当前位置:文档之家› 建筑物理(声学复习)

建筑物理(声学复习)

建筑物理(声学复习)
建筑物理(声学复习)

第10章 建筑声学基本知识

1. 声音的基本性质

①声波的绕射

当声波在传播途径中遇到障板时,不再是直线传播,而是绕到障板的背后改变原来的传播方向,在它的背后继续传播的现象。 ②声波的反射

当声波在传播过程中遇到一块尺寸比波长大得多的障板时,声波将被反射。 ③声波的散射(衍射)

当声波传播过程中遇到障碍物的起伏尺寸与波长大小接近或更小时,将不会形成定向反射,而是声能散播在空间中,这种现象称为散射,或衍射。 ④声波的折射

像光通过棱镜会弯曲,介质条件发生某些改变时,虽不足以引起反射,但声速发生了变化,声波传播方向会改变。这种由声速引起的声传播方向改变称之为折射。

白天向下弯曲 夜晚向上弯曲 顺风向下弯曲 逆风向上弯曲 ⑤声波的透射与吸收

当声波入射到建筑构件(如顶棚,墙)时,声能的一部分被反射,一部分透过构件,还有一部分由于构件的振动或声音在其内部传播时介质的摩擦或热传导而被损耗(吸收)。 根据能量守恒定理:

0E E E E γατ=++

0E ——单位时间入射到建筑构件上总声能;

E γ——构件反射的声能; E α——构件吸收的声能; E τ——透过构件的声能。

透射系数0/E E ττ=; 反射系数0/E E γγ=;

实际构件的吸收只是E α,但从入射波和反射波所在空间考虑问题,常常定义吸声系数为:

11E E E E E γατ

αγ+=-=-

=

⑥波的干涉和驻波

1.波的干涉:当具有相同频率、相同相位的两个波源所发出的波相遇叠加时,在波重叠的区域内某些点处,振动始终彼此加强、而在另一些位置,振动始终互相削弱或抵消的现象。

2.驻波:两列同频率的波在同一直线上相向传播时,可形成驻波。

2.声音的计量

①声功率

指声源在单位时间内向外辐射的声能。符号W 。 单位:瓦(W )或微瓦(μW )。 ②声强

定义1:是指在单位时间内,改点处垂直于声波传播方向的单位面积上所通过的声能。 定义2:在声波传播过程中单位面积波阵面上通过的声功率。

符号:I ,单位:W/m

2

dW

I dS

=

意义:声强描述了声能在空间的分布;衡量声波在传播过程中声音强弱的物理量。

可听声强范围 10 -12 W/m 2——1 W/m

2

1.在无反射声波的自由场中,点声源发出的球面波,均匀向四周辐射声能,因此,距离声源中心为r 的球面上的声强为:

2

4W

I r π=

g 2.对于平面波:声线互相平行,同一束声能通过与声源距离不同的表面时,声能没有聚集或离散,即与距离无关,所以声强不变。 ③声压

1.定义:是指介质中有声波传播时,介质中的压强相对于无声波时介质静压强的改变量,是一个标量,用P 表示。

2.单位:Pa(帕斯卡),就是压强的单位,即N /m 2

3.任一点的声压都是随时间而不断变化的,每一瞬间的声压称瞬时声压,某段时间内瞬时声压的均方根值称为有效声压。如未说明,通常所指的声压即为有效声压。 4

,即:P =

。 5.声压与声强关系:在自由声场中,某处的声强与该处声压的平方成正比而与介质密度与声速的乘积成反比:

2

0P I c

ρ= P ——有效声压,N /m 2; 0ρ——空气密度Kg /m 3;

c ——空气中的声速,m /s ; 0c ρ——空气的介质特性阻抗。

④声能密度

1.定义:声强为I 的平面波,在单位面积上每秒传播的距离为c ,则在这一空间声能密度D 为:

I D c

=

(W.s/m 3或 J/m 3

) 2.声能密度只能描述单位体积内声能的强度,与声波的传播方向无关,应用于反射声来自各个方向的室内声场时,最为方便。

3. 声压级、声强级、声功率及其叠加

①声压级

以10倍为一级划分,从闻阈到痛阈可化为100~106

七个等级。(20倍之)

lg

20p P

L P = (dB ) P ——某点声压,N/m 2; 0P ——参考声压,取2×10-5 N/m 2为参考值。

②声强级

以10-12 W/m 2

为参考值。(10倍之)

lg

10I I

L

I

= (dB ) ③声功率级

将声功率以“级”表示,便是声功率级,单位也是分贝。0W ——参考声功率,10-12

W 。

lg

10W W L W = 注意:要特别指出的是声强级、声压级、声功率级和声强、声压、声功率是不同的概念,以分贝为单位的各种“级”只有相对比值的意义,其数值大小与所规定的基准值有关。 ④声级的叠加

当几个不同的声源同时作用与某一点时,若不考虑干涉效应,该点的总声能密度是各个声能密度的代数和。

12n E E E E =+++L L (W/m 2) 它们的总声压(有效声压)为各声压的均方根值,即:

222

12n

P P P P =+++L L (N/m 2) 声压叠加时,不能进行简单的算术相加,而要求按照对数运算规律进行。

222

1100

...20lg 20lg

n

p P P P P L P +++== 3

1

22

2

2

22020

2020

20lg (10

)(10

)(10

)...(10

)n Lp Lp Lp Lp =++++

3120.10.10.10.110lg(101010...10)n Lp Lp Lp Lp =++++

⑤响度,响度级

如果某一声音与已选定的1000Hz 的纯音听起来同样响,这个1000Hz 纯音的声压级值就定义为待测声音的“响度级”。响度级的单位为方(Phon )。

⑥声音的频谱

声音往往包含多个频率,所有频率的集合成为频谱。 种类:线状谱:若干纯音组成(乐音)。

连续谱:由所有频率的声音组成。如机器设备发出的噪声,一般不能用离散的简谐分量表示 频程:通常频带划分方式通常不是在线性标度的频率轴上等距离划分频带,而是以各频带的频程数

n 来划分。

2210log (

)1f n f = 即221

n f

f = 2f ——上界频率; 1f ——下界频率。 ⑦声源的指向性

1当声源的尺度比波长小的多时,可以看做物方向性的“点声源”,在距离声源中心等距离处的声压级相等。

2当声源的尺度与波长相差不多或更大时,它就不是点声源,可看成由许多点声源组成,叠加后各方向的辐射就不一样,因而具有指向性,在距离声源中心等距离的不同方向的空间位置处的声压级不相等。

3声源尺寸比波长大的越多,指向性就越强。

4.人耳听觉特性

①最高和最低的可听频率极限:20~20000Hz ②最小与最大的可听声压级极限:0-120dB 。

声压级在120dB 左右,人就会感到不舒服;130dB 耳朵内将由痒痒的感觉;140dB 耳朵疼痛;继续升高将造成而出血,损坏听觉机构。 ③最小可辨域(差域):

在频率为50-10000Hz 之间的任何纯音,在声压级超过可听域50dB 时,人耳大约可以分辨出1dB 声压级变化。

在理想的隔音室中,用耳机提供声音时,中频范围内,人耳能觉察到0.3dB 的声压级变化。 ④哈斯效应

哈斯效应反应了人耳听觉特性的两个方面: 1.听觉暂留,2.声像定位。 声觉暂留: 人对声音的感觉在声音消失后会暂留一小段时间。 声像定位:判断声源位置主要是根据“第一次到达”的声音。 哈斯效应:直达声到达后50ms 以内到达的反射声会加强直达声。

直达声到达后50ms 后到达的“强”反射声会产生“回声”。

⑤掩蔽效应

人耳对一个声音的听觉灵敏度因为另一个声音的存在而降低的现象。 ①频率相近的纯音掩蔽效果显著;

②掩蔽音的声压级越高,掩蔽量越大,掩蔽的频率范围越宽; ③低频音对高频音掩蔽作用大,高频音对低频音掩蔽作用小; ⑥双耳听闻效应(听觉定位)

