当前位置:文档之家› (完整版)材料力学复习重点汇总

(完整版)材料力学复习重点汇总

(完整版)材料力学复习重点汇总
(完整版)材料力学复习重点汇总

材料力学性能

1.填空题:30个15分

2.判断题:20个10分

3.名词解释 10个20分

4.问答题:6个35分

5.计算题:2个20分

第一章单向静拉伸力学性能

一、解释下列名词。

2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

11.韧脆转变温度:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这个温度称

为韧脆转变温度。

15.解理刻面:在解理断裂中具有低指数,表面能低的晶体学平面叫解理面。这种大致以晶粒大小为单位的解理面称为解理刻面。

17.约比温度:材料的实验温度与熔点的比值。高于这个温度的环境叫高温环境,材料的性能会随时间和温度而变化。

18.松弛稳定性:金属抵抗应力松弛的性能。

19.低周疲劳:金属材料在循环载荷作用下,疲劳寿命为102-104次的疲劳断裂叫低周疲劳。

四、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些?

答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。

八、什么是包申格效应,如何解释,它有什么实际意义?

包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

包申格效应与金属材料中位错运动所受的阻力变化有关。在金属预先受载产生少量塑性变形时,位错沿某一滑移面运动,遇林位错而弯曲,结果,在位错前方,林位错密度增加,形成位错缠结和胞状组织。这种位错结构在力学上是相当稳定的,宏观上表现为规定残余伸长应力增加。

卸载后施加反向力,位错被迫作反向运动,在反向路径上,像林位错这类障碍数量较少,而且也不一定恰好位于位错运动的前方,故位错可以在较低应力下移动较大距离,即第二次反向加载,规定残余伸长应力降低。

包申格效应对于研究金属疲劳问题是很重要的。因为材料在疲劳过程中,每一周期内都产生微量塑性变形,在反向加载时,微量塑性变形抗力(规定残余伸长应力)降低,显示循环软化现象。另外,对于预先经受冷变形的材料,如服役时受到反向力的作用,就要考虑微量塑性变形抗力降低的有害影响,如冷拉型材及管子在受压状态下使用就是这种情况。

十、试简述纯剪切断裂、解理断裂以及微孔聚集型断裂的断口特征

解理断裂:无明显塑性变形,沿解理面断裂,穿晶断裂;

微孔聚集型断裂:沿晶界微孔聚合,沿晶断裂;在晶内微孔聚合,穿

晶断裂;

纯剪切断裂:沿滑移面分离剪切断裂(单晶体);通过颈缩导致最终

断裂(多晶体,高纯金属)。

十一、试分析金属材料在屈服阶段为何存在上下屈服点? 位错运动速率与外加应力有强烈的依存关系,v b ρε=?。变形初期可动的位错较少ρ较低,为了满足一定的应变速率v b ρε=?,必须增大位错的运动速率v ,而m v )(0

ττ=正比于剪切应力,因此需要较高的应力τ才能发生屈服,此时出现上屈服点;一旦发生塑性变形,位错大量增殖,ρ增大,则为保持运动速率恒定v b ρε=?,相应的运动速率v 和应力τ降低,就出现下屈服点。

第二章 金属在其他静载荷下的力学性能

一、解释下列名词:

(3)缺口敏感度——金属材料的缺口敏感性指标,用缺口试样的抗拉强度与等截面尺寸光滑试样的抗拉强度的比值表示。即: b

bN NSR σσ

=【P47 P55 】

三、什么是“缺口效应”?它对材料性能有什么影响?【P45 P53】

缺口的第一个效应是引起应力集中,并改变了缺口前方的应力状态,

使机件由原来的单向应力状态改变为两向或三向应力状态。缺口的第二个效应是试样的屈服应力比单向拉伸时高,即产生了所谓“缺口强化”现象,导致材料强度提高,塑性降低。由于缺口的存在,是缺口处产生较大的应力集中,材料变脆,降低了使用的安全性。

五、试说明布氏硬度、洛氏硬度与维氏硬度的实验原理,并比较布氏、洛氏与维氏硬度试验方法的优缺点。【P49 P57】

原理

布氏硬度:用钢球或硬质合金球作为压头,计算单位表面积所承受的试验力。

洛氏硬度:采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度。

维氏硬度:以两相对面夹角为136。的金刚石四棱锥作压头,计算单位表面积所承受的试验力。

布氏硬度优点:实验时一般采用直径较大的压头球,因而所得的压痕面积比较大。压痕大的一个优点是其硬度值能反映金属在较大范围内各组成相得平均性能;另一个优点是实验数据稳定,重复性强。缺点:对不同材料需更换不同直径的压头球和改变试验力,压痕直径的测量也较麻烦,因而用于自动检测时受到限制。

洛氏硬度优点:操作简便,迅捷,硬度值可直接读出;压痕较小,可在工件上进行试验;采用不同标尺可测量各种软硬不同的金属和厚薄不一的试样的硬度,因而广泛用于热处理质量检测。缺点:压痕较小,代表性差;若材料中有偏析及组织不均匀等缺陷,则所测硬度值重复性差,分散度大;此外用不同标尺测得的硬度值彼此没有联系,不能直接比较。

维氏硬度优点:不存在布氏硬度试验时要求试验力F与压头直径D之间所规定条件的约束,也不存在洛氏硬度试验时不同标尺的硬度值无法统一的弊端;维氏硬度试验时不仅试验力可以任意取,而且压痕测量的精度较高,硬度值较为准确。缺点是硬度值需要通过测量压痕对角线长度后才能进行计算或查表,因此,工作效率比洛氏硬度法低的多。

七、布氏硬度与洛氏硬度的测量方法有何不同? HRA、HRB、HRC分别用于测量何种材料的硬度?

布氏硬度:用钢球或硬质合金球作为压头,计算单位表面积所承受的试验力。

洛氏硬度:采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度。

HRA用于测量硬质合金、硬化薄钢板,表面薄层硬化钢;

HRB用于测量低碳钢,铜合金,铁素体可锻铸铁;

HRC用于测量淬火钢、高硬度铸件、珠光体可锻铸铁。

第三章金属在冲击载荷下的力学性能

一、名词解释

3.低温脆性:体心立方晶体金属及合金或某些密排六方晶体金属及其合金,特别是工程上常用的中、低强度结构钢(铁素体-珠光体钢),在试验温度低于某一温度

t时,会由韧性状态变为脆性状态,冲击吸收功明显下

k

降,断裂机理由微孔聚集型变为穿晶解理型,断口特征由纤维状变为结晶状,这就是低温脆性。

四、什么是低温脆性、韧脆转变温度t k?产生低温脆性的原因是什么?体心立方和面心立方金属的低温脆性有何差异?为什么?

