当前位置:文档之家› 【文库精品】高中物理 第三章 原子结构之谜 第二节 原子的结构分层训练 粤教版选修3-5

【文库精品】高中物理 第三章 原子结构之谜 第二节 原子的结构分层训练 粤教版选修3-5

【文库精品】高中物理 第三章 原子结构之谜 第二节 原子的结构分层训练 粤教版选修3-5
【文库精品】高中物理 第三章 原子结构之谜 第二节 原子的结构分层训练 粤教版选修3-5

第二节原子的结构

A级抓基础

1.卢瑟福提出了原子的核式结构模型,这一模型建立的基础是( )

A.α粒子的散射实验B.对阴极射线的研究

C.天然放射性现象的发现 D.质子的发现

答案:A

2.在α粒子散射实验中,我们并没有考虑到α粒子跟电子碰撞,这是因为( ) A.电子体积非常小,以至于α粒子碰不到它

B.电子质量远比α粒子的小,所以它对α粒子运动的影响极其微小

C.α粒子跟各个电子碰撞的效果相互抵消

D.电子在核外均匀分布,所以α粒子受到电子作用的合外力为零

解析:α粒子碰到电子,像子弹碰到灰尘,损失的能量极少,不改变运动的轨迹,故B 正确,A、C、D错误.

答案:B

3.(多选)卢瑟福对α粒子散射实验的解释是( )

A.使α粒子产生偏转的主要原因是原子中电子对α粒子的作用力

B.使α粒子产生偏转的力是库仑力

C.原子核很小,α粒子接近它的机会很小,所以绝大多数的α粒子仍沿原来的方向前进

D.能发生大角度偏转的α粒子是穿过原子时离原子核近的α粒子

解析:原子核带正电,与α粒子间存在库仑力,当α粒子靠近原子核时受库仑力而偏转,电子对它的影响可忽略,故A错、B对;由于原子核非常小,绝大多数粒子经过时离核较远因而运动方向几乎不变,只有离核很近的α粒子受到的库仑力较大,方向改变较多,故C、D对.

答案:BCD

4.如图所示,X表示金的原子核,α粒子射向金核时被散射,设入射时的动能相同,其偏转轨道可能是图中的( )

解析:图A中金核与α粒子之间相互排斥,α粒子会向远离金核的方向运动,所以图

中较靠近金核的粒子会向下方偏转,故A错误;图B中,金核与α粒子之间相互排斥,α粒子会向远离金核的方向运动,故B错误;图C中,离金核越远的α粒子受到的斥力越小,运动轨迹的曲率半径越大,故C错误;图D中,离金核越远的α粒子受到的斥力越小,运动轨迹的曲率半径越大,故D正确.

答案:D

B级提能力

5.(多选)在α粒子散射实验中,少数α粒子发生了大角度偏转,这些α粒子( ) A.一直受到重金属原子核的斥力作用

B.动能不断减小

C.电势能先增大后减小

D.出现大角度偏转是与电子碰撞的结果

解析:α粒子和原子核均带正电荷,相互排斥,A正确;少数α粒子发生了大角度偏转,α粒子与原子核先靠近后远离,故库仑斥力先做负功后做正功,根据功能关系,电势能先增加后减小,动能先减小后增加,BD错误、C正确.

答案:AC

6.(多选)α粒子散射实验中,当α粒子最接近原子核时,α粒子符合下列哪种情况( )

A.动能最小

B.势能最小

C.α粒子与金原子组成的系统的能量小

D.所受原子核的斥力最大

解析:α粒子在接近金原子核的过程中,要克服库仑斥力做功,动能减少,电势能增加,两者相距最近时,动能最小,电势能最大,总能量守恒.根据库仑定律,距离最近时,斥力最大.

答案:AD

7.(多选)在α粒子散射实验中,如果两个具有相同能量的α粒子,从不同大小的角度散射出来,则散射角度大的α粒子( )

A.更接近原子核

B.更远离原子核

C.受到一个以上的原子核作用

D.受到原子核较大的冲量作用

解析:由于原子的体积远远大于原子核的体积,当α粒子穿越某一个原子的空间时,其他原子核距α粒子相对较远,而且其他原子核对α粒子的作用力也可以近似相互抵消,所以散射角度大的这个α粒子并非由于受到多个原子核作用,C错;由库仑定律可知,α

粒子受到的斥力与距离的平方成反比,α粒子距原子核越近,斥力越大,运动状态改变越大,即散射角度越大,A对,B错;当α粒子受到原子核较大的冲量作用时,动量的变化量就大,即速度的变化量就大,则散射角度就大,D对.

答案:AD

8.(多选)如图所示,Q为金原子核,M、N为两个等势面,虚线为α粒子经过原子核附近的运动轨迹,关于α粒子,下列说法正确的是( )

A.α粒子从K到R的过程中动能逐渐增加

B.α粒子从K到R的过程中动能逐渐减小

C.α粒子从K到R的过程中动能先减小后增加

D.α粒子从K到R的过程中电势能先增加后减小

解析:在α粒子从K到离原子核最近的过程中,库仑斥力做负功,动能逐渐减小,电势能逐渐增加;在α粒子从离原子核最近到R的过程中,库仑斥力做正功,动能增加,电势能减小.故C、D正确.

答案:CD

9.在卢瑟福的α粒子散射实验中,某一α粒子经过某一原子核附近时的轨迹如图中实线所示.图中P、Q为轨迹上的点,虚线是过P、Q两点并与轨迹相切的直线,两虚线和轨迹将平面分为四个区域.不考虑其他原子核对该α粒子的作用,那么关于该原子核的位置,下列说法中正确的是( )

A.可能在①区域B.可能在②区域

C.可能在③区域D.可能在④区域

解析:α粒子带正电,原子核也带正电,对靠近它的α粒子产生斥力,故原子核不会在④区域;如原子核在②、③区域,α粒子会向①区域偏;如原子核在①区域,可能会出现题图所示的轨迹,故应选A.

答案:A

10.若氢原子的核外电子绕核做半径为r的匀速圆周运动,则其角速度ω是多少?电子绕核的运动可等效为环形电流,则电子运动的等效电流I是多少(已知电子的质量为m,电荷量为e,静电力常量用k表示)?