人耳的一个重要特性就是能够判断声源的方向和远近。

双耳定位能力有助于人们在存在背景噪声的情况下倾听所注意的声音。

由于人耳位于头部两侧,约距20cm ,声音到达双耳有微小的时间差,强度差和相位差,使人能辨别声音的方向,确定声源的位置。 ①频率>1400Hz 强度差起主要作用。 ②频率<1400Hz 时,时间差起主要作用。

③人耳对水平方向方位的辨别能力强于垂直方向。

第11章 室内声学原理

1.室内声场

①室内声场的特征

①距声源有一定距离的接收点上,声能密度比在自由声场中要大,常不随距离的平方衰减。

②声源在停止发声以后,在一定的时间里,声场中还存在来自各个界面的迟到的反射声,产生所谓“混响现象”。

③此外,由于房间的共振,引起室内声音某些频率的加强或减弱,由于室的形状和内装修材料的布置,形成回声,颤动回声及其他各种特异现象,产生一系列复杂问题。

②几何声学:忽略声音的波动性质,以几何学方法分析声音能量的传播、反射、扩散的叫“几何声学”。

“波动声学”(物理声学):着眼于声音波动性的分析方法。

优点:波动声学的方法只能解决体型简单、频率较低的较为单纯的室内声场情况的分析。

而几何声学则可以分析界面形状和性质复杂多变的室内声场空间。

③扩散声场的假定

假定声源在连续发生时声场时完全扩散的。所谓扩散,包含两层含义: ①声能密度在室内分布均匀,即在室内任一点上,其声能密度都相等。 ②在室内任一点上,来在各个方向的声能强度都相同。

基于上述假定,室内内表面上不论吸声材料位于何处,效果都不会改变;同样,声源与接收点无论在室内什么位置,室内各点的声能密度也不会改变。

因此,在扩散声场中,在室内任一表面的单位面积上,每秒钟入射的声能为:

4

c

I D =

(W/m 2) ④室内声音的增长、稳态和衰减 室内声场声能变化方程:

4

dD cDA

V

W dt =-

1.增长公式:

44(1)cA

t V

W D e cA

-=-

2.稳态公式:

04W

D cA

=

. 3.衰减公式:

40cA t V

D D e

-=

2. 混响和混响时间计算公式

声源在停止发声以后,在一定的时间里,声场中还存在来自各个界面的迟到的反射声,产生所谓“混响现象”。

混响时间:声能密度衰减60dB 所需的时间。其为评价室内声音特性的参数. ①赛宾的混响时间计算公式

600.161V V

T K A A

==g

i i A S α=∑

适用范围:室内总吸声量较小、混响时间较长情况。 ②依林的混响时间计算公式

依林理论认为:反射声能不像赛宾公式所假定的那样连续衰减。而是声波与界面每碰撞一次就衰减一次,衰减曲线呈台阶形。即考虑界面吸收不是连续的,反射声能密度呈阶梯形衰变。

0.161ln(1)ln(1)

KV V

T S S αα=

=----

分析:①室内表面平均吸声系数较小(0.2α≤)时,赛宾公式和依琳公式可以得到相近结果。 ②室内表面平均吸声系数较大(0.2α>)时,只能用依琳公式较为准确计算室内混响时间。 ③依林-努特生公式

对频率较高的声音,在传播过程中,空气的吸收作用不能忽略,而空气的吸收与空气的温度和湿度有很大的关系。

0.161ln(1)4T V

V

m S α=

--+

其中,4m ——空气吸收系数。

3. 室内声压级计算与混响半径

①室内声压级计算

当室内一点声源发声,且假定声场充分扩散时,则利用以下稳态声压级公式计算离开声源不同距离处的声压级,即:

24

10lg(

)4p w Q L L r R π=++ (dB ) 或者: 24

10lg 10lg()1204p Q L W r R

π=+++ (dB )

w L ——声源的声功率级,dB ; W ——声源的声功率,W ; r ——离开声源的距离,m ; Q ——声源指向性因数;

1S R α

α

=

-——房间常数; Q (声源指向性因数)与声源的方向性和位置有关(如右图)

②混响半径

室内声能密度由两部分构成:第一部分为直达声,相当于

2

4Q

r

π表述部分;第二部分为扩散声,或称

混响声(包括第一次及以后的反射声),即

4

R

表述部分。 当直达声项与混响声项相等时,接收点距离声源的距离0r 称之为“混响半径”,或称“临界半径”。

2

04

4Q r R

π=

或:0r = ① 房间常数越大,则室内吸声量越大,混响半径就越长;R 越小,则正好相反,混响半径就越短。

② 对于听着而言,要提高清晰度,就要求直达声较强,因此常采用指向性因数Q 较大(10左右,有时

更大)的电声扬声器。

4. 房间共振和共振频率

①矩形房间的共振

,,x y z

n n n f =②简并:

在某些振动方式的共振频率相同时,就会出现共振频率重叠现象,或称之为共振频率的“简并”。 在出现“简并”的共振频率范围内,将使那些与共振频率相当的声音被大大加强,导致室内原有的声音产生失真(亦称为频率畸变),表现为低频产生嗡声,或产生“声染色” 避免“简并”现象的发生措施:

①尽量使房间的长、宽、高不出现简单的比例关系;(如上图) ②两个相对的表面尽量不要完全平行; ③在厅内部可以采取不规则的扩散表面; ④可采用不对称的空间体型。

第12章 材料和结构的声学特性

1.吸声

①吸声系数:材料的吸声系数是指被吸收的声能(或没有被表面反射的部分)与入射声能之比。

它是用来表征材料和结构吸声能力的基本参量。以α表示为:

00

r

E E E α-=

0E ——入射到材料和结构表面的总声能,J ; r E ——被材料反射回去的声能,J 。

②吸声量

用来表征某个具体吸声构件的实际吸声效果,它和构件的尺寸大小有关。对于建筑空间的围蔽结构,吸声量A : A S α=g 单位:m 2

S ——围蔽结构的面积,m 2。

如果一个房间有n 面墙(包括顶棚和地面),各自面积分别为123,,n S S S S L L ,各自的吸声系数分别为123,,n ααααL L ,则此房间的总吸声量为:

11221

n

n n i i i A S S S S αααα==+++=∑L L

可以得到房间的平均吸声系数α:

11

n

i i

i n

i

i S A

S

S

α

α====

∑∑

③吸声材料及结构 多孔吸声材料

共振吸声结构: 空腔共振吸声结构, 薄板、薄膜共振吸声结构 空间吸声体 强吸声结构

2. 隔声

一、空气声隔绝

①单层墙隔声频率特性的一般规律 1.质量定律:

如果把墙看成是无刚度无阻尼的柔顺质量,且忽略墙的边界条件,假定墙为无限大。

0020lg

20lg 20lg 43mf

R m f c

πρ==+- 质量定律:墙体受到声波激发所引起的振动与其惯性(即质量)有关,墙体的单位面积重量愈大,透射的声能愈少,这就是通常所说的“质量定律”。 2.吻合效应:

若声波沿墙面行进的速度正好等于墙板自由弯曲波的传播速度,墙板的弯曲振动达到最大,这时墙板会非常“顺从”地跟随入射声波弯曲,使入射声能大量透射到另一侧,这就是“吻合效应”。 ②双层墙的空气声隔绝 ③轻型墙的空气声隔绝 ④门窗及屋顶的隔声

二、振动声隔离

①转动设备隔振 ②撞击声隔绝

3. 反射

①反射体 ②扩散体

第13章室内音质设计

1.音质的主观评价与客观指标

①主观评价五个方面

1.合适的响度:语言声60~70phon(方);音乐声50~80方。

2.较高的清晰度和明晰度

3.足够的丰满度

丰满度的含义有:余音悠扬(活跃)、音色浑厚(温暖)、坚实饱满等(亲切)。总之,可以定义为

声源在室内发生与在露天发声相比较,在音质上的提高程度。

4.良好空间感(方向感、距离感和围绕感)

