生和转型の目の是一致の,都是为了使离子交换剂带上所需の平衡离子。

前面已经介绍了,离子交换层析就是通过离子交换剂上の平衡离子与样品中の组分离子进行可逆の交换而实现分离の目の,因此在离子交换层析前要注意使离子交换剂带上合适の平衡离子,使平衡离子能与样品中の组分离子进行有效の交换。如果平衡离子与离子交换剂结合力过强,会造成组分离子难以与交换剂结合而使交换容量降低。另外还要保证平衡离子不对样品组分有明显影响。因为在分离过程中,平衡离子被置换到流动相中,它不能对样品组分有污染或破坏。如在制备过程中用到の离子交换剂の平衡离子是H或OH离子,因为其它离子都会对纯

水有污染。但是在分离蛋白质时,一般不能使用H或OH型离子交换剂,因为

分离过程中H或OH离子被置换出来都会改变层析柱内pH值,影响分离效果,甚至引起蛋白质の变性。

离子交换剂保存时应首先处理洗净蛋白等杂质,并加入适当の防腐剂,一般加入0.02 %の叠氮钠,4℃下保存。

离子交换层析の基本操作

离子交换层析の基本装置及操作步骤与前面介绍の柱层析类似,这里就不再重复了。下面主要介绍离子交换层析操作中应注意の一些具体问题。

1.层析柱

离子交换层析要根据分离の样品量选择合适の层析柱,离子交换用の层析柱一般粗而短,不宜过长。直径和柱长比一般为1:10到1:50之间,层析柱安装要垂直。装柱时要均匀平整,不能有气泡。

2.平衡缓冲液

离子交换层析の基本反应过程就是离子交换剂平衡离子与待分离物质、缓冲液中离子间の交换,所以在离子交换层析中平衡缓冲液和洗脱缓冲液の离子强度和p

Hの选择对于分离效果有很大の影响。

平衡缓冲液是指装柱后及上样后用于平衡离子交换柱の缓冲液。平衡缓冲液の离子强度和pHの选择首先要保证各个待分离物质如蛋白质の稳定。其次是要使各个待分离物质与离子交换剂有适当の结合,并尽量使待分离样品和杂质与离子交换剂の结合有较大の差别。一般是使待分离样品与离子交换剂有较稳定の结合。而尽量使杂质不与离子交换剂结合或结合不稳定。在一些情况下(如污水处理)可以使杂质与离子交换剂有牢固の结合,而样品与离子交换剂结合不稳定,也可以达到分离の目の。另外注意平衡缓冲液中不能有与离子交换剂结合力强の离子,否则会大大降低交换容量,影响分离效果。选择合适の平衡缓冲液,直接就可以去除大量の杂质。并使得后面の洗脱有很好の效果。如果平衡缓冲液选择不合适,可能会对后面の洗脱带来困难,无法得到好の分离效果。

3.上样

离子交换层析の上样时应注意样品液の离子强度和pH值,上样量也不宜过大,一般为柱床体积の1-5%为宜,以使样品能吸附在层析柱の上层,得到较好の

分离效果。

4.洗脱缓冲液

在离子交换层析中一般常用梯度洗脱,通常有改变离子强度和改变pH两种方式。改变离子强度通常是在洗脱过程中逐步增大离子强度,从而使与离子交换剂结合の各个组分被洗脱下来;而改变pHの洗脱,对于阳离子交换剂一般是pH从低到高洗脱,阴离子交换剂一般是pH从高到低。由于pH可能对蛋白の稳定性有较大の影响,故一般通常采用改变离子强度の梯度洗脱。梯度洗脱の装置前面已经介绍了,可以有线性梯度、凹形梯度、凸形梯度以及分级梯度等洗脱方式。一般线性梯度洗脱分离效果较好,故通常采用线性梯度进行洗脱。

洗脱液の选择首先也是要保证在整个洗脱液梯度范围内,所有待分离组分都是稳定の。其次是要使结合在离子交换剂上の所有待分离组分在洗脱液梯度范围内都能够被洗脱下来。另外可以使梯度范围尽量小一些,以提高分辨率。

5.洗脱速度

洗脱液の流速也会影响离子交换层析分离效果,洗脱速度通常要保持恒定。一般来说洗脱速度慢比快の分辨率要好,但洗脱速度过慢会造成分离时间长、样品扩散、谱峰变宽、分辨率降低等副作用,所以要根据实际情况选择合适の洗脱速度。如果洗脱峰相对集中某个区域造成重叠,则应适当缩小梯度范围或降低洗脱速度来提高分辨率;如果分辨率较好,但洗脱峰过宽,则可适当提高洗脱速度。

6.样品の浓缩、脱盐

离子交换层析得到の样品往往盐浓度较高,而且体积较大,样品浓度较低。所以一般离子交换层析得到の样品要进行浓缩、脱盐处理。

离子交换层析の应用

离子交换层析の应用范围很广,主要有以下几个方面。

1.水处理

离子交换层析是一种简单而有效の去除水中の杂质及各种离子の方法,聚苯乙烯树脂广泛の应用于高纯水の制备、硬水软化以及污水处理等方面。纯水の制备可以用蒸馏の方法,但要消耗大量の能源,而且制备量小、速度慢,也得不到高纯度。用离子交换层析方法可以大量、快速制备高纯水。一般是将水依次通过H+

型强阳离子交换剂,去除各种阳离子及与阳离子交换剂吸附の杂质;再通过OH - 型强阴离子交换剂,去除各种阴离子及与阴离子交换剂吸附の杂质,即可得到纯水。再通过弱型阳离子和阴离子交换剂进一步纯化,就可以得到纯度较高の纯水。离子交换剂使用一段时间后可以通过再生处理重复使用。

2.分离纯化小分子物质

离子交换层析也广泛の应用于无机离子、有机酸、核苷酸、氨基酸、抗生素等小分子物质の分离纯化。例如对氨基酸の分析,使用强酸性阳离子聚苯乙烯树脂,将氨基酸混合液在pH 2~3上柱。这时氨基酸都结合在树脂上,再逐步提高洗脱液のの离子强度和pH,这样各种氨基酸将以不同の速度被洗脱下来,可以进行分离鉴定。目前已有全部自动の氨基酸分析仪。

3.分离纯化生物大分子物质

离子交换层析是依据物质の带电性质の不同来进行分离纯化の,是分离纯化蛋白质等生物大分子の一种重要手段。由于生物样品中蛋白の复杂性,一般很难只经过一次离子交换层析就达到高纯度,往往要与其它分离方法配合使用。使用离子交换层析分离样品要充分利用其按带电性质来分离の特性,只要选择合适の条件,通过离子交换层析可以得到较满意の分离效果