解析:电子绕核运动的向心力是库仑力,因为 ke 2r 2=m ω2

r ,所以ω=e r ·k mr ;其运动周期为 T =2π ω=2πr e ·mr k ,其等效电流I =e T =e 22πr k mr . 答案:e r k mr e 22πr k mr

高中物理-《原子结构》单元测试题

高中物理-《原子结构》单元测试题 一、选择题 1.卢瑟福粒子散射实验的结果是 A.证明了质子的存在 B.证明了原子核是由质子和中子组成的 C.说明了原子的全部正电荷和几乎全部质量都集中在一个很小的核上 D.说明原子中的电子只能在某些不连续的轨道上运动 2.英国物理学家卢瑟福用α粒子轰击金箔,发现了α粒子的散射现象。图中O 表示金原子核的位置,则能正确表示该实验中经过金原子核附近的α粒子的运动轨迹的图是( ) 3.氢原子辐射出一个光子后,根据玻尔理论,下述说法中正确的是( ) A.电子绕核旋转的半径增大B.氢原子的能量增大 C.氢原子的电势能增大D.氢原子核外电子的速率增大 4.下列氢原子的线系中波长最短波进行比较,其值最大的是 ( ) A.巴耳末系B.莱曼系C.帕邢系D.布喇开系 5.关于光谱的产生,下列说法正确的是( ) A.正常发光的霓虹灯属稀薄气体发光,产生的是明线光谱 B.白光通过某种温度较低的蒸气后将产生吸收光谱 C.撒上食盐的酒精灯火焰发出的光是明线光谱 D.炽热高压气体发光产生的是明线光谱 6.仔细观察氢原子的光谱,发现它只有几条分离的不连续的亮线,其原因是( ) A.观察时氢原子有时发光,有时不发光 B.氢原子只能发出平行光 C.氢原子辐射的光子的能量是不连续的,所以对应的光的频率也是不连续的 D.氢原子发出的光互相干涉的结果 7.氢原子第三能级的能量为 ( ) A.-13.6eV B.-10.2eV C.-3.4eV D.-1.51eV 8.下列叙述中,符合玻尔氢原子的理论的是

1 2 3 4 5 ∞ ( ) A .电子的可能轨道的分布只能是不连续的 B .大量原子发光的光谱应该是包含一切频率的连续光谱 C .电子绕核做加速运动,不向外辐射能量 D .与地球附近的人造卫星相似,绕核运行,电子的轨道半径也要逐渐减小 9.氦原子被电离一个核外电子后,形成类氢结构的氦离子。已知基态的氦离子能量为E 1=-54.4 eV,氦离子能级的示意图如图所示。在具有下列能量的光子中,不能被基态氦离子吸收而发生跃迁的是 ( ) A .40.8 eV B .43.2 eV C .51.0 eV D .54.4 eV 10.μ子与氢原子核(质子)构成的原子称为μ氢原子,它在原子核物理的研究中有重要作用。图为μ氢原子的能级示意图。假定光子能量为E 的一束光照射容器中大量处于n =2能级的μ氢原子,μ氢原子吸收光子后,发出频率为ν1、ν2、ν3、ν4、ν5和ν6的光,且频率依次增 大 , 则E 等 于 ( ) A .h (ν3-ν1) B .h (ν5+ν6) C .h ν3 D .h ν4 11.已知氢原子基态能量为-13.6eV,下列说法中正确的有 ( ) A .用波长为600nm 的光照射时,可使稳定的氢原子电离 B .用光子能量为10.2eV 的光照射时,可能使处于基态的氢原子电离 C .氢原子可能向外辐射出11eV 的光子 D .氢原子可能吸收能量为1.89eV 的光子 12.红宝石激光器的工作物质红宝石含有铬离子的三氧化二铝晶体,利用其中的铬离子产生激光。铬离子的能级如图所示,E 1是基态,E 2是亚稳态,E 3是激发态,若以脉冲氙灯发出波长为λ1的绿光照射晶体,处于基态的铬离子受激发跃迁到E 3,然后自发跃迁到E 2,释放波长为λ2的光子,处于亚稳态E 2的离子跃迁到基态时辐射出的光就是激光,这种激光的波长为( ) A .122 1λλλλ- B .2121λλλλ- C .2121λλλλ- D .2 11 2λλλλ-

高中物理原子与原子核知识点总结

高中物理原子与原子核知识点总结 1.汤姆生模型(枣糕模型) ()发现电子,使人们认识到原子有复杂结构。从而打开人们认识原子的大门. 2.核式结构模型:()通过α粒子散射实验,总结出核式结构学说。由α粒子散射实验的实验数据还可以估算出()大小的数量级是()。 核式结构与经典的电磁理论发生矛盾:①原子是否稳定,②其发出的光谱是否连续 3.玻尔模型(引入量子理论,量子化就是不连续性,整数n叫量子数)玻尔补充三条假设 ⑴定态--原子只能处于一系列不连续的能量状态(称为定态),电子虽然绕核运转,但不会向外辐射能量。 ⑵跃迁--原子从一种定态跃迁到另一种定态,要辐射(或吸收)一定频率的光子(其能量由两定态的能量差决定),辐射(吸收)光子的能量为() 氢原子跃迁的光谱线问题[一群氢原子从n激发态原子跃迁到基态时可能辐射的光谱线条数为()。 ⑶能量和轨道量子化----定态不连续,能量和轨道也不连续; 氢原子的激发态和基态的能量(最小)与核外电子轨道半径间的关系是:() 【说明】氢原子跃迁 ① 轨道量子化r n=n2r1(n=1,2.3…)r1=0.53×10-10m

能量量子化:E1=-13.6eV ② ③氢原子跃迁时应明确: 一个氢原子直接跃迁向高(低)能级跃迁,吸收(放出)光子 ( 某一频率光子 ) 一群氢原子各种可能跃迁向低(高)能级跃迁放出(吸收)光子 (一系列频率光子) ④氢原子吸收光子时——要么全部吸收光子能量,要么不吸收光子 A光子能量大于电子跃迁到无穷远处(电离)需要的能量时,该光子可被吸收。(即:光子和原子作用而使原子电离) B光子能量小于电子跃迁到无穷远处(电离)需要的能量时,则只有能量等于两个能级差的光子才能被吸收。 ⑤氢原子吸收外来电子能量时——可以部分吸收外来碰撞电子的能量因此,能量大于某两个能级差的电子均可被氢原子吸收,从而使氢原子跃迁。 ⑶玻尔理论的局限性。由于引进了量子理论(轨道量子化和能量量子化),玻尔理论成功地解释了氢光谱的规律。

