当前位置:文档之家› 福建省福州市10月高中数学学科会议专题讲座立体几何一轮复习建议新人教版

福建省福州市10月高中数学学科会议专题讲座立体几何一轮复习建议新人教版

福建省福州市10月高中数学学科会议专题讲座立体几何一轮复习建议新人教版
福建省福州市10月高中数学学科会议专题讲座立体几何一轮复习建议新人教版

福建省福州市2012年10月高中数学学科会议专题讲座立体几何一轮复习

建议

1.考纲要求

1.1立体几何初步

1.1.1空间几何体

① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.

② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图.

③ 了解平行投影与中心投影,了解空间图形的不同表示形式.

④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).

⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).

1.1.2点、直线、平面之间的位置关系

① 理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.

◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.

◆公理2:过不在同一条直线上的三点,有且只有一个平面.

◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.

◆公理4:平行于同一条直线的两条直线互相平行.

◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.

② 以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定.

理解以下判定定理.

◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.

◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.

◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.

◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.

理解以下性质定理,并能够证明.

◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行.

◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.

◆垂直于同一个平面的两条直线平行.

◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.

③ 能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.

1.2.空间向量与立体几何(理科)

1.2.1空间向量及其运算

① 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.

② 掌握空间向量的线性运算及其坐标表示.

③ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.

1.2.2空间向量的应用

① 理解直线的方向向量与平面的法向量.

② 能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.

③ 能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).

④ 能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究几何问题中的应用.

2.考试说明要求

“重视数学基本能力和综合能力的考查”

“数学基本能力主要包括空间想象能力、抽象概括能力、推理论证能力、计算求解能力、数据处理能力以及应用意识和创新意识这几方面的能力”

“空间想象能力的考查要求是:能够根据题设条件想象并作出正确的平面直观图形,能够根据平面直观图形想象出空间图形;能够正确地分析出图形中基本元素及其相互关系,并能够对空间图形进行分解和组合”

“立体几何是考查空间想象能力的主要载体,同时,又考查逻缉思维能力、推理论证能力、运算求解能力”

“由于空间向量的双重身份,能把空间元素间的位置关系转化为数量关系,形式逻辑证明转化为代数运算.降低了思维难度.因此空间向量成为处理空间几何问题的重要工具”(理科)

3.考点分析

立体几何历年都是高考重点内容之一,属中档题.

3.1福建近四年高考中的立体几何题见下表:

理科

年份选择题填空题解答题考点及简要分析

2009 7.平行命题的真

假辩析17.条件:长方体一部分线面垂直中点

结论:(1)异面角

(2)探究线面垂直线段长

2010 6. 直线与平面平

行、垂直的判定与

性质12. 三视图

表面积

18.条件:组合体(圆柱三棱柱)

结论:(1)面面垂直

(2)体积面面角

2011 12.三棱锥

线面垂直

体积20. 条件:四棱锥线面垂直线线垂直结论:(1) 面面垂直

(2) 线面角线段长度

探究距离相等的点

2012 4. 三视图18. 条件:长方体

结论:(1) 线面垂直

(2)探究线面平行

(3)二面角

文科

年份选择题填空题解答题考点及简要分析

高三数学复习专题讲座

2010届高三数学复习专题讲座 数列复习建议 江苏省睢宁高级中学北校袁保金 数列是高中数学的重点内容之一,是初等数学与高等数学的重要衔接点,由于它既具有函数特征,又能构成独特的递推关系,使得它既与高中数学其他部分的知识有着密切的联系,又有自己鲜明的特点.而且具有内容的丰富性、应用的广泛性和思想方法的多样性,所以数列一直是高考考查的重点和热点.纵观江苏省近几年高考数学试卷,数列都占有相当重要的地位,一般情况下都是以一道填空题和一道解答题形式出现,填空题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式等内容,对基本的计算技能要求比较高,具有“小、巧、活、新”的特点,解答题属于中高档难度的题目,甚至是压轴题.具有综合性强、变化多、难度较大特点,重点以等差数列和等比数列内容为主,考查数列内在的本质的知识和推理能力,运算能力以及分析问题和解决问题的能力. 一、考纲解读 2、考纲解读(1)考纲中对数列的有关概念要求为A级,也就是说只要了解数列概念的基本含义,并能解决相关的简单问题.(2)等差数列和等比数列要求都为C级,2010年数学科考试说明中共列出八个C级要求的知识点,等差数列、等比数列占了其中两个,说明这两个基本数列在高考中的地位相当重要.具体要求我们对这两个数列的定义、性质、通项公式以及前n项和公式需要有深刻的认识,能够