答:在试验温度低于某一温度t k时,会由韧性状态转变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型转变穿晶断裂,断口特征由纤维状转变为结晶状,这就是低温脆性。 t k称为韧脆转变温度。

低温脆性是材料屈服强度随温度降低而急剧增加,而解理断裂强度随温度变化很小的结果。当温度高于韧脆转变温度时,断裂强度大于屈服强度,材料先屈服再断裂;当温度低于韧脆转变温度时,断裂强度小于屈服强度,材料无屈服直接断裂。

体心立方金属的低温脆性比面心立方金属的低温脆性显著。

这是因为派纳力对其屈服强度的影响占有很大比重,而派纳力是短程力,对温度很敏感,温度降低时,派纳力大幅增加,则其强度急剧增加而变脆。

六、试述冲击载荷作用下金属变形和断裂的特点。

冲击载荷下,瞬时作用于位错的应力相当高,结果使位错运动速率增加,因为位错宽度及其能量与位错运动速率有关,运动速率越大,则能量越大,宽度越小,故派纳力越大。结果滑移临界切应力增大,金属产生附加强化。

由于冲击载荷下应力水平比较高,将使许多位错源同时开动,增加了位错密度和滑移系数目,出现孪晶,减少了位错运动自由行程的平均长度,增加了点缺陷的浓度。这些原因导致金属材料在冲击载荷作用下塑性变形极不均匀且难以充分进行,使材料屈服强度和抗拉强度提高,塑性和韧性下降,导致脆性断裂。

第四章金属的断裂韧度

一、名词解释

1.低应力脆断:高强度、超高强度钢的机件,中低强度钢的大型、重型机件在屈服应力以下发生的断裂。

3.应力场强度因子I K:表示应力场的强弱程度。在裂纹尖端区域各点的应力分量除了决定于位置外,尚与强度因子I K有关,对于某一确定的点,其应力分量由I K确定,I K越大,则应力场各点应力分量也越大,这样I K就可以表示应力场的强弱程度,称I K为应力场强度因子。“I”表示I型裂纹。【P68】

4.小范围屈服: 塑性区的尺寸较裂纹尺寸及净截面尺寸小一个数量级以上的屈服,这就称为小范围屈服。【P71】

6.有效裂纹长度:将原有的裂纹长度与松弛后的塑性区相重合并得到的裂纹长度【新P74;旧P86】。

五、 试述应力场强度因子的意义及典型裂纹I K 的表达式

答:应力场强度因子I K :表示应力场的强弱程度。 在裂纹尖端区域各点的应力分量除了决定于位置外,尚与强度因子I K 有关,对于某一确定的点,其应力分量由I K 确定, I K 越大,则应力场各点应力分量也越大,这样I K 就可以表示应力场的强弱程度,称I K 为应力场强度因子。 “I ”表示I 型裂

纹。 几种裂纹的I K 透裂纹:)(b a f a K πσ=I ;有限宽板单边直裂纹:)(b a f a K πσ=I 当b ≥a 时,a K πσ2.1=I ;受弯单边裂纹梁:)()(62/3b

a f a

b M K -=I ;无限大物体内部有椭圆片裂纹,远处受均匀拉伸:4/12222

)cos (sin ββπσc a a

K +Φ=I ;无限大物体表面

有半椭圆裂纹,远处均匀受拉伸:A 九、有一大型板件,材料的σ0.2=1200MPa ,K Ic =115MPa*m 1/2,探伤发现有20mm

长的横向穿透裂纹,若在平均轴向拉应力900MPa 下工作,试计算K I 及塑

性区宽度R 0,并判断该件是否安全?

解:由题意知穿透裂纹受到的工作应力为σ=900MPa

根据σ/σ0.2的值,确定裂纹断裂韧度K IC 是否需要修正

因为σ/σ0.2=900/1200=0.75>0.7,所以裂纹断裂韧度K IC 需要修正

对于无限板的中心穿透裂纹,修正后的K I 为:

因为K I =168.13(MPa*m 1/2)

K Ic =115(MPa*m 1/2)

所以:K I >K Ic ,裂纹会失稳扩展 , 所以该件不安全。

第五章 金属的疲劳

一、名词解释;

1.应力幅σa :σa =1/2(σmax -σmin ) p95/p108

2.平均应力σm :σm =1/2(σmax +σmin ) p95/p107

3.应力比r:r=σmin /σmax p95/p108

5.疲劳贝纹线:是疲劳区的最大特征,一般认为它是由载荷变动引起的,

是裂纹前沿线留下的弧状台阶痕迹。 P97/p110

6.疲劳条带:疲劳裂纹扩展的第二阶段的断口特征是具有略呈弯曲并相互

平行的沟槽花样,称为疲劳条带(疲劳辉纹,疲劳条纹) p113/p132

7.驻留滑移带:用电解抛光的方法很难将已产生的表面循环滑移带去除,

当对试样重新循环加载时,则循环滑移带又会在原处再现,这种永留或再

现的循环滑移带称为驻留滑移带。 P111

疲劳寿命:试样在交变循环应力或应变作用下直至发生破坏前所经受应

力或应变的循环次数 p102/p117

10.过载持久值:试样在高于疲劳极限的情况下测得的交变循环应力或2

/12

2I m MPa 168)75.0(177.0101.014.3900)/(177.01?=-??=-=s a K σσπσmm 16.22212s I 0=???? ???=σπK R 塑性区宽度

应变作用下发生破坏前所经受的循环加载次数。P102/p117

三、试述金属疲劳断裂的特点 p96/p109

(1)疲劳是低应力循环延时断裂,即具有寿命的断裂

(2)疲劳是脆性断裂

(3)疲劳对缺陷十分敏感

(4)疲劳断裂也是裂纹萌生和扩展的过程。

七、试述金属表面强化对疲劳强度的影响。(新书P117~P118,旧书P135~P136)

答:表面强化处理可在机件表面产生有利的残余压应力,同时还能提高机件表面的强度和硬度。这两方面的作用都能提高疲劳强度。

表面强化方法,通常有表面喷丸、滚压、表面淬火及表面化学热处理等。(1)表面喷丸及滚压

喷丸是用压缩空气将坚硬的小弹丸高速喷打向机件表面,使机件表面产生局部形变硬化;同时因塑变层周围的弹性约束,又在塑变层内产生残余压应力。

表面滚压和喷丸的作用相似,只是其压应力层深度较大,很适于大工件;而且表面粗糙度低,强化效果更好。

(2)表面热处理及化学热处理

除能使机件获得表硬心韧的综合力学性能外,还可以利用表面组织相变及组织应力、热应力变化,使机件表面层获得高强度和残余压应力,更有效地提高机件疲劳强度和疲劳寿命。

八、正火45钢的σb =610MPa ,σ-1=300MPa ,试用Goodman 公式绘制σmax (σmin )-σm 疲劳图,并确定σ-0.5,σ0,σ0.5等疲劳极限。

)1()1(21-1r r S b ++-=-σσσ

rS =min σ

σ2)1(22)1(2,1min max min max max min max min 1S r S

r rS r r m a b m a +=+=-=-====?????????? ??-=-σσσσσσσσσσσσσσ,

第六章金属的应力腐蚀和氢脆断裂

一、名词解释

1、应力腐蚀断裂:金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆断现象。

2、氢脆:由于氢和应力共同作用而导致的金属材料产生脆性断裂的现象。

5、氢致延滞断裂:这种由于氢的作用而产生的延滞断裂现象称为氢致延滞断裂。

三、如何识别氢脆与应力腐蚀?