离子交换柱层析原理

离子交换层析介质的应用 离子交换层析分离纯化生物大分子的过程,主要是利用各种分子的可离解性、离子的净电荷、表面电荷分布的电性差异而进行选择分离的。现已成为分离纯化生化制品、蛋白质、多肽等物质中使用最频繁的纯化技术之一。 子交换层析(Ion Exchange Chromatography 简称为IEC)是以离子交换剂为固定相,依据流动相中的组分离子与交换剂上的平衡离子进行可逆交换时的结合力大小的差别而进行分离的一种层析方法。离子交换层析是目前生物化学领域中常用的一种层析方法,广泛的应用于各种生化物质如氨基酸、蛋白、糖类、核苷酸等的分离纯化。 1.离子交换层析的基本原理: 离子交换层析是通过带电的溶质分子与离子交换层析介质中可交换离子进行交换而达到分离纯化的方法,也可以认为是蛋白质分子中带电的氨基酸与带相反电荷的介质的骨架相互作用而达到分离纯化的方法。 离子交换层析法主要依赖电荷间的相互作用,利用带电分子中电荷的微小差异而进行分离,具有较高的分离容量。几乎所有的生物大分子都是极性的,都可使其带电,所以离子交换层析法已广泛用于生物大分子的分离、中等纯化及精制的各个步骤中。 由于离子交换层析法分辨率高,工作容量大,并容易操作,因此它不但在医药、化工、食品等领域成为独立的操作单元,也已成为蛋白质、多肽、核酸及大部分发酵产物分离纯化的一种重要的方法。目前,在生化分离中约有75%的工艺采用离子交换层析法。 2.离子交换层析介质: 离子交换层析的固定相是离子交换剂,它是由一类不溶于水的惰性高分子聚合物基质通过一定的化学反应共价结合上某种电荷基团形成的。离子交换剂可以分为三部分:高分子聚合物基质、电荷基团和平衡离子。电荷基团与高分子聚合物共价结合,形成一个带电的可进行离子交换的基团。平衡离子是结合于电荷基团上的相反离子,它能与溶液中其它的离子基团发生可逆的交换反应。平衡离子带正电的离子交换剂能与带正电的离子基团发生交换作用,称为阳离子交换剂;平衡离子带负电的离子交换剂与带负电的离子基团发生交换作用,称为阴离子交换剂。在一定条件下,溶液中的某种离子基团可以把平衡离子置换出来,并通过电荷基团结合到固定相上,而平衡离子则进入流动相,这就是离子交换层析的基本置换反应。通过在不同条件下的多次置换反应,就可以对溶液中不同的离子基团进行分离。下面以阴离子交换剂为例简单介绍离子交换层析的基本分离过程。 阴离子交换剂的电荷基团带正电,装柱平衡后,与缓冲溶液中的带负电的平衡离子结合。待分离溶液中可能有正电基团、负电基团和中性基团。加样后,负电基团可以与平衡离子进行可逆的置换反应,而结合到离子交换剂上。而正电基团和中性基团则不能与离子交换剂结合,随流动相流出而被去除。通过选择合适的洗脱方式和洗脱液,如增加离子强度的梯度洗脱。随着洗脱液离子强度的增加,洗脱液中的离子可

软化器设计计算书

目录 一、总述 (1) 1. 锅炉水处理监督管理规则 (1) 2. 离子交换树脂内部结构 (1) 3. 钠离子交换软化原理及特性: (2) 4. 水质分析测试内容 (2) ?PH值(Potential of Hydrogen) (2) ?总溶解固体(TDS --TOTAL DISSOLVED SOLIDS) (2) ?铁含量(IRON) (2) ?锰........................................................ ?硬度值(HARDNESS) (3) ?碱度 (3) ?克分子(mol) (3) ?当量 (4) ?克当量 (4) ?硬度单位 (4) ?我国江河湖泊水质组成 (7) 二、全自动软水器 (7) 三、影响软水器交换容量的因素 (9) 1. 流速(gpm/ft,m/h) (9) 2. 水与树脂的接触时间:(gpm/ft3) (9) 3. 树脂层的高度 (10) 4. 进水含盐量 (11) 5. 温度 (13) 6. 再生剂质量(NaCl) (13) 7. 再生液流量 (14) 8. 再生液浓度 (15) 9. 再生剂用量 (16) 10. 树脂 (16) 四、自动软水器设计 (16) 1. 软水器设备应遵循的标准 (16) 2. 全自动软水器主要参数计算 (17) 1) 反洗流速的计算: (17) 2) 系统压降计算 (17) 3. 软水器设计计算步骤 (17) 计算示例 (19)

一、总述 1.锅炉水处理监督管理规则 第三条锅炉及水处理设备的设计、制造、检验、修理、改造的单位,锅炉及水处理药剂、树脂的生产单位,锅炉房设计单位,锅炉水质监测 单位、锅炉水处理技术服务单位及锅炉清洗单位必须认真执行本规 则。 第九条锅炉水处理是保证锅炉安全经济运行的重要措施,不应以化学清洗代替正常的水处理工作。 第十条生产锅炉水处理设备、药剂和树脂的单位,须取得省级以上(含省级)安全监察结构注册登记后,才能生产。 第十一条未经注册登记的锅炉水处理设备、药剂和树脂,不得生产、销售、安装和使用。 第十四条锅炉水处理设备出厂时,至少应提供下列资料: 1.水处理设备图样(总图、管道系统图等); 2.设计计算书; 3.产品质量证明书; 4.设备安装、使用说明书; 5.注册登记证书复印件。 第三十六条对违反本规则的单位和个人,有下列情况之一者,安全监察机构有权给予通报批评、限期改进,暂扣直至吊销资格(对持证的单位 和个人)的处理。 2.离子交换树脂内部结构 离子交换树脂的内部结构可以分为三个部分: 1)高分子骨架由交联的高分子聚合物组成,如交联的聚苯烯、聚丙烯酸等; 2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子) 的离子官能团[如-SO 3Na、-COOH、-N(CH 3 ) 3 Cl]等,或带有极性的非离子型 官能团[如-N(CH 3)2、-N(CH 3 )H等]; 3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝 胶孔)和高分子结构之间的孔(毛细孔)。 离子交换树脂的内部结构如下图中的左图所示,离子交换基团的结构如下图的右图所示。 顺流再生:交换流速20-30m/h,反洗流速12~15m/h,吸盐流速4-6m/h(逆1.4-2m/h)

离子交换树脂的原理及应用总结归纳(重点阅读)