系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题.这也说明涉及等差数列和等比数列的综合题在高考中一定出现.(3)由于数列这一章含有两个C级要求的知识点,可以命制等差数列、等比数列以及它们之间相互联系的综合题,也可以命制数列与函数、方程、不等式等知识点相融合的综合题,以及数列应用问题,着重考查思维能力、推理论证能力以及分析问题,解决实际问题的能力. 二、考题启示1、考题分布 自2004年江苏省单独命题以来,对数列知识的考查一直是命题的重 2、考题启示(1)数列在高考试卷中占的比重较大,分值约为13%左右,呈一大一小趋势,对等差数列和等比数列都有考查,纵观近几年江苏省高考试题,我们会发现江苏考题与全国卷、其他省市卷数列题有很大区别,具有十分明显的特色,对数列的考查不与其他知识综合,同时也回避了递推数列和不等式,主要揭示等差数列和等比数列内在的本质性的知识,形成江苏卷的一大特色.因此复习中在递推数列方面,特别是利用递推数列求通项,要大胆取舍,不要深挖.(2)客观题主要考查了等差、等比数列的基本概念和性质,突出了“小、巧、活、新”的特点,属容易题或中档题.主观题年年都考,且以中等和难度较大的综合题出现,常放在压轴题的位置.回顾江苏省单独命题以来,对数列的考查可以称得上到了极致.如2007年、2008年在倒数第二题,2005年、2006年在最后一题,2009年数列题前移到第17题,以中等题形式出现,这一显著地变化似乎一种信号,具有一定的导向作用.

高中数学空间几何专题练习(供参考)

一、选择题 1、下图(1)所示的圆锥的俯视图为 ( ) 2 3 + 为 ( ) C 、120; 。 3、边长为a 正四面体的表面积是 ( ) A 、34; B 、312a ; C 、24 a ; D 2。 4、对于直线:360l x y -+=的截距,下列说法正确的是 ( ) A 、在y 轴上的截距是6; B 、在x 轴上的截距是6; C 、在x 轴上的截距是3; D 、在y 轴上的截距是3-。 5、已知,a b αα?//,则直线a 与直线b 的位置关系是 ( ) A 、平行; B 、相交或异面; C 、异面; D 、平行或异面。 6、已知两条直线12:210,:40l x ay l x y +-=-=,且12l l //,则满足条件a 的值为A 、12-; B 、12 ; C 、2-; D 、2。 7、在空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 的中点。 若AC BD a ==,且AC 与BD 所成的角为60,则四边形EFGH 的面积为 ( ) A 2; B 2a ; C 2; D 2。 8、在右图的正方体中,M 、N 分别为棱BC 和棱CC 1的中点, 则异面直线AC 和MN 所成的角为( ) A .30° B .45° C .90° D . 60° 9、下列叙述中错误的是 ( ) A 、若P αβ∈且l αβ=,则P l ∈; B 、三点,,A B C 确定一个平面; C 、若直线a b A =,则直线a 与b 能够确定一个平面; 图(1) 1 A

D 、若,A l B l ∈∈且,A B αα∈∈,则l α?。 10、两条不平行的直线,其平行投影不可能是 ( ) A 、两条平行直线; B 、一点和一条直线; C 、两条相交直线; D 、两个点。 11、长方体的一个顶点上的三条棱长分别为3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是 ( ) A 、25π; B 、50π; C 、125π; D 、都不对。 12、给出下列命题 ①过平面外一点有且仅有一个平面与已知平面垂直 ②过直线外一点有且仅有一个平面与已知直线平行 ③过直线外一点有且仅有一条直线与已知直线垂直 ④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为( ) A .0个 B .1个 C .2个 D .3个 二、填空题 13、圆柱的侧面展开图是边长分别为2,a a 的矩形,则圆柱的体积为 ; 14.一个圆柱和一个圆锥的底面直径.. 和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为 . 15、过点(1 16、已知,a b (1) a b αβ////,,则a b //; (2) ,a b γγ⊥⊥,则a b //; (3) ,a b b α?//,则a α//; (4) ,a b a α⊥⊥,则b α//; M

高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结 一、立体几何知识点归纳 第一章空间几何体 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱 与棱的公共点叫做顶点。 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其 中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 1.棱柱 1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。 E'D' F' C'侧面 A'B' l 1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的 底面侧棱 关系: 斜棱柱 ED FC ① 底面是正多形 棱柱正棱柱 棱垂直于底面 直棱柱 其他棱柱 AB ②四棱柱底面为平行四边形平行六面体侧棱垂直于底面直平行六面体底面为矩形 长方体底面为正方形正四棱柱侧棱与底面边长相等正方体 1.3棱柱的性质: ①侧棱都相等,侧面是平行四边形; ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。 1.4长方体的性质: ①长方体一条对角线长的平方等于一个顶点上三条棱的 D1 C1 平方和;【如图】 2222 ACABADAA 11 A1 D B1 ②(了解)长方体的一条对角线 AC 与过顶点A 的三条 1 C AB 棱所成的角分别是,,,那么