高中物理原子与原子核知识点总结

高中物理原子与原子核知识点总结(必修三) 载自:搜高考网https://www.doczj.com/doc/ff8103006.html, 原子、原子核这一章虽然不是重点,但是高考选择题也会涉及到,其实只要记住模型和方程式,就不会在做题上出错,下面的一些总结希望对大家有所帮助. 卢瑟福根据α粒子散射实验提出了原子的核式结构学说,玻尔把量子说引入到核式结构模型之中,建立了以下三个假说为主要内容的玻尔理论.认识原子核的结构是从发现天然放射现象开始的,发现质子的核反应是认识原子核结构的突破点.裂变和聚变是获取核能的两个重要途径.裂变和聚变过程中释放的能量符合爱因斯坦质能方程。 整个知识体系,可归结为:两模型(原子的核式结构模型、波尔原子模型);六子(电子、质子、中子、正电子、粒子、光子);四变(衰变、人工转变、裂变、聚变);两方程(核反应方程、质能方程)。 4条守恒定律(电荷数守恒、质量数守恒、能量守恒、动量守恒)贯串全章。 1.汤姆生模型(枣糕模型) 汤姆生发现电子,使人们认识到原子有复杂结构。从而打开原子的大门. 2.卢瑟福的核式结构模型(行星式模型)卢瑟福α粒子散射实验装置,现象,从而总结出核式结构学说 α粒子散射实验是用α粒子轰击金箔,实验现象:结果是绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转.这说明原子的正电荷和质量一定集中在一个很小的核上。

卢瑟福由α粒子散射实验提出:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。 由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15m。 而核式结构又与经典的电磁理论发生矛盾:①原子是否稳定,②其发出的光谱是否连续 3.玻尔模型(引入量子理论,量子化就是不连续性,整数n叫量子数)玻尔补充三条假设 ⑴定态--原子只能处于一系列不连续的能量状态(称为定态),电子虽然绕核运转,但不会向外辐射能量。 (本假设是针对原子稳定性提出的) ⑵跃迁--原子从一种定态跃迁到另一种定态,要辐射(或吸收)一定频率的光子(其能量由两定态的能量差决定)(本假设针对线状谱提出) ( ) 辐射(吸收)光子的能量为hf=E初-E末 氢原子跃迁的光谱线问题[一群氢原子可能辐射的光谱线条数为 ]。

物理二轮复习 专题五 动量与原子物理学 第三讲 原子结构与原子核——课后自测诊断卷

第三讲原子结构与原子核 ——课后自测诊断卷 1.[多选](2019·江苏七市三模)中微子是一种不带电、质量很小的粒子。早在1942年我国物理学家王淦昌首先提出证实中微子存在的实验方案。静止的铍核(74Be)可能从很靠近它的核外电子中俘获一个电子(动能忽略不计)形成一个新核并放出中微子,新核处于激发态,放出γ光子后回到基态。通过测量新核和γ光子的能量,可间接证明中微子的存在。则( ) A.产生的新核是锂核(73Li) B.反应过程吸收能量 C.中微子的动量与处于激发态新核的动量大小相等 D.中微子的动能与处于激发态新核的动能相等 解析:选AC 根据题意可知发生的核反应方程为74Be+0-1e→73Li+νe,所以产生的新核是锂核,反应过程放出能量,故A正确,B错误;根据动量守恒可知中微子的动量与处于激发态新核的动量大小相等,方向相反,故C正确;因为中微子的动量与处于激发态新核的动 量大小相等,质量不等,根据E k=p2 2m ,可知中微子的动能与处于激发态新核的动能不相等, 故D错误。 2.[多选](2019·武汉质检)我国自主研发的钍基熔盐是瞄准未来20~30年后核能产业发展需求的第四代核反应堆,是一种液态燃料堆,使用钍铀核燃料循环,以氧化盐为冷却剂,将天然核燃料和可转化核燃料熔融于高温氯化盐中,携带核燃料在反应堆内部和外部进行循环。钍232不能直接使用,需要俘获一个中子后经过2次β衰变转化成铀233再使用,铀233的一种典型裂变方程是233 92U+10n→142 56Ba+8936Kr+310n。已知铀233的结合能为E1、钡142的结合能为E2、氪89的结合能为E3,则( ) A.铀233比钍232少一个中子 B.铀233、钡142、氪89三个核中氪89的结合能最小,比结合能却最大 C.铀233、钡142、氪89三个核中铀233的结合能最大,比结合能也最大 D.铀233的裂变反应释放的能量为ΔE=E1-E2-E3 解析:选AB 设钍核的电荷数为a,则钍232俘获一个中子后经过2次β衰变转化成铀233,则a=92-2=90,则钍232中含有中子数为232-90=142,铀233含有中子数为233-92=141,则铀233比钍232少一个中子,选项A正确;铀233、钡142、氪89三个核中氪89质量数最小,结合能最小,因核子数较小,则比结合能却最大,选项B正确,C错误;铀233的裂变反应中释放的能量等于生成物的结合能减去反应物的结合能,选项D错误。 3.[多选](2019·南京、盐城三模)下列对物理知识的理解正确的有( ) A.α射线的穿透能力较弱,用厚纸板就能挡住

高中物理选修3-5玻尔的原子模型教案课程设计

第十八章原子结构 新课标要求 1.内容标准 (1)了解人类探索原子结构的历史以及有关经典实验。 例1 用录像片或计算机模拟,演示α粒子散射实验。 (2)通过对氢原子光谱的分析,了解原子的能级结构。 例2 了解光谱分析在科学技术中的应用。 2.活动建议 观看有关原子结构的科普影片。 新课程学习 18.4 玻尔的原子模型 ★新课标要求 (一)知识与技能 1.了解玻尔原子理论的主要内容。 2.了解能级、能量量子化以及基态、激发态的概念。 (二)过程与方法 通过玻尔理论的学习,进一步了解氢光谱的产生。 (三)情感、态度与价值观 培养我们对科学的探究精神,养成独立自主、勇于创新的精神。 ★教学重点 玻尔原子理论的基本假设。 ★教学难点 玻尔理论对氢光谱的解释。 ★教学方法

教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 复习提问: 1.α粒子散射实验的现象是什么? 2.原子核式结构学说的内容是什么? 3.卢瑟福原子核式结构学说与经典电磁理论的矛盾 教师:为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。 (二)进行新课 1.玻尔的原子理论 (1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。这些状态叫定态。(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为E n )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即 n m E E h -=ν(h 为普朗克恒量) (本假设针对线状谱提出) (3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。(针对原子核式模型提出,是能级假设的补充)2.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条可

