当前位置:文档之家› 退火的目的

退火的目的

退火的目的
退火的目的

退火的目的:主要是降低金属材料的硬度,提高塑性,以利切削加工或压力加工,减少残余应力,提高组织和成分的均匀化,或为后道热处理作好组织准备等。

正火的目的:主要是提高低碳钢的力学性能,改善切削加工性,细化晶粒,消除组织缺陷,为后道热处理作好组织准备等。

淬火的目的:使钢件获得所需的马氏体组织,提高工件的硬度,强度和耐磨性,为后道热处理作好组织准备等。

回火的目的:主要是消除钢件在淬火时所产生的应力,使钢件具有高的硬度和耐磨性外,并具有所需要的塑性和韧性等。

编辑本段一些常见的热处理概念

1.正火:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。

2.退火annealing:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺。

3.固溶热处理:将合金加热至高温单相区恒温保持,使过剩相充分溶解到固溶体中,然后快速冷却,以得到过饱和固溶体的热处理工艺。

4.时效:合金经固溶热处理或冷塑性形变后,在室温放置或稍高于室温保持时,其性能随时间而变化的现象。

5.固溶处理:使合金中各种相充分溶解,强化固溶体并提高韧性及抗蚀性能,消除应力与软化,以便继续加工成型。

6.时效处理:在强化相析出的温度加热并保温,使强化相沉淀析出,得以硬化,提高强度。

7.淬火:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺。

50CrVA弹簧钢880℃淬油金相组织

8.回火:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺。

9.钢的碳氮共渗:碳氮共渗是向钢的表层同时渗入碳和氮的过程。习惯上碳氮共渗又称为氰化,目前以中温气体碳氮共渗和低温气体碳氮共渗(即气体软氮化)应用较为广泛。中温气体碳氮共渗的主要目的是提高钢的硬度,耐磨性和疲劳强度。低温气体碳氮共渗以渗氮为主,其主要目的是提高钢的耐磨性和抗咬合性。

10.调质处理quenching and tempering:一般习惯将淬火加高温回火相结合的热处理称为调质处理。调质处理广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。调质处理后得到回火索氏体组织,它的机械性能均比相同硬度的正火索氏体组织为优。它的硬度取决于高温回火温度并与钢的回火稳定性和工件截面尺寸有关,一般在HB200—350之间。

11.钎焊:用钎料将两种工件粘合在一起的热处理工艺。

编辑本段热处理工艺的特点

金属热处理是机械制造中的重要工艺之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。

为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。

编辑本段金属热处理的工艺热处理的工艺过程

热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。这些过程互相衔接,不可间断。这个过程可以借助陶瓷换热器来实现,陶瓷换热器的生产工艺与窑具的生产工艺基本相同,导热性与抗氧化性能是材料的主要应用性能。它的原理是把陶瓷散热器放置在烟道出口较近,温度较高的地方,不需要掺冷风及高温保护,当窑炉温度1250-1450℃时,烟道出口的温度应是1000-1300℃,陶瓷换热器回收余热可达到450-750℃,将回收到的的热空气送进窑炉与燃气形成混合气进行燃烧,这样直接降低生产成本,增加经济效益。

陶瓷换热器在金属换热器的使用局限下得到了很好的发展,因为它较好地解决了耐腐蚀,耐高温等课题,成为了回收高温余热的最佳换热器。经过多年生产实践,表明陶瓷换热器效果很好。它的主要优点是:导热性能好,高温强度高,抗氧化、抗热震性能好。寿命长,维修量小,性能可靠稳定,操作简便。是目前回收高温烟气余热的最佳装置。

加热是热处理的重要工序之一。金属热处理的加热方法很多,最早是采用木炭和煤作为热源,进而应用液体和气体燃料。电的应用使加热易于控制,且无环境污染。利用这些热源可以直接加热,也可以通过熔融的盐或金属,以至浮动粒子进行间接加热。

金属加热时,工件暴露在空气中,常常发生氧化、脱碳(即钢铁零件表面碳含量降低),这对于热处理后零件的表面性能有很不利的影响。因而金属通常应在可控气氛或保护气氛中、熔融盐中和真空中加热,也可用涂料或包装方法进行保护加热。

加热温度是热处理工艺的重要工艺参数之一,选择和控制加热温度,是保证热处理质量的主要问题。加热温度随被处理的金属材料和热处理的目的不同而异,但一般都是加热到相变温度以上,以获得高温组织。另外转变需要一定的时间,因此当金属工件表面达到要求的加热温度时,还须在此温度保持一定时间,使内外温度一致,使显微组织转变完全,这段时间称为保温时间。采用高能密度加热和表面热处理时,加热速度极快,一般就没有保温时间,而化学热处理的保温时间往往较长。

冷却也是热处理工艺过程中不可缺少的步骤,冷却方法因工艺不同而不同,主要是控制冷却速度。一般退火的冷却速度最慢,正火的冷却速度较快,淬火的冷却速度更快。但还因钢种不同而有不同的要求,例如空硬钢就可以用正火一样的冷却速度进行淬硬。

金属热处理工艺大体可分为整体热处理、表面热处理和化学热处理三大类。根据加热介质、加热温度和冷却方法的不同,每一大类又可区分为若干不同的热处理工艺。同一种金属采用不同的热处理工艺,可获得不同的组织,从而具有不同的性能。钢铁是工业上应用最广的金属,而且钢铁显微组织也最为复杂,因此钢铁热处理工艺种类繁多。

整体热处理是对工件整体加热,然后以适当的速度冷却,获得需要的金相组织,以改变其整体力学性能的金属热处理工艺。钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。

整体热处理工艺的手段

退火是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。

正火是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。

淬火是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但同时变脆。

为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。

退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。

“四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺。为了获得一定的强度和韧性,把淬火和高温回火结合起来的工艺,称为调质。某些合金淬火形成过饱和固溶体后,将其置于室温或稍高的适当温度下保持较长时间,以提高合金的硬度、强度或电性磁性等。这样的热处理工艺称为时效处理。

把压力加工形变与热处理有效而紧密地结合起来进行,使工件获得很好的强度、韧性配合的方法称为形变热处理;在负压气氛或真空中进行的热处理称为真空热处理,它不仅能使工件不氧化,不脱碳,保持处理后工件表面光洁,提高工件的性能,还可以通入渗剂进行化学热处理。

表面热处理是只加热工件表层,以改变其表层力学性能的金属热处理工艺。为了只加热工件表层而不使过多的热量传入工件内部,使用的热源须具有高的能量密度,即在单位面积的工件上给予较大的热能,使工件表层或局部能短时或瞬时达到高温。表面热处理的主要方法有火焰淬火和感应加热热处理,常用的热源有氧乙炔或氧丙烷等火焰、感应电流、激光和电子束等。

化学热处理是通过改变工件表层化学成分、组织和性能的金属热处理工艺。化学热处理与表面热处理不同之处是后者改变了工件表层的化学成分。化学热处理是将工件放在含碳、氮或其它合金元素的介质(气体、液体、固体)中加热,保温较长时间,从而使工件表层渗入碳、氮、硼和铬等元素。渗入元素后,有时还要进行其它热处理工艺如淬火及回火。化学热处理的主要方法有渗碳、渗氮、渗金属。

热处理是机械零件和工模具制造过程中的重要工序之一。大体来说,它可以保证和提高工件的各种性能,如耐磨、耐腐蚀等。还可以改善毛坯的组织和应力状态,以利于进行各种冷、热加工。

例如白口铸铁经过长时间退火处理可以获得可锻铸铁,提高塑性;齿轮采用正确的热处理工艺,使用寿命可以比不经热处理的齿轮成倍或几十倍地提高;另外,价廉的碳钢通过渗入某些合金元素就具有某些价昂的合金钢性能,可以代替某些耐热钢、不锈钢;工模具则几乎全部需要经过热处理方可使用。