指室内声场给听者提供的一种声音在室内的空间传播感觉。包括听者对声源方向的判断(方向感),距声源远近的判断(亲切感)和对属于室内声场的空间感觉(围绕感)。

5.没有声缺陷和噪声干扰

声缺陷:如回声、声聚焦、声影、颤动回声等

②客观指标

1.声压级与混响时间

2.反射声的时间与空间分布

2.音质设计

①大厅容积的确定

保证厅内有足够的响度——最大允许容积

保证厅内有适当的混响时间——每座容积

②大厅体形设计

③大厅的混响设计

3.室内电声设计

第14章 噪声控制

1.噪声的评价方法

①A 声级A L

对于稳态噪声,可以直接测量A L 来评价 ②等效连续声级eq L

等效连续声级评价方法:就是在一段时间内能量平均的方法。适用于声级随时间变化的起伏噪声。 但其对偶发的短时的高声级噪声的出现不敏感。 ③昼夜等效声级dn L ④累计分布声级N L

累计分布声级就是用声级出现的累积概率来表示这类噪声大小 ⑤噪声冲击指数NII

考虑到一个区域或一个城市由于噪声分布不同,受影响的人口密度不同,用噪声冲击指数NII 来评价城市环境噪声影响的范围比较合适。 ⑥噪声评价曲线NR 和噪声评价数N

2.噪声控制

①噪声控制标准

②噪声控制的原则和方法 ③城市噪声控制

3.建筑中的吸声降噪

①吸声降噪原理:

如果在室内顶棚或墙面上布置吸声材料或吸声结构,可使混响声减弱,这时,人们主要听到的是直达声,那种被噪声“包围”的感觉将明显减弱。这种利用吸声原理降低噪声的方法称为“吸声降噪”。 ②吸声降噪量的计算

根据稳态声压计算公式可知,距离声源r m 处之声压级与直达声和混响声的关系如下:

p w 2

410lg (dB)4Q

L L r

R π??=++ ??? 如进行吸声处理,则处理前后该点的“声级差”(或称“降噪量”)为:

p p1p222

124410lg ()() (dB)44Q Q L L L r R r R ππ??

?=-=++ ???

当以直达射声为主时,即2

4

4Q r R

π?,则p 0L ?≈。 当以混响声为主时,即24

4Q r R π=时,则21p 12(1)10lg (1)L αααα??-?≈??-??

;一般室内在吸声处理以前1α很

小,所以121ααα?=,可以忽略,上式即可简化为:

222p 111

10lg

=10lg =10lg (dB)A T

L A T αα?= 1α——处理前房间的平均吸声系数;

1A ——处理前房间的总吸声量,m 2;

1T ——处理前房间的混响时间,s ;

2α——处理后房间的平均吸声系数; 2A ——处理后房间的总吸声量,m 2; 2T ——处理后房间的混响时间,s 。

建筑物理考试试卷B

建筑物理期末试卷二 一、选择题(20*2’) 1、在热量的传递过程中,物体温度不同部分相邻分子发生碰撞和自由电子迁移所引起的能量传递称为()。 A.辐射 B.对流 C.导热 D.传热 2、在稳定传热状态下当材料厚度为1m两表面的温差为1℃时,在一小时内通过1m2截面积的导热量,称为()。 A.热流密度 B.热流强度 C.传热量 D.导热系数 3、人感觉最适宜的相对湿度应为: A.30~70 % B.50~60% C.40~70% D.40~50% 4、下列哪些措施虽有利于隔热,但不利于保温()? A.采用带有封闭空气层的隔热屋顶 B.采用通风屋顶 C.采用蓄水屋顶隔热 D.采用屋顶植被隔热 5、下列()不是我国目前规定寒冷地区居住房间冬季的室内气候标准气温? A.18℃ B.17℃ C.16℃ D.15 ℃ 6、对建筑防热来说,是()天气作为设计的基本条件。 A.多云 B.阴天 C.晴天 D.无所谓 7、适用于东北、北和西北向附近的窗口遮阳的形式为()。 A.水平式 B.垂直式 C.综合式

D.挡板式 8.光源显色的优劣,用(C )来定量来评价 A、光源的色温 B、光源的亮度 C、光源的显色性 D、识别时间 9.在采光设计中为了降低作为展览墙的亮度,(C )是合理的。 A.降低墙面上的照度 B.提高墙面上的照度 C.降低墙面反光系数 D.提高墙面反光系数 10、为了防止直接眩光,应使眼睛与窗口,眼睛与画面边缘的连线所形成的夹角大于(A)。 A.14度 B.30度 C.60度 D.90度 11.采用天窗采光的美术馆,常采取措施降低展室中部观众区照度,其原因是(D )。 A、提高展览墙面照度 B、防止天窗产生直接眩光 C、消除一次反射眩光 D、消除二次反射眩光 12.在商店照明设计中,不宜采用(D ) A、白炽灯 B、卤钨灯 C、荧光灯 D、高压汞灯 13.有关光源色温的下列叙述中,(C)是正确的。 A、光源的色温是光源本身的温度 B、光源的色温是由光源的显色能决定的 C、光源的色温是由光源的光色决定的 D、白炽灯色温高于荧光高压汞灯 14. 在下列因素中,(B )与灯具的利用系数无关 A.灯具类型 B.灯泡电功率 C.房间尺寸 D房间表面反光系数.

建筑物理实验报告.

建筑物理实验报告[建筑热工、建筑光学和建筑声学实验] XXX XXXX XXXXXXX

建筑物理实验报告 第一部分建筑热工学实验 (一)温度、相对湿度 1、实验原理: 通过实验了解室外热环境参数测定的基本内容;初步掌握常用仪器的性能和使用方法;明确各项测量的目的;进一步感受和了解室外气象参数对建筑热环境的影响。 2、实验设备:TESTO 175H1温湿度计 3、实验方法:` (1)在测定前10min左右,把湿球温度计感应端的纱布用洁净水润湿。 (2)若为手动通风干湿球温度计,用钥匙上紧上部的发条,并把它悬挂于测点。待3~4min,当温度计数值稳定后,即可分别读取干、湿球温度计的指示值。读数时,视平线应与温度计水银面平齐。先读小数,后读整数。 (3)根据干湿球温度计的读数,获得测点空气温度。 (4)根据干、湿球温度计读数值查表,即可得到被测点空气的相对湿度。

4、实验结论和分析 室内温湿度 仪器:TESTO 175H1 位置湿度(%)温度(℃) 暖气上方A 24.5 17.5 桌面上方B 25.6 17.0 南边靠墙柜子C 25.5 16.8 室内门口处D 25.1 16.5 5.对测量结果进行思考和分析 根据测量的数据可以看出,室内各处的温度及湿度较为平均。暖气上方的区域温度较高而导致相对湿度较低。桌子由于靠近暖气,所以温度较高。柜子由于距离暖气较远,温度相对较低,较为接近室内的平均气温。门口处由于通风较好,温度较低,湿度相对较高。

(二)室内风向、风速 1、实验原理:QDF型热球式电风速计的头部有一直径约0.8mm的玻璃球,球内绕有镍镉丝线圈和两个串联的热电偶。热电偶的两端连接在支柱上并直接暴露于气流中。当一定大小的电流通过镍镉丝线圈时,玻璃球的温度升高,其升高的程度和气流速度有关。当流速大时,玻璃球温度升高的程度小;反之,则升高的程度大。温度升高的程度反映在热电偶产生的热电势,经校正后用气流速度在电表上表示出来,就可用它直接来测量气流速度。 2、实验设备:TESTO 425 3、实验方法: (1)把仪器杆放直,测点朝上,滑套向下压紧,保证测头在零风速下校准仪器。 (2)把校正开关置于“满度”位置,慢慢调整“满度调节”旋钮,使电表指针在满刻度的位置。再把校正开关置于“零位”的位置,用“粗调”、“细调”两个旋钮,使电表指针在零点的位置。 (3)轻轻拉动滑套,使侧头露出相当长度,让侧头上的红点对准迎风面,待指针较稳定时,即可从电表上读出风速的大小。若指针摇摆不定,可读取中间示值。 (4)风向可采用放烟或悬挂丝的方法测定。