精心整理如何筛分混合的阴阳离子交换树脂? 离子交换树脂的工作原理及优缺点分析 将离子性官能基结合在树脂(有机高分子)上的材料,称之为“离子交换树脂”。树脂表面带有磺酸(sulfonic acid) 者,称为阳离子交换树脂,而带有四级氨离子的,则为阴离子交换树脂。由於离子交换树脂可以有效去除水中阴阳离子,所以经常使用於纯水、超纯水的制造程序中。(见下图) 离子交换树脂上的官能基虽可去除原水(Feed water) (Fouling)。方。 原理 软水,这是软化水设备的工作过程。 当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”。

由于实际工作的需要,软化水设备的标准工作流程主要包括:工作(有时叫做产水,下同)、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程。任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的(其中,全自动软化水设备会增加盐水重注过程)。 反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证。反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走。这个过程一般 需要5-15分钟左右。 吸盐(再生) (只要进水有一定的压力即可) 慢冲洗(置换) 应用 1)水处理 水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。

离子交换设计计算书(有公式)

全自动软水器设计指导手册 (附设计公式)

目录 一、总述 0 1. 锅炉水处理监督管理规则 0 2. 离子交换树脂部结构 0 3. 钠离子交换软化原理及特性: (1) 4. 水质分析测试容 (1) ?PH值(Potential of Hydrogen) (1) ?总溶解固体(TDS --TOTAL DISSOLVED SOLIDS) (1) ?铁含量(IRON) (1) ?锰 (2) ?硬度值(HARDNESS) (2) ?碱度 (2) ?克分子(mol) (2) ?当量 (3) ?克当量 (3) ?硬度单位 (3) ?我国江河湖泊水质组成 (5) 二、全自动软水器 (5) 三、影响软水器交换容量的因素 (7) 1. 流速(gpm/ft,m/h) (7) 2. 水与树脂的接触时间:(gpm/ft3) (7) 3. 树脂层的高度 (8) 4. 进水含盐量 (9) 5. 温度 (11) 6. 再生剂质量(NaCl) (11) 7. 再生液流量 (12) 8. 再生液浓度 (13) 9. 再生剂用量 (14) 10. 树脂 (14) 四、自动软水器设计 (14) 1. 软水器设备应遵循的标准 (14) 2. 全自动软水器主要参数计算 (15) 1) 反洗流速的计算: (15) 2) 系统压降计算 (15) 3. 软水器设计计算步骤 (15) 计算示例 (17)

一、总述 1.锅炉水处理监督管理规则 第三条锅炉及水处理设备的设计、制造、检验、修理、改造的单位,锅炉及水处理药剂、树脂的生产单位,锅炉房设计单位,锅炉水质监测 单位、锅炉水处理技术服务单位及锅炉清洗单位必须认真执行本规 则。 第九条锅炉水处理是保证锅炉安全经济运行的重要措施,不应以化学清洗代替正常的水处理工作。 第十条生产锅炉水处理设备、药剂和树脂的单位,须取得省级以上(含省级)安全监察结构注册登记后,才能生产。 第十一条未经注册登记的锅炉水处理设备、药剂和树脂,不得生产、销售、安装和使用。 第十四条锅炉水处理设备出厂时,至少应提供下列资料: 1.水处理设备图样(总图、管道系统图等); 2.设计计算书; 3.产品质量证明书; 4.设备安装、使用说明书; 5.注册登记证书复印件。 第三十六条对违反本规则的单位和个人,有下列情况之一者,安全监察机构有权给予通报批评、限期改进,暂扣直至吊销资格(对持证的单位 和个人)的处理。 2.离子交换树脂部结构 离子交换树脂的部结构可以分为三个部分: 1)高分子骨架由交联的高分子聚合物组成,如交联的聚苯烯、聚丙烯酸等; 2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子)的 离子官能团[如-SO3Na、-COOH、-N(CH3)3Cl]等,或带有极性的非离子型官能团[如-N(CH3)2、-N(CH3)H等]; 3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝 胶孔)和高分子结构之间的孔(毛细孔)。 离子交换树脂的部结构如下图中的左图所示,离子交换基团的结构如下图的右图所示。 顺流再生:交换流速20-30m/h,反洗流速12~15m/h,吸盐流速4-6m/h(逆1.4-2m/h)

离子交换树脂和设备设计

离子交换树脂及装置设计详解 1、离于交换剂 1.1离子交换剂的种类 离子交换剂是实现交换功能的最基本物质。离子交换剂根据其材料可分为无机离子交换剂和有机离子交换剂,又可分为天然离子交换剂和人工合成离子交换剂等。天然离子剂如粘土、沸石、褐煤等。人工合成离子交换树脂有凝胶树脂、大孔树脂、吸附树脂、氧化还原树脂、螯合树脂等。其交换能力又可分为强碱性、弱碱性、强酸性、弱酸性等多种类型。 1.2离子交换树脂的基本特性罗门哈斯树脂,陶氏树脂 依其功能用途不同、原料性能不同,所制的树脂特性也不相同。常用的凝胶树脂的主要特性简介如下。 1.2.1.树脂的外观与粒度 凝胶型阳树脂为半透明的棕色或淡黄色的小球,阴树脂颜色略深。树脂粒度和均一度影响树脂的性能,粒度越小表面积就越大;但粒度过细不仅增大液体在树脂层内的阻力,而且也会影响树脂的机械程度,降低使用寿命。通常树脂小球直径为0.2-0.8mm。 2.树脂的密度 树脂密度分为干密度和湿密度。干密度是在温度115℃真空干燥后的密度。湿密度又分湿真密度和湿视密度 2.1湿真密度是树脂在水中充分膨胀后的质量与自身所占体积(不含树脂颗粒之的空隙)之比值(g/cm3)。不同类型树脂,湿真密度不同。即使同一类型的阳树脂或阴树脂,由于所含交换离子种类不同,湿真密度大小也不相同。 2.2湿视密度湿视密度又称堆积密度,是指树脂在水中充分溶胀后,单位体积树脂所具有的质量。湿视密度可用来计算离子交换柱内填充树脂的所需量。 3.树脂的交联度 树脂的骨架是靠交联剂连接在一起的。交联度是指交联剂所占有的份数,一般用交联剂占单体质量百分数来表示。例如,聚苯乙烯树脂用二乙烯苯作交联剂,其用量占单体总料量的8%时,则这种树脂的交联度为8%。 交联度直接影响树脂的性能。交联度越高,树脂的机械强度就越大,对离子的选择性越强,但离子的交换速度就越慢。这是因为交联度高,表明树脂的结构紧密,孔隙率低,同时树脂在水中溶胀率也低,因而水中的离子在树脂内扩散速度小,影响了离子间的交换能力。 4、树脂的稳定性