答:氢脆和应力腐蚀相比,其特点表现在:

1、实验室中识别氢脆与应力腐蚀的一种办法是,当施加一小的阳极电流,如使开裂加速,则为应力腐蚀;而当施加一小的阴极电流,使开裂加速者则为氢脆。

2、在强度较低的材料中,或者虽为高强度材料但受力不大,存在的残余拉应力也较小这时其断裂源都不在表面,而是在表面以下的某一深度,此处三向拉应力最大,氢浓集在这里造成氢脆断裂。

3、氢脆断裂的主裂纹没有分枝的情况.这和应力腐蚀的裂纹是截然不同

的。

4、氢脆断口上一般没有腐蚀产物或者其量极微。

5、大多数的氢脆断裂(氢化物的氢脆除外),都表现出对温度和形变速率有强烈的依赖关系。氢脆只在一定的温度范围内出现,出现氢脆的温度区间决定于合金的化学成分和形变速率。

第七章金属的磨损与耐磨性

一、名词解释

1.磨损:机件表面相互接触并产生相对运动,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐损失、造成表面损伤的现象。

二、如何提高材料或零件的抗粘着磨损能力?

1、注意一对摩擦副的配对。不要用淬硬钢与软钢配对;不要用软金属与软金属配对。

2、金属间互溶程度越小,晶体结构不同,原子尺寸差别较大,形成化合物倾向较大的金属,构成摩擦副时粘着磨损就较轻微。

3、通过表面化学热处理,如渗硫、硫氮共熔、磷化、软氮化等热处理工艺,使表面生成一化合物薄膜,或为硫化物,磷化物,含氮的化合物,使摩擦系数减小,起到减磨作用也减小粘着磨损。

4、改善润滑条件。

三、粘着磨损产生的条件、机理及其防止措施

又称为咬合磨损,在滑动摩擦条件下,摩擦副相对滑动速度较小,因缺乏

润滑油,摩擦副表面无氧化膜,且单位法向载荷很大,以致接触应力超过实际接触点处屈服强度而产生的一种磨损。

磨损机理:

实际接触点局部应力引起塑性变形,使两接触面的原子产生粘着。粘着点从软的一方被剪断转移到硬的一方金属表面,随后脱落形成磨屑,旧的粘着点剪断后,新的粘着点产生,随后也被剪断、转移。如此重复,形成磨损过程。

改善粘着磨损耐磨性的措施

(1)选择合适的摩擦副配对材料:选择粘着倾向小、互溶性小、表面易形成化合物的材料配对,或者选择金属与非金属配对能提高抗粘着磨损能力。

(2)采用表面化学热处理改变材料表面状态:进行渗硫、磷化、碳氮共渗等在表面形成一层化合物或非金属层,既避免摩擦副直接接触又减小摩擦因素,能提高抗粘着磨损能力。

(3)控制摩擦滑动速度和接触压力:减小滑动速度和接触压力能有效能提高抗粘着磨损能力。

(4)其他途径:改善润滑条件,降低表面粗糙度,提高氧化膜与基体结合力都能提高抗粘着磨损能力。

第八章金属高温力学性能

一、名词解释

1.蠕变:在长时间的恒温、恒载荷作用下缓慢地产生塑性变形的现象。

3.蠕变极限:在高温长时间载荷作用下不致产生过量塑性变形的抗力指标。该指标与常温下的屈服强度相似。

4.持久强度极限:在高温长时载荷作用下的断裂强度---持久强度极限。

五、试分析晶粒大小对金属高温力学性能的影响。

当使用温度低于等强温度时,细晶粒钢有较高的强度,而当使用温度高于等强温度时,粗晶粒钢有较高的蠕变极限和持久强度极限,但是晶粒太大也会降低高温下材料的塑性和韧性,一般有一个最佳的晶粒度范围。若晶粒度不均匀,会在大小晶粒交界处产生应力集中形成裂纹,会显著降低其高温性能。

七、请问材料高温蠕变蠕变断裂有哪几种形式?两者是在何种情况下发生的?

在三晶粒交汇处形成楔形裂纹和在晶界上由空洞形成晶界裂纹。

前者是在高应力和较低温度下发生的,后者是在低应力和高温下发生的。

一、填空:

1.提供材料弹性比功的途径有二,提高材料的弹性极限,或降低弹性模量。

2.退火态和高温回火态的金属都有包申格效应,因此包申格效应是金属具有的普遍现象。

3.材料的断裂过程大都包括裂纹的形成与扩展两个阶段,根据断裂过程材料的宏观塑性变形过程,可以将断裂分为韧性断裂与脆性断裂;

按照晶体材料断裂时裂纹扩展的途径,分为穿晶断裂和沿晶断裂;按照微观断裂机理分为剪切断裂和解理断裂;按作用力的性质可分为正断型断裂和切断型断裂。

4.滞弹性是指材料在弹性范围内快速加载或卸载后,随时间延长产生附加的弹性应变现象,滞弹性应变量与材料成分、组织有关。

5.包申格效应:金属材料经过预先加载产生少量的塑性变形,而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。消除包申格效应的方法有预先进行较大的塑性变形和在第二次反向受力前先使金属材料在回复或再结晶温度下退火。

6.单向静拉伸时实验方法的特征是温度、应力状态、加载速率必须确定的。

7.过载损伤界越陡直,过载损伤区越窄,说明材料的抗过载能力越强。

8. 依据磨粒受的应力大小,磨粒磨损可分为凿削式磨粒磨损、高应力碾碎性磨粒磨损、低应力擦伤性磨粒磨损三类。

9.解理断口的基本微观特征为解理台阶、河流花样和舌状花样。10.韧性断裂的断口一般呈杯锥状,由纤维区、放射区和剪切唇区三个区域组成。

11.韧度是衡量材料韧性大小的力学性能指标,其中又分为静力韧度、冲击韧度和断裂韧度。

12.在α值越小的试验方法中,正应力分量较大,切应力分量较小,应力状态较硬。一般用于塑性变形抗力与切断抗力较低的所谓塑性材料试

验;在α值越大的试验方法中,应力状态较软,材料易产生塑性变形,适用于在单向拉伸时容易发生脆断而不能充分反映其塑性性能的所谓

脆性材料;