《 建筑物理(声光) 》试卷B.doc

诚信应考,考试作弊将带来严重后果! 华南理工大学期末考试 《建筑物理(声光)》试卷B 注意事项:1. 考前请将密封线内各项信息填写清楚; 2. 所有答案请直接答在试卷上(或答题纸上); 3.考试形式:闭卷; 4. 本试卷共六大题,满分100分,考试时间120分钟。 建筑声学部分(50分) 一、名词解释(每小题3分,共计12分) 1. 回声 人耳能分清的强度突出的长延时反射声,将造成听闻干扰。 2. 吸声量 材料或构造的吸声系数与其面积(m2)的乘积,单位m2。 3. 混响声 在早期反射声后陆续到达的反射声

4.频谱 表示复音中不同频率组成的强度分布。频谱图的横坐标为频率,纵坐标为声压级。 二、选择题(共计30分) 1 下列物理量单位不正确的是( B )。(3分) A.吸声量 m2 B.声压级 Pa C.声功率 W D.响度级 Phon 2 对于1000Hz的声音,人听觉的下限声压级为0dB,其对应的声压为( C )P a。 A.0 B.10-12 C.2×10-5 D. 1 3 声音的三要素是指(A)。 A.声音的强弱、音调、音色 B.声音的频率、波长、声速 C.声压级、声强、声功率

D.响度、清晰度、空间感 4 下列构造中属于低频吸声构造的是( D )。 A.50mm厚玻璃棉实贴在墙上,外敷透声织物面 B.穿孔板(穿孔率为30%)后贴25厚玻璃棉 C.帘幕,打褶率100% D.七夹板后填50厚玻璃棉,固定在墙上,龙骨间距500×450 5 下面所列的四个数值中,哪一个最适宜为音乐厅混响时间( C ) A.0.5s B. 1.0s C. 1.8s D.3s 6 某声源单独作用时,自由声场中某点的声压级为50dB,当同一位置处声源 的数目增加至4个时,若不考虑干涉效应,声场中该点的声压级为( D )dB。(3分) A.200 B.53 C.54 D.56 7 下列声学现象中,不属于音质缺陷的是( B )。(3分)

建筑声学实验报告格式

大连理工大学本科实验报告 课程名称:建筑声学实验 学院(系):建筑与艺术学院专业:建筑学 班级:建筑1102班 学号:201155014 学生姓名:马新程 2014年6 月25 日

实验一:房间之间空气声隔声的现场测量 一、实验目的和要求 通过实验初步掌握声级计的使用方法和测试方法,掌握空气声隔声基本原理及影响隔声量的有关因素,了解空气声单一值评价的计算方法,增强对环境量化的认识,从而指导建筑设计。 二、实验原理和内容 在空气声隔声的现场测量中,我们用标准化声压级差来表达: 021lg 10T T L L D nT +-= D nT ——标准化声压级差(适用于空气声隔声的现场测量) L 1 ——发声室某倍频带的平均声压级,是该室各测点声压级能量平均值(dB)(注意按频率测) L 2 ——受声室某倍频带的平均声压级,是该室各测点声压级能量平均值(dB)(注意按频率测) T ——受声室内的混响时间 T 0 ——参考混响时间;对于住宅,T 0=0.5S 三、主要仪器设备 我们采用爱华6270C 精密声级计作为测量两室声压级的仪器,它兼作频率分析仪和记录仪(表头指示)。使用方法如下:

1、测量前的准备 将电池放入电池盒中(或接好外接电源),按下仪器面板上的“开/复位”按键,约 1秒后放开,仪器上的液晶显示器全部点亮,接着显示型号“6270”,2 秒后就可以正常使用了。如果显示不正常可再按一下“开/复位”键。 的测量 2、A声(压)级L A 按一下“开/复位”键或按中心频率上下移动键使液晶显示器的左右两边箭头不显示,仪器上显示的数值就是A声级,液晶显示器每秒刷新一次,声(压)级实际指的是一秒内的最大声级。 3、声压级(全通)Lp 的测量 按中心频率上下移动键使液晶显示器的左右两边箭头不显示,并且液晶显示器的左边出现“—”。此时仪器上显示的数值就是声压级Lp。测量声压级时滤波器为全通状态。 5、倍频带声压级的测量 按中心频率上下移动键使液晶显示器的左边箭头指向“125Hz”,此时仪器上显示的数值就是125 Hz中心频率倍频带的声压级。其余各倍频带声压级与此类似。 4、频谱分析时量程的设定 当仪器在测量倍频带声压级时,由于滤波器的动态范围不够大,所以仪器设有高、低两档量程。当所测噪声的声压级大于98dB时就应采用高量程,小于98dB 时可以采用低量程。按动“量程”键,可以使滤波器的量程在高、低之间来回切换。 其他仪器: 噪声信号发生器:JTS01 功率放大器:美国EV P1201 无指向性声源:荷兰Prite OS12 四、实验步骤与操作方法 (包含发声室、受声室平面及测点、声源布置图)

建筑物理声学计算题

声环境精选例题 【例1】例:某墙隔声量50,面积20m2 ,墙上一门,其隔声量20,面积2m2 ,求其组合墙隔声量。 【解】 组合墙平均透射系数为: τ (ττ)/() 其中:50 àτ10-520 àτ10-2 故,τ (20×10-5 + 20×10-2 )/(20+2)=9.2×10-4 故10(1/ τ c)=30.4d 【例2】某墙的隔声量,面积为。在墙上有一门,其隔声量,面积为。求组合墙的平均隔声量。 【解】此时组合墙的平均透射系数为: 即组合墙的平均隔声量,比单独墙体要降低20。 【例3】某长方形教室,长宽高分别为10米、6米、4米,在房间天花正中有一排风口,排风口内有一风机。已知装修情况如下表: (1)求房间的混响时间:T60(500);T60(2)。 (2)计算稳态声压级计算:风机孔处500(10.000001W),计算距声源5m处的声压级。 (3)计算房间的混响半径。

【解】 【例4】某一剧场,大厅体积为6000 m3,共1200座,500的空场混响时间为1.2秒,满场为0.9秒,求观众在500的人均吸声量。 【解】 人均吸声量为由赛宾公式可得: 空场时, 满场时, 解上两式有:805m2 =0.22 m2

【例5】一面隔墙,尺寸为3×9m,其隔声量为50,如果在墙上开了一个尺寸为0.8×1.2m的窗,其隔声量为20,而窗的四周有10的缝隙,该组合墙体的隔声量将为多少? 【解】: 计算墙、窗、缝的隔声量 1.5分 计算墙、窗、缝的面积 有等传声量设计原则: 得组合墙的透射量 1.5分 组合墙的隔声量2分 【例6】一房间尺寸为4×8×15米,关窗混响时间为1.2秒。侧墙上有8个1.5×2.0m 的窗,全部打开,混响时间为多少? 【解】利用赛宾公式求证: 体积15×8×4=480m3 关窗时的内表面积424m2,求房间的平均吸声系数 开窗时的室内表面积400m2 。窗的面积为24 m2