离子交换法制备纯水

实验二离子交换法制备纯水 一、实验目的 1.了解离子交换法制纯水的基本原理,掌握其操作方法; 2.掌握水质检验的原理和方法; 二、实验原理 离子交换法是目前广泛采用的制备纯水的方法之一。水的净化过程是在离子交换树脂上进行的。离子交换树脂是有机高分子聚合物,它是由交换剂本体和交换基团两部分组成的。例如,聚苯乙烯磺酸型强酸性阳离子交换树脂就是苯乙烯和一定量的二乙烯苯的共聚物,经过浓硫酸处理,在共聚物的苯环上引入磺酸基(–SO3H)而成。其中的H+可以在溶液中游离,并与金属离子进行交换。 R–SO3H + M+R–SO3M + H+ R:聚合物的本体;–SO3:与本体联结的固定部分,不能游离和交换;M+:代表一价金属离子。阳离子交换树脂可表示为: 如果在共聚物的本体上引入各种胺基,就成为阴离子交换树脂。例如,季胺型强碱性阴离子交换树R–N+(CH3)3OH–,其中OH–在溶液中可以游离,并与阴离子交换。 离子交换法制纯水的原理就是基于树脂和天然水中各种离子间的可交换性。例如,R–SO3H 型阳离子交换树脂,交换基团中的H+可与天然水中的各种阳离子进行交换,使天然水中的Ca2+、Mg2+、Na+、K+等离子结合到树脂上,而H+进入水中,于是就除去了水中的金属阳离子杂质。水通过阴离子交换树脂时,交换基团中的OH–具有可交换性,将HCO3–、Cl–、SO42–等离子除去,而交换出来的OH–与H+发生中和反应,这样就得到了高纯水。 交换反应可简单表示为: 2R–SO3H + Ca(HCO3)2→ (R–SO3)2Ca + 2H2CO3 R–SO3H + NaCl → R–SO3Na + HCl R–N(CH)3OH + NaHCO3→ R–N(CH)3HCO3 + NaOH R–N(CH)3OH + H2CO3→ R–N(CH)3HCO3 + H2O HCl + NaOH → H2O + NaCl 本实验用自来水通过混合阳、阴离子交换树脂来制备纯水。 [实验用品] 仪器:离子交换柱(也可用碱式滴定管代替)。 材料:玻璃纤维(棉花)、乳胶管、螺旋夹、pH试纸。 固体药品:717强碱性阴离子交换树脂、732强酸性阳离子交换树脂。 液体药品:NaOH(2mol·L-1)、HCl(2mol·L-1)、AgNO3(0.1mol·L-1)、NH3–NH4Cl缓冲溶液(pH=10)、铬黑T指示剂。 三、实验步骤 1.树脂的预处理 将717(201×7)强碱性阴离子交换树脂用NaOH(2mol·L-1)浸泡24小时,使其充分转为OH-型(由教师处理)。取OH-型阴离子交换树脂10mL,放入烧杯中,待树脂沉降后倾去碱液。加20mL 蒸馏水搅拌、洗涤、待树脂沉降后,倾去上层溶液,将水尽量倒净,重复洗涤至接近中性(用pH 试纸检验,pH=7~8)。 将732(001×7)强酸性阳离子交换树脂用HCl(2mol·L-1)浸泡24小时,使其充分转为H+型(由教师处理)。取H+型阳离子交换树脂5mL,于烧杯中,待树脂沉降后倾去上层酸液,用蒸馏水洗涤树脂,每次大约20mL,洗至接近中性(用pH试纸检验pH=5~6)。 最后,把已处理好的阳、阴离子交换树脂混合均匀。 2.装柱

离子交换层析柱的装填及处理

离子交换层析柱的装填及处理 一、原理: 有些高分子物质含有一些可以分离的基因,例如-SO3H,-COOH等,因此可以和溶液中的离子产生交换反应。如:R-SO3H+M+ R-S3M+H+ 或R-NH3OH+CL-— R-NH3CL+OH -这类高分子物质通称离子交换剂,其中使用最普遍的是离子交换树脂。由于一定的离子交换剂对不同离子的亲和力不同,因此在洗提过程中,不同的离子在离子交换柱上的迁移速度也不同,最后得到分离。 二、目的与要求: 本实验是采用Zerolit225型阳离子交换树脂所装的柱,选以特定的PH缓冲洗脱液来分离含有两个性质不同的氨基酸溶液。通过实验要求掌握装柱、上样、洗脱、收集等离子交换柱层析技术的要点。 三、仪器与装置: 玻璃层析柱:长19cm,内径1、2cm,3# 砂芯。H L-2型恒流泵。H D-4型电脑核酸蛋白检测仪。B S-100A自动部份收集器。 250ml烧杯。 1ml吸管。 水浴锅。 72型(或721型)分光光度计。

四、试剂与药品: 树脂:Zerolit225型阳离子交换树脂。 洗脱液:0、45N,PH5、3柠檬酸缓冲液,取285g柠檬酸 (C6O7H8?H2O);186g97℅NaOH;105ml浓硫酸溶于水中稀释至10升。 样品液:0、005M ASP和LYs的0、02N HCL混合溶液。 显色剂:显色剂列出两种可任选一种。 显色剂(Ⅰ)茚三酮-TiCL3溶液。 10g茚三酮溶于500ml乙二醇甲醚,再加入0、85 ml TiCL3(15%)显色剂(Ⅱ):茚三酮-KCN溶液。 0、1M KCN:0、1628g KCN溶于水中稀释至250ml A、将1、25g茚三酮溶于25ml乙二醇甲醚,配成5%(W/V)浓度的溶液。B 、将2、5ml 0、01M KCN溶液与125ml乙醇甲醚混合。将A和B合并置棕色瓶中过夜即可使用。此溶剂用时, A、B两溶液在前一天合并,配好的溶液仅能在1-2天内使用,过时失效须重配。 五、方法与步骤: 1、树脂的处理: 关于市售新树脂的处理见 7、,本实验采用处理好的树脂。 2、装柱:将层析柱垂直装好,关闭柱底出口,在柱内注入约1cm高的柠檬酸缓冲液。