13.材料的硬度试验应力状态软性系数大于2 ,在这样的应力状态下,几乎所有金属材料都能产生塑性变形。

14. 硬度是衡量材料软硬程度的一种力学性能,大体上可以分为弹性回

跳法、压入法和划痕法三大类;在压入法中,根据测量

方式不同又分为布氏硬度、维氏硬度和洛氏硬度。15. 国家标准规定冲击弯曲试验用标准试样分别为夏比U型缺口试

样和夏比V型缺口试样,所测得的冲击吸收功分别用 Aku 、 Akv 标记。

16. 根据外加压力的类型及其与裂纹扩展面的取向关系,裂纹扩展的基本

方式有张开型裂纹扩展、滑开型裂纹扩展和撕开型裂纹扩展。

17. 机件的失效形式主要有磨损、腐蚀、断裂三种。

18.低碳钢的力伸长曲线包括弹性变形阶段、屈服塑性变形阶段、均匀塑性变形阶段、集中塑性变形阶段、断裂等五个

阶段。

19.内耗又称为循环韧性或消振型,可用滞后环面积度量。

20.应变硬化指数反映了金属材料抵抗均匀塑性变形的能力,在数值上等

于测量形成拉伸颈缩时的真实均匀应变量。应变硬化指数与金属

材料的层错能有关,层错能低者n值高。冷加工状态n值低。

晶粒粗大材料n值高。

21. 疲劳极限是材料抵抗无限次应力循环也不疲劳断裂的强度指标。

22. 应力状态软性系数:用试样在变形过程中的测得最大切应力和最大正应力的比值表示。

23.微孔聚集型断裂是包括微孔形核、长大聚合直至断裂的过程。

24.缺口试样的抗拉强度与等截面光滑试样的抗拉强度的比值。称为“缺口敏感度”。

25.机件在冲击载荷下的断口形式仍为过量弹性变形、过量塑性变形和断裂。

26.包申格应变是在给定应力下,正向加载和反向加载两应力-应变曲线之间的应变差。

27.由于缺口的存在,在静载荷作用下,缺口截面上的应力状态将发生变化的现象,被称为“缺口效应”。

28. 洛氏硬度是在一定的实验力下,将120o角的金刚石圆锥体压入工件表面,用所得的压痕深度来表示材料硬度值的工艺方法。

28.低温脆性是随温度的下降,材料由韧性转变为脆性的现象。

29. 缺口敏感性是指材料因存在缺口造成的两向或三向应力状态和应力应变集中而变脆的倾向。

31. 疲劳破坏形式按应力状态分为弯曲疲劳、扭转疲劳、拉压疲劳、及复合疲劳。按应力高低和断裂寿命分为高周疲劳和低周疲劳。

32. 典型的疲劳断口具有疲劳源、疲劳区、瞬断区

三个特征区。

33. 疲劳条带是疲劳断口的微观特征,贝纹线是断口的宏观特征。

34. 金属材料的疲劳过程也是裂纹的萌生和扩展过程。

35.金属材料抵抗疲劳过载损伤的能力,用过载损伤界或过载损伤区表示。

36.金属在拉应力和特定的化学介质共同作用下,经过一段时间后所发生的低应力脆断现象,称为应力腐蚀断裂。

37.应力腐蚀断裂的最基本的机理滑移—溶解理论和氢脆理论。

38.由于氢和应力的共同作用而导致金属材料产生脆性断裂的现象叫做氢脆断裂。

39.氢致脆断裂纹的拓展方式是步进式,这是与应力腐蚀裂纹渐进式扩展方式是不同的。

40.钢的氢致延滞断裂过程可分为孕育阶段、裂纹亚稳扩展阶段、失稳扩展阶段三个阶段。

41.典型氢脆类型包括氢蚀、白点、氢化物致脆、氢致延滞断裂。

42. 机件正常运行的磨损过程一般分为跑和阶段(磨合阶段))、稳定磨损阶段、剧烈磨损阶段三个阶段。减轻粘着磨损的主要措施有注意摩擦副配对材料的选择、采用表面化学热处理改变材料表面状态、控制摩擦滑动速度和接触压应力。

43. 按磨损模型分为:粘着磨损、磨粒磨损、冲蚀磨损、腐蚀磨损、微动磨损五大类。

44.韧窝是微孔聚集型断裂的基本特征。其形状视应力状态不同分为下列等轴韧窝、拉长韧窝、撕裂韧窝三类。其大小决定于第二相质点的大小和密度、基体材料的塑性变形能力和应变硬化指数以及外加应力的大小和形状。

45. 磨损量的测定方法有秤量法和测长法两种,单位摩擦距离单位压力下的磨损量称之为比磨损量。

46. 国家标准规定了四种断裂韧性测试试样:标准三点弯曲试样、紧凑拉伸试样、 C形拉伸试样和圆形紧凑拉伸试样。47. 过载持久值越高,说明材料在相同的过载荷下能承受的应力循环周次越多,材料的抗过载能力越强。

48. 按照蠕变速率的变化,可将蠕变过程可分为减速(过渡)蠕变阶段、恒速(稳态)蠕变阶段和加速蠕变阶段三个阶段。

49. 金属材料的蠕变变形主要是通过位错滑移、原子扩散等机理进行的。

50. 当试验温度低于某一温度t k时,材料由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机制由微孔聚集型变为穿晶解理型断口特征,断口由纤维状变为结晶状,这就是低温脆性。