(完整版)建筑物理简答题、计算题重点摘要

热工 简答、名词解释、计算题 1、室外综合温度意义 也称为室外气候,是指作用在建筑外围护结构上的一切热、湿物理因素的总称,是影响室内热环境的首要因素。 2、最小总热阻的意义中[△t]意义及作用 意义:室内空气与围护结构内表面之间的允许温差。 作用:使用质量要求较高的房间,允许温差较小,相应的围护结构保温性能较高。(温差越小,最小传热阻越大) 3、露点温度:某一状态的空气,在含湿量不变的情况下,冷却到它的相对湿度达到100% 时所对应的温度,称为该状态下的空气的露点温度。 4、保温层放在承重层外有何优缺点 优点:1、使墙或屋顶的主要部分受到保护,大大降低温度应力的起伏,提高结构的耐久性;2、外保温对结构及房间的热稳定性有利;3、外保温有利于防止或减少保温层内部产生水蒸气凝结;4、外保温法使热桥处的热损失减少,能防止热桥内部表面局部结露5、对于旧房的节能改造,外保温处理的效果最好。 缺点:构造较复杂,造价高, 5、说明四种遮阳形式适应的朝向 水平式遮阳:能够有效的遮挡太阳高度角较大、从窗口前方投射下来的直射阳光。就我国地域而言它适用于南向附近的窗口;而在北回归线以南的地区,它既可用于南向窗口也可用于北向窗口。 垂直式遮阳:有效的遮挡太阳高度角较小、从窗侧向斜射过来的直射阳光,主要适用于北向、东北向和西北向附近的窗口。 综合室遮阳:有效的遮挡从窗前侧向斜射下来的、中等大小太阳高度角的直射阳光,主要适用于东南向或西南向附近的窗口,且适应范围较大。 挡板式遮阳:有效的遮挡从窗口正前方射来、太阳高度角较小的直射阳光,只要适用于东向、西向附近窗口。 6、气候通过那些途径作用于建筑 太阳辐射气温湿度风降水等 7、传热的几种方式以及各自的机理? 导热:当物体各部分之间不发生相对位移,或不同的物体直接接触时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递。 对流:指流体各部分之间发生相对运动, 互相掺混而传递热量。 热辐射:凡是温度高于绝对零度的物体,由于物体原子中的电子振动或激动,就会从表面向外界空间辐射出电磁波。(内能电磁波能内能) 8、P138、例1.5-4 9、节能建筑热工设计控制指标有哪些 名词解释 a、太阳常数:是进入地球大气的太阳辐射在单位面积内的总量。 b、相对湿度:一定大气压下,湿空气的绝对湿度(水蒸气分压力)与同温度下饱和湿空气的绝对湿度(水蒸气分压力)之比。建筑热工设计中常用来评价环境潮湿程度。

建筑物理声学考试题库

光源的基本特性 从照明应用的角度对光源的性能有以下要求: ①高光效——用少量的电获得更多的光; ②长寿命——耐用,光通衰减小; ③光色好——有适宜的色温和优良的显色性能; ④能直接在标准电源上使用; ⑤接通电源后立即燃亮; ⑥形状小巧,结构紧凑,便于控光。 热量传递有三种基本方式,即导热、对流和辐射。 导热系数(λ)的物理意义是,在稳定传热状态下当材料层厚度为1m、两表面的温差为1℃时,在1小时内通过1m2截面积的导热量。它是反映材料导热能力的主要指标。 自然对流是由于流体冷热部分的密度不同而引起的流动。 受迫对流是由于外力作用(如风吹、泵压等)而迫使流体产生对流。对流速度取决于外力的大小。外力愈大,对流愈强。 室内气候大致可分为:舒适的、可以忍受的和不能忍受的3种情况。

在进行建筑保温设计时,应注意以下几条基本原则: 一、充分利用太阳能 二、防止冷风的不利影响 三、选择合理的建筑体形与平面形式 四、使房间具有良好的热特性与合理的供热系统 露点温度 当空气中实际含湿量不变,即实际水蒸汽分压力e值不变,而空气温度降低时,相对湿度将逐渐增高;当相对湿度达到100%后,如温度继续下降,则空气中的水蒸汽将凝结析出。相对湿度达到100%,即空气达到炮和状态时所对应的温度,称为“露点温度”,通常以符号td表示。 空气湿度直接影响人体的蒸发散热,一般认为最适宜 在16~25℃时,相对湿度在30%~70%范围内变化,对人体的热感觉影响不大。但如湿度过低(低于30%)则人会感到干燥、呼吸器官不适;湿度过高则影响正

常排汗,尤其在夏季高温时,如湿度过高(高于70%)则汗液不易蒸发,最令人不舒适。 城市热岛 在建筑物及人群密集的大城市,由于地面覆盖物吸收的辐射热多、发热体也多,形成市中心的温度高于郊区,即“城市热岛”现象。 温和气候区:主要特征是一年中一段时期过冷,而另一段时期较热,月平均气温在最冷月份里可能低达~-15℃,而最热月份可高达25℃,一年中气温最大变化可从一30℃到十37℃,如意大利的米兰及中国的华北等地区。 北京(φ=40°)有一组住宅建筑,室外地坪的高度相同,设其朝向正南,后栋建筑一层窗台高1.5m(距室外地坪),前栋建筑总高15m(从室外地坪至檐口),则其计算高度H为13.5m,要求后栋建筑,在大寒日正午前后有2小时日照,查表得大寒日(1月22日)赤纬角δ为-20°,求其必须的建筑间距。 【解】①确定太阳赤纬角和时角:查表得大寒日(1月22日)赤纬角δ为-20°、由于建筑朝向正南,若要正午前后有2小时日照则最理想的日照时间是从11点到13点。在11点和13点二者的太阳高度角相同而方位角的正负号相反。因此,可以只取其中一个时角即可。如取11点,则按其时角Ω的计算公式可算得: Ω=15×(1-11)=-15° ②计算太阳高度角和方位角: 以φ=40°,δ=-20°,Ω=-15°代入公式 即:sinh = sin40°×sin(-20°)+cos40°×cos(-20°)×cos(-15°) = 0.473 h = 28.23°或28°14’ ③计算建筑日照间距D0: 由于建筑朝向正南,建筑日照间距的计算为: D0=13.5ctg28.23°×cos16.05° =24.1m 解得所需两栋建筑间的距离为至少 24.1m。 设建设地点、高度及日照要求均与上例同,但建筑朝向为南偏东15°,求最小建筑日照间距。

8建筑物理答案

渤海大学继续教育学院考试卷 年级专业建筑学学习形式科目《建筑物理》试卷A (参考答案) 学号姓名 …………………………………………………………………………………………………………………………………………… 题号一二三四五六七八九十总分 得分 一、选择题(每小题3分,共18分) ⒈实际测量时,背景噪声低于声级②分贝时可以不计入。 ①20 ②10 ③8 ④ 3 2.凹面易出现的声缺陷是③。 ①回声②颤动回声③声聚焦④声染色 3.降低室内外噪声,最关键的环节是控制④。 ①传播途径②接受处③规划④声源 4.邻室的噪声对此处干扰大,采取③措施最有效。 ①吸声处理②装消声器③隔声处理④吊吸声体 5.测点处的声压值增加一倍,相应的声压级增加④分贝 ① 2 ② 5 ③ 3 ④ 6 6.撞击声隔绝措施中,对高频声最有效的是②。 ①架空木地板②铺地毯③密封吊顶④面层下铺矿渣 二、填空题(每空1 分,共20分) 1.声音是弹性介质中,机械振动由近至远的传播。 2.材料的吸声系数是吸收声能+透射声能与入射声能的比值。 3.房间的混响时间越短,声学缺陷明显。 4.按投影面积计算空间吸声体的α值大于1,其原因是其表面积大于投影面积。 5.可见光就是光辐射中为人眼所感觉到的这部分电磁辐射,可见光的波段范围从 380nm 到 780nm 。 6.眩光的分类方法通常有两种:其一是从眩光形成的方式上进行分类,可把眩光分成直接眩光和间接眩光其二是从影响视功能方面进行分类,可把眩光分成不舒适眩光和失能眩光。 7.决定气候的主要因素有太阳辐射、大气环流、地面。 8.热压形成风的条件是温差、高差。 9. 声波遇到障碍物会发生绕射,当障碍物尺度<<声波波长时绕射显著。 10. 吸声量的单位是 m2。 三、简答题(每题6分,共42分) 1. 从人耳听闻频率特性、隔声屏障及建筑构件的隔声频率特性来说明隔声措施的有效性。 答:人耳对高频声敏感,对低频声迟钝,因此高频噪声对人的干扰大; 而隔声屏障及建筑构件隔高频声容易,隔低频声困难,因此对控制噪声干扰有效。 2. 厅堂可能出现哪些声学缺陷?如何消除? 答:厅堂可能出现的声学缺陷有:回声、颤动回声、声聚焦 消除回声:控制前部天花高度,后部天花和后墙作扩声和吸声处理 消除颤动回声:采用不平行墙面、墙面作扩声和吸声处理、墙面装修不平行 消除声聚焦:不用弧形墙面和壳形天花、作扩声和吸声处理、壳形天花曲率半径大 3. 设有一个乳白玻璃的球形灯,灯罩的直径为4厘米,其轴向发光强度为100坎德拉,求该灯的轴向亮度? 解: 2 2 / 79600 2 04 .0 100 cos m cd A I L= ? ? ? ? ? = = π α 4. 写出热辐射光源的发光原理,并写出2种热辐射光源的名称。 答:发光原理:当金属加热到大于1000K时,发出可见光。 如白织灯和卤钨灯 5. 请解释灯具效率这一术语,同时写出影响灯具效率的两个因素。 答:灯具效率——在规定条件下灯具发射的光通量与灯具内全部光源的额定光通量之比。灯具效率与灯罩开口大小、灯罩材料的光反射比和光透射比大小有关。 1