一、退火的种类

将组织偏离平衡状态的钢加热到适当温度,保温到一定时间,然后缓慢冷却(随炉冷却),获得接近平衡状态组织的热处理工艺。

钢的退火工艺种类很多,根据加热温度可分为两大类:一类是在临界温度(Ac1或Ac3)以上的退火,又称为相变重结晶退火,包括完全退火、不完全退火、球化退火和扩散退火(均匀化退火)等;另一类是在临界温度以下的退火,包括再结晶退火及去应力退火等。按照冷却方式,退火可分为等温退火和连续冷却退火。

1.完全退火和等温退火

完全退火又称重结晶退火,一般简称为退火,它是将钢件或钢材加热至Ac3以上20~30℃,保温足够长时间,使组织完全奥氏体化后缓慢冷却,以获得近于平衡组织的热处理工艺。这种退火主要用于亚共析成分的各种碳钢和合金钢的铸,锻件及热轧型材,有时也用于焊接结构。一般常作为一些不重工件的最终热处理,或作为某些工件的预先热处理。

2.球化退火

球化退火主要用于过共析的碳钢及合金工具钢(如制造刃具、量具、模具所用的钢种)。其主要目的在于降低硬度,改善切削加工性,并为以后淬火作好准备。

3.去应力退火

去应力退火又称低温退火(或高温回火),这种退火主要用来消除铸件,锻件,焊接件,热轧件,冷拉件等的残余应力。如果这些应力不予消除,将会引起钢件在一定时间以后,或在随后的切削加工过程中产生变形或裂纹。

4.不完全退火是将钢加热至Ac1~Ac3(亚共析钢)或Ac1~ACcm(过共析钢)之间,经保温后缓慢冷却以获得近于平衡组织的热处理工艺。

二、淬火时,最常用的冷却介质是盐水,水和油。盐水淬火的工件,容易得到高的硬度和光洁的表面,不容易产生淬不硬的软点,但却易使工件变形严重,甚至发生开裂。而用油作淬火介质只适用于过冷奥氏体的稳定性比较大的一些合金钢或小尺寸的碳钢工件的淬火。

三、钢回火的目的

1.降低脆性,消除或减少内应力,钢件淬火后存在很大内应力和脆性,如不及时回火往往会使钢件发生变形甚至开裂。

2.获得工件所要求的机械性能,工件经淬火后硬度高而脆性大,为了满足各种工件的不同性能的要求,可以通过适当回火的配合来调整硬度,减小脆性,得到所需要的韧性、塑性。

3.稳定工件尺寸

4.对于退火难以软化的某些合金钢,在淬火(或正火)后常采用高温回火,使钢中碳化物适当聚集,将硬度降低,以利切削加工。

1.退火:指金属材料加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。常见的退火工艺有:再结晶退火、去应力退火、球化退火、完全退火等。退火的目的:主要是降低金属材料的硬度,提高塑性,以利切削加工或压力加工,减少残余应力,提高组织和成分的均匀化,或为后道热处理作好组织准备等。

2.正火:指将钢材或钢件加热到或(钢的上临界点温度)以上,30~50℃保持适当时间后,在静止的空气中冷却的热处理的工艺。正火的目的:主要是提高低碳钢的力学性能,改善

切削加工性,细化晶粒,消除组织缺陷,为后道热处理作好组织准备等。

3.淬火:指将钢件加热到 Ac3 或 Ac1(钢的下临界点温度)以上某一温度,保持一定的时间,然后以适当的冷却速度,获得非扩散型转变组织,如马氏体、贝氏体和奥氏体等组织的热处理工艺。常见的淬火工艺有盐浴淬火,马氏体分级淬火,贝氏体等温淬火,表面淬火和局部淬火等。淬火的目的:使钢件获得所需的马氏体组织,提高工件的硬度,强度和耐磨性,为后道热处理作好组织准备等。

4.回火:指钢件经淬硬后,再加热到 Ac1 以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。常见的回火工艺有:低温回火,中温回火,高温回火和多次回火等。

回火的目的:主要是消除钢件在淬火时所产生的应力,使钢件具有高的硬度和耐磨性外,并具有所需要的塑性和韧性等。

5.调质:指将钢材或钢件进行淬火及高温回火的复合热处理工艺。使用于调质处理的钢称调质钢。它一般是指中碳结构钢和中碳合金结构钢。

6.渗碳:渗碳是指使碳原子渗入到钢表面层的过程。也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。

过热

从托辊配件轴承零件粗糙口上可观察到淬火后的显微组织过热。但要确切判断其过热的程度必须观察显微组织。若在GCr15钢的淬火组织中出现粗针状马氏体,则为淬火过热组织。形成原因可能是淬火加热温度过高或加热保温时间太长造成的全面过热;也可能是因原始组织带状碳化物严重,在两带之间的低碳区形成局部马氏体针状粗大,造成的局部过热。过热组织中残留奥氏体增多,尺寸稳定性下降。由于淬火组织过热,钢的晶体粗大,会导致零件的韧性下降,抗冲击性能降低,轴承的寿命也降低。过热严重甚至会造成淬火裂纹。

欠热

淬火温度偏低或冷却不良则会在显微组织中产生超过标准规定的托氏体组织,称为欠热组织,它使硬度下降,耐磨性急剧降低,影响托辊配件轴承寿命。

淬火裂纹

托辊轴承零件在淬火冷却过程中因内应力所形成的裂纹称淬火裂纹。造成这种裂纹的原因有:由于淬火加热温度过高或冷却太急,热应力和金属质量体积变化时的组织应力大于钢材的抗断裂强度;工作表面的原有缺陷(如表面微细裂纹或划痕)或是钢材内部缺陷(如夹渣、严重的非金属夹杂物、白点、缩孔残余等)在淬火时形成应力集中;严重的表面脱碳和碳化物偏

析;零件淬火后回火不足或未及时回火;前面工序造成的冷冲应力过大、锻造折叠、深的车削刀痕、油沟尖锐棱角等。总之,造成淬火裂纹的原因可能是上述因素的一种或多种,内应力的存在是形成淬火裂纹的主要原因。淬火裂纹深而细长,断口平直,破断面无氧化色。它在轴承套圈上往往是纵向的平直裂纹或环形开裂;在轴承钢球上的形状有S形、T形或环型。淬火裂纹的组织特征是裂纹两侧无脱碳现象,明显区别与锻造裂纹和材料裂纹。

热处理变形

NACHI轴承零件在热处理时,存在有热应力和组织应力,这种内应力能相互叠加或部分抵消,是复杂多变的,因为它能随着加热温度、加热速度、冷却方式、冷却速度、零件形状和大小的变化而变化,所以热处理变形是难免的。认识和掌握它的变化规律可以使轴承零件的变形(如套圈的椭圆、尺寸涨大等)置于可控的范围,有利于生产的进行。当然在热处理过程中的机械碰撞也会使零件产生变形,但这种变形是可以用改进操作加以减少和避免的。

表面脱碳

托辊配件轴承零件在热处理过程中,如果是在氧化性介质中加热,表面会发生氧化作用使零件表面碳的质量分数减少,造成表面脱碳。表面脱碳层的深度超过最后加工的留量就会使零件报废。表面脱碳层深度的测定在金相检验中可用金相法和显微硬度法。以表面层显微硬度分布曲线测量法为准,可做仲裁判据。

软点

由于加热不足,冷却不良,淬火操作不当等原因造成的托辊轴承零件表面局部硬度不够的现象称为淬火软点。它象表面脱碳一样可以造成表面耐磨性和疲劳强度的严重下降。

1、45钢的退火后的金相——奥氏体,退火后太软,一般45钢都不做退火处理

2、45钢的正火后的金相——奥氏体+珠光体,这是材料供应状态的金相

3、45钢的淬火后的金相——马氏体,45钢可以淬火,但这样做得不多,一般都是用调质处理45钢,若非要淬火,其硬度不是很高

45#钢调质硬度为HRC20-28,其金相组织是什么?

有的说是回火索氏体,有的要求回火马氏体,到底咋回事?

(我还是不理解,难道回火索氏体和回火马氏体是一样的?)