51.韧脆转变温度t k,也是金属材料的韧性指标,它反映了温度对材料韧脆性的影响。也是安全性能指标,是从韧性角度选材的重要依据之一,可用于抗脆断设计。

52. 金属材料在长时高温载荷作用下的断裂大多为沿晶断裂。在不同的应力和温度条件下,晶界裂纹的形成方式有在三晶粒交会处形成

材料力学重点总结

材料力学阶段总结 一、 材料力学得一些基本概念 1. 材料力学得任务: 解决安全可靠与经济适用得矛盾。 研究对象:杆件 强度:抵抗破坏得能力 刚度:抵抗变形得能力 稳定性:细长压杆不失稳。 2、 材料力学中得物性假设 连续性:物体内部得各物理量可用连续函数表示。 均匀性:构件内各处得力学性能相同。 各向同性:物体内各方向力学性能相同。 3、 材力与理力得关系, 内力、应力、位移、变形、应变得概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、与符号规定。 应力:正应力、剪应力、一点处得应力。应了解作用截面、作用位置(点)、作用方向、与符号规定。 正应力 应变:反映杆件得变形程度 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4、 物理关系、本构关系 虎克定律;剪切虎克定律: ???? ? ==?=Gr EA Pl l E τεσ夹角的变化。剪切虎克定律:两线段 ——拉伸或压缩。拉压虎克定律:线段的 适用条件:应力~应变就是线性关系:材料比例极限以内。 5、 材料得力学性能(拉压): 一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量E ,剪切弹性模量G ,泊松比v , 塑性材料与脆性材料得比较: 安全系数:大于1得系数,使用材料时确定安全性与经济性矛盾得关键。过小,使构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 塑性材料 脆性材料 7、 材料力学得研究方法

1)所用材料得力学性能:通过实验获得。 2)对构件得力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论 应用得未来状态。 3)截面法:将内力转化成“外力”。运用力学原理分析计算。 8、材料力学中得平面假设 寻找应力得分布规律,通过对变形实验得观察、分析、推论确定理论根据。 1) 拉(压)杆得平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2) 圆轴扭转得平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力为零。 3) 纯弯曲梁得平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁得纵向纤维;正应力成线性分布规律。 9 小变形与叠加原理 小变形: ①梁绕曲线得近似微分方程 ②杆件变形前得平衡 ③切线位移近似表示曲线 ④力得独立作用原理 叠加原理: ①叠加法求内力 ②叠加法求变形。 10 材料力学中引入与使用得得工程名称及其意义(概念) 1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷 载。 2) 单元体,应力单元体,主应力单元体。 3) 名义剪应力,名义挤压力,单剪切,双剪切。 4) 自由扭转,约束扭转,抗扭截面模量,剪力流。 5) 纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度, 斜弯 曲,截面核心,折算弯矩,抗弯截面模量。 6) 相当应力,广义虎克定律,应力圆,极限应力圆。 7) 欧拉临界力,稳定性,压杆稳定性。 8)动荷载,交变应力,疲劳破坏。 二、杆件四种基本变形得公式及应用 1、四种基本变形:

材料力学复习提纲

材料力学复习提纲(二) 弯曲变形的基本理论: 一、弯曲力 1、基本概念:平面弯曲、纯弯曲、横力弯曲、中性层、中性轴、惯性矩、极惯性矩、主轴、主矩、形心主轴、形心主矩、抗弯截面模 2、弯曲力:剪力方程、弯矩方程、剪力图、弯矩图。 符号规定 3、剪力方程、弯矩方程 1、首先求出支反力,并按实际方向标注结构图中。 2、根据受力情况分成若干段。 3、在段任取一截面,设该截面到坐标原点的距离为x ,则截面一侧所有竖向外力的代数和即为该截面的剪力方程,截面左侧向上的外力为正,向下的外力为负,右侧反之。 4、在段任取一截面,设该截面到坐标原点的距离为x ,则截面一侧所有竖向外力对该截面形心之矩的代数和即为该截面的弯矩方程,截面左侧顺时针的力偶为正,逆时针的力偶为负,右侧反之。 对所有各段均应写出剪力方程和弯矩方程 4、作剪力图和弯矩图 1、根据剪力方程和弯矩方程作图。剪力正值在坐标轴的上侧,弯矩正值在坐标轴的下侧,要逐段画出。 2、利用微积分关系画图。 二、弯曲应力 1、正应力及其分布规律 ()() max max max 3 2 4 3 41 1-12 6 64 32 z z Z z z z z z z I M E M M M y y y W EI I I W y bh bh d d I W I W σσσρ ρ ππα== = = === = = = ?抗弯截面模量矩形 圆形 空心

2、剪应力及其分布规律 一般公式 z z QS EI τ* = 3、强度有条件 正应力强度条件 [][][] max z z z M M M W W W σσσσ= ≤≤≥ 剪应力强度条件 [] max max max z maz z QS Q I EI E S τττ** ≤= = 工字型 4、提高强度和刚度的措施 1、改变载荷作用方式,降低追大弯矩。 2、选择合理截面,尽量提高 z W A 的比值。 3、减少中性轴附近的材料。 4、采用变截面梁或等强度两。 三、弯曲变形 1、挠曲线近似微分方程: ()EIy M x ''=- 掌握边界条件和连续条件的确定法 2、叠加法计算梁的变形 掌握六种常用挠度和转角的数据 3、梁的刚度条件 ; []max y f l ≤ max 1.5 Q A τ= max 43Q A τ= max 2 Q A =max max z z QS EI *=

材料力学公式最全总汇

外力偶矩计算公式(P功率,n转速) 弯矩、剪力和荷载集度之间的关系式 轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力FN,横截 面面积A,拉应力为正) 轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正) 纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1) ^ 纵向线应变和横向线应变 泊松比 胡克定律 受多个力作用的杆件纵向变形计算公式 承受轴向分布力或变截面的杆件,纵向变形计算公式 `

轴向拉压杆的强度计算公式 许用应力,脆性材料,塑性材料 延伸率 截面收缩率 剪切胡克定律(切变模量G,切应变g ) 、 拉压弹性模量E、泊松比和切变模量G之间关系式 圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r ) 圆截面周边各点处最大切应力计算公式 扭转截面系数,(a)实心圆 (b)空心圆 :

薄壁圆管(壁厚δ≤ R0 /10 ,R0 为圆管的平均半径)扭转切应力计算公式 圆轴扭转角与扭矩T、杆长l、扭转刚度GHp的关系式 同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或 等直圆轴强度条件 塑性材料;脆性材料 > 扭转圆轴的刚度条件或 受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 平面应力状态下斜截面应力的一般公式 , 平面应力状态的三个主应力, ,

主平面方位的计算公式 / 面内最大切应力 受扭圆轴表面某点的三个主应力,, 三向应力状态最大与最小正应力, 三向应力状态最大切应力 广义胡克定律 ~ 四种强度理论的相当应力 一种常见的应力状态的强度条件,

材料力学重点总结-材料力学重点

材料力学阶段总结 一.材料力学的一些基本概念 1.材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2.材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3.材力与理力的关系 , 内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、作用方向、 和符号规定。 压应力 正应力拉应力 线应变 应变:反映杆件的变形程度角应变 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4.物理关系、本构关系虎 克定律;剪切虎克定律: 拉压虎克定律:线段的拉伸或压缩。 E —— Pl l EA 剪切虎克定律:两线段夹角的变化。Gr 适用条件:应力~应变是线性关系:材料比例极限以内。 5.材料的力学性能(拉压): 一张σ - ε图,两个塑性指标δ 、ψ ,三个应力特征点:p、s、b,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量,剪切弹性模量,泊松比 v , G E (V) E G 2 1 塑性材料与脆性材料的比较: 变形强度抗冲击应力集中