建筑声学测量方案

建筑声学测量方案 适用范围 1、建筑构件隔声测量 ( 1)概述:隔声测量主要测量发声室和受声室两侧不同中心频率下的声压级差。根据传播途径的不同分为: A、建筑构件的空气声隔声测量; B、楼板撞击声隔声测量。 (2)相关标准: GB/T50121-2005 建筑隔声评价标准GB/T19889 声学建筑和建筑构件隔声测量(第1~10 部分) 第 1 部分:侧向传声受抑制的实验室测试设施要求 ; 第 2 部分:数据精密度的确定、验证和应 用 ; 第 3 部分:建筑构件空气声隔声的实验室测量 ; 第 4 部分:房间之间空气声隔声的现 场测量 ; 第 5 部分:外墙构件和外墙空气声隔声的现场测量 ; 第 6 部分:楼板撞击声隔声 的实验室测量 ; 第 7 部分:楼板撞击声隔声的现场测量 ; 第 8 部分:重质标准楼板覆面层 撞击声改善量的实验室测量; 第9 部分:吊顶上空相通的两室之间空气声隔声的实验室测量第 10 部分:小建筑构件空气声隔声的实验室测量 2、室内混响时间测量 (1)概述:声音达到稳态后停止发声,平均声能密度自原始值衰减 60 dB所需要的时间,称之为混 响时间,记做 T60,单位为秒(s)。 中断声源法是声源发声达到稳态后,突然切断声源停止发声,直接记录室内声压级 衰减曲线的方法。 ( 2 ) 相关标准: GBJ 76-84 厅堂混响时间测量规范 ISO 3382-2 : 2008 声学房间声学参数的测量一般房间混响时间测量新的《室内混响时间测量规范》国家标准正在制定中 3、混响室吸声测量 ( 1) 概述:在混响室内测量用于处理墙壁或顶部等界面的声学材料的吸声系数,或诸如家具、人、空间吸声体等的吸声量的方法。 按混响室放入吸声材料前和放入吸声材料后混响时间的差异,计算吸声材料的吸声系数。这里吸声系数是指试件吸声量与试件面积的比值。用于测量声音无规入 射时的吸声系数,即声音由四面八方入射材料时能量损失的比例。 ( 2) 相关标准: GB/T 20247-2006 声学混响室吸声测量

建筑物理声学计算题汇总题库

声环境精选例题 【例1】例:某墙隔声量Rw=50dB,面积Sw=20m2 ,墙上一门,其隔声量Rd=20dB,面积2m2 ,求其组合墙隔声量。 【解】 组合墙平均透射系数为: τ c=(τw S w+τd S d)/(S w+S d) 其中:Rw=50dB àτw=10-5,Rd=20dB àτw=10-2 故,τ c=(20×10-5 + 20×10-2 )/(20+2)=9.2×10-4 故Rc=10lg(1/ τ c)=30.4d 【例2】某墙的隔声量,面积为。在墙上有一门,其隔声量,面积为。求组合墙的平均隔声量。 【解】此时组合墙的平均透射系数为: 即组合墙的平均隔声量,比单独墙体要降低20dB。 【例3】某长方形教室,长宽高分别为10米、6米、4米,在房间天花正中有一排风口,排风口内有一风机。已知装修情况如下表: 吸声系数a 500Hz 2000Hz 墙:抹灰实心砖墙0.02 0.03 地面:实心木地板0.03 0.03 天花:矿棉吸音板0.17 0.10 (1)求房间的混响时间:T60(500Hz);T60(2kHz)。 (2)计算稳态声压级计算:风机孔处W=500uW(1uw=0.000001W),计算距声源5m处的声压级。

(3)计算房间的混响半径。 【解】 【例4】某一剧场,大厅体积为6000 m3,共1200座,500Hz的空场混响时间为1.2秒,满场为0.9秒,求观众在500Hz的人均吸声量。 【解】 人均吸声量为由赛宾公式可得: 空场时, 满场时, 解上两式有:A=805m2

=0.22 m2 【例5】一面隔墙,尺寸为3×9m,其隔声量为50dB,如果在墙上开了一个尺寸为0.8×1.2m的窗,其隔声量为20dB,而窗的四周有10mm的缝隙,该组合墙体的隔声量将为多少dB? 【解】: 计算墙、窗、缝的隔声量--------1.5分 计算墙、窗、缝的面积 有等传声量设计原则: 得组合墙的透射量-------1.5分 组合墙的隔声量------2分 【例6】一房间尺寸为4×8×15米,关窗混响时间为1.2秒。侧墙上有8个1.5×2.0m 的窗,全部打开,混响时间为多少? 【解】利用赛宾公式求证: A=S 体积V=15×8×4=480m3 关窗时的内表面积S=424m2,求房间的平均吸声系数 开窗时的室内表面积S=400m2 。窗的面积为24 m2

建筑物理声学复习

建筑物理(声学复习)

————————————————————————————————作者: ————————————————————————————————日期:

第10章 建筑声学基本知识 1. 声音的基本性质 ①声波的绕射 当声波在传播途径中遇到障板时,不再是直线传播,而是绕到障板的背后改变原来的传播方向,在它的背后继续传播的现象。 ②声波的反射 当声波在传播过程中遇到一块尺寸比波长大得多的障板时,声波将被反射。 ③声波的散射(衍射) 当声波传播过程中遇到障碍物的起伏尺寸与波长大小接近或更小时,将不会形成定向反射,而是声能散播在空间中,这种现象称为散射,或衍射。 ④声波的折射 像光通过棱镜会弯曲,介质条件发生某些改变时,虽不足以引起反射,但声速发生了变化,声波传播方向会改变。这种由声速引起的声传播方向改变称之为折射。 白天向下弯曲 夜晚向上弯曲 顺风向下弯曲 逆风向上弯曲 ⑤声波的透射与吸收 当声波入射到建筑构件(如顶棚,墙)时,声能的一部分被反射,一部分透过构件,还有一部分由于构件的振动或声音在其内部传播时介质的摩擦或热传导而被损耗(吸收)。 根据能量守恒定理: 0E E E E γατ=++ 0E ——单位时间入射到建筑构件上总声能; E γ——构件反射的声能; E α——构件吸收的声能; E τ——透过构件的声能。 透射系数0/E E ττ=; 反射系数0/E E γγ=; 实际构件的吸收只是E α,但从入射波和反射波所在空间考虑问题,常常定义吸声系数为: 11E E E E E γατ αγ+=-=- = ⑥波的干涉和驻波 1.波的干涉:当具有相同频率、相同相位的两个波源所发出的波相遇叠加时,在波重叠的区域内某些点处,振动始终彼此加强、而在另一些位置,振动始终互相削弱或抵消的现象。 2.驻波:两列同频率的波在同一直线上相向传播时,可形成驻波。