高中物理-原子结构章末复习

高中物理-原子结构章末复习 【知识网络梳理】 【知识要点与方法指导】 一、重点、难点、方法 1.原子核式结构的提出与α粒子散射实验的关系 卢瑟福设计的α粒子散射实验是为了探究原子内电荷的分布,并非为了验证汤姆孙模型的正与误,他在做了α粒子散射实验后,根据实验现象的分析提出了原子的“核式结构”模型。 2.对氢原子能级跃迁的理解 (1)原子从低能级向高能级跃迁:吸收一定能量的光子,当一个光子的能量满足 hv E E =-末初时,才能被某一个原子吸收,使原子从低能级E 初向高能级E 末跃迁,而当光子能量hv 大于或小于E E -末初时都不能被原子吸收。 (2)原子从高能级向低能级跃迁,以光子的形式向外辐射能量,所辐射的光子能量恰等于发生跃迁时的两能级间的能量差。 (3)当光子能量大于或等于13.6eV 时,也可以被氢原子吸收,使氢原子电离;当氢原子吸收的光子能量大于13.6eV 。氢原子电离后,电子具有一定的初动能。 一群氢原子处于量子数为n 的激发态时,可能辐射出的光谱线条数为2 (1)2 n n n N C -= =。 (4)原子还可吸收外来实物粒子(例如自由电子)的能量而被激发,由于实物粒子的动能 原 子结构 ?? ? ? ? ? ??? ?? 电子的发现原子模型????? ????光谱光谱分析:用明线光谱和吸收光谱分析物质的化学组成 ?? ???吸收光谱发射光谱???连续谱 线状谱?? ?汤姆孙的发现:阴极射线为电子流 电子发现的意义:原子可以再分??????????? ???? 汤姆孙枣糕式模型卢瑟福核式结构模型玻尔原子结构模型氢原子光谱和光谱分析?? ???能量量子化轨道量子化能级跃迁

最新高中物理原子与原子核知识点总结选修3-5

高中物理原子与原子核知识点总结(选修3-5) 原子、原子核这一章虽然不是重点,但是高考选择题也会涉及到,其实只要记住模型和方程式,就不会在做题上出错,下面的一些总结希望对同学们有所帮助. 一波粒二象性 1光电效应的研究思路 (1)两条线索: h为普朗克常数 h=6.63×34 10 J·S ν为光子频率 2.三个关系 (1)爱因斯坦光电效应方程E k=hν-W0。 (2)光电子的最大初动能E k可以利用光电管实验的方法测得,即E k=eU c,其中U c是遏止电压。 (3)光电效应方程中的W0为逸出功,它与极限频率νc的关系是W0=hνc。 3波粒二象性 波动性和粒子性的对立与统一 (1)大量光子易显示出波动性,而少量光子易显示出粒子性。 (2)波长长(频率低)的光波动性强,而波长短(频率高)的光粒子性强。 (3)光子说并未否定波动说,E=hν=hc λ 中,ν(频率)和λ就是波的概念。 光速C=λν (4)波和粒子在宏观世界是不能统一的,而在微观世界却是统一的。 3.物质波 (1)定义:任何运动着的物体都有一种波与之对应,这种波叫做物质波,也

叫德布罗意波。 (2)物质波的波长:λ=h p =h mv ,h 是普朗克常量。 二 原子结构与原子核 (1)卢瑟福的核式结构模型 卢瑟福根据α粒子散射实验提出了原子的核式结构学说,玻尔把量子说引入到核式结构模型之中,建立了以下三个假说为主要内容的玻尔理论.认识原子核的结构是从发现天然放射现象开始的,发现质子的核反应是认识原子核结构的突破点.裂变和聚变是获取核能的两个重要途径.裂变和聚变过程中释放的能量符合爱因斯坦质能方程。 整个知识体系,可归结为:两模型(原子的核式结构模型、波尔原子模型);六子(电子、质子、中子、正电子、 粒子、 光子);四变(衰变、人工转变、裂变、聚变);两方程(核反应方程、质能方程)。 4条守恒定律(电荷数守恒、质量数守恒、能量守恒、动量守恒)贯串全章。 1.(1)电子的发现:1897年,英国物理学家汤姆孙通过对阴极射线的研究发现了电子。电子的发现证明了原子是可再分的。 (2)汤姆孙原子模型:原子里面带正电荷的物质均匀分布在整个原子球体中,而带负电的电子镶嵌在球内。 2.卢瑟福的核式结构模型(行星式模型)卢瑟福α粒子散射实验装置,现象,从而总结出核式结构学说

高中物理选修3-5原子结构知识点

第八章原子结构 一、电子的发现: (一)电子的发现: 1.电子是怎样发现的: 汤姆生用测定粒子的荷质比的方法发现了电子。 汤姆生发现阴极射线在电场和磁场中的偏转现象,根据偏转方向,确认阴极射线是带负电的粒子流。当他测定阴线射线粒子的荷质比时发现,不同物质做成的阴极发出的射极(粒子)都有相同的荷质比,这表明它们都能发射相同的带电粒子,因此这种带电粒子是构成物质的共同成份,这就是电子。 2.电子的发现对人类认识原子结构的重要性。 ①电子的发现使人们认识到原子不是组成物质的最小微粒,原子本身也具有结构。 ②由于原子含有带负电的电子,从物质的电中性出发,推想到原子中还有带正电的部分,这就提出了进一步探索原子结构、探索原子模型的问题。 (二)汤姆生的原子模型(枣糕模型) 葡萄干面包模型 二、原子的核式结构的发现 (一)原子核式结构的发现: 1.什么叫散射实验? 用各种粒子——x射线、电子和α粒子轰击很薄的物质层,通过观察这些粒子穿过物质层后的偏转情况,获得原子结构的信息,这种实验叫做散射实验。 2.为什么用α粒子的散射(实验)现象可以研究原子的结构? 原子的结构非常紧密,用一般的方法无法探测它内部的结构,要认识原子的结构,需要用高速粒子对它进行轰击。 ①由于α粒子具有足够的能量可以接近原子的中心, ②α粒子可以使荧光物质发光,如果α粒子与其他粒子发生相互作用,改变了运动的方向,荧光屏便能够显示出它的方向变化。 3.α粒子散射装置 ①放射源(Pa“坡”)玛丽·居里的祖国波兰。 ②金箔:1μm,能透光,有3000多层原子厚。 ③荧光屏荧光屏和显微镜能够围绕金箔在一个 ④显微镜圆周上转动,从而可以观察到穿过金箔后 ⑤转动圆盘偏转角度不同的α粒子 4.实验过程:实验室建在地下,通道大拐角(防光进入)

2020高考冲刺物理重难点:原子结构和原子核(附答案解析)