第1页

222 coscoscos1, 222 sinsinsin2; ③(了解)长方体的一条对角线A C与过顶点A的相邻三个面所成的角分别是,,, 1 则 222 coscoscos2, 222 sinsinsin1. 2.侧面展开图:正n棱柱的侧面展开图是由n个全等矩形组成的以底面周长和侧棱长为邻 边的矩形. 3.面积、体积公式:S ch 直棱柱侧 直棱柱全底,V棱柱底 Sch2SSh (其中c为底面周长,h 为棱柱的高)1.5圆柱 2.1圆柱——以矩形的一边所在的直线为旋转轴,其 余各边旋转而形成的曲面所围成的几何体叫圆柱. 母线A' B' O' C' 轴 轴截面 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形. 2.3侧面展开图:圆柱的侧面展开图是以底面周长和AOC 侧面B 母线长为邻边的矩形. 底面2.4面积、体积公式: S圆柱侧=2rh;S 圆柱全= 2 2rh2r,V 圆柱=S底h= 2 rh(其中r为底面半径,h为圆柱高) 1.6棱锥 3.1棱锥——有一个面是多边形,其余各 S 顶点侧面面是有一个公共顶点的三角形,由这些高 面所围成的几何体叫做棱锥。 侧棱正棱锥——如果有一个棱锥的底面 是正多边形,并且顶点在底面的射影是 底面的中心,这样的棱锥叫做正棱锥。 3.2棱锥的性质:底面 斜高DC ①平行于底面的截面是与底面相似的正 O AB H 多边形,相似比等于顶点到截面的距 离与顶点到底面的距离之比; ②正棱锥各侧棱相等,各侧面是全等的等腰三角形; ③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面边长一半,构成四个直角三角形。)(如上图:SOB,SOH,SBH,OBH为直角三角形) 3.3侧面展开图:正n棱锥的侧面展开图是有n个全等的等腰三角形组成的。

高中数学复习专题讲座(第42讲)应用性问题

题目高中数学复习专题讲座应用性问题 高考要求 数学应用题是指利用数学知识解决其他领域中的问题 高考对应用题的考查已逐步成熟,大体是三道左右的小题和一道大题,注重问题及方法的新颖性,提高了适应陌生情境的能力要求 重难点归纳 1 解应用题的一般思路可表示如下: 数学解答 数学问题结论 问题解决数学问题实际问题 2 解应用题的一般程序 (1)读 阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是基础 (2)建 将文字语言转化为数学语言,利用数学知识,建立相应的数学模型 熟悉基本数学模型,正确进行建“模”是关键的一关 (3)解 求解数学模型,得到数学结论 一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化过程 (4)答 将数学结论还原给实际问题的结果 3 中学数学中常见应用问题与数学模型 (1)优化问题 实际问题中的“优选”“控制”等问题,常需建立“不等式模型”和“线性规划”问题解决 (2)预测问题 经济计划、市场预测这类问题通常设计成“数列模型”来解决 (3)最(极)值问题 工农业生产、建设及实际生活中的极限问题常设计成“函数模型”,转化为求函数的最值 (4)等量关系问题 建立“方程模型”解决 (5)测量问题 可设计成“图形模型”利用几何知识解决 典型题例示范讲解 例1为处理含有某种杂质的污水,要制造一个底宽为2米的无盖长方体沉淀箱(如图),污水从A 孔流入,经 沉淀后从B 孔流出,设箱体的长度为a 米,高度为b 米, 已知流出的水中该杂质的质量分数与a 、b 的乘积ab 成反 比,现有制箱材料60平方米,问当a 、b 各为多少米时, 经沉淀后流出的水中该杂质的质量分数最小(A 、B 孔的 面积忽略不计)? B A

最新人教A版高中数学必修2空间立体几何知识点归纳

第一章 空间几何体知识点归纳 1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。简单组合体的构成形式: 一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所 围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。 1、空间几何体的三视图和直观图 投影:中心投影 平行投影 (1)定义:几何体的正视图、侧视图和俯视图统称为几何体的三视图。 (2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等” 2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形. 3、斜二测画法的基本步骤: ①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使''' x O y ∠=450(或1350 ),注意它们确定的平面表示水平平面; ③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘ 轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘ 轴,且长度变为原来的一半; ⑴圆柱侧面积;l r S ??=π2侧面⑵圆锥侧面积:l r S ??=π侧面 ⑶圆台侧面积:()S r R l π=+侧面 ⑷体积公式: h S V ?=柱体;h S V ?=31锥体; ()1 3 V h S S =下 台体上 ⑸球的表面积和体积:

高中数学立体几何知识点总结(详细)

高中数学立体几何知识点总结 一 、空间几何体 (一) 空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各 个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二) 几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 棱柱的分类 棱柱 四棱柱 平行六面体直平行六面体 长方体正四棱柱 正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 棱长都相等 底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是四边形

1.3 棱柱的面积和体积公式 ch S =直棱柱侧(c 是底周长,h 是高) S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h 2 、棱锥的结构特征 2.1 棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积: 1 '2 S ch = 正棱椎(c 为底周长,'h 为斜高) 体积:1 3 V Sh = 棱椎(S 为底面积,h 为高) 正四面体: 对于棱长为a 正四面体的问题可将它补成一个边长为 a 2 2 的正方体问题。 A B C D P O H

高中数学必修2立体几何专题资料

专题一浅析中心投影与平行投影 中心投影与平行投影是画空间几何体的三视图和直观图的基础,弄清楚中心投影与平行投影能使我们更好地掌握三视图和直观图,平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;而中心投影则不同.下表简单归纳了中心投影与平行投影,结合实例让我们进一步了解平行投影和中心投影. 例1如何才能使如图所示的两棵树在同一时刻的影长分别与它们的原长相等? 解析:方法一:可在同一方向上画出与原长相等的影长,分别连结它们影子顶点与树的顶点,此时为平行投影. 方法二:可在两树外侧不同方向上画出与原长相等的影子,连结影子顶点与树的顶点相交于P,此时为中心投影,P为光源位置. 点评:这是一道平行投影和中心投影相结合的题目,答案不唯一.连结物体顶点与其影子顶点,如果得到的是平行线,即为平行投影;如果得到的是相交线,则为中心投影,这是判断平行投影与中心投影的方法,也是确定中心投影光源位置的基本作法,还应注意,若中心投影光源在两树同侧时,图中的两棵树的影子不可能与原长相等. 例2 如图所示,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的面上的正投影可能是________(填出所有可能的序号).

解析:在下底面ABCD上的投影为③,在右侧面B′BCC′上的投影为②,在后侧面D′DCC′上的投影为①. 答案:①②③ 点评:画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点、端点等,方法是先画出这些关键点的投影,再依次连接各投影点即可得此图形在该平面上的投影. 专题二不规则几何体体积的求法 当所给几何体形状不规则时,无法直接利用体积公式求解,可尝试用以下几种常用的方法求出原几何体的体积,下面逐一介绍,供同学们参考. 一、等积转换法 当所给几何体的体积不能直接套用公式或套用公式时某一量(底面积或高)不易求出时, 可以转换一下几何体中有关元素的相对位置进行计算求解,该方法尤其适用于求三棱锥的体积. 例1在边长为a的正方体ABCD—A1B1C1D1中,M,N,P 分别是棱A1B1,A1D1,A1A上的点,且满足A1M = 1 2A1B1, A1N=2ND1,A1P= 3 4A1A(如图1),试求三棱锥A1—MNP的体 积. 分析:若用公式V= 1 3Sh直接计算三棱锥A1—MNP的体积, 则需要求出△MNP的面积和该三棱锥的高,这两者显然都不易求出, 但若将三棱锥A1—MNP的顶点和底面转换一下,变为求三棱锥P—A1MN的体积,便能很容易的求出其高和底面△A1MN的面积,从而代入公式求解. 解:V A 1-MNP =V A1—MNP = 1 3·S△A1MN ·h = 1 3× 1 2·A1M1·A1N·A1P= 1 3× 1 2× 1 2a· 2 3a· 3 4a= 1 24a 3.