建筑物理——建筑声学习题

建筑物理——建筑声学习题 一、选择题 1.5个相同的声压级迭加,总声级较单个增加分贝。 A 3 B 5 C 7 D 10 2.4个相同的声压级迭加,总声级较单个增加分贝。 A 3 B 5 C 6 D 10 3.+10dB的声音与-10dB的声音迭加结果约为分贝。 A 0B13 C 7 D 10 4.50dB的声音与30dB的声音迭加结果约为分贝。 A 80B50 C 40 D 30 5.实际测量时,背景噪声低于声级分贝时可以不计入。 A 20 B 10 C 8 D 3 6.为保证效果反射板的尺度L与波长间的关系是。 A L<λ B L≥0.5λ C L≥1.5λ D L>>λ 7.易对前排产生回声的部位是。 A 侧墙 B 银幕 C 乐池 D 后墙 8.围护结构隔声性能常用的评价指标是。 A I a B M C α D L p 9.避免厅堂简并现象的措施是。 A 缩短T60 B 强吸声 C 墙面油漆 D 调整比例 10.当构件的面密度为原值的2倍时,其隔声量增加分贝。 A 3 B 6 C 5 D 10 11.测点处的声压值增加一倍,相应的声压级增加分贝。 A 2 B 5 C 3 D 6 12.70dB的直达声后,以下的反射声将成为回声。 A 20ms65d B B 70ms64dB C 80ms45dB D 30ms75dB 13.邻室的噪声对此处干扰大,采取措施最有效。 A 吸声处理 B 装消声器 C 隔声处理 D 吊吸声体 14.对城市环境污染最严重的噪声源是。 A 生活 B 交通 C 工业 D 施工 15.吸声处理后混响时间缩短一半则降噪效果约为分贝。 A 2 B 5 C 3 D 10 16.凹面易产生的声缺陷是。 A 回声 B 颤动回声 C 声聚焦 D 声染色 17.厅堂平行墙面间易产生的声学缺陷是。 A 回声 B 颤动回声 C 声聚焦 D 声染色 18.多孔吸声材料仅增加厚度,则其吸声特性最明显的变化趋势是。 A 高频吸收增加 B 中低频吸收增加 C 共振吸收增加 D 中低频吸收减少19.某人演唱时的声功率为100微瓦,他发音的声功率级是分贝。 A 50 B 110 C 80 D 100 20.普通穿孔板吸声的基本原理是。 A 微孔吸声 B 共振吸声 C 板吸声 D 纤维吸声 21.多孔吸声材料吸声的基本原理是。 A 微孔吸声 B 共振吸声 C 板吸声 D 纤维吸声 22.薄板吸声构造的吸声特性主要吸收。 A 高频 B 中频 C 中低频 D 低频 23.降低室内外噪声,最关键、最先考虑的环节是控制。 A 传播途径 B 接受处 C 规划 D 声源 24.A声级采用的是方倒置等响曲线作为计权网络所测得的声压级。 A 40 B 50 C 80 D 100 25.为避免声影,挑台高度h与深度b的关系是。

建筑物理习题及答案2

建筑环境物理试题(1)及答案 建筑热工部分(34分) 一、填空(每题3分,共12分) 1、空气的绝对湿度b反映空气的潮湿程度。(a.能;b.不能) 2、下列各量的单位是:对流换热系数α b ;热阻R a (a.m2K/W;b.W/m2K) 3、太阳赤纬角的变化范围c a.[0°,90°); b. [0°,90°]; c. [-23°27’,23°27’] 4、人体正常热平衡是指对流换热约占25%~30%;辐射换热约占45%~50%,蒸发 散热约占25%~30% 二、回答问题(每题3分,共15分) 1、说明室外综合温度的意义 答:室外综合温度是由室外空气温度、太阳辐射当量温度和建筑外表面长波辐射温度三者叠加后综合效果的假想温度 2、说明最小总热阻的定义式中[Δt] 的意义和作用 答:[Δt]为室内空气温度和围护结构内表面间的允许温差。其值大小反映了围护结构保温要求的高低,按[Δt]设计的围护结构可保证内表面不结露,θi不会太低而产生冷辐射。 3、说明露点温度的定义 答:露点温度是空气中水蒸气开始出现凝结的温度 4、保温层放在承重层外有何优缺点? 答:优点:(1)大大降低承重层温度应力的影响 (2)对结构和房间的热稳定性有利 (3)防止保温层产生蒸气凝结 (4)防止产生热桥 (5)有利于旧房改造 缺点:(1)对于大空间和间歇采暖(空调)的建筑不宜 (2)对于保温效果好又有强度施工方便的保温材料难觅 5、说明四种遮阳形式适宜的朝向 答:水平遮阳适宜接近南向的窗口或北回归线以南低纬度地区的北向附近窗口垂直遮阳主要适宜东北、北、西北附近窗口 综合遮阳主要适宜东南、西南附近窗口 挡板遮阳主要适宜东、南向附近窗口 建筑光学部分(33分) 一、术语解释,并按要求回答(每小题2分,共10分) 1、照度:被照面上某微元内光通量的面密度 2、写出光通量的常用单位与符号 光通量的常用单位:流明,lm (1分) 符号:φ(1分) 3、采光系数:室内某一点天空漫射光照度和同一时间的室外无遮挡水平面上天空漫射 光照度之比值 4、光强体:灯具各方向的发光强度在三维空间里用矢量表示,由矢量终端连接起来的 封闭体 5、混合照明:一般照明与局部照明组成的照明 二、解答题(每小题4分,共16分) 1、写出国际照明委员会的标准晴天空亮度分布规律。 答:(1)晴天空亮度以太阳子午圈为对称(1分) (2)最亮在太阳附近天空(1分) (3)晴天空亮度离太阳愈远愈小,最小点在太阳子午圈上且与太阳成90°(2分) 2、叙述侧面采光(侧窗)的优点和缺点。 答:优点:(1)建造和维护费用低(1分)

(整理)建筑物理声学选择题72道

声学选择题72道 1、人耳听觉最重要的部分为: A.20~20KHz B.100~4000Hz C.因人而异,主要在50Hz左右 D.因人而异,主要在1000Hz左右 2、以下说法正确的有: A.0℃时,钢中、水中、空气中的声速约5000m/s、1450m/s、331m/s。 B.0℃时,钢中、水中、空气中的声速约2000m/s、1450m/s、340m/s。 C.气压不变,温度升高时,空气中声速变小。 3、公路边一座高层建筑,以下判断正确的是: A.1层噪声最大,10层、17层要小很多,甚至听不见 B.1层噪声最大,10层、17层要小一些,但小得不多 C.1层、10层、17层噪声大小完全一样 4、倍频程500Hz的频带为_______,1/3倍频程500Hz的频带为_________。 A.250-500Hz,400-500Hz B. 500-1000Hz,500-630Hz C.355-710Hz,430-560Hz D.430-560Hz,355-710Hz 5、从20Hz-20KHz的倍频带共有_____个。 A.7 B.8 C.9 D.10 6、“1/3倍频带1KHz的声压级为63dB”是指_______。 A.1KHz频率处的声压级为63dB B.900-1120Hz频率范围内的声压级的和为63dB C.710-1400Hz频带范围内的声压级的和为63dB D.333Hz频率处的声压级为63dB 7、古语中“隔墙有耳”、“空谷回音”、“未见其面,先闻其声”中的声学道理为:________。 A.透射、反射、绕射 B.反射、透射、绕射 C.透射、绕射、反射 D.透射、反射、反射 8、一个人讲话为声压级60dB,一百万人同时讲话声压级为________。 A.80dB B.100dB

建筑物理(声学).do

1.吸声材料和吸声结构的分类?①多孔材料,板状材料,穿孔板,成 型顶棚吸声板,膜状材料,柔性材料吸声结构:共振吸声结构,包括1。空腔共振吸声结构,2。薄膜,薄板共振吸声结构。其他吸声结构:空间吸声体,强吸声结构,帘幕,洞口,人和家具,空气吸收(空气热传导性,空气的黏滞性和分子的弛豫现象,前两种比第三种的吸收要小得多)。吸声与隔声有什么区别?吸声量与隔声量如何定义?它们与那些因素有关?答:吸声指声波在传播途径中,声能被传播介质吸收转化为热能的现象。隔声指防止声波从构件一侧传向另一侧。吸声量:指材料的吸声面积与其吸声系数的乘积,单位为m2。隔声量:指建筑构件的传声损失,,单位为(dB)。 它们主要与构件的透射系数有关,和构件的反射系数和吸声系数有关。 2.衍射的定义:当声波在传播过程中遇到障碍物的起伏尺寸与波长大 小接近或更小时,将不会形成定向反射,而是声能散播在空间中,这种现象称为散射,或衍射。影响因素:障碍物的尺寸或缝孔的宽度与波长接近或更小时,才能观察到明显的衍射现象,不是决定衍射能否发生的条件,仅是使衍射现象明显表现的条件,波长越大,越容易发生衍射现象。 3.解释“波阵面”的概念,在建筑声学中引入“声线”有什么作用? 答:声波从声源发出,在某一介质内向某一方向传播,在同一时刻,