塑性材料流动、断裂变形明显 较好地承受冲击、振动不敏感 拉压s 的基本相同 脆性无流动、脆断仅适用承压非常敏感 6.安全系数、许用应力、工作应力、应力集中系数 安全系数:大于 1的系数,使用材料时确定安全性与经济性矛盾的关键。过小,使 构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 s0 塑性材料 s n s b 脆性材料0b n b 7.材料力学的研究方法 1)所用材料的力学性能:通过实验获得。 2)对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理 论应用的未来状态。 3)截面法:将内力转化成“外力” 。运用力学原理分析计算。 8.材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1)拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2)圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力 为零。 3)纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分 布规律。 9小变形和叠加原理 小变形: ①梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。 10材料力学中引入和使用的的工程名称及其意义(概念) 1)荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶, 极限荷载。 2)单元体,应力单元体,主应力单元体。

工程力学材料力学_知识点_及典型例题

作出图中AB杆的受力图。 A处固定铰支座 B处可动铰支座 作出图中AB、AC杆及整体的受力图。 B、C光滑面约束 A处铰链约束 DE柔性约束 作图示物系中各物体及整体的受力图。 AB杆:二力杆 E处固定端 C处铰链约束

(1)运动效应:力使物体的机械运动状态发生变化的效应。 (2)变形效应:力使物体的形状发生和尺寸改变的效应。 3、力的三要素:力的大小、方向、作用点。 4、力的表示方法: (1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!) (2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。 5、约束的概念:对物体的运动起限制作用的装置。 6、约束力(约束反力):约束作用于被约束物体上的力。 约束力的方向总是与约束所能限制的运动方向相反。 约束力的作用点,在约束与被约束物体的接处 7、主动力:使物体产生运动或运动趋势的力。作用于被约束物体上的除约束力以外的其它力。 8、柔性约束:如绳索、链条、胶带等。 (1)约束的特点:只能限制物体原柔索伸长方向的运动。 (2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。() 9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。 (1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。 (2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。() 10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。 约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。()11、固定铰支座 (1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。

材料力学知识点总结教学内容

材料力学总结一、基本变形

二、还有: (1)外力偶矩:)(9549 m N n N m ?= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:t r T 22πτ= (3)矩形截面杆扭转剪应力:h b G T h b T 32max ;β?ατ= =

三、截面几何性质 (1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑=== n i i n i ci i c A y A y 1 1 ; ∑∑=== n i i n i ci i c A z A z 1 1 2.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )( 四、应力分析: (1)二向应力状态(解析法、图解法) a . 解析法: b.应力圆: σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+” α:从x 轴逆时针转到截面的 法线为“+” ατασσσσσα2sin 2cos 2 2 x y x y x --+ += ατασστα2cos 2sin 2 x y x +-= y x x tg σστα-- =220 22 min max 22 x y x y x τσσσσσ+??? ? ? ?-±+= c :适用条件:平衡状态 (2)三向应力圆: 1max σσ=; 3min σσ=;2 3 1max σστ-= x

(3)广义虎克定律: [])(13211σσνσε+-=E [] )(1 z y x x E σσνσε+-= [])(11322σσνσε+-=E [] )(1 x z y y E σσνσε+-= [])(12133σσνσε+-=E [] )(1 y x z z E σσνσε+-= *适用条件:各向同性材料;材料服从虎克定律 (4)常用的二向应力状态 1.纯剪切应力状态: τσ=1 ,02=σ,τσ-=3 2.一种常见的二向应力状态: 22 3122τσσ σ+?? ? ??±= 2234τσσ+=r 2243τσσ+=r 五、强度理论 *相当应力:r σ 11σσ=r ,313σσσ-=r ,()()()][2 12 132322214σσσσσσσ-+-+-= r σx σ

材料力学基本公式

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类:表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dF A F p A = ??=→?lim 正应力σ、切应力τ。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲; 静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。 动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。二者统 称为极限应力理想情形。塑性材料、脆性材料的许用应力分别为: []s s n σσ=,[]b b n σσ= ,强度条件:[]σσ≤??? ??=max max A F N ,等截面杆 []σ≤A F max 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为: l l ?= ε, A F N =σ。横向应变为: b b b b b -=?= 1'ε,横向应变与轴

向应变的关系为:μεε-=',μ为横向变形系数或泊松比。 胡克定律:当应力低于材料的比例极限P σ时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量(GPa 1= pa MPa 931010=)。将应力与应变的表达式带入得:EA Fl l = ?EA 为抗拉或抗压刚度。 静不定(超静定):对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。需要由几何关系构造变形协调方程。 扭转变形时的应力,薄壁圆筒扭转 δ πτ202R M e = 其中 )min () (9549 )(r n kw p m N M e =? 420d D r R R +=+=为圆筒的平均半径。剪切胡克定律:当剪切应力不超过材料的剪切比例极限时,切应力 τ 与切应变γ成正比。γ τ G =. 变形几何关系—圆轴扭转的平面假设 dx d φ ρ γρ=。物理关系——剪切胡克定律 dx d G G φρ γτρρ==。力学关系P A A A I dx d G dA dx d G dx d G dA T ?ρ?φρρτρ====???2 2 圆轴扭转时的应力 : t p W T I TR == max τ, t W = R I p 称为抗弯截面系数;强度条件: ][max ττ≤= t W T ,可以进行强度 校核、截面设计和确定许可载荷。 圆截面对圆心的极惯性矩(a )实心圆 32 4 D I P π= ; 16 3 D W t π= (b )空心圆,() 4 4 44132 32 ) (αππ-= -= D d D I P ; () 43 116 απ-= D W t (D,d 分别是外,内径; D d = α) 圆轴扭转时的变形: ?? ==l p l p dx GI T dx GI T ?;等直杆: p GI Tl = ?其中为圆轴的抗弯刚度P GI