离子交换层析柱的装填及处理

一、原理: 有些高分子物质含有一些可以分离的基因,例如-SO3H,-COOH等,因此可以和溶液中的离子产生交换反应。如: R-SO3H+M+ ————R-S3M+H+ 或R-NH3OH+CL-—————R-NH3CL+OH- 这类高分子物质通称离子交换剂,其中使用最普遍的是离子交换树脂。由于一定的离子交换剂对不同离子的亲和力不同,因此在洗提过程中,不同的离子在离子交换柱上的迁移速度也不同,最后得到分离。 二、目的与要求: 本实验是采用Zerolit225型阳离子交换树脂所装的柱,选以特定的PH缓冲洗脱液来分离含有两个性质不同的氨基酸溶液。通过实验要求掌握装柱、上样、洗脱、收集等离子交换柱层析技术的要点。 三、仪器与装置: 玻璃层析柱:长19cm,内径1.2cm,3# 砂芯。 HL-2型恒流泵。 HD-4型电脑核酸蛋白检测仪。 BS-100A自动部份收集器。 250ml烧杯。 1ml吸管。 水浴锅。 72型(或721型)分光光度计。 四、试剂与药品: 树脂:Zerolit225型阳离子交换树脂。 洗脱液:0.45N,PH5.3柠檬酸缓冲液,取285g柠檬酸(C6O7H8?H2O);186g 97℅NaOH;105ml浓硫酸溶于水中稀释至10升。 样品液:0.005M ASP和LYs的0.02N HCL混合溶液。 显色剂:显色剂列出两种可任选一种。 显色剂(Ⅰ)茚三酮-TiCL3溶液。 10g茚三酮溶于500ml乙二醇甲醚,再加入0.85 ml TiCL3(15%) 显色剂(Ⅱ):茚三酮-KCN溶液。 0.1M KCN:0.1628g KCN溶于水中稀释至250ml A、将1.25g茚三酮溶于25ml乙二醇甲醚,配成5%(W/V)浓度的溶液。 B、将2.5ml 0.01M KCN溶液与125ml乙醇甲醚混合。将A和B合并置棕色瓶中过夜即可使用。此溶剂用时,A、B两溶液在前一天合并,配好的溶液仅能在1-2天内使用,过时失效须重配。 五、方法与步骤: 1、树脂的处理: 关于市售新树脂的处理见7、,本实验采用处理好的树脂。 2、装柱:将层析柱垂直装好,关闭柱底出口,在柱内注入约1cm高的柠檬酸缓冲液。将经处理已成钠型的树脂置于烧杯中,加进1倍体积的柠檬酸缓冲液,搅成悬浮状沿柱内壁细心地把柱灌满。倒时不要太快,以免产生泡沫。待树脂在柱底逐渐沉积至约1cm高时,用吸管吸去柱内上层所出现的清液,慢慢打开柱底出口,继续加注树脂悬液直至柱体装到8cm高度为止。 在装柱时要避免使柱内液体流干而使装柱失败,另外树脂悬浮液的温度要相对恒定(特别是

树脂塔设计计算

树脂塔设计计算 一、树脂用量的计算: 1. 罐体直径的确定 D=(4A/π)1/2 A=Q/v 式中: D——罐体直径,m; A——罐体截面面积,m2; Q——处理水量,m3/h; v——过流速度,一般取值:钠型树脂20-30m/h,磺化煤10-20m/h,混床40-60m/h; 2. 树脂装填量计算 V=1.2×1000QTc/(q/2) 式中: V——树脂装填体积,L; 1.2——安全系数 Q——处理水量,m3/h; T——树脂塔再生周期,h; c——需去除的硬度,mmol/L; q——树脂工作交换容量※,mmol/L; 3. 树脂填装高度计算 H=4V/(1000πD2) 式中: H——树脂装填高度,m; 二、再生剂耗量计算: 1. 再生水耗量 a 反洗用水量: V f=v f·T f·πD2/240 式中: V f——反洗用水量,m3; v f——反洗流速,m/h,阳离子交换树脂为10-15m/h,阴离子交换树脂为8-10m/h; T f——反洗时间,min,通常为20-30min; b 置换用水量: V H=v H·T H·πD2/240 式中: V H——置换用水量,m3; V H——置换流速,m/h,一般<5m/h; T H——置换时间,min,通常为20-30min; c 正洗水量: V Z=a·V 式中: V Z——正洗用水量,m3;

a ——正洗水耗,m3/ m3树脂,正洗流速一般为10-15m/h,正洗时间为5-15min; ※计算过程中需注意单位的统一。由于离子交换树脂自身所能交换的离子(Na+、H+、O H-)化合价通常为一价,而处理水中需要被交换的离子(Ca2+、Mg2+)通常为二价,即两个树脂单元方能交换掉一个二价离子。此处按照需要被交换的离子为二价离子计,这是在计算过程中需注意的地方。

离子交换器的设计计算

离子交换器的设计计算 1、交换器直径: F=Q/(T×N×V) F---交换器截面积(m2); Q---产水量(T/D); T---工作时间(H/D) N---交换器台数; V-交换流速(M/H). 2、交换器高度: H=Hp+Hr+Hs+Ht(米) Hp---交换器下部排水高度,一般为0.3—0.7m; Hr---交换剂层高度,一般在1.0—2.0之间选择。 Hs---反洗膨胀高度,树脂层高50%左右。 Ht---顶部封头高度。 3、交换器连续工作时间: t=V r×Eg/《q×(H1-H2)》 (小时) V r---交换剂体积; q---交换器流量; Eg---交换剂的工作交换容量,一般阳树脂取1000mol/m3。 H1---原水中硬度,mmol/L. H2---出水残留硬度,mmol/L. 4、再生剂用量:G z=V r×Eg×Bz/(1000×ε)

Gz---再生剂用量; Bz---再生剂实际耗率,g/mol. ε---再生剂纯度,对NaCL,可取0.95。 常用再生剂的实际耗率 顺流再生逆流再生 再生剂:NaCL ;HCL NaCL ; HCL 耗率:120-150 ;60-90 70-90; 30-60混合离子交换器设计计算: Q=3.14R2×V Q--混床的处理能力;单位m3/h R--混床的半径;单位m V--过滤流速,一般普通混床20-30m3/h 精致混床30-40m3/h 抛光混床40-60m3/h 取石英砂10-12m/h; V=3.14R2×H×1000 V--树脂的体积;单位kg R--混床的半径;单位m H--树脂的有效高度;单位m 注:树脂总装高不小于1m 阴阳离子交换树脂比例(阳:阴=1:1.3-2)混床的再生周期:

混床离子交换器的优点和工作原理

混床离子交换器就是阳、阴两种离子交换树脂,互相充分地混合在一个离子交换器内,同时进行阳、阴离子交换的设备。简称混床。所谓混床,就是把一定比例的阳、阴离子交换树脂混合装填于同一交换装置中,对流体中的离子进行交换、脱除。由于阳树脂的比重比阴树脂大,所以在混床内阴树脂在上阳树脂在下。一般阳、阴树脂装填的比例为1:2,也有装 填比例为1:1.5的,可按不同树脂酌情考虑选择。混床也分为体内同步再生式混床和体外再生式混床。同步再生式混床在运行及整个再生过程均在混床内进行,再生时树脂不移出设备以外,且阳、阴树脂同时再生,因此所需附属设备少,操作简便。 一、混床离子交换器的优点 (1)出水水质优良,出水pH值接近中性。 (2)出水水质稳定,短时间运行条件变化(如进水水质或组分、运行流速等)对混床出水水质影响不大。 (3)间断运行对出水水质的影响小,恢复到停运前水质所需的时间比较短。 混床设备比较好用一点的还是有机玻璃柱的那种,因为分层的时候比较容易看得清楚。 操作起来,再生效果好。以前我用的那种A3钢的,有个视孔,操作起来真的好麻烦,分层都看不到。 二、混床离子交换器的工作原理 混床床离子交换法,就是把阴、阳离子交换树脂放置在同一个交换器中,在运行前将它们均匀混合,所以可看着是由无数阴、阳交换树脂交错排列的多级式复床,水中所含盐类的阴、阳离子通过该项交换器,则被树脂交换,而得到高度纯水。在混合床中,由于阴、阳树脂是相互混匀的,所以其阴、阳离子交换反应几乎同时进行,或者说,水的阳离子交换和阴离子交换是多次交错进行的,经H型交换所产生的H+和经过OH型交换所产生的OH-都不能积累起来,基本上消除反离子的影响,交换进行得比较彻底。由于进入混合床的初级纯水质较好,交换器的负载较轻,树脂的交换能力很长时间才被子耗竭。本混合床采用体内再生法,再生时首先利用两种树脂的比重不同,用反洗使用权阴、阳离子交换树脂完全分离,阳树脂沉积在下,阴树脂浮在上面,然后阳树脂用盐酸(或硫酸)再生,阴树脂用烧碱再生。 三、混床离子交换器的结构 1、再生装置:阴离子交换树脂再生碱液在高于阴离子交换树脂面300毫米处母管进液(Φ400、500、600采用单母管进液,Φ800、2500采用双母管进液),管上小孔布液,管外采用塑料窗纱60目尼龙网布包覆。阳离子交换树脂再生酸性由底部排水装置的多孔板上排水帽进入。 2、中排装置:中排装置设置在阴、阳树脂的分界面上,用于再生排泄酸、碱还原液和冲洗型,型式分为双母管或支母管式,管子小孔外包覆塑料窗纱及60目尼龙网各一层。 3、排水装置:采用多孔板上装设PB2-500型叠片式排水帽,或宝塔式ABS型排水帽,多孔板材质按设备规格不同而异。(Φ400、500、600型采用硬聚氯乙烯多孔,Φ800、2500型采用钢衬胶多孔板)。

离子交换层析

实验二离子交换层析纯化兔血清IgG 【原理】 DEAE-Sephadex A-50 (二乙氨基- 乙基- 葡萄糖凝胶A-50 )为弱碱性阴离子交换剂。用NaOH 将Cl - 型转变为OH - 型后,可吸附酸性蛋白。血清中的γ 球蛋白属于中性蛋白(等电点为pH6.85 ~7.5 ),其余均属酸性蛋白。pH7.2 ~7.4 的环境中。酸性蛋白均被DEAE-Sephadex A-50 吸附,只有γ 球蛋白便可在洗脱液中先流出,而其他蛋白则被吸附在柱上,从而便可分离获得纯化的IgG 。 【试剂与器材】 1. DEAE-Sephadex A-50 2.0.5mol/L HCl 和NaOH 3.0.1mol/L pH7.4 PBS 4.0.1mol/L Tris-HCl(pH7.4)

5.0.02 %NaN 3 6.PEG 7. 无水乙醇 8. 紫外分光光度计 9.1cm×20cm 玻璃层析柱 10. 自动部分收集器 【操作步骤】 1 .DEAE-Sephadex A-50 预处理称DEAE-Sephadex A-50 (下称A-50 )5g ,悬于500ml 蒸馏水内,1h 后倾去上层细粒。按每克A-50 加0.5mol/L NaOH 15ml 的比例,将浸泡于0.5mol/L NaOH 液中,搅匀,静置30min ,装入布氏漏斗(垫有 2 层滤纸)中抽滤,并反复用蒸馏水抽洗至pH 呈中性;再以0.5mol/L HCl 同上操作过程处理,最后以0.5mol/L NaOH 再处理一次,处理完后,将A-50 浸泡于0.1mol/L pH7.4 PBS 中过夜。

2 .装柱 ( 1 )将层析柱垂直固定于滴定架上,柱底垫一圆形尼龙纱,出水口接一乳胶或塑料管并关闭开关。 (2 )将0.1mol/L Tris-HCl(pH7.4) 沿玻璃棒倒入柱中至1/4 高度,再倒入经预处理并以同上缓冲液调成稀糊状的A-50 。待A-50 凝胶沉降2 ~3cm 高时,开启出水口螺旋夹,控制流速1ml/min ,同时连续倒入糊状A-50 凝胶至所需高度。 ( 3 )关闭出水口,待A-50 凝胶完全沉降后,柱面放一圆形滤纸片,以橡皮塞塞紧柱上口,通过插入橡皮塞之针头及所连接的乳胶或塑料管与洗脱液瓶相连接。 3 .平衡启开出水口螺旋夹,控制流速 4 滴/min ,使约2 倍床体积的洗脱液流出。并以pH 计与电导仪分别测定洗脱液及流出液之PH 值与离子强度,两者达到一致时关闭出水口,停止平衡。 4 .加样及洗脱启开上口橡皮塞及下口螺旋夹,使柱中液体缓慢滴出,当柱面液体与柱面相切时,立即关闭出水口,以毛细滴管沿柱壁加入样品(0.5ml 血清,体积应小于床体积的2% ,蛋白浓度以<100mg 为宜)。松开出水口螺旋夹使面样品缓慢进入柱内,至与柱面

钠离子交换器工作原理说明

钠离子交换器工作原理说明 一般而言,化学除盐过程就是原水通过H+型阳离子交换器(也称阳床)和OH-型阴离子交换器(也称阴床),经过离子交换反应,将水中的阴、阳离子去除,从而制得高纯水。当原水经阳床发生交换反应之后,出水呈酸性,即水中的阳离子几乎都等当量的转变成氢离子,此时H++HC03-?C02?+H2O,所以在阳床之后端要设置除二氧化碳器。 钠离子交换器工作原理 水的硬度主要有其中的阳离子:钙(Ca2+)、镁(Mg2+)离子构成。当含有硬度的原水通过交换器的树脂层时,水中的钙、镁离子被树脂吸附,同时释放出钠离子。这样从交换器内流出的水就是去掉了硬度离子的软化水,当吸附钙、镁离子的树脂达到一定程度后,出水硬度增大,此时软水器按照预定的程序自动进行失效树脂的再生工作,利用较高浓度的氯化钠溶液通过树脂,使失效的树脂重新恢复至钠型树脂。