重难点10 原子结构和原子核 【知识梳理】 一、氢原子光谱、氢原子的能级、能级公式 1.原子的核式结构 (1)电子的发现:英国物理学家汤姆孙发现了电子。 (2)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来。 (3)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。 2.光谱 (1)光谱 用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。 (2)光谱分类 有些光谱是一条条的亮线,这样的光谱叫做线状谱。 有的光谱是连在一起的光带,这样的光谱叫做连续谱。 (3)氢原子光谱的实验规律 巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R ???? 122-1n 2,(n =3,4,5,…),R 是里德伯常量,R =1.10×107 m -1,n 为量子数。 3.玻尔理论 (1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。 (2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m -E n 。(h 是普朗克常量,h =6.63× 10-34 J·s ) (3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。原子的定态是不连续的,因此电子的可能轨道也是不连续的。 4.氢原子的能级、能级公式 (1)氢原子的能级 能级图如图所示

高中物理-原子结构+练习

高中物理-原子结构+练习 一、研究进程 汤姆孙(糟糕模型)→卢瑟福由α粒子散射实验(核式结构模型)→ 波尔量子化模型 →现代原子模型(电子云模型) 二、α 粒子散射实验 a 、实验装置的组成:放射源、金箔、荧光屏 b 、实验的结果: 绝大多数α 粒子基本上仍沿原来的方向前进, 少数 α 粒子(约占八千分之一)发生了大角度偏转, 甚至超过了90o 。 C 、卢瑟福核式结构模型内容: ①在原子的中心有一个很小的原子核, ②原子的全部正电荷和几乎全部质量集中在原子核里, ③带负电的电子在核外空间里旋转。 原子直径的数量级为m 10 10-,而原子核直径的数量级约为m 1015-。 c 、卢瑟福对实验结果的解释 电子对α粒子的作用忽略不计。 因为原子核很小,大部分α粒子穿过原子时离原子核很远,受到较小的库仑斥力,运动几乎不改变方向。 极少数α粒子穿过原子时离原子核很近,因此受到很强的库仑斥力,发生大角度散射。 d 、核式结构的不足 认为原子寿命的极短;认为原子发射的光谱应该是连续的。 三、氢原子光谱 1、公式:)11(1 2 2n m R -=λ m=1、2、3……,对于每个m,n=m+1,m+2,m+3…… m=2时,对应巴尔末系,其中有四条可见光,一条红色光、一条是蓝靛光、 另外两条是紫光。

2、线状光谱:原子光谱(明线光谱)是线状光谱,比如霓虹灯发光。 3、吸收光谱(主要研究太阳光谱):吸收光谱是连续光谱背景上出现不连续的暗线。 吸收谱既不是线状谱又不是带状光谱(连续光谱) 4、实验表明:每种原子都有自己的特征谱线。(明线光谱中的亮线与吸收光谱中的暗线相对应,只是通常在吸收光谱中的暗线比明线光谱中的两线要少一些) 5、光谱分析原理:根据光谱来鉴别物质和确定它的化学组成。 6、连续光谱(带状光谱):炽热的固体、液体或高压气体的光谱是连续光谱。 三、波尔模型 1、电子轨道量子化r=n 2r 1 , r 1=0.053nm ——针对原子的核式结构模型提出。 电子绕核旋转可能的轨道是分立的。 2、原子能量状态量子化(定态)假设——针对原子稳定性提出。 电子在不同的轨道对应原子具有不同的能量。原子只能处于一系列 不连续的能量状态中,这些状态中原子是稳定的,电子虽然绕核旋转, 但不向外辐射能量,这些状态叫定态。 取氢原子电离时原子能量为0,用定积分求得E 1= -13.6ev. 21n E E n =,E 1 = —13.6ev 3、原子跃迁假设(针对原子的线状谱提出) 电子从能量较高的定态轨道跃迁到能量较低的定态轨道时,会放出光子。 电子吸收光子时会从能量较低的定态轨道跃迁到能量较高的轨道。末初E -E hv =。 注:电子只吸收或发射特定频率的光子完成原子内的跃迁。如果要使电子电离,光子的能量 与氢原子能量之和大于等于零即可。 4、局限性 保留了经典粒子的观念,把电子的运动仍然看成经典力学描述下轨道运动,没有彻底摆脱经典理论的框架。→无法解释较为复杂原子的光谱。 5、现代原子模型: 电子绕核运动形成一个带负电荷的云团,对于具有波粒二象性的微观粒子,在一个确定时刻其空间坐标与动量不能同时测准,这是德国物理学家海森堡在1927年提出的著名的测不准原理。

高中物理-原子结构测试题

高中物理-原子结构测试题 (高考体验卷) 一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,至少有一个选项正确;全部选对的得4分,选不全的得2分,有选错或不答的得0分) 1.(·北京理综)一个氢原子从n=3能级跃迁到n=2能级,该氢原子() A.放出光子,能量增加 B.放出光子,能量减少 C.吸收光子,能量增加 D.吸收光子,能量减少 解析:由玻尔原子模型、跃迁的特点,由高能级向低能级跃迁过程中能量减少,减少的能量以光子形式放出,选项B正确. 答案:B 2.(·福建理综)在卢瑟福α粒子散射实验中,金箔中的原子核可以看作静止不动,下列各图画出的是其中两个α粒子经历金箔散射过程的径迹,其中正确的是() 解析:α粒子运动时受到原子核的排斥力作用,离原子核距离远的α粒子受到的排斥力小,运动方向改变的角度也小,离原子核距离近的α粒子受到的排斥力大,运动方向改变的角度就大,C项正确. 答案:C 3.(·上海单科)卢瑟福利用α粒子轰击金箔的实验研究原子结构,正确反映实验结果的示意图是() 解析:α粒子散射实验的实验现象:(1)绝大多数的α粒子穿过金箔后仍沿原来的方向前进;(2)少数α粒子发生了较大的偏转;(3)极少数α粒子的偏转角θ超过90°,甚至有个别α粒子被反弹回来.据此可知本题只有选项D正确. 答案:D 4.(·全国高考)已知氢原子的基态能量为E1,激发态能量E n=,其中n=2,3,…用h表示普朗克常量,c 表示真空中的光速.能使氢原子从第一激发态电离的光子的最大波长为() A.- B.- C.- D.- 解析:根据激发态能量公式E n=可知氢原子第一激发态的能量为,设能使氢原子从第一激发态电离的最大波长(设波长为λm)的光子能量为ΔE,则有+ΔE=0,且ΔE=h,联立解得λm=-,所以本题正确选项只有C. 答案:C 5.(·四川理综)如图为氢原子能级示意图的一部分,则氢原子()