根据回火产物可分为:

1.回火马氏体(回火温度小于250度);

2.回火托氏体(回火温度300-500度);

3.回火索氏体(回火温度500-650度);

4.回火珠光体(回火温度高于650度);

答A.通常我们说的调质处理是将淬火加高温回火相结合的热处理,为回火索氏体,回火后硬度为200-330HBS。

答B.金相组织为回火索氏体。

调质就是淬火加高温回火

钢材淬火后得到的是马氏体组织,高温回火后的到的是回火马氏体组织。

索氏体组织属于珠光体类型的组织,但其组织比珠光体组织细。索氏体具有良好的综合机械性能。将淬火钢在450-600℃进行回火,所得到的索氏体称为回火索氏体(tempered sorbite)。

回火索氏体的组织特征是由等轴状铁素体和细粒状碳化物构成的复相组织,马氏体片的痕迹已消失,渗碳体的外形已较清晰,在在光学金相显微镜下放大500~600倍以上才能分辨出来,其为铁素体基体内分布着碳化物(包括渗碳体)球粒的复合组织。它也是马氏体的一种回火组织,是铁素体与粒状碳化物的混合物。此时的铁素体已基本无碳的过饱和度,碳化物也为稳定型碳化物。常温下是一种平衡组织。

回火索氏体中的碳化物分散度很大,呈球状。这就是为什么多数结构零件要进行调质处理(淬火+高温回火)的原因

两种说法都对

45#钢淬火回火后硬度为HRC20-28,说明回火温度大于500℃,按照定义,属于回火索氏体

而淬火之后的组织称为淬火马氏体,再回火后的组织,自然都可以称为回火马氏体,所以广义的回火马氏体包括狭义的回火马氏体、回火屈氏体和回火索氏体

问:T10钢在正常热处理时,经23℃水淬火后得到什么组织?经正火后得到什么组织?

T10淬火后的表层组织是淬火马氏体+奥氏体,因该材料淬透性差,表层下约10mm以内是非马氏体组织,依次为贝氏体、索氏体和珠光体+渗碳体。该材料正火后得到索氏体(表)和珠光体+渗碳体。T10材料一般不做正火处理,常用球化退火处理,才能降低硬度、同时改善组织,退火组织是粒状渗碳体+珠光体。

第六章 回复与再结晶

第六章回复与再结晶 (一)填空题 1. 金属再结晶概念的前提是,它与重结晶的主要区别是。 2. 金属的最低再结晶温度是指,它与熔点的大致关系是。 3 钢在常温下的变形加工称,铅在常温下的变形加工称。 4.回复是,再结晶是。 5.临界变形量的定义是,通常临界变形量约在范围内。 6 金属板材深冲压时形成制耳是由于造成的。 7.根据经验公式得知,纯铁的最低再结晶温度为。 (二)判断题 1.金属的预先变形越大,其开始再结晶的温度越高。(×) 2.变形金属的再结晶退火温度越高,退火后得到的晶粒越粗大。(√)3.金属的热加工是指在室温以上的塑性变形过程。(×) 4.金属铸件不能通过再结晶退火来细化晶粒。(√) 金属铸件不能通过再结晶退火达到细化晶粒的目的,因为铸件,没有经受冷变形加工,所以当加热至再结晶退火温度时,其组织不会发生根本变化,因而达不到细化晶粒的目的。 再结晶退火必须用于经冷塑性变形加工的材料,其目的是改善冷变形后材料的组织和性能。再结晶退火的温度较低,一般都在临界点以下。若对铸件采用再结晶退火,其组织不会发生相变,也没有形成新晶核的驱动力(如冷变形储存能等),所以不会形成新晶粒,也就不能细化晶粒。 5.再结晶过程是形核和核长大过程,所以再结晶过程也是相变过程。(×); 6 从金属学的观点看,凡是加热以后的变形为热加工,反之不加热的变形为冷加工。 (×) 7 在一定范围内增加冷变形金属的变形量,会使再结晶温度下降。( √) 8.凡是重要的结构零件一般都应进行锻造加工。(√) 9.在冷拔钢丝时,如果总变形量很大,中间需安排几次退火工序。( √) 10.从本质上讲,热加工变形不产生加工硬化现象,而冷加工变形会产生加工硬化现象。这是两者的主要区别。( ×) (三)选择题 1.变形金属在加热时发生的再结晶过程是一个新晶粒代替旧晶粒的过程,这种新晶粒的晶型( )。 A.与变形前的金属相同 B 与变形后的金属相同 C 与再结晶前的金属相同D.形成新的晶型 2.金属的再结晶温度是( ) A.一个确定的温度值B.一个温度范围 C 一个临界点D.一个最高的温度值 3.为了提高大跨距铜导线的强度,可以采取适当的( A )。 A.冷塑变形加去应力退火 B 冷塑变形加再结晶退火 C 热处理强化D.热加工强化 4 下面制造齿轮的方法中,较为理想的方法是( C )。 A.用厚钢板切出圆饼再加工成齿轮B用粗钢棒切下圆饼再加工成齿轮 C 由圆钢棒热锻成圆饼再加工成齿轮D.由钢液浇注成圆饼再加工成齿轮 5.下面说法正确的是( C )。 A.冷加工钨在1 000℃发生再结晶 B 钢的再结晶退火温度为450℃ C 冷加工铅在0℃也会发生再结晶D.冷加工铝的T再≈0.4Tm=0.4X660℃=264℃ 6 下列工艺操作正确的是(D ) 。 A.用冷拉强化的弹簧丝绳吊装大型零件淬火加热时入炉和出炉 B 用冷拉强化的弹簧钢丝作沙发弹簧 C 室温可以将保险丝拉成细丝而不采取中间退火 D.铅的铸锭在室温多次轧制成为薄板,中间应进行再结晶退火 7 冷加工金属回复时,位错(C )。

去应力和完全退火工艺

去应力和完全退火工艺-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

钢的退火工艺完全退火去应力退火工艺曲线及操作规程 退火是将钢材或各种金属机械零件加热到适当温度,保温一段时间,然后缓慢冷却,可以获得接近平衡状态组织的热处理工艺。在机械制造行业,退火通常作为工件制造加工过程中的预备热处理工序。 一. 完全退火 完全退火是将钢件或各种机械零件加热到临界点Ac3以上的适当温度、在炉内保温缓慢逐渐冷却的工艺方法。其目的是为了细化组织、降低硬度、改善机械切削加工性能及去除内应力。 完全退火适用于中碳钢和中碳合金钢的铸钢件、焊接件、轧制件等。 完全退火工艺曲线见图1.1。 1. 工件装炉:一般中、小件均可直接装入退火温度的炉内,亦可低温装炉,随炉升温。 2. 保温时间:保温时间是指从炉子仪表到达规定退火加热温度开始计算至工件在炉内停止加热开始降温时的全部时间。工件堆装时,主要根据装炉情况估定,一般取2~3h。 3. 工件冷却:保温完成后,一般停电(火),停止加热,关闭炉门逐渐缓冷至500℃即可出炉空冷。对某些合金元素含量较高、按上述方式冷却后硬度仍然偏高的工件,可采用等温冷却方法,即在650℃附近保温2~4h后再炉冷至500℃。 二. 去应力退火 去应力退火是将工件加热到Ac1以下的适当温度,保温一定时间后逐渐缓慢冷却的工艺方法。其目的是为了去除由于机械加工、变形加工、铸造、锻造、热处理以及焊接后等产生的残余应力。 1. 去应力退火工艺曲线见图1-3。

2. 不同的工件去应力退火工艺参数见表C。 3. 去应力退火的温度,一般应比最后一次回火温度低20~30℃,以免降低硬度及力学性能。 4. 对薄壁工件、易变形的焊接件,退火温度应低于下限。 5. 低温时效用于工件的半加工之后(如粗加工或第一次精加工之后),一般采用较低的温度。 表C 去应力退火工艺及低温时效工艺 类别加热速度加热温 度 保温时 间/h 冷却时间 焊接件 ≤300℃装炉 ≤100~150℃/h 500- 550 2-4炉冷至300℃出炉空冷 消除加工应力到温装炉400- 550 2-4炉冷或空冷 高精轴套、膛杆(38CrMoAlA)≤200℃装炉 ≤80℃/h 600- 650 10-12 炉冷至200℃出炉 (在350℃以上冷速 ≤50℃/h) 精密丝杠(T10)≤200℃装炉 ≤80℃/h 550- 600 10-12 炉冷至200℃出炉 (在350℃以上冷速 ≤50℃/h) 主轴、一般丝杠(45、40Cr)随炉升温 550- 600 6-8炉冷至200℃出炉 量检具、精密丝杠 (T8、T10、CrMn、 GCr15)随炉升温 130- 180 12-16 空冷 (时效最好在油浴中进 行)