钠离子交换器产品结构 沈阳软化水装置主要有三部分组成: 1、自动控制装置:根据用户需要,可配置时间控制、流量控制两种控制方式的全自动控制器,并可选配润新、富莱克等控制阀,也可选用液动、气动、电动多阀控制系统。 2、罐体部分:根据用户要求,交换罐、盐罐可采用玻璃钢、碳钢衬胶、不锈钢等材质。 3、配件部分:包括布水装置、吸盐装置、管路配件等。 天然水中含有的钙(Ca2+)、镁(Mg2+)离子在加热蒸发浓缩过程中生成危害锅炉安全运行的水垢,这种天然水叫硬水。当这种硬水通过离子交换剂(NaS)时,与吸附在交换剂上的Na+离子发生交换反应,被置换于水中,转化成钠的盐类。由于钠的盐类溶解度大,且在温度升高时溶解度进一步增加,所以不会生成水垢。这个过程称为软化。但水中的钙、镁离子置换到交换剂上,使钠型交换剂(NaR)变成钙型(CaR),因而失去了与钙、镁离子再进行交换反应的能力,这一现象称之为钠离子交换失效。将失效的交换剂用食盐(NaCl)溶液使之还原成钠型交换剂,以便继续生产软水,这种现象称之为再生。钠离子交换器通过软化——失效——再生还原——软化的循环过程,使原水得到软化,供给锅炉合格的软化水。

离子交换器设计介绍材料(内部资料)

石油化工有限公司炼油乙烯项目除盐水处理系统计算书 设计原则 1工艺流程的设计 由于原水水质较好,水中TDS含量较低。因此,本项目推荐选用传统的成熟工艺离子交换器作为系统的主脱盐设备;系统初期投资成本低、易于实现自动化。离子交换器采用双床浮动床工艺,它具有处理水量大、占地面积小、交换容量高等优点。 根据计算,一级阳阴离子脱盐后的产水尚未达到生产工艺用水的要求,所以,在一级除盐装置之后,设置混合离子交换器,其出水水质完全满足设备采购方出水要求。 为保证关键设备离子交换器的长期可靠稳定运行,则必须设置符合水质特点的预处理系统,满足离子交换器进水指标:SS<3mg/L。 2工艺流程总述 2.1工艺流程: 由净化水场来的原水经过水处理系统后到达超高压锅炉给水的要求后,通过管道送到除氧水站供超高压和高压锅炉使用。 原水由全厂新鲜水管网送入除盐水站后,部分去凝结水换热后进生水罐,生水经新鲜水泵加压后,先经过滤器后进入阳离子交换器,因原水中HCO3-含量为20-42.1mg/L,为减少后级阴离子交换器的负荷,经过除CO2器除去重碳酸根后,由中间水泵经阴离子交换器和混合离子交换器后,去除盐水罐,最后由除盐水泵加压进除盐水管网供各用户使用。主体设备为单元式运行排列,同时也考虑母管式的连接组合。为了减少设备的台数、减少再生次数和酸碱耗量,

增加运行时间。 工艺如下: (原水箱)→原水泵→多介质过滤器→阳离子交换器→脱塔碳→中间水箱→阴离子交换器→混合离子交换器→除盐水箱→除盐水泵→使用点 2.2为了保证除盐水系统供应的可靠性,选择了五个系列;正常情况下,三个系列运行,一个系列再生,一个系列备用。其中设备包括: 10台150吨/小时的纤维球过滤器(?2600mm),5套300吨/小时阳离子交换器(?3000mm),5套300吨/小时阴离子交换器(?3000mm),5套300吨/小时混合离子交换器(?2800mm)及其它辅助设备等组成。 2.3本套水处理设备的原水水质按提供的水质报告设计,而最终制出900吨/小时除盐水。 设计进水水质及出水水质 1进水水质 1.1 除盐水物流特性 本项目的原水来自于菱溪水库,其水质(供参考)为:

离子交换层析实验原理及步骤

离子交换层析实验原理及步骤 离子交换层析实验方法 阴离子交换剂与阳离子交换剂的装柱和层析过程基本相同。交联葡聚糖的预处理只需充分溶胀和平衡,不需要除去细粒碎片和酸碱处理。其他步骤也基本同离子交换纤维素。 1. 剂型的选择 根据蛋白质在所用缓冲液pH值下带电荷的种类选择,如pH高于蛋白质等电点,应选阴离子交换剂,反之应选阳离子交换剂。一般情况下,DEAE-纤维素用于分离酸性蛋白,而CM纤维素用于分离碱性蛋白质。 下面以DEAE-纤维素操作为例,介绍试验方法 2. 膨胀活化 此步的目的在于除去杂质,暴露DEAE-纤维素上的极性基团。DEAE-纤维素的用量则根据柱容积的大小和所需过柱样品的量来决定。一般是1.0g DEAE-纤维素相当于6ml~8ml柱床体积。 表1-4 分离的血清与所需DEAE—纤维素量及其他条件的大致关系 血清样品量(ml) DEAE需用量(g) 选层析柱规格(cm) 选脱液量(ml) 1~2 2 1×25 100~150 5 5 2×12 200~300 10 10 2×20 300~400 20 20 2×37