(完整版)高中物理第18章《原子结构》测试题

高中精品试题 《原子结构》测试题 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100,考试时间60分钟。 第Ⅰ卷(选择题共40分) 一、选择题(本题共10小题,每小题4分,共40分。在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不选的得0分。) 1.关于α粒子散射实验的下列说法中正确的是() A.在实验中观察到的现象是绝大多数α粒子穿过金箔后,仍沿原来方向前进,少数发生了较大偏转,极少数偏转超过90°,有的甚至被弹回接近180° B.使α粒子发生明显偏转的力是来自带负电的核外电子,当α粒子接近电子时,是电子的吸引力使之发生明显偏转 C.实验表明原子中心有一个极小的核,它占有原子体积的极小部分 D.实验表明原子中心的核带有原子的全部正电荷及全部质量 解析:A项是对该实验现象的正确描述,正确;B项,使α粒子偏转的力是原子核对它的静电排斥力,而不是电子对它的吸引力,故B错;C项是对实验结论之一的正确分析;原子核集中了全部正电荷和几乎全部质量,因核外还有电子,故D错。 答案:A、C 2.关于太阳光谱,下列说法正确的是() A.太阳光谱是吸收光谱 B.太阳光谱中的暗线,是太阳光经过太阳大气层时某些特定频率的光被吸收后而产生的 C.根据太阳光谱中的暗线,可以分析太阳的物质组成 D.根据太阳光谱中的暗线,可以分析地球大气层中含有哪些元素 解析:太阳光谱是吸收光谱。因为太阳是一个高温物体,它发出的白光通过温度较低的太阳大气层时,会被太阳大气层中某些元素的原子吸收,因此我们观察到的太阳光谱是吸收光谱,所以分析太阳的吸收光谱,可知太阳大气层的物质组成,而某种物质要观察到它的吸收光谱,要求它的温度不能太低,但也不能太高,否则会直接发光,由于地球大气层的温度很低,所以太阳光通过地球大气层时不会被地球大气层中的物质原子吸收。故选A、B。

高三物理原子核结构教案设计

高三物理原子核结构教案设计 学如逆水行舟,不进则退。下面为您推荐的高三物理教案:原子核结构文章,供大家学习参考! 原子核结构新课标要求 1、知识与技能 (1)知道原子核的组成,知道核子和同位素的概念。 2、过程与方法 (1)通过观察,思考,讨论,初步学会探究的方法; (2)通过对知识的理解,培养自学和归纳能力。 3、情感、态度与价值观 (1)树立正确的,严谨的科学研究态度; (2)树立辨证唯物主义的科学观和世界观。 教学重点:原子核的组成。 教学难点:如何利用磁场区分质子与中子 教学方法:教师启发、引导,学生讨论、交流。 教学用具:投影片,多媒体辅助教学设备原子核的组成问提:质子:由谁发现的?怎样发现的? 中子:发现的原因是什么?由谁发现的?(卢瑟福用粒子轰击氮核,发现质子。查德威克发现中子。发现原因:如果原子核中只有质子,那么原子核的质量与电荷量之比应等于质子的质量与电荷量之比,但实际却是,绝大多数情况是前者的比值大些,卢瑟福猜想核内还有另一种粒子) 小结: ①质子(proton)带正电荷,电荷量与一个电子所带电荷量相等,

中子(nucleon)不带电, ②数据显示:质子和中子的质量十分接近,统称为核子,组成原子核。 提问:③原子核的电荷数是不是电荷量?④原子荷的质量数是不是质量? 提示:③不是,原子核所带的电荷量总是质子电荷的整数倍,那这个倍数就叫做原子核的电荷数。 ④原子核的质量几乎等于单个核子质量的整数倍,那这个倍数叫做原子核的质量数。 小结:③原子核的电荷数=质子数=核外电子数=原子序数 ④原子核的质量数=核子数=质子数+中子数 ⑤ 符号表示原子核,X:元素符号;A:核的质量数;Z:核电荷数 一种铀原子核的质量数是235,问:它的核子数,质子数和中子数分别是多少?(核子数是235,质子数是92,中子数是143) 2、同位素(isotope) (1)定义:具有相同质子数而中子数不同的原子,在元素周期表中处于同一位置,因而互称同位素。 (2)性质:原子核的质子数决定了核外电子数目,也决定了电子在核外的分布情况,进而决定了这种元素的化学性质,因而同种元素的同位素具有相同的化学性质。 提问:列举一些元素的同位素? 提示:氢有三种同位素:氕(通常所说的氢),氘(也叫重氢),氚(也叫超重氢),符号分别是:。 碳有两种同位素,符号分别是。

高中物理-原子结构教案

高中物理-原子结构教案 新课标要求 1.内容标准 (1)了解人类探索原子结构的历史以及有关经典实验。 例1 用录像片或计算机模拟,演示α粒子散射实验。 (2)通过对氢原子光谱的分析,了解原子的能级结构。 例2 了解光谱分析在科学技术中的应用。 2.活动建议 观看有关原子结构的科普影片。 新课程学习 18.2 原子的核式结构模型 ★新课标要求 (一)知识与技能 1.了解原子结构模型建立的历史过程及各种模型建立的依据。 2.知道α粒子散射实验的实验方法和实验现象,及原子核式结构模型的主要内容。 (二)过程与方法 1.通过对α粒子散射实验结果的讨论与交流,培养学生对现象的分析归纳中得出结论的逻辑推理能力。 2.通过核式结构模型的建立,体会建立模型研究物理问题的方法,理解物理模型的演化及其在物理学发展过程中的作用。 3.了解研究微观现象的方法。 (三)情感、态度与价值观 1.通过对原子模型演变历史的学习,感受科学家们细致、敏锐的科学态度和不畏权威、尊重事实、尊重科学的科学精神。 2.通过对原子结构的认识的不断深入,使学生认识到人类对微观世界的认识是不断扩大和加深的,领悟和感受科学研究方法的正确使用对科学发展的重要意义。 ★教学重点