退火处理

将金属或合金加热到适当温度,保温一定时间,然后缓慢冷却(一般为随炉冷却),的热处理工艺叫做退火。 退火的实质是将钢加热到奥氏体化后进行珠光体转变,退火后的组织是接近平衡后的组织。 退火的目的: (1)降低钢的硬度,提高塑性,便于机加工和冷变形加工; (2)均匀钢的化学成分及组织,细化晶粒,改善钢的性能或为淬火作组织准备; (3)消除内应力和加工硬化,以防变形和开裂。 退火和正火主要用于预备热处理,对于受力不大、性能要求不高的零件,退火和正火也可作为最终热处理。 退火方法的分类 常用的退火方法,按加热温度分为: 临界温度(Ac1或Ac3)以上的相变重结晶退火:完全退火、扩散退火、不

完全退火、球化退火。 临界温度(Ac1或Ac3)以下的退火:再结晶退火、去应力退火。 七类退火方式 1、完全退火 工艺:将钢加热到Ac3以上20~30℃,保温一段时间后缓慢冷却(随炉)以获得接近平衡组织的热处理工艺(完全奥氏体化)。 完全退火主要用于亚共析钢(wc=0.3~0.6%),一般是中碳钢及低、中碳合金钢铸件、锻件及热轧型材,有时也用于它们的焊接件。低碳钢完全退火后硬度偏低,不利于切削加工;过共析钢加热至Accm以上奥氏体状态缓慢冷却退火时,Fe3CⅡ会以网状沿晶界析出,使钢的强度、硬度、塑性和韧性显著降低,给最终热处理留下隐患。 目的:细化晶粒、均匀组织、消除内应力、降低硬度和改善钢的切削加工性。亚共析钢完全退火后的组织为F+P。 实际生产中,为提高生产率,退火冷却至500℃左右即出炉空冷。 2、等温退火 完全退火需要的时间长,尤其是过冷奥氏体化比较稳定的合金钢。如将奥氏

回复与再结晶

1、一块单相多晶体包含。 A.不同化学成分的几部分晶体B.相同化学成分,不同结构的几部分晶体C.相同化学成分,相同结构,不同位向的几部分晶体 2、在立方系中点阵常数通常指。 A.最近的原子间距B.晶胞棱边的长度 3、每一个面心立方晶胞中有八面体间隙m个,四面体间隙n个,其中。 A.m=4,n=8B.m=13,n=8C.m=1,n=4 4、原子排列最密的一族晶面其面间距。 A.最小B.最大 5、晶体中存在许多点缺陷,例如 A.被激发的电子B.空位C.沉淀相粒子 6、金属中通常存在着溶质原子或杂质原子,它们的存在。 A.总是使晶格常数增大B.总是使晶格常数减小C.可能使晶格常数增大,也可能使晶格常数减小 7、金属中点缺陷的存在使电阻。 A.增大B.减小C.不受影响 8、空位在过程中起重要作用。

A.形变孪晶的形成B.自扩散C.交滑移 9、金属的自扩散的激活能应等于。 A.空位的形成能与迁移激活能的总和B.空位的形成能C.空位的迁移能 10、位错线上的割阶一般通过形成 A.位错的交割B.交滑移C.孪生 一、名词解释 沉淀硬化、细晶强化、孪生、扭折、第一类残余应力、第二类残余应力、、回复、再结晶、多边形化、临界变形量、冷加工、热加工、动态回复、动态再结晶 沉淀硬化:在金属的过饱和固溶体中形成溶质原子偏聚区和由之脱出微粒弥散分布于基体中导致硬化。 细晶强化:通过细化晶粒而使金属材料力学性能提高的方法。 孪生:在切应力作用下,晶体的一部分沿一定晶面和晶向发生均匀切变并形成晶体取向的镜面对称关系。 扭折:在滑移受阻、孪生不利的条件下,晶体所做的不均匀塑性变形和适应外力作用,是位错汇集引起协调性的形变。 按残余应力作用范围不同,可分为宏观残余应力和微观残余应力等两大类,其中宏观残余应力称为第一类残余应力(由整个物体变形不均匀引起),微观残余应力称为第二类残余应力(由晶粒变形不均匀引起)。 储存能:在塑性变形中外力所作的功除大部分转化为热之外,由于金属内部的形变不均匀及点阵畸变,尚有一小部分以畸变能的形式储存在形变金属内部,这部分能量叫做储存能。回复:经冷塑性变形的金属加热时,尚未发生光学显微组织变化前(即再结晶之前)的微观结构变化过程。 再结晶:经冷变形的金属在一定温度下加热时,通过新的等轴晶粒形成并逐步取代变形晶粒的过程。 多边形化:指回复过程中油位错重新分布而形成确定的亚晶结构过程。 临界变形量:需要超过某个最小的形变量才能发生再结晶,这最少的形变量就称为临界变形量。 冷加工:在再结晶温度以下的加工过程;在没有回复和在接近的条件下进行的塑性变形加工。热加工:在再结晶温度以上的加工过程;在再结晶过程得到充分进行的条件下进行的塑性变形加工。 动态回复:热加工时由于温度很高,金属在变形的同时发生回复,同时发生加工硬化和软化两个相反的过程。这种在热变形时由于温度和外力联合作用下发生的回复过程 动态再结晶:是指金属在热变形过程中发生的再结晶现象。 二、问答题

球化退火与软化退火

球化退火是使钢中碳化物球化而进行的退火工艺。将钢加热到Ac1以上20~30℃,保温一段时间,然后缓慢冷却,得到在铁素体基体上均匀分布的球状或颗粒状碳化物的组织。球化退火主要适用于共析钢和过共析钢,如碳素工具钢、合金工具钢、轴承钢等。这些钢经轧制、锻造后空冷,所得组织是片层状珠光体与网状渗碳体,这种组织硬而脆,不仅难以切削加工,且在以后淬火过程中也容易变形和开裂。而经球化退火得到的是球状珠光体组织,其中的渗碳体呈球状颗粒,弥散分布在铁素体基体上,和片状珠光体相比,不但硬度低,便于切削加工,而且在淬火加热时,奥氏体晶粒不易长大,冷却时工件变形和开裂倾向小。另外对于一些需要改善冷塑性变形(如冲压、冷镦等)的亚共析钢有时也可采用球化退火。 球化退火加热温度为Ac1+(20~40)℃或Acm-(20~30)℃,保温后等温冷却或直接缓慢冷却。在球化退火时奥氏化是“不完全”的,只是片状珠光体转变成奥氏体,及少量过剩碳化物溶解。因此,它不可能消除网状碳化物,如过共析钢有网状碳化物存在,则在球化退火前须先进行正火,将其消除,才能保证球化退火正常进行。 球化退火工艺方法很多,最常用的两种工艺是普通球化退火和等温球化退火。普通球化退火是将钢加热到Ac1以上20~30℃,保温适当时间,然后随炉缓慢冷却,冷到500℃左右出炉空冷。等温球化退火是与普通球化退火工艺同样的加热保温后,随炉冷却到略低于Ar1的温度进行等温,等温时间为其加热保温时间的1.5倍。等温后随炉冷至500℃左右出炉空冷。和普通球化退火相比,球化退火不仅可缩短周期,而且可使球化组织均匀,并能严格地控制退火后的硬度。 软化退火热处理的热处理程序是将工件加热到600℃至650℃范围内(A1温度下方),维持一段时间之后空冷,其主要目的在於使以加工硬化的工件再度软化、回復原先之韧性,以便能再进一步加工。此种热处理方法常在冷加工过程反覆实施,故又称之為製程退火。大部分金属在冷加工后,材料强度、硬度会随著加工量渐增而变大,也因此导致材料延性降低、材质变脆,若需要再进一步加工时,须先经软化退火热处理才能继续加工。