高中数学竞赛专题讲座---竞赛中的数论问题

竞赛中的数论问题的思考方法 一. 条件的增设 对于一道数论命题,我们往往要首先排除字母取零值或字母取相等值等“平凡”的情况,这样,利用字母的对称性等条件,往往可以就字母间的大小顺序、整除性、互素性等增置新的条件,从而便于运用各种数论特有手段。 1. 大小顺序条件 与实数范围不同,若整数x ,y 有大小顺序x m ,而令n =m +u 1,n >u 1≥1,得-2 (m -1mu 1)(22112=--u mu m 。同理,又可令m = u 1+ u 2,m >u 2≥1。如此继续下去将得u k+1= u k =1,而11+-+=i i i u u u ,i ≤k 。故n m u u u u k k ,,,,,,121 +是不大于1981的裴波那契数,故m =987,n =1597。 例2. (匈牙利—1965)怎样的整数a ,b ,c 满足不等式?233222c b ab c b a ++<+++ @ 解:若直接移项配方,得01)1()12(3)2(222<--+-+-c b b a 。因为所求的都是整数,所以原不等 式可以改写为:c b ab c b a 234222++≤+++,变形为:0)1()12 (3)2(222≤-+-+-c b b a ,从而只有a =1, b =2, c =1。 2. 整除性条件 对于整数x ,y 而言,我们可以讨论其整除关系:若x |y ,则可令y =tx ;若x ?y ,则可令y =tx +r ,0,则q a b +≥。结合高斯函数,设n 除以k ,余数为r ,则有r k k n n +?? ????=。还可以运用抽屉原理,为同余增设一些条件。整除性与大小顺序结合,就可有更多的特性。 例3. 试证两相继自然数的平方之间不存在自然数a q )由p ,q 的互素性易知必有q |a ,q |b 。这样,由b >a 即得q a b +≥。(有了三个不等式,就可对 q p 的范围进行估计),从而q n n q a d b d q p q q q ++<+≤=<+=+22)1(111。于是将导致矛盾的结果:0)(2<-q n 。这里,因为a ,b 被q 整除,我们由b >a 得到的不仅是b ≥a +1,而是更强的条件b ≥a +q 。 例4. (IMO-25)设奇数a ,b ,c ,d 满足0

高中数学空间立体几何讲义

第1讲 空间几何体 高考《考试大纲》的要求: ① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. ② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图. ③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. ④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (一)例题选讲: 例1.四面体ABCD 的外接球球心在CD 上,且CD =2,AB =3,在外接球面上两点A 、B 间的球面距离是( ) A . 6π B .3 π C .32π D .65π 例2.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( ) A .π2 B .π2 3 C .π332 D .π2 1 例3.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角 是 . 例4.如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积. (1)求V (x )的表达式; (2)当x 为何值时,V (x )取得最大值? (3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值。 (二)基础训练: 1.下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A .①② B .①③ C .①④ D .②④ 2.设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度0 75东经0120,则甲、乙两地球面距离为( ) (A )3R (B) 6 R π (C) 56 R π (D) 23R π ①正方形 ②圆锥 ③三棱台 ④正四棱锥

高中数学立体几何知识点总结

高中数学之立体几何 平面的基本性质 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理3 经过不在同一直线上的三个点,有且只有一个平面. 根据上面的公理,可得以下推论. 推论1 经过一条直线和这条直线外一点,有且只有一个平面. 推论2 经过两条相交直线,有且只有一个平面. 推论3 经过两条平行直线,有且只有一个平面. 空间线面的位置关系 共面平行—没有公共点 (1)直线与直线相交—有且只有一个公共点 异面(既不平行,又不相交) 直线在平面内—有无数个公共点 (2)直线和平面直线不在平面内平行—没有公共点 (直线在平面外) 相交—有且只有一公共点 (3)平面与平面相交—有一条公共直线(无数个公共点) 平行—没有公共点 异面直线的判定 证明两条直线是异面直线通常采用反证法. 有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”. 线面平行与垂直的判定 (1)两直线平行的判定 ①定义:在同一个平面内,且没有公共点的两条直线平行. ②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,aβ,α∩β=b,则a∥b. ③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c. ④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b ⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b ⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b. (2)两直线垂直的判定

高中数学立体几何专题

高中课程复习专题——数学立体几何 一空间几何体 ㈠空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 ㈡几种空间几何体的结构特征 1 棱柱的结构特征 棱柱的定义:有两个面互相平行,其余各面都是四边形, 并且每相邻两个四边形的公共边都互相平行,由这些面所 围成的几何体叫做棱柱。 % 棱柱的分类 棱柱的性质 , ⑴侧棱都相等,侧面是平行四边形; ⑵两个底面与平行于底面的截面是全等的多边形; ⑶过不相邻的两条侧棱的截面是平行四边形; ⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。 长方体的性质 ⑴长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC12 = AB2 + AC2 + AA12 ⑵长方体的一条对角线AC1与过定点A的三条棱所成 ` 的角分别是α、β、γ,那么: cos2α + cos2β + co s2γ = 1 sin2α + sin2β + sin2γ = 2 ⑶长方体的一条对角线AC1与过定点A的相邻三个面所组成的角分别为α、β、γ,则: cos2α + cos2β + cos2γ = 2 sin2α + sin2β + sin2γ = 1 图1-1 棱柱 图1-2 长方体 图1-1 棱柱