1.引导学生小组自主思考讨论:对α粒子散射实验的结果分析从而否定枣糕模型,得出原子的核式结构; 2.在教学中渗透和让学生体会物理学研究方法,渗透三个物理学方法:模型方法,黑箱方法和微观粒子的碰撞方法; ★教学难点 引导学生小组自主思考讨论:对ɑ粒子散射实验的结果分析从而否定枣糕模型,得出原子的核式结构 ★教学方法 教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 讲述:汤姆生发现电子,根据原子呈电中性,提出了原子的枣糕模型。 学生活动:师生共同得出汤姆生的原子枣糕模型。 点评:用动画展示原子的枣糕模型。 (二)进行新课 1.α粒子散射实验原理、装置 (1)α粒子散射实验原理: 汤姆生提出的枣糕原子模型是否对呢? 原子的结构非常紧密,用一般的方法是无法探测它的内部结构的,要认识原子的结构,需要用高速粒子对它进行轰击。而α粒子具有足够的能量,可以接近原子中心。它还可以使荧光屏物质发光。如果α粒子与其他粒子发生相互作用,改变了运动方向,荧光屏就能够显示出它的方向变化。研究高速的α粒子穿过原子的散射情况,是研究原子结构的有效手段。 学生:体会α粒子散射实验中用到科学方法;渗透科学精神(勇于攀登科学高峰,不怕苦、不怕累的精神)的教育。 教师指出:研究原子内部结构要用到的方法:黑箱法、微观粒子碰撞方法。 (2)α粒子散射实验装置

【高中物理】《原子结构》测试题

《原子结构》测试题 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100,考试时间60分钟. 第Ⅰ卷(选择题共40分) 一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不选的得0分.) 1.关于α粒子散射实验的下列说法中正确的是() A.在实验中观察到的现象是绝大多数α粒子穿过金箔后,仍沿原来方向前进,少数发生了较大偏转,极少数偏转超过90°,有的甚至被弹回接近180° B.使α粒子发生明显偏转的力是来自带负电的核外电子,当α粒子接近电子时,是电子的吸引力使之发生明显偏转 C.实验表明原子中心有一个极小的核,它占有原子体积的极小部分 D.实验表明原子中心的核带有原子的全部正电荷及全部质量 解析:A项是对该实验现象的正确描述,正确;B项,使α粒子偏转的力是原子核对它的静电排斥力,而不是电子对它的吸引力,故B错;C项是对实验结论之一的正确分析;原子核集中了全部正电荷和几乎全部质量,因核外还有电子,故D错. 答案:A、C 2.关于太阳光谱,下列说法正确的是() A.太阳光谱是吸收光谱 B.太阳光谱中的暗线,是太阳光经过太阳大气层时某些特定频率的光被吸收后而产生的C.根据太阳光谱中的暗线,可以分析太阳的物质组成 D.根据太阳光谱中的暗线,可以分析地球大气层中含有哪些元素 解析:太阳光谱是吸收光谱.因为太阳是一个高温物体,它发出的白光通过温度较低的太阳大气层时,会被太阳大气层中某些元素的原子吸收,因此我们观察到的太阳光谱是吸收光谱,所以分析太阳的吸收光谱,可知太阳大气层的物质组成,而某种物质要观察到它的吸收光谱,要求它的温度不能太低,但也不能太高,否则会直接发光,由于地球大气层的温度很低,所以太阳光通过地球大气层时不会被地球大气层中的物质原子吸收.故选A、B. 答案:A、B 3.有关氢原子光谱的说法正确的是()

高考物理新近代物理知识点之原子结构知识点复习(1)

高考物理新近代物理知识点之原子结构知识点复习(1) 一、选择题 1.物理学重视逻辑推理,崇尚理性,其理论总是建立在对事实观察的基础上,下列说法正确的是( ) A .电子的发现使人们认识到原子具有核式结构 B .天然放射现象说明原子核内部是有结构的 C .α粒子散射实验的重要发现是电荷是量子化的 D .密立根油滴实验表明核外电子的轨道是不连续的 2.玻尔的原子模型在解释原子的下列问题时,和卢瑟福的核式结构学说观点不同的是( ) A .电子绕核运动的向心力,就是电子与核之间的静电引力 B .电子只能在一些不连续的轨道上运动 C .电子在不同轨道上运动时能量不同 D .电子在不同轨道上运动时静电引力不同 3.下列叙述中符合史实的是 A .玻尔理论很好地解释了氢原子的光谱 B .汤姆孙发现电子,表明原子具有核式结构 C .卢瑟福根据α粒子散射实验的现象,提出了原子的能级假设 D .贝克勒尔发现了天然放射现象,并提出了原子的核式结构 4.一个氢原子从n =3能级跃迁到n =2能级,该氢原子( ) A .放出光子,能量增加 B .放出光子,能量减少 C .吸收光子,能量增加 D .吸收光子,能量减少 5.下列说法正确的是( ) A .β衰变现象说明电子是原子核的组成部分 B .在光电效应实验中,只增加入射光的强度,饱和光电流不变 C .在核反应方程414 17278 He N O X +→ +中,X 表示的是中子 D .根据玻尔理论,处于基态的氢原子吸收光子发生跃迁后,其电子的动能减少 6.如图所示为氢原子的能级结构示意图,一群氢原子处于n =3的激发态,在向较低能级跃迁的过程中向外辐射出光子,用这些光子照射逸出功为2.49 eV 的金属钠.下列说法正确的是( ) A .这群氢原子能辐射出三种不同频率的光,其中从n =3能级跃迁到n =2能级所发出的光波长最短

高中物理原子结构玻尔的原子模型能级教师用书教科版

4.玻尔的原子模型能级 学 习目标知识脉络 1.知道波尔原子结构理论的主要内 容.(重点) 2.了解能级、跃迁、能量量子化及基 态、激发态等概念.(重点) 3.会用玻尔的原子结构理论解释氢 光谱.(重点、难点) 4.了解玻尔原子结构理论的意义. 玻尔的原子结构理论 [先填空] 1.玻尔原子结构理论的主要内容 (1)电子围绕原子核运动的轨道不是任意的,而是一系列分立的、特定的轨道.当电子在这些轨道上运动时,原子是稳定的,不向外辐射能量,也不吸收能量,这些状态称为定态. (2)原子处在定态的能量用E n表示,此时电子以r n的轨道半径绕核运动,n称为量子数.当原子中的电子从一定态跃迁到另一定态时,才发射或吸收一个光子,光子的能量hν=E n-E m 上式被称为玻尔频率条件,式中E n和E m分别是原子的高能级和低能级.这里的“跃迁”可以理解为电子从一种能量状态到另一个能量状态的瞬时过渡. 2.轨道量子化和能级 (1)轨道量子论 在玻尔原子结构模型中,围绕原子核运动的电子轨道只能是某些分立值,所以电子绕核运动的轨道是量子化的. (2)能级 不同状态的原子有不同的能量,因此原子的能量是不连续的,这些不同的能量值称为能级. [再判断] 1.玻尔的原子结构理论认为电子的轨道是量子化的.(√) 2.电子吸收某种频率条件的光子时会从较低的能量态跃迁到较高的能量态.(√) 3.电子能吸收任意频率的光子发生跃迁.(×)