再结晶

再结晶 冷变形后的金属加热到一定温度后,在原来的变形组织中产生无畸变的新晶粒,而且性能恢复到变形以前的完全 软化状态,这个过程称为再结晶,其驱动力为冷变形时所产生的储能。 一、再结晶的形核与长大 1.形核(1)亚晶粒粗化的形核机制——一般发生在冷变形度大时 A.亚晶合并形核,适于高层错能金属 B.亚晶粒长大形核,适于低层错能金属通过亚晶合并和亚晶长大,使亚晶界与基体间的取向差增大,直至形成大 角度晶界,便成为再结晶的核心。 (2)原有晶界弓出的形核机制——一般发生在形变较小的金属中 2.长大 形核之后,无畸变核心与周围畸变的旧晶粒之间的应变能差是核心长大的驱动力,当各个新晶粒彼此接触,原来 变形的旧晶粒全部消失时,再结晶过程即告完成。 二、再结晶动力学 1.恒温动力学曲线

冷轧60%的含Si3.25钢的等温再结晶 (1)具有S形特征,存在孕育期 (2)再结晶速率开始时很小,然后逐渐加快,再结晶体积分数约为0.5时,速度达到最大值,随后逐渐减慢 (3)温度越高,转变速度越快。 2.Johnson-Mehl(约翰逊—梅厄)方程 已再结晶体积分数 N:形核速度 G:长大速度 退火保温时间3.Avrami(阿弗瑞米)方程: :已再结晶体积分数k n:系数 t:退火保温时间 阿弗瑞米方程较约翰逊—梅厄方程更为适用。 三、影响再结晶速率与再结晶温度的主要因素 通常把再结晶温度定义为经过严重冷变形的金属(ε>70%),加热1小时,再结晶体积占到总体积的95%的温度。 另外,有的文献把保温30~60min,开始发生再结晶或完成50%再结晶的温度定义为再结晶温度,因此,引用再结晶 温度时,必须注意它的具体条件。 对于工业纯金属,其起始再结晶温度与熔点之间存在下列关系:T再=(0.3~0.4)T熔 1.退火温度

球化退火介绍

提问者: 映月沙丘- 江湖新秀 最佳答案 球化退火 球化退火是使钢中碳化物球化而进行的退火工艺。将钢加热到Ac1以上20~30℃,保温一段时间, 然后缓慢冷却,得到在铁素体基体上均匀分布的球状或颗粒状碳化物的组织。 球化退火主要适用于共析钢和过共析钢,如碳素工具钢、合金工具钢、轴承钢等。这些钢经轧制、 锻造后空冷,所得组织是片层状珠光体与网状渗碳体,这种组织硬而脆,不仅难以切削加工,且在 以后淬火过程中也容易变形和开裂。而经球化退火得到的是球状珠光体组织,其中的渗碳体呈球状 颗粒,弥散分布在铁素体基体上,和片状珠光体相比,不但硬度低,便于切削加工,而且在淬火加 热时,奥氏体晶粒不易长大,冷却时工件变形和开裂倾向小。另外对于一些需要改善冷塑性变形 (如冲压、冷镦等)的亚共析钢有时也可采用球化退火。 球化退火加热温度为Ac1+(20~40)℃或Acm-(20~30)℃,保温后等温冷却或直接缓慢冷却。在球 化退火时奥氏化是“不完全”的,只是片状珠光体转变成奥氏体,及少量过剩碳化物溶解。因此, 它不可能消除网状碳化物,如过共析钢有网状碳化物存在,则在球化退火前须先进行正火,将其消 除,才能保证球化退火正常进行。 球化退火工艺方法很多,最常用的两种工艺是普通球化退火和等温球化退火。普通球化退火是将钢 加热到Ac1以上20~30℃,保温适当时间,然后随炉缓慢冷却,冷到500℃左右出炉空冷。等温球 化退火是与普通球化退火工艺同样的加热保温后,随炉冷却到略低于Ar1的温度进行等温,等温时 间为其加热保温时间的1.5倍。等温后随炉冷至500℃左右出炉空冷。和普通球化退火相比,球化退 火不仅可缩短周期,而且可使球化组织均匀,并能严格地控制退火后的硬度。

10-45去应力退火热处理

苏州海陆重工股份有限公司作业指导书 文件编号:HL/WI-10-45 版号:1-2008 修改状态:0 去应力退火热处理 Stress relieving annealing heat treatment 2008 - 07 - 25发布 2008 - 08 - 20实施苏州海陆重工股份有限公司发布

苏州海陆重工股份有限公司作业指导书 去应力退火热处理 苏州海陆重工股份有限公司2008 - 07 - 25批准 2008- 08-20实施 文件编号:HL/WI-10-45 版 号:1-2008 修改状态:0

1目的purpose 对厂内的去应力退火作业作出规定,并指导热处理操作工正确的执行去应力热处理工艺。Regulate on stress relieving operation within company and instruct heat treatment operator to correctly perform stress relieving heat treatment procedure. 2适用范围applicable range 适用于我公司产品在焊后或缩径或弯后进行的所有去应力热处理。 It applies to all stress relieving heat treatment performed after welding, shrinking or bending. 3去应力退火热处理工艺stress relieving heat treatment procedure 退火热处理规范的制订应根据合同要求的制造规范及技术规范要求进行。HLHI主要应用规范有ASME SECTION I,METI 标准,中国规范等。结合各种规范后本厂的要求见下表; The stipulation of annealing heat treatment specification shall be according to contract required fabrication and technical specification. HLHI main applied code and standards are ASME SECTION I,METI standard, GB standard etc. our company’s requirements are that of combination of various standards.

去应力退火

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 去应力退火 去应力退火是将工件加热到Ac1以下的适当温度,保温一定时间后逐渐缓慢冷却的工艺方法。其目的是为了去除由于机械加工、变形加工、铸造、锻造、热处理以及焊接后等产生的残余应力。 1. 去应力退火工艺曲线见图1-3。 2. 不同的工件去应力退火工艺参数见表C。 3. 去应力退火的温度,一般应比最后一次回火温度低20~30℃,以免降低硬度及力学性能。 4. 对薄壁工件、易变形的焊接件,退火温度应低于下限。 5. 低温时效用于工件的半加工之后(如粗加工或第一次精加工之后),一般采用较低的温度。 表C 去应力退火工艺及低温时效工艺 类别加热速度 加热温 度 保温 时间 /h 冷却时间 焊接件 ≤300℃装炉 ≤100~150℃/h 500-550 2-4 炉冷至300℃出炉 空冷 消除加工应力到温装炉400-550 2-4 炉冷或空冷 高精轴套、膛杆 (38CrMoAlA) ≤200℃装炉 ≤80℃/h 600-650 10-12 炉冷至200℃出炉 (在350℃以上冷 速≤50℃/h) 精密丝杠(T10)≤200℃装炉550-600 10-12 炉冷至200℃出炉

≤80℃/h(在350℃以上冷 速≤50℃/h) 主轴、一般丝杠 (45、40Cr) 随炉升温550-600 6-8 炉冷至200℃出炉量检具、精密丝杠 (T8、T10、CrMn、GCr15)随炉升温130-180 12-16 空冷(时效最 好在油浴中进行) 创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王*