声波到达空间各点的包迹面称为“波阵面”,或“波前”。“声线”主要是可以较方便地表示出声音的传播方向;利用作图法确定反射板位置和尺寸。波阵面为平面的称为“平面波”,波阵面为球面的称为“球面波”。 4.什么是等响线?从等响线图说明人耳对声音的感受特性。答:等响线是指响度相同的点所组成的频谱特征曲线,从等响线图可知:1.人耳在高声压级下,对声音频率的响应较一致;2.在低声压级下,人耳对于低于1000Hz的声音和高于4000Hz的声音较不敏感,而对1000Hz~ 4000Hz的声音感受最为敏锐;3.在同一频率下,声压级提高10dB,相对响度提高一倍。 5. 等效连续A声级解释Leq,L50 LA表示什么意义?答: Leq 的含义是:噪声的A声级是变化的,不能简单的使用某一时刻的A声级,需要使用在一段时间内使用平均A声级来表示能量平均,即Leq。L50的意义是: L50 表示在所测的时间范围内有百分之50的时间出现了A声级大于 L50 的情况。如:L10=70dB,表示有10%的时间里噪声的A声级超过了70dB。Las是声级计上的A计权网络直接读出的数据,单位dB。等效连续A声级:噪声评价的一种方法。在规定的时间内某一连续稳态声的A(计权网络)声压具有与时间变化的噪声相同的均方A声压级,则这一连续稳态的声级就是此时间变化噪声的等效声级。

建筑物理——建筑声学习题

建筑声学习题 一、选择题 1.5个相同的声压级迭加,总声级较单个增加分贝。 A 3 B 5 C 7 D 10 2.4个相同的声压级迭加,总声级较单个增加分贝。 A 3 B 5 C 6 D 10 3.+10dB的声音与-10dB的声音迭加结果约为分贝。 A 0B13 C 7 D 10 4.50dB的声音与30dB的声音迭加结果约为分贝。 A 80B50 C 40 D 30 5.实际测量时,背景噪声低于声级分贝时可以不计入。 A 20 B 10 C 8 D 3 6.为保证效果反射板的尺度L与波长间的关系是。 A L<λ B L≥0.5λ C L≥1.5λ D L>>λ 7.易对前排产生回声的部位是。 A 侧墙 B 银幕 C 乐池 D 后墙 8.围护结构隔声性能常用的评价指标是。 A I a B M C α D L p 9.避免厅堂简并现象的措施是。 A 缩短T60 B 强吸声 C 墙面油漆 D 调整比例 10.当构件的面密度为原值的2倍时,其隔声量增加分贝。 A 3 B 6 C 5 D 10 11.测点处的声压值增加一倍,相应的声压级增加分贝。 A 2 B 5 C 3 D 6 12.70dB的直达声后,以下的反射声将成为回声。 A 20ms65d B B 70ms64dB C 80ms45dB D 30ms75dB 13.邻室的噪声对此处干扰大,采取措施最有效。 A 吸声处理 B 装消声器 C 隔声处理 D 吊吸声体 14.对城市环境污染最严重的噪声源是。 A 生活 B 交通 C 工业 D 施工 15.吸声处理后混响时间缩短一半则降噪效果约为分贝。 A 2 B 5 C 3 D 10 16.凹面易产生的声缺陷是。 A 回声 B 颤动回声 C 声聚焦 D 声染色 17.厅堂平行墙面间易产生的声学缺陷是。 A 回声 B 颤动回声 C 声聚焦 D 声染色 18.多孔吸声材料仅增加厚度,则其吸声特性最明显的变化趋势是。 A 高频吸收增加 B 中低频吸收增加 C 共振吸收增加 D 中低频吸收减少19.某人演唱时的声功率为100微瓦,他发音的声功率级是分贝。 A 50 B 110 C 80 D 100 20.普通穿孔板吸声的基本原理是。 A 微孔吸声 B 共振吸声 C 板吸声 D 纤维吸声 21.多孔吸声材料吸声的基本原理是。 A 微孔吸声 B 共振吸声 C 板吸声 D 纤维吸声 22.薄板吸声构造的吸声特性主要吸收。 A 高频 B 中频 C 中低频 D 低频 23.降低室内外噪声,最关键、最先考虑的环节是控制。 A 传播途径 B 接受处 C 规划 D 声源 24.A声级采用的是方倒置等响曲线作为计权网络所测得的声压级。 A 40 B 50 C 80 D 100 25.为避免声影,挑台高度h与深度b的关系是。

建筑声学标准GB12521990建筑施工场界噪声限值

建筑声学标准GB 12523-1990 建筑施工场界噪声限值。 GB 50009-2001 建筑结构荷载规范。 GB 50121-2005 建筑隔声评价标准。 GB 50339-2003 智能建筑工程质量验收规范。 GB/T 11670-1989 声学实验室标准电容传声器的特性与规范。 GB/T 12060-1989 声系统设备一般术语解释和计算方法。 GB/T 12524-1990 建筑施工场界噪声测量方法。 GB/T 14476-1993 客观评价厅堂语言可懂度的“RASTI”法。 GB/T 15261-94 超声仿人体组织材料声学特性的测量方法。 GB/T 16406-1996 声学声学材料阻尼性能的弯曲共振测试方法。 GB/T 16463-1996 广播节目声音质量主观评价方法和技术指标要求。 GB/T 16538-1996 声学声压法测定噪声源声功率级使用标准声源简易法。 GB/T 16593-1996 声学振速法测定噪声源声功率级用于封闭机器的测量。 GB/T 1670-1997 建筑用门空气声隔声性能分级及其检测方法。 GB/T 16730-1997 建筑用门空气声隔声性能分级及其检测方法。 GB/T 16731-1997 建筑吸声产品的吸声性能分级。 GB/T 17247.1-2000声学户外声传播衰减第1部分:大气声吸收的计算。 GB/T 17247.2-1998声学户外声传播的衰减第2部分:一般计算方法。 GB/T 17311-1998标准音量表。 GB/T 17561-1998 声强测量仪用声压传声器对测量。 GB/T 17696-1999 声学测听方法第3部分语言测听。 GB/T 17697-1999 声学风机辐射入管道的声功率测定管道法。 GB/T 18022-2000 声学1-10MHz频率范围内橡胶和塑料纵波声速与衰减系数的测量方法。GB/T 18204.22-2000公共场所噪声测定方法。 GB/T 18313-2001 声学信息技术设备和通信设备。 GB/T 18321-2001 农用运输车噪声限值。 GB/T 1859-2000 往复式内燃机辐射的空气噪声测量工程法及简易法。 GB/T 18696.1-2004声学阻抗管中吸声系数和声阻抗的测量第1部分:驻波比法。 GB/T 18696.2-2002声学阻抗管中吸声系数和声阻抗的测量第2部分:传递函数法。 GB/T 18697-2002 声学汽车车内噪声测量方法。 GB/T 18699.1-2002声学隔声罩的隔声性能测定第1部分:实验室条件下测量(标示用)。GB/T 18699.2-2002声学隔声罩的隔声性能测定第2部分:现场测量(验收和验证用)。GB/T 19052-2003 声学机器和设备发射的噪声噪声测试规范起草和表述的准则。 GB/T 19512-2004 声学消声器现场测量。 GB/T 19513-2004 声学规定实验室条件下办公室屏障声衰减的测量。 GB/T 2820.10-2002往复式内燃机驱动的交流发电机组第10部分:噪声的测量(包面法)。GB/T 2888-1991 风机和罗茨鼓风机噪声测量方法。 GB/T 3222-1994 声学环境噪声测量方法。 GB/T 3238-1982 声学量的级及其基准值。 GB/T 3239-1982 空气中声和噪声强弱的主观和客观表示法。 GB/T 3240-1982 声学测量中的常用频率。 GB/T 3241-1998 倍频程和分数倍频程滤波器。 GB/T 3450-1994 铁路机车司机室噪声允许值。 GB/T 3557-1994 电影院视听环境技术要求。

相关主题
文本预览
相关文档 最新文档