400~800 称取所需的量,撒于0.5Mol/L NaOH溶液中(1g DEAE—纤维素干粉约需15倍NaOH液),浸泡1h左右,不时搅拌。抽滤(以布氏漏斗加两层滤纸或尼龙纱布抽滤),以蒸馏水洗涤,再抽滤,直至滤液近中性为止,再将纤维素浸泡于0.5Mol/L HCl中1h,同样抽滤液至近中性。再将纤维素浸于0.5Mol/L NaOH液中,同样处理,洗至中性。 3. 平衡 将DEAE—纤维素放入0.0lMol/L pH 7. 4 PB液中(即起始缓冲液),静止1h,不时搅拌,待纤维素下沉后,倾去上清液或抽滤除去洗液,如此反复几次至倾出液体的pH值与加入的PB液的pH值相近时为止。 4. 装柱 层析柱的选择要大小、长度适当。一般而言,柱长和柱直径之比为10∶1~20∶1,柱的内径上下要均匀一致。用前将层析柱在清洁液内浸泡处理24h,然后依次用常水、蒸馏水、起始缓冲液充分洗涤。 装柱时,先剪一块圆形的尼龙纱布(直径与层析柱内径一致),放入层析柱底部。将柱下端连接细塑料管,夹上螺旋夹。把层析柱垂直固定在三角铁架上,倒入起始缓冲液至一半的柱高,除去死区及塑料管内的气泡。再将平衡的DEAE-纤维素糊状物沿管壁倒入柱中。注意不要产生气泡,如有气泡应排除或重装。拧开螺旋夹,使流速至1ml/5min,待缓冲液快接近纤维素面时,继续倒入纤维素糊,同时用玻璃棒搅拌表面层,以免使两次加入的纤维素形成分界层,通过进出缓冲液调节流量,也可通过塑料管的升降来控制,至柱床体积不变为止。剪一圆形滤纸(与柱内径大小一致),从柱的上端轻轻放入,使其沉接于纤维素床表面,以免在加样时打乱纤维素层。装好柱的柱面应该是平整的,无倾斜,整个柱床内无气泡、不分层。继续平衡,使流出液的pH值与流入液的pH值完全一致为止。 5. 上样 要层析的样品首先必须用起始缓冲液(4℃)平衡过夜,中间可换液数次。将柱的上端打开,用吸管将纤维素柱上面的缓冲液吸出,不要吸净,留一薄层液面,以免空气进入。沿管壁缓缓加入样品,注意不要打乱纤维素表层。拧开下端的螺旋夹,使样品进入交换剂中,快要进完时,加1ml~2ml缓冲液冲洗柱壁,随即用多量的洗脱液洗脱。 样品的加量与DEAE—纤维素有一个最适比的关系,超过这个比值,吸附就不完全,直接影响到分离的纯度。经过粗提的—球蛋白50mg~100mg,用干重约4g DEAE-纤维素装柱分离,可获得理想结果。

离子交换器工作原理

工作原理就是离子的交换。 运行时:阳树脂(H-R)+(M+)-->:(M-R)+(H+) 阴树脂(OH-R)+(X-)-->:(X-R)+(OH-) 其中M+为金属离子,X-为阴离子。 再生过程为其逆过程。 离子交换器的失效控制 离子交换除盐水处理最简单的流程为阳床-阴床组成的一级复床除盐系统。有的一级复床除盐系统采用单元制,即每套一级复床除盐系统包括阳床、(除碳器)、阴床各一台,在离子交换除盐运行过程中,无论是阳床还是阴床先失效,都是同时再生;还有的一级复床除盐系统采用母管制,即阳床与阳床或阴床与阴床是并联运行的,哪一台交换器失效就再生哪一台。 1 检测和控制原理 强酸性阳树脂对水中各种阳离子的吸附顺序为:Fe3+>Al3+>Ca2+>Mg2+>Na+>H+. ;由此可知,水中金属离子Na+被吸附的能力最弱,所以当离子交换时树脂层的各种离子吸附层逐渐下移,H+.最后被其他阳离子置换下来,当保护层穿透时,首先泄漏的是最下层的Na+;因此监督阳离子交换器失效是以漏钠为标准的;其反应方程为(A代表金属阳离子,R 为树脂基团): An+ +nRH=RnA+n H+ HCO3- + H+ =H2O+CO2↑ 强碱性阴树脂对水中各种阴离子的吸附顺序为: SO42->NO3->Cl->OH->HCO3->HSiO3- 。由此可知,HSiO3-的吸附能力最弱,所以当离子交换时树脂层的各种离子吸附层逐渐下移,OH-.被其他阴离子置换下来,当保护层穿透时,首先泄漏的是最下层的HSiO3-;因此监督阴离子交换器失效是以漏硅为标准的;其反应方程为(B代表酸根阴离子,R为树脂基团): Bm- +mROH=RmB+mOH- 2 控制点和控制方法 由于母管制系统包含了单元制系统,而且它具有能充分使用树脂、提高交换器的出水能力、降低酸碱消耗等优点,我们在研究中主要讨论以这种结构为基础的离子交换除盐水处理系统。 以成都生物制品研究所蛋白分离车间纯水站为例,该系统为母管制水处理系统,系统的结构为:砂滤-活性炭过滤-粗滤-阳床- 一阴-二阴-混床-精滤-纯水罐,系统产水能力为5 t/h,在系统的失效控制研究中,我们提出单元失效控制概念,也就是充分利用了母管制制水系统的优点对系统进行失效控制。 (1)RO对各有机溶质的去除率大于NF膜。(2)不同有机溶质的去除率不相同,有的甚至相差很大(例如,RO和NF膜对乙酸的吸光度去除率分别为95.34%、81.45%,而对苯胺的吸光度去除率则分别为61.50%、46.82%)。 3 出水水质 原水经一级复床除盐后,电导率(25℃)低于10μS/cm,水中硅含量低于100μg/

离子交换法的工作原理及软水器的工作过程

离子交换法的工作原理及软水器的工作过程 离子交换树脂是一种聚合物,带有相应的功能基团。一般情况下,常规的钠离子交换树脂带有大量的钠离子。 当水中的钙镁离子含量高时,离子交换树脂可以释放出钠离子,功能基团与钙镁离子结合,这样水中的钙镁离子含量降低,水的硬度下降。硬水就变为软水,这是软化水设备的工作过程。 当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”。 由于实际工作的需要,软化水设备的标准工作流程主要包括: 工作(有时叫做产水,下同)、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程。任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的(其中,全自动软化水设备会增加盐水重注过程)。 反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证。反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走。这个过程一般需要5-15分钟左右。 吸盐(再生):即将盐水注入树脂罐体的过程,传统设备是采用盐泵将盐水注入,全自动的设备是采用专用的内置喷射器将盐水吸入(只要进水有一定的压力即可)。在实际工作过程中,盐水以较慢的速度流过树脂的再生效果比单纯用盐水浸泡树脂的效果好,所以软化水设备都是采用盐水慢速流过树脂的方法再生,这个过程一般需要30分钟左右,实际时间受用盐量的影响。 慢冲洗(置换):在用盐水流过树脂以后,用原水以同样的流速慢慢将树脂中的盐全部冲洗干净的过程叫慢冲洗,由于这个冲洗过程中仍有大量的功能基团上的钙镁离子被钠离子交换,根据实际经验,这个过程中是再生的主要过程,所以很多人将这个过程称作置换。这个过程一般与吸盐的时间相同,即30分钟左右。 快冲洗:为了将残留的盐彻底冲洗干净,要采用与实际工作接近的流速,用原水对树脂进行冲洗,这个过程的最后出水应为达标的软水。一般情况下,快冲洗过程为5-15分钟。 离子交换法---软水器的工作原理 时间:2010-09-11 09:46来源:未知作者:阿青点击:34次 离子交换法---软水器的工作原理离子交换树脂是一种聚合物,带有相应的功能基团。一般情况下,常规的钠离子交换树脂带有大量的钠离子。当水中的钙镁离子含量高时,离子交

相关主题
文本预览
相关文档 最新文档