球化参考资料退火

热处理技术——球化退火 球化退火是使钢获得弥散分布于铁素体基体上的细粒状(球状)碳化物组织的工艺方法。其目的为改善切削性能,减小淬火时的变形开裂倾向性,使钢件得到相当均匀的最终性能。球化退火主要应用于轴承零件、刀具、冷作模具等的预备热处理,以改善切削加工性能及加工精度,消除网状或粗大碳化物颗粒所引起的工具的脆断和刃口崩落,提高轴承的接触疲劳寿命等。中碳及中碳合金钢只当要求硬度极低而韧性极高(例如用于冷冲压坯料)时,才用球化退火。低碳钢一般不进行球化退火,否则由于硬度过低(160~170HBS)反而使切削加工性能变坏。 在工具钢及轴承钢碳化物的概念中,应包括一次(液析)碳化物、二次碳化物(由奥氏体中析出)及共析碳化物这三方面的球化。一次碳化物系铸锭枝晶偏析所引起的亚稳定莱氏体结晶的产物,颗粒尺寸较大,常沿轧制方向分布,形成偏析碳化物带,硬度高、脆性大,易引起淬火裂纹,使钢的耐磨性变差,以至工件在使用中造成表面脱落或中心破裂。一次碳化物的球化主要靠合理的锻造工艺,例如反复镦拔(相当大的总锻造比:十几、二十几以上)和适当的扩散退火来得到。 二次碳化物与共析碳化物的球化与锻造过程有关。为了使退火后能获得均匀分布的粒状碳化物,锻造后的组织应为细片状珠光体及细些断续网状碳化物(或含有少量马氏体)。如果终锻温度南过高或冷却太慢,则易引起粗大网状在化物,退火中无法消除。如终锻温度过低<800℃,碳化物易沿晶界变形方向析出而形成线条状组织,退火后将有方向性,使钢的强度降低,加工性能变坏。珠光体片较细时,球化退火时可采用较低,加工性能变坏。珠光体片较细时,球化退火时可采用较低的的温度和较短的时间。退火温度愈低、未溶解的碳化物数量越多,容易获得均匀分布的细粒状珠光体组织。珠光体片较粗时,在正常退火工艺情况下,不易获得均匀分布的细粒状珠光体。因此,为了得到良好的球化组织,必须严格控制锻造工艺过程。 1

钢的五种热处理工艺

钢的五种热处理工艺 热处理工艺——表面淬火、退火、正火、回火、调质工艺: 1、把金属材料加热到相变温度(700度)以下,保温一段时间后再在空气中冷却叫回火。 2、把金属材料加热到相变温度(800度)以上,保温一段时间后再在炉中缓慢冷却叫退火。 3、把金属材料加热到相变温度(800度)以上,保温一段时间后再在特定介质中(水或油) 快速冷却叫淬火。 ◆表面淬火 ?钢的表面淬火 有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。 根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。 感应表面淬火后的性能: 1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普 通淬火高2~3单位(HRC)。 2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。这主要是由于淬硬 层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。 3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。 对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。 一般硬化层深δ=(10~20)%D。较为合适,其中D。为工件的有效直径。 ◆退火工艺

退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。总之退火组织是接近平衡状态的组织。 ?退火的目的 ①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。 ②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能 或为以后的热处理作组织准备。 ③消除钢中的内应力,以防止变形和开裂。 ?退火工艺的种类 ①均匀化退火(扩散退火) 均匀化退火是为了减少金属铸锭、铸件或锻坯的化学成分的偏析和组织的不均匀性,将其加热到高温,长时间保持,然后进行缓慢冷却, 以化学成分和组织均匀化为目的的退火工艺。 均匀化退火的加热温度一般为Ac3+(150~200℃),即1050~ 1150℃,保温时间一般为10~15h,以保证扩散充分进行,大道消除 或减少成分或组织不均匀的目的。由于扩散退火的加热温度高,时间长, 晶粒粗大,为此,扩散退火后再进行完全退火或正火,使组织重新细化。 ②完全退火 完全退火又称为重结晶退火,是将铁碳合金完全奥氏体化,随之缓慢冷却,获得接近平衡状态组织的退火工艺。 完全退火主要用于亚共析钢,一般是中碳钢及低、中碳合金结构钢锻件、铸件及热轧型材,有时也用于它们的焊接构件。完全退火不适用 于过共析钢,因为过共析钢完全退火需加热到Acm以上,在缓慢冷却 时,渗碳体会沿奥氏体晶界析出,呈网状分布,导致材料脆性增大,给 最终热处理留下隐患。 完全退火的加热温度碳钢一般为Ac3+(30~50℃);合金钢为Ac3+(500~70℃);保温时间则要依据钢材的种类、工件的尺寸、装炉量、 所选用的设备型号等多种因素确定。为了保证过冷奥氏体完全进行珠光 体转变,完全退火的冷却必须是缓慢的,随炉冷却到500℃左右出炉空 冷。 ③不完全退火 不完全退火是将铁碳合金加热到Ac1~Ac3之间温度,达到不完全奥氏体化,随 之缓慢冷却的退火工艺。 不完全退火主要适用于中、高碳钢和低合金钢锻轧件等,其目的是细化组织和 降低硬度,加热温度为Ac1+(40~60)℃,保温后缓慢冷却。

七章 回复与再结晶习题答案(西北工业大学 刘智恩)

1.设计一种实验方法,确定在一定温度( T )下再结晶形核率N和长大线速度G (若N和G都随时间而变)。 2.金属铸件能否通过再结晶退火来细化晶粒? 3.固态下无相变的金属及合金,如不重熔,能否改变其晶粒大小? 用什么方法可以改变? 4.说明金属在冷变形、回复、再结晶及晶粒长大各阶段晶体缺陷的行为与表现,并说明各阶段促使这些晶体缺陷运动的驱动力是什么。 5.将一锲型铜片置于间距恒定的两轧辊间轧制,如图7—4所示。 (1) 画出此铜片经完全再结晶后晶粒大小沿片长方向变化的示 意图;

(2) 如果在较低温度退火,何处先发生再结晶?为什么? 6.图7—5示出。—黄铜在再结晶终了的晶粒尺寸和再结晶前的冷加工量之间的关系。图中曲线表明,三种不同的退火温度对晶粒大小影响不大。这一现象与通常所说的“退火温度越高,退火后晶粒越大”是否有矛盾?该如何解释? 7.假定再结晶温度被定义为在1 h 内完成95%再结晶的温度,按阿累尼乌斯(Arrhenius)方程,N =N 0exp(RT Q n -),G =G 0exp(RT Q g -)可以知道,再结晶温度将是G 和向的函数。 (1) 确定再结晶温度与G 0,N 0,Q g ,Q n 的函数关系; (2) 说明N 0,G 0,Q g ,Q 0的意义及其影响因素。 8.为细化某纯铝件晶粒,将其冷变形5%后于650℃退火1 h ,组织反而粗化;增大冷变形量至80%,再于650℃退火1 h ,仍然得到粗大晶粒。试分析其原因,指出上述工艺不合理处,并制定一种合理的晶粒细化工艺。

9.冷拉铜导线在用作架空导线时(要求一定的强度)和电灯花导线(要求韧性好)时,应分别采用什么样的最终热处理工艺才合适? 10.试比较去应力退火过程与动态回复过程位错运动有何不同。从显微组织上如何区分动、静态回复和动、静态再结晶? 11.某低碳钢零件要求各向同性,但在热加工后形成比较明显的带状组织。请提出几种具体方法来减轻或消除在热加工中形成带状组织的因素。 12.为何金属材料经热加工后机械性能较铸造状态为佳? 13.灯泡中的钨丝在非常高的温度下工作,故会发生显著的晶粒长大。当形成横跨灯丝的大晶粒时,灯丝在某些情况下就变得很脆,并会在因加热与冷却时的热膨胀所造成的应力下发生破断。试找出一种能延长钨丝寿命的方法。

焊接结构件消除内应力退火工艺守则.

焊接结构件消除内应力退火工艺守则 1 范围 1.1 本守则适应于碳素(合金结构钢制造的电机、电器、机械等产品的焊接结构件的退火。退火可以降低硬度,便于切削加工,还能使钢的品粒细化,以及消除内应力,并为下一步工序作准备。 1.2 焊接结构件的退火,是因为构件在制造过程中,产生了残余内应力。将会使在机械加工后,引起变形,从而对产品的加工尺寸和装配带来不利的影响。在个别情况下的退火,是为了避免焊接后机械强度的降低。必须经过退火,消除其内应力的有: 1.2.1 拼合的和有断面的焊接结构件,以及不对称形状的和尺寸长、刚性小,且受单向机械加工的零件: 1.2.2 在大的动负荷条件下工作的焊接件: 1.2.3 特殊的与工艺要求的构件。注:一般的须经过退火的焊接零件,均应在图样上的技术要求中予以说明。 2 设备 2.1 320KW方井式电阻炉 2.1.1 炉体及相关的辅助设备与工具。 2.1.2 控制系统 2.1.3 技术说明书。 2.1. 3.1 320KW方井式电阻炉操作说明书。 2.1.