材料力学主要知识点归纳

材料力学主要知识点 一、基本概念 1、构件正常工作的要求:强度、刚度、稳定性。 2、可变形固体的两个基本假设:连续性假设、均匀性假设。另外对于常用工程材料(如钢材),还有各向同性假设。 3、什么是应力、正应力、切应力、线应变、切应变。 杆件截面上的分布内力集度,称为应力。应力的法向分量σ称为正应力,切向分量τ称为切应力。 杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。 4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。 5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。 6、强度理论及其相当应力(详见材料力学ⅠP229)。 7、截面几何性质 A 、截面的静矩及形心 ①对x 轴静矩?=A x ydA S ,对y 轴静矩?=A y xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。 B 、极惯性矩、惯性矩、惯性积、惯性半径 ① 极惯性矩:?=A P dA I 2ρ ② 对x 轴惯性矩:?= A x dA y I 2,对y 轴惯性矩:?=A y dA x I 2 ③ 惯性积:?=A xy xydA I ④ 惯性半径:A I i x x =,A I i y y =。 C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b 为y c 距y 轴距离。 ② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离, b 为截面形心距y 轴距离。 二、杆件变形的基本形式 1、轴向拉伸或轴向压缩: A 、应力公式 A F = σ B 、杆件伸长量EA F N l l =?,E 为弹性模量。

材料力学公式汇总

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类: 表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A = ??=→?lim 0正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限 b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应 力理想情形。塑性材料、脆性材料的许用应力分别为: []3 n s σσ=, []b b n σσ=,强度条件: []σσ≤??? ??=max max A N ,等截面杆 []σ≤A N m a x 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为:l l ?= ε,A P A N ==σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-=' 。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l = ? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φ ρ γρ=。物理关系——胡克定律dx d G G φρ γτρρ==。力学关系dA dx d G dx d G dA T A A A ???===2 2ρφφρρτρ 圆轴扭转时的应力:t p W T R I T == max τ;圆轴扭转的强度条件: ][max ττ≤=t W T ,可以进行强度校核、截面设计和确

材料力学总结Ⅱ(乱序,建议最后阶段复习)

材料力学阶段总结 一.材料力学的一些基本概念 1. 材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2. 材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3. 材力与理力的关系,内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、 作用方向、和符号规定。 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4. 物理关系、本构关系 虎克定律;剪切虎克定律: 拉压虎克定律:线段的拉伸或压缩。 E ——I 巴 EA 剪切虎克定律:两线段 夹角的变化。 Gr 适用条件:应力?应变是线性关系:材料比例极限以内。 5. 材料的力学性能(拉压): 一张C - &图,两个塑性指标3、书,三个应力特征点: p 、 s 、 b ,四个 变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量E ,剪切弹性模量G,泊松比v , G E 2(1 V ) 正应力 压应力 拉应力 应变:反映杆件的变形程度 线应变 角应变

6. 安全系数、 许用应力、工作应力、应力集中系数 安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。 过小,使构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 脆性材料 7. 材料力学的研究方法 1) 所用材料的力学性能:通过实验获得。 2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理 论,预测理论应用的 未来状态。 3) 截面法:将内力转化成“外力”。运用力学原理分析计算。 8. 材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1) 拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2) 圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面 上正应力为零。 3) 纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维; 正应力 成线性分布规律。 9小变形和叠加原理 小变形: ① 梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。 10材料力学中引入和使用的的工程名称及其意义(概念) 1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力, 集中力偶,极限荷载。 2) 单元体,应力单元体,主应力单元体。 3) 名义剪应力,名义挤压力,单剪切,双剪切。 4) 自由扭转,约束扭转,抗扭截面模量,剪力流。 塑性材料 n s n b

材料力学公式超级大汇总

1.外力偶矩计算公式(P功率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应 力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方 位角为正) 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试 样直径d1) 6.纵向线应变和横向线应变 7.泊松比 8.胡克定律 9.受多个力作用的杆件纵向变形计算公式?

10.承受轴向分布力或变截面的杆件,纵向变形计算公式 11.轴向拉压杆的强度计算公式 12.许用应力,脆性材料,塑性材料 13.延伸率 14.截面收缩率 15.剪切胡克定律(切变模量G,切应变g ) 16.拉压弹性模量E、泊松比和切变模量G之间关系式 17.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r) 19.圆截面周边各点处最大切应力计算公式 20.扭转截面系数,(a)实心圆 (b)空心圆

21. 薄壁圆管(壁厚δ≤ R 0 /10 ,R 0 为圆管的平均半径)扭转切应力计算公式 22. 圆轴扭转角与扭矩T 、杆长l 、 扭转刚度GH p 的关系式 23. 同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时 或 24. 等直圆轴强度条件 25. 塑性材料 ;脆性材料 26. 扭转圆轴的刚度条件? 或 27. 受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 28. 平面应力状态下斜截面应力的一般公式 , 29. 平面应力状态的三个主应力 , ,

材料力学公式大全

材料力学常用公式 1.外力偶矩计算公式(P功率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式(杆件横截面 轴力F N,横截面面积A,拉应力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x 轴正方向逆时针转至外法线的方位角为正) 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1; 拉伸前试样直径d,拉伸后试样直径d1) 6.纵向线应变和横向线应变 7.泊松比 8.胡克定律 9.受多个力作用的杆件纵向变形计算公式?

10.承受轴向分布力或变截面的杆件,纵向变形计算公式 11.轴向拉压杆的强度计算公式 12.许用应力,脆性材料,塑性材料 13.延伸率 14.截面收缩率 15.剪切胡克定律(切变模量G,切应变g ) 16.拉压弹性模量E、泊松比和切变模量G之间关系式 17.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点 到圆心距离r) 19.圆截面周边各点处最大切应力计算公式

20.扭转截面系数,(a)实心圆 (b)空心圆 21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转 切应力计算公式 22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式 23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如 阶梯轴)时或 24.等直圆轴强度条件 25.塑性材料;脆性材料 26.扭转圆轴的刚度条件? 或 27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式 , 28.平面应力状态下斜截面应力的一般公式 ,

材料力学复习资料(同名5782)