棱柱的侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱为邻边的矩形。 棱柱的面积和体积公式 S 直棱柱侧面 = c ·h (c 为底面周长,h 为棱柱的高) S 直棱柱全 = c ·h+ 2S 底 【 V 棱柱 = S 底 ·h 2 圆柱的结构特征 2-1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。 2-2 圆柱的性质 ⑴ 上、下底及平行于底面的截面都是等圆; ⑵ 过轴的截面(轴截面)是全等的矩形。 2-3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。 - 2-4 圆柱的面积和体积公式 S 圆柱侧面 = 2π·r ·h (r 为底面半径,h 为圆柱的高) S 圆柱全 = 2π r h + 2π r 2 V 圆柱 = S 底h = πr 2h 3 棱锥的结构特征 3-1 棱锥的定义 ⑴ 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ⑵ 正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心, 这样的棱锥叫做正棱锥。 3-2 正棱锥的结构特征 ⑴ 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比; ⑵ 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; ⑶ 正棱锥中的六个元素,即侧棱(SB)、高(SO)、斜高(SH)、侧棱在底面上的射影(OB)、斜高在底面上的射影(OH)、底面边长的一半(BH),构成四个直角三角形(三角形SOB 、SOH 、SBH 、OBH 均为直角三角形)。 3-3 正棱锥的侧面展开图:正n 棱锥的侧面展开图是由n 个全等的等腰三角形组成。 3-4 正棱锥的面积和体积公式 图1-3 圆柱 )

高中数学复习专题讲座---综合运用.docx

高中数学复习专题讲座 综合运用等价转化、分类讨论、数形结合等思想解决函数综合问题 高考要求* 函数综合问题是历年高考的热点和重点内容么一,一般难度较大,考查内容和形式灵活多样》木节课主要帮助考生在掌握有关函数知识的基础上进-步深化综合运用知识的能力,掌握基木解题技巧和方法,并培养考生的思维和创新能力? 重难点归纳? 在解决函数综合问题时,耍认真分析、处理好各种关系,把握问题的主线,运用相关的知识和方法逐步化归为基本问题来解决,尤其是注意等价转化、分类讨论、数形结合等思想的综合运用,综合问题的求解往往需要应川多种知识和技能,因此,必须全而掌握有关的函数知识,并且严谨审题,弄清题口的已知条件,尤其要挖掘题目中的隐含条件,学法指导*怎样学好函数学习函数要重点解决好四个问题*准确深刻地理解函数的有关概念;揭示并认识函数与其他数学知识的内在联系;把握数形结合的特征和方法;认识函数思想的实质,强化应用意识(一)准确、深刻理解函数的有关概念 概念是数学的慕础,而函数是数学中最主要的概念之一,苗数概念贯穿在中学代数的始终.数、式、方程、函数、排列组合、数列极限等是以函数为中心的代数,近十年來,高考试题中始终贯穿着函数及其性质这条主线, (二)揭示并认识函数与其他数学知识的内在联系.函数是研究变量及相互联系的数学概念,是变量数学的基础,利用函数观点可以从较高的角度处理式、方程、不等式、数列、曲线与方程等内容,在利用函数和方程的思想进行思维中,动与静、变量与常量如此牛动的辩证统一,函数思维实际上是辩证思维的一种特殊表现形式, 所谓函数观点,实质是将问题放到动态背景上去加以考虑,高考试题涉及5个方血* (1)原始意义上的函数问题;(2)方程、不等式作为函数性质解决;(3)数列作为特殊的函数成为高考热点:(4)辅助函数法;(5)集合与映射,作为基本语言和工具出现在试题中,(三)把握数形结合的特征和方法 函数图象的儿何特征与函数性质的数量特征紧密结合,有效地揭示了各类函数和定义域、值域、单调性、奇偶性、周期性等基本属性,体现了数形结合的特征与方法,为此,既要从定形、定性、定理、定位各方而精确地观察图形、绘制图形,乂要熟练地掌握函数图象的平移变换、对称变换, (四)认识函数思想的实质,强化应用意识 函数思想的实质就是用联系与变化的观点捉出数学对象,抽象数量特征,建立函数关系,求得问题的解决,纵观近几年高考题,考查函数思想方法尤其是应用题力度加大,因此一定要认识函数思想实质,强化应用意识, 典型题例示范讲解 例1设几r)是定义在R上的偶函数,其图象关于直线*1对称,对任意[0,1], 都有f(x}+X2)=fi X[)? /(兀2),且几1)=0>0? (1)求/(*)、几扌); ⑵证明/⑴是周期函数;

高中数学必修2空间立体几何大题

必修2空间立体几何大题 一.解答题(共18小题) 1.如图,在三棱锥V﹣ABC中,平面V AB⊥平面ABC,△V AB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,V A的中点. (1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面V AB(3)求三棱锥V﹣ABC的体积. 2.如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°. (1)求三棱锥P﹣ABC的体积; (2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值. 3.如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形 (Ⅰ)在图中画出这个正方形(不必说出画法和理由) (Ⅱ)求平面α把该长方体分成的两部分体积的比值. 4.如图,直三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点, (Ⅰ)证明:平面AEF⊥平面B1BCC1; (Ⅱ)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F﹣AEC的体积.