3.2 320KW炉温控制系统操作说明书。 2.1. 3.3 EH.SERIES中型打点式长图记录报警仪使用操作说明书。 3 准备工作 3.1 将准备退火的工件,运至炉旁,并均具有检查合格证,无合格证者,不得入炉退火。3.2 检查工件的外形尺寸,是否能装炉。 3.3 将退火用的设计资料与工艺文件准备齐。 3.4 对设备进行检查、电气线路、冷却水路、炉内状况、周围环境。 3.5 装炉时,垫平工件用的垫块准备齐全。 4 装炉要求 4.1 工件下面应予以垫平或垂直。 4.2 工件离炉底、炉壁及工件之间的距离不得小于100㎜。 4.3 工件不能相互叠放。 4.4 工件应选择热状态变形最小的位置放置,如半环之类的结构件,开口不得向上。 4.5 材厚相差悬殊的结构件,不得混合装炉退火。 5 退火规范 5.1 开炉(盖盖后,慢慢升温,2h内,升温到400℃以下;2h后,以每小时100℃的速度,加热到640℃~660℃,并保持炉内在加热过程中,各区的温度差不大于20℃。

退火工艺

退火工艺退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。总之退火组织是接近平衡状态的组织。?退火的目的①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能或为以后的热处理作组织准备。③消除钢中的内应力,以防止变形和开裂。?退火工艺的种类①均匀化退火(扩散退火)均匀化退火是为了减少金属铸锭、铸件或锻坯的化学成分的偏析和组织的不均匀性,将其加热到高温,长时间保持,然后进行缓慢冷却,以化学成分和组织均匀化为目的的退火工艺。均匀化退火的加热温度一般为Ac3+(150~200℃),即1050~1150℃,保温时间一般为10~15h,以保证扩散充分进行,大道消除或减少成分或组织不均匀的目的。由于扩散退火的加热温度高,时间长,晶粒粗大,为此,扩散退火后再进行完全退火或正火,使组织重新细化。②完全退火完全退火又称为重结晶退火,是将铁碳合金完全奥氏体化,随之缓慢冷却,获得接近平衡状态组织的退火工艺。完全退火主要用于亚共析钢,一般是中碳钢及低、中碳合金结构钢锻件、铸件及热轧型材,有时也用于它们的焊接构件。完全退火不适用于过共析钢,因为过共析钢完全退火需加热到Acm以上,在缓慢冷却时,渗碳体会沿奥氏体晶界析出,呈网状分布,导致材料脆性增大,给最终热处理留下隐患。完全退火的加热温度碳钢一般为Ac3+(30~50℃);合金钢为Ac3+(500~70℃);保温时间则要依据钢材的种类、工件的尺寸、装炉量、所选用的设备型号等多种因素确定。为了保证过冷奥氏体完全进行珠光体转变,完全退火的冷却必须是缓慢的,随炉冷却到500℃左右出炉空冷。③不完全退火不完全退火是将铁碳合金加热到Ac1~Ac3之间温度,达到不完全奥氏体化,随之缓慢冷却的退火工艺。不完全退火主要适用于中、高碳钢和低合金钢锻轧件等,其目的是细化组织和降低硬度,加热温度为Ac1+(40~60)℃,保温后缓慢冷却。④等温退火等温退火是将钢件或毛坯件加热到高于Ac3(或Ac1)温度,保持适当时间后,较快地冷却到珠光体温度区间地某一温度并等温保持,使奥氏体转变为珠光体型组织,然后在空气中冷却的退火工艺。等温退火工艺应用于中碳合金钢和低合金钢,其目的是细化组织和降低硬度。亚共析钢加热温度为Ac3+(30~50)℃,过共析钢加热温度为Ac3+(20~40)℃,保持一定时间,随炉冷至稍低于Ar3温度进行等温转变,然后出炉空冷。等温退火组织与硬度比完全退火更为均匀。⑤球化退火球化退火是使钢中碳化物球化而进行的退火工艺。将钢加热到Ac1以上20~30℃,保温一段时间,然后缓慢冷却,得到在铁素体基体上均匀分布的球状或颗粒状碳化物的组织。球化退火主要适用于共析钢和过共析钢,如碳素工具钢、合金工具钢、轴承钢等。这些钢经轧制、锻造后空冷,所得组织是片层状珠光体与网状渗碳体,这种组织硬而脆,不仅难以切削加工,且在以后淬火过程中也容易变形和开裂。而经球化退火得到的是球状珠光体组织,其中的渗碳体呈球状颗粒,弥散分布在铁素体基体上,和片状珠光体相比,不但硬度低,便于切削加工,而且在淬火加热时,奥氏体晶粒不易长大,冷却时工件变形和开裂倾向小。另外对于一些需要改善冷塑性变形(如冲压、冷镦等)的亚共析钢有时也可采用球化退火。球化退火加热温度为Ac1+(20~40)℃或Acm-(20~30)℃,保温后等温冷却或直接缓慢冷却。在球化退火时奥氏化是“不完全”的,只是片状珠光体转变成奥氏体,及少量过剩碳化物溶解。因此,它不可能消除网状碳化物,如过共析钢有网状碳化物存在,则在球化退火前须先进行正火,将其消除,才能保证球化退火正常进行。球化退火工艺方法很多,最常用的两种工艺是普通球化退火和等温球化退火。普通球化退火是将钢加热到Ac1以上20~30℃,保温适当时间,然后随炉缓慢冷却,冷到500℃左右出炉空冷。等温球化退火是与普通球化退火工艺同样的加热保温后,随炉冷却到略低于Ar1的温度进行等温,等温时间为其加热保温时间的1.5倍。等温后随炉冷至500℃左右出炉空冷。和普通球化退火相比,球化退火不仅可缩短周期,而且可使球化组织均匀,并能严格地控制退火后的硬度。⑥再结晶退火(中间退火)再结晶退火是经冷形变后的金属加热到再结晶温度以上,保持适当时间,使形变晶粒重新结晶成均匀的等轴晶粒,以

去应力和完全退火工艺

钢的退火工艺完全退火去应力退火工艺曲线及操作规程 退火是将钢材或各种金属机械零件加热到适当温度,保温一段时间,然后缓慢冷却,可以获得接近平衡状态组织的热处理工艺。在机械制造行业,退火通常作为工件制造加工过程中的预备热处理工序。 一■.完全退火 完全退火是将钢件或各种机械零件加热到临界点Ac3以上的适当温度、在炉内保温缓慢逐渐冷却的工艺方法。其目的是为了细化组织、降低硬度、改善机械切削加工性能及去除内应力。 完全退火适用于中碳钢和中碳合金钢的铸钢件、焊接件、轧制件等。 完全退火工艺曲线见图1.1 0 ▲ 1.工件装炉:一般中、小件均可直接装入退火温度的炉内,亦可低温装炉,随炉升温。 2.保温时间:保温时间是指从炉子仪表到达规定退火加热温度开始计算至工件在炉内停止加热开始降温时的全部时间。工件堆装时,主要根据装炉情况估定,一般取2~3h。 3.工件冷却:保温完成后,一般停电(火),停止加热,关闭炉门逐渐缓冷至500C 即可出炉空冷。对某些合金元素含量较高、按上述方式冷却后硬度仍然偏高的工件,可采用等温冷却方法,即在650C附近保温2~4h后再炉冷至500C。二.去应力退火 去应力退火是将工件加热到Ac1以下的适当温度,保温一定时间后逐渐缓慢冷却的工艺方法。其目的是为了去除由于机械加工、变形加工、铸造、锻造、热处理以及焊接后等产生的残余应力。 1.去应力退火工艺曲线见图1-3。 时间场 图去应力退火工艺曲线 2.不同的工件去应力退火工艺参数见表C。 3.去应力退火的温度,一般应比最后一次回火温度低20~30C,以免降低硬度 及力学性能。