[后思考] 1.玻尔的原子模型轨道与卢瑟福的行星模型轨道是否相同? 【提示】不同.玻尔的原子模型的电子轨道是量子化的,只有当半径的大小符合一定条件时才有可能.卢瑟福的行星模型的电子轨道是任意的,是可以连续变化的.2.电子由高能量状态跃迁到低能量状态时,释放出的光子的频率可以是任意值吗? 【提示】不可以.因各定态轨道的能量是固定的,由hν=E m-E n可知,跃迁时释放出的光子的频率,也是一系列固定值. 1.轨道量子化 轨道半径只能是一些不连续的、某些分立的值,不可能出现介于这些轨道半径之间的其他值. 2.能量量子化 (1)电子在可能轨道上运动时,虽然是变速运动,但它并不释放能量,原子是稳定的,这样的状态也称之为定态. (2)由于原子的可能状态(定态)是不连续的,具有的能量也是不连续的.这样的能量值,称为能级.量子数n越大,表示能级越高. (3)原子的能量包括:原子的原子核与电子所具有的电势能和电子运动的动能. 3.跃迁:原子从一种定态(设能量为E2)跃迁到另一种定态(设能量为E1)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定, 发射光子hν=E m-E n 高能级E m 低能级E n. 吸收光子hν=E m-E n 可见,电子如果从一个轨道到另一个轨道,不是以螺旋线的形式改变半径大小的,而是从一个轨道上“跳跃”到另一个轨道上.玻尔将这种现象叫作电子的跃迁. 1.关于玻尔的原子模型,下述说法中正确的有( ) A.它彻底否定了经典的电磁理论 B.它发展了卢瑟福的核式结构学说 C.它完全抛弃了经典的电磁理论 D.它引入了普朗克的量子理论 E.它保留了一些经典力学和经典的电磁理论 【解析】原子核式结构模型与经典电磁理论的种种矛盾说明,经典电磁理论已不适用于原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量子化的概念,提出了量子化的原子模型;但在玻尔的原子模型中仍然认为原子中有一很小的原子核,电子在核外绕核做

高中物理知识全解5.1原子结构

高中物理知识全解5.1原子结构 一:电子的发明 早在1858年,德国物理学家普吕克尔利用低压气体放电管研究气体放电时看到了玻璃壁上淡淡的荧光及管中物体在玻璃壁上的影。 1876年德国物理学家戈德斯坦认为管壁上的荧光是由于玻璃受到阴极发出的某种射线的撞击而引起的,并把这种射线命名为阴极射线。 19世纪后期,对阴极射线的本质的认识有两种观点:一种认为阴极射线像X 射线一样是电磁辐射,另一种认为阴极射线是带电微粒。 英国物理学家J.J.汤姆孙自1890年起开始对阴极射线进行了一系列的实验研究。他认为阴极射线是带电粒子流。〔闻名实验:气体放电管实验〕 1897年,汤姆孙依照阴极射线在电场和磁场中的偏转情况断定它的本质是带负电的粒子流并求出了这种粒子的比荷。 当汤姆孙在测定比荷实验时发明,用不同材料的阴极做实验,所发出射线的粒子都有相同的比荷,这说明不同物质都能发射这种带电粒子,它是构成各种物质的共有成分。由实验测得阴极射线的比荷约为质子〔氢离子〕比荷的近2000倍。他认为这可能表示阴极射线粒子电荷量的大小与一个氢离子一样,而质量比氢离子小得多。后来汤姆孙测得了这种粒子的电荷量与氢离子电荷量大致相同,由此能够看出他当初的猜测是正确的。后来阴极射线的粒子被称为电子。 进一步拓展研究对象:用不同的材料做成的阴极做实验,做光电效应实验、热离子发射效应实验、β射线〔研究对象普遍化〕等。他发明这些实验都能发射同样的带电粒子〔电子〕。这种带电粒子的质量只比最轻原子的质量的两千分之一稍多一点。由此可见电子是原子的组成部分,是比原子更差不多的物质单元。 由于电子特别小,当时的测量手段有限,美国科学家密立根通过“油滴实验”精确地测定了电子的电量,密立根实验更重要的发明是:电荷是量子化的,即任何带电体的电荷只能是e 的整数倍。 例:一个物体带91.610C -?的正电荷,这是它失去了10 10个电子的缘故。 注意:电子电荷的现代值为: 191.60217733(49)10e C -=-?,从实验测得到的电子比荷及e 的数值,能够确定电子的质量:319.109389710e m kg -=?,质子质量与电子质量的比值为:1836p e m m = 二:原子结构模型的进展 ①道尔顿模型 1808年,英国自然科学家约翰·道尔顿提出了世界上第一个原子的理论模型。他的理论要

高三物理一轮复习优质学案:原子结构 原子核

基础课2 原子结构 原子核 知识排查 原子结构 1.电子的发现:英国物理学家汤姆孙发现了电子。 2.原子的核式结构 (1)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来。(如图1所示) 图1 (2)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。 氢原子光谱 1.光谱:用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。 2.光谱分类 3.氢原子光谱的实验规律:巴耳末系是氢光谱在可见光区的谱线,其波长公式1λ=R ? ?? ?? 122-1n 2,(n =3,4,5,…,R 是里德伯常量,R =1.10×107 m -1)。

4.光谱分析:利用每种原子都有自己的特征谱线可以用来鉴别物质和确定物质的组成成分,且灵敏度很高。在发现和鉴别化学元素上有着重大的意义。 氢原子的能级、能级公式 1.理尔理论 (1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。 (2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m-E n。(h是普朗克常量,h=6.63×10-34 J·s) (3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。原子的定态是不连续的,因此电子的可能轨道也是不连续的。 2.氢原子的能级、能级公式 (1)氢原子的能级 能级图如图2所示 图2 (2)氢原子的能级和轨道半径 ①氢原子的能级公式:E n=1 n2E1 (n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6 eV。 ②氢原子的半径公式:r n=n2r1(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10 m。 原子核的组成、放射性、原子核的衰变、半衰期、放射性同位素 1.原子核的组成:原子核是由质子和中子组成的,原子核的电荷数等于核内的质子数。

相关主题
文本预览
相关文档 最新文档