5.如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E. 求证: (1)DE∥平面AA1C1C;(2)BC1⊥AB1. 6.如题图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4, 点F在线段AB上,且EF∥BC. (Ⅰ)证明:AB⊥平面PFE.(Ⅱ)若四棱锥P﹣DFBC的体积为7,求线段BC的长. 7.如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1, (Ⅰ)若D为线段AC的中点,求证;AC⊥平面PDO; (Ⅱ)求三棱锥P﹣ABC体积的最大值; 8.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD. (Ⅰ)证明:平面AEC⊥平面BED; (Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.

高中数学立体几何知识点总结(详细)

高中数学立体几何知识点总结 一、空间几何体 (一)空间几何体的类型 1多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二)几种空间几何体的结构特征 1、棱柱的结构特征 1.1棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 棱柱的分类 「斜機柱 ①校*L曲査十底雨>直棱 柱]一IF 皱ft 他械柱… 底面是四边形底面是平行四边形 棱柱四棱柱平行六面体侧棱垂直于底面底面是矩形 直平行六面体'长方体 底面是正方形棱长都相等 正四棱柱正方体 性质: I、侧面都是平行四边形,且各侧棱互相平行且相等; n、两底面是全等多边形且互相平行; 川、平行于底面的截面和底面全等;

2 1.3棱柱的面积和体积公式 S 直棱柱侧ch ( c 是底周长,h 是咼) S 直棱柱表面=c ? h+ 2S 底 V 棱柱=S 底? h 2、棱锥的结构特征 2.1棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共 顶点的三角形,由这些面所围成的几何体叫做棱锥。 (2) 正棱锥:如果有一个棱锥的底面是正多边形, 并且顶 点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2正棱锥的结构特征 I 、平行于底面的截面是与底面相似的正多边形, 相似比 等于顶点到截面的距离与顶点到底面的距离之比;它们面积 的比等于截得的棱锥的高与原棱锥的高的平方比; 截得的棱 锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱 锥的高的立方 比; n >正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积: 1 S 正棱椎 (c 为底周长,h'为斜高) 2 1 体积:V 棱椎-Sh ( S 为底面积,h 为高) 3 正四面体: 对于棱长为a 正四面体的问题可将它补成一个边长为 2 -a 的正方体问题。 P O H C

高中数学空间向量与立体几何经典题型与答案

空间向量与立体几何经典题型与答案 1 已知四棱锥P ABCD -的底面为直角梯形,//AB DC ,⊥=∠PA DAB ,90ο 底面ABCD ,且 1 2 PA AD DC === ,1AB =,M 是PB 的中点 (Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角; (Ⅲ)求面AMC 与面BMC 所成二面角的大小 证明:以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为 1 (0,0,0),(0,2,0),(1,1,0),(1,0,0),(0,0,1),(0,1,)2 A B C D P M (Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=?==所以故 由题设知AD DC ⊥,且AP 与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD 又DC 在面 PCD 上,故面PAD ⊥面PCD (Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC . 510 | |||,cos ,2,5||,2||=??>=<=?==PB AC PB AC PB AC PB AC PB AC 所以故 (Ⅲ)解:在MC 上取一点(,,)N x y z ,则存在,R ∈λ使,MC NC λ= ..2 1 ,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC 要使14 ,00,.25 AN MC AN MC x z λ⊥=-==u u u r u u u u r g 只需即解得 ),5 2 ,1,51(),52,1,51(,. 0),5 2 ,1,51(,54=?-===?=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λ ANB MC BN MC AN MC BN MC AN ∠⊥⊥=?=?所以得由.,0,0为 所求二面角的平面角 30304||,||,. 555 2 cos(,).3||||2 arccos(). 3 AN BN AN BN AN BN AN BN AN BN ===-∴==-?-u u u r u u u r u u u r u u u r Q g u u u r u u u r u u u r u u u r g u u u r u u u r 故所求的二面角为