4.对薄壁工件、易变形的焊接件,退火温度应低于下限。

再结晶

再结晶 中文名称:再结晶 英文名称:recrystallization 定义:指经冷塑性变形的金属超过一定温度加热时,通过形核长 大形成等轴无畸变新晶粒的过程。 应用学科:机械工程(一级学科);机械工程(2)_热处理(二 级学科);机械工程(2)一般热处理名词(三级学科) 以上内容由全国科学技术名词审定委员会审定公布 再结晶:当退火温度足够高、时间足够长时,在变形金属或合金的显微组织中,产生无应变的新晶粒──再结晶核心。新晶粒不断长大,直至原来的变形组织完全消失,金属或合金的性能也发生显著变化,这一过程称为再结晶。过程的驱动力也是来自残存的形变贮能(见图1)。与金属中的固态相变[1]类似,再结晶也有转变孕育期,但再结晶前后,金属的点阵类型无变化。 再结晶核心一般通过两种形式产生。其一是原晶界的某一段突然弓出,深入至畸变大的相邻晶粒,在推进的这部分中形变贮能完全消失,形成新晶核。其二是通过晶界或亚晶界合并,生成一无应变的小区──再结晶核心。四周则由大角度边界将它与形变且已回复了的基体分开。大角度边界迁移时,核心长大。核心朝取向差大的形变晶粒长大,故再结晶过程具有方向性特征。再

结晶后的显微组织呈等轴状晶粒,以保持较低的界面能。开始生成新晶粒的温度称为开始再结晶温度,显微组织全部被新晶粒所占据的温度称为终了再结晶温度或完全再结晶温度。再结晶过程所占温度范围受合金成分、形变程度、原始晶粒度、退火温度等因素的影响。实际应用中,常用开始再结晶温度和终了再结晶温度的算术平均值作为衡量金属或合金性能热稳定水平的参量,称为再结晶温度。 动态再结晶:· · ·随着变形量的增加,位错密度继续增加,内部储存能也继续增加。当变形量达到一定程度时,将使奥氏体发生另一种转变—动态再结晶。·动态再结晶的发生与发展,使更多的位错消失,奥氏体的变形抗力下降,直到奥氏体全部发生了动态再结晶,应力达到了稳定值。 静态再结晶: 金属在热加工后,由于形变使晶粒内部存在形变储存能,使系统处于不稳定的高能状态,因此在变形随后的等温保持过程中,以变形储存能为驱动力,通过热活化过程再结晶成核和长大而再生成新的晶粒组织,使系统由高能状态转变为较稳定的低能状态,这个自发的过程就是静态再结晶。

42CrMo材料球化退火工艺

42CrMo球化退火工艺: 42CrMo有较高的淬透性,较好的强度和韧性,可用于较大截面与高强度的零件.球化退火是为了得到粒状珠光体组织.但得到粒状珠光体组织不一定要进行球化退火,采用淬火得到马氏体或贝氏体,再经高温回火使碳化物析出并球化的方法同样可达到 目的.这种工艺得到的粒状珠光体较均匀,比较容易控制硬度.时间较短.工艺重显性好. C 0.38-0.43 Si 0.15-0.35 Mn 0.75-1.00 Cr 0.8-1.10 Mo 0.15-0.25 S <0.040 P <0.035 球化退火是使钢中碳化物球化而进行的退火工艺。将钢加热到Ac1以上20~30℃,保温一段时间,然后缓慢冷却,得到在铁素体基体上均匀分布的球状或颗粒状碳化物的组织。 球化退火主要适用于共析钢和过共析钢,如碳素工具钢、合金工具钢、轴承钢等。这些钢经轧制、锻造后空冷,所得组织是片层状珠光体与网状渗碳体,这种组织硬而脆,不仅难以切削加工,且在以后淬火过程中也容易变形和开裂。而经球化退火得到的是球状珠光体组织,其中的渗碳体呈球状颗粒,弥散分布在铁素体基体上,和片状珠光体相比,不但硬度低,便于切削加工,而且在淬火加热时,奥氏体晶粒不易长大,冷却时工件变形和开裂倾向小。另外对于一些需要改善冷塑性变形(如冲压、冷镦等)的亚共析钢有时也可采用球化退火。 球化退火加热温度为Ac1+(20~40)℃或Acm-(20~30)℃,保温后等温冷却或直接缓慢冷却。在球化退火时奥氏化是“不完全”的,只是片状珠光体转变成奥氏体,及少量过剩碳化物溶解。因此,它不可能消除网状碳化物,如过共析钢有网状碳化物存在,则在球化退火前须先进行正火,将其消除,才能保证球化退火正常进行。 球化退火工艺方法很多,最常用的两种工艺是普通球化退火和等温球化退火。普通球化退火是将钢加热到Ac1以上20~30℃,保温适当时间,然后随炉缓慢冷却,冷到500℃左右出炉空冷。等温球化退火是与普通球化退火工艺同样的加热保温后,随炉冷却到略低于Ar1的温度进行等温,等温时间为其加热保温时间的1.5倍。等温后随炉冷至500℃左右出炉空冷。和普通球化退火相比,球化退火不仅可缩短周期,而且可使球化组织均匀,并能严格地控制退火后的硬度。

球化退火工艺-方法很多

球化退火工艺方法很多,最常用的两种工艺是普通球化退火和等温球化退火。 普通球化退火是将钢加热到Ac1以上20~30℃,保温适当时间,然后随炉缓慢冷却,冷到500℃左右出炉空冷。等温球化退火是与普通球化退火工艺同样的加热保温后,随炉冷却到略低于Ar1的温度进行等温,等温时间为其加热保温时间的1.5倍。等温后随炉冷至500℃左右出炉空冷。和普通球化退火相比,等温球化退火不仅可缩短周期,而且可使球化组织均匀,并能严格地控制退火后的硬度。 球化退火主要用于过共析的碳钢及合金工具钢(如制造刃具,量具,模具所用的钢种)。其主要目的在于降低硬度,改善切削加工性,并为以后淬火作好准备。这种工艺有利于塑性加工和切削加工,还能提高机械韧性。尤其对于轴承钢、工具钢等钢种而言,如在淬火前实施球化退火,即可获得下列效果:硬度分为:①划痕硬度。主要用于比较不同矿物的软硬程度,方法是选一根一端硬一端软的棒,将被测材料沿棒划过,根据出现划痕的位置确定被测材料的软硬。定性地说,硬物体划出的划痕长,软物体划出的划痕短。②压入硬度。主要用于金属材料,方法是用一定的载荷将规定的压头压入被测材料,以材料表面局部塑性变形的大小比较被测材料的软硬。由于压头、载荷以及载荷持续时间的不同,压入硬度有多种,主要是布氏硬度、洛氏硬度、维氏硬度和显微硬度等几种。③回跳硬度。主要用于金属材料,方法是使一特制的小锤从一定高度自由下落冲击被测材料的试样,并以试样在冲击过程中储存(继而释放)应变能的多少(通过小锤的回跳高度测定)确定材料的硬度。 2硬度分类 划痕硬度 1722年,法国的R.-A.F.de列奥米尔首先提出了极粗糙的划痕硬度测定法。此法是以适当的力使被和材料在一根由一端硬渐变到另一端软的金属棒上划过,根据棒上出现划痕的位置确定被测材料的硬度。1822年,F.莫斯以十种矿物的划痕硬度作为标准,定出十个硬度等级,称为莫氏硬度。十种矿物的莫氏硬度级依次为:金刚石(10),刚玉(9),黄玉(8),石英(7),长石(6),磷灰石(5),萤石(4),方解石(3),石膏(2),滑石(1)。其中金刚石最硬,滑石最软。莫氏硬度标准是随意定出的,不能精确地用于确定材料的硬度,例如10级和9级之间的实际硬度差就远大于2级和1级之间的实际硬度差。但这种分级对于矿物学工作者野外作业是很有用的。 压入硬度 用一定的载荷将规定的压头压入被测材料,根据材料表面局部塑性变形的程度比较被测材料的软硬,材料越硬,塑性变形越小。压入硬度在工程技术中有广

相关主题
文本预览
相关文档 最新文档