高中数学立体几何专题

高中课程复习专题 ——数学立体几何 一空间几何体 ㈠空间几何体的类型 1多面体:由若干个平面多边形围成的几何体。 围成多面体的各个 多边形叫做多面体的面, 相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭 几何体。 其中, 这条直线称为旋转体的轴。 ㈡几种空间几何体的结构特征 1棱柱的结构特征 1.1棱柱的定义:有两个面互相平行, 其余各面都是四边 形,并且每相邻 两个四边形的公共边都互相平行,由这些 面所围成的几何体叫做棱柱。 1.2棱柱的分类 瓦他棱柱… ②四检杆 底血为甲行四边遊 T-trAfij 休 侧检旺亢丁底向 A-'K'tf'AlkJtt 囱向为和序 ------------------ ? ------------- - ----------------- ■ ------------------ A 长方体I 屁血为止方册.1』四棱相 傭棱打底血边怅*||簞 止方体 1.3棱柱的性质 ⑴侧棱都相等,侧面是平行四边形; ⑵ 两个底面与平行于底面的截面是全等的多边形; ⑶过不相邻的两条侧棱的截面是平行四边形; ⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。 1.4长方体的性质 ⑴长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC 12 = AB 2 + AC 2 + AA 12 ⑵长方体的一条对角线 AC 1与过定点A 的三条棱所成 的角分别是a 伙Y 那么: 2 2 2 cos a + cos 3 + COS 丫= 1 sin 2 a + sin 3 + siny =2 ⑶ 长方体的一条对角线 AC 1与过定点A 的相邻三个面所组成的角分别为 a 3 Y 则: .咬llLI 昭|1.呂出 *正棱柱 够一 ;I ;从 图1-2长方体 2 COs a 2 2 + cos 3 + COSY = 2 sin 2 a 2 2 + sin 3 + sinY =1 E' A 图图1棱柱棱柱

高中数学复习专题讲座极限的概念及其运算

高中数学复习专题讲座极限的概念及其运算 高考要求 极限的概念及其渗透的思想,在数学中占有重要的地位,它是人们研究许多问题的工具 旧教材中原有的数列极限一直是历年高考中重点考查的内容之一 本节内容主要是指导考生深入地理解极限的概念,并在此基础上能正确熟练地进行有关极限的运算问题 重难点归纳 1 学好数列的极限的关键是真正从数列的项的变化趋势理解数列极限 学好函数的极限的关键是真正从函数值或图象上点的变化趋势理解函数极限 2 运算法则中各个极限都应存在 都可推广到任意有限个极限的情况,不能推广到无限个 在商的运算法则中,要注意对式子的恒等变形,有些题目分母不能直接求极限 3 注意在平时学习中积累一些方法和技巧,如 )1|(|0lim ,0)1(lim <==-∞→∞→a a n n n n n ???? ? ????><==++++++--∞→时当不存在时当时当l k l k l k b a b x b x b a x a x a l l k k k n ,,0,lim 0 1 1 10110 典型题例示范讲解 例1已知lim ∞ →x (12+-x x -ax -b )=0,确定a 与b 的值 命题意图 在数列与函数极限的运算法则中,都有应遵循的规则,也有可利用的规律, 既有章可循,有法可依 因而本题重点考查考生的这种能力 也就是本知识的系统掌握能力 知识依托 解决本题的闪光点是对式子进行有理化处理,这是求极限中带无理号的式子常用的一种方法 错解分析 本题难点是式子的整理过程繁琐,稍不注意就有可能出错 技巧与方法 有理化处理 解 b ax x x b ax x x b ax x x x x +++-+-+-=--+-∞ →∞ →1)()1(lim )1(lim 2 2 22 b ax x x b x ab x a x +++--++--=∞ →1) 1()21()1(lim 2 222 要使上式极限存在,则1-a 2=0, 当1-a 2=0时,

高中数学立体几何专:空间距离的各种计算(含答案)

高中数学立体几何 空间距离 1.两条异面直线间的距离 和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异 面直线间的线段的长度,叫做两条异面直线的距离. 2.点到平面的距离 从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离 如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离 和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离. 题型一:两条异面直线间的距离 【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离; 【规解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线. (2)在Rt △BEF 中,BF = a 23 ,BE =a 21, 所以EF 2=BF 2-BE 2=a 2 12,即EF =a 22 . 由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为 a 2 2 . 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED . ∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB . ∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离. ∵CE =23,∴CF =FD =21,∠EFC =90°,EF =2221232 2 =??? ??-??? ? ??. ∴AB 、CD 的距离是 2 2 . 【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度. (2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. (3)如果两条异面直线分别在两个互相平行的平面,可以转化为求两平行平面的距离. 题型二:两条异面直线间的距离 【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD , ∴O 是△BCD 的中心,∴BO = 3 2BE =332332= ?. 例1题图 例2题图 例3题图

相关主题
文本预览
相关文档 最新文档