材料力学复习资料 一、填空题 1、为了保证机器或结构物正常地工作,要求每个构件都有足够的抵抗破坏的能力,即要求它们有足够的强度;同时要求他们有足够的抵抗变形的能力,即要求它们有足够的刚度;另外,对于受压的细长直杆,还要求它们工作时能保持原有的平衡状态,即要求其有足够的 稳定性。 2、材料力学是研究构件强度、刚度、稳定性的学科。 3、强度是指构件抵抗破坏的能力;刚度是指构件抵抗变形的能力;稳定性是指构件维持其原有的平衡状态的能力。 4、在材料力学中,对变形固体的基本假设是连续性假设、均匀性假设、各向同性假设。 5、随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。 6、截面法是计算内力的基本方法。 7、应力是分析构件强度问题的重要依据。 8、线应变和切应变是分析构件变形程度的基本量。 9、轴向尺寸远大于横向尺寸,称此构件为杆。 10、构件每单位长度的伸长或缩短,称为线应变。 11、单元体上相互垂直的两根棱边夹角的改变量,称为切应变。 12、轴向拉伸与压缩时直杆横截面上的内力,称为轴力。 13、应力与应变保持线性关系时的最大应力,称为比例极限。 14、材料只产生弹性变形的最大应力,称为弹性极根;材料能承受的最大应力,称为强度极限。 15、弹性模量E是衡量材料抵抗弹性变形能力的指标。 16、延伸率δ是衡量材料的塑性指标。δ≥5%的材料称为塑性材料;δ<5%的材料称为脆性材料。 17、应力变化不大,而应变显著增加的现象,称为屈服或流动。 18、材料在卸载过程中,应力与应变成线性关系。 19、在常温下把材料冷拉到强化阶段,然后卸载,当再次加载时,材料的比例极限提高,而塑性降低,这种现象称为冷作硬化。 20、使材料丧失正常工作能力的应力,称为极限应力。 21、在工程计算中允许材料承受的最大应力,称为许用应力。 22、当应力不超过比例极限时,横向应变与纵向应变之比的绝对值,称为泊松比。 23、胡克定律的应力适用范围是应力不超过材料的比例极限。 24、杆件的弹性模量E表征了杆件材料抵抗弹性变形的能力,这说明在相同力作用下,杆件材料的弹性模量E值越大,其变形就越小。 25、在国际单位制中,弹性模量E的单位为GPa。 26、低碳钢试样拉伸时,在初始阶段应力和应变成线性关系,变形是弹性的,而这种弹性变形在卸载后能完全消失的特征一直要维持到应力为弹性极限的时候。 27、在低碳钢的应力—应变图上,开始的一段直线与横坐标夹角为,由此可知其正切tg在数值上相当于低碳钢拉压弹性模量E的值。 28、金属拉伸试样在进入屈服阶段后,其光滑表面将出现与轴线成45o角的系统条纹,此条纹称为滑移线。 29、使材料试样受拉达到强化阶段,然后卸载,再重新加载时,其在弹性范围内所能达到的最大荷载将提高,而且断裂后的延伸率会降低,此即材料的冷作硬化现象。30、铸铁试样压缩时,其破坏断面的法线与轴线大致成45o的倾角。 31、铸铁材料具有抗压强度高的力学性能,而且耐磨,价廉,故常用于制造机器底座,床身和缸体等。 32、铸铁压缩时的延伸率值比拉伸时大。 33、混凝土这种脆性材料常通过加钢筋来提高混凝土构件的抗拉能力。 34、混凝土,石料等脆性材料的抗压强度远高于它的抗拉强度。 35、为了保证构件安全,可靠地工作,在工程设计时通常把许用应力作为构件实际工作应力的最高限度。 36、安全系数取值大于1的目的是为了使工程构件具有足够的强度储备。 37、设计构件时,若片面地强调安全而采用过大的安全系数,则不仅浪费材料而且会使所设计的结构物笨重。38、约束反力和轴力都能通过静力平衡方程求出,称这类问题为静定问题;反之则称为超静定问题;未知力多于平衡方程的数目称为几次超静定。 39、构件因强行装配而引起的内力称为装配内力,与之相应的应力称为装配应力。 40、材料力学中研究的杆件基本变形的形式有拉伸或压缩、剪切、扭转和弯曲。 41、吊车起吊重物时,钢丝绳的变形是拉伸变形;汽车行驶时,传动轴的变形是扭转变形;教室中大梁的变形是弯曲变形;建筑物的立柱受压缩变形;铰制孔螺栓连接中的螺杆受剪切变形。 42、通常把应力分解成垂直于截面和切于截面的两个分量,其中垂直于截面的分量称为正应力,用符号σ表示,切于截面的分量称为剪应力,用符号τ表示。 43、杆件轴向拉伸或压缩时,其受力特点是:作用于杆件外力的合力的作用线与杆件轴线相重合。 44、杆件轴向拉伸或压缩时,其横截面上的正应力是均匀分布的。 45、轴向拉伸或压缩杆件的轴力垂直于杆件横截面,并通过截面形心。 46、在轴向拉伸或压缩杆件的横截面上的正应力相等是由平面假设认为杆件各纵向纤维的变形大小都相等而推断的。 47、正方形截而的低碳钢直拉杆,其轴向向拉力3600N,若许用应力为100Mp a,由此拉杆横截面边长至少应为 6mm。 48、求解截面上内力的截面法可以归纳为“截代平”,其中“截”是指沿某一平面假想将杆 截断分成两部分;“代”是指用内力代替去除部分对保留部分的作用;“平”是指对保留部分建立平衡方程。 49、剪切的实用计算中,假设了剪应力在剪切面上是均匀分布的。 50、钢板厚为t,冲床冲头直径为d,今在钢板上冲出一个直径d为的圆孔,其剪切面面积为πdt。 51、用剪子剪断钢丝时,钢丝发生剪切变形的同时还会发

材料力学公式汇总

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类: 表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上与内力。 应力: dA dP A P p A =??=→?lim 0正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷与速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应力理 想情形。塑性材料、脆性材料的许用应力分别为:[]3n s σσ=,[]b b n σσ=,强度条件:[]σσ≤??? ??=max max A N ,等截面杆 []σ≤A N max 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变与横截面上的应力分别为:l l ?= ε,A P A N ==σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-='。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l =? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φργρ=。物理关系——胡克定律dx d G G φργτρρ==。力学关系dA dx d G dx d G dA T A A A ???===22ρφφρρτρ 圆轴扭转时的应力:t p W T R I T == max τ;圆轴扭转的强度条件: ][max ττ≤=t W T ,可以进行强度校核、截面设计与确定许可载荷。

材料力学复习总结

《材料力学》第五版 刘鸿文 主编 第一章 绪论 一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。 二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能 力。 三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。 第二章 轴向拉压 一、轴力图:注意要标明轴力的大小、单位和正负号。 二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。注意此规定只适用于轴力,轴力是内力,不适用于外力。 三、轴向拉压时横截面上正应力的计算公式:N F A σ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。 四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22 αστα= 注意角度α是指斜截面与横截面的夹角。 五、轴向拉压时横截面上正应力的强度条件[],max max N F A σσ=≤ 六、利用正应力强度条件可解决的三种问题:1.强度校核[],max max N F A σσ=≤ 一定要有结论 2.设计截面[],max N F A σ≥ 3.确定许可荷载[],max N F A σ≤ 七、线应变l l ε?=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA ?= 注意当杆件伸长时l ?为正,缩短时l ?为负。 八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服

(完整版)材料力学必备知识点

材料力学必备知识点 1、 材料力学的任务:满足强度、刚度和稳定性要求的前提下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。 2、 变形固体的基本假设:连续性假设、均匀性假设、各向同性假设。 3、 杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲。 4、 低碳钢:含碳量在0.3%以下的碳素钢。 5、 低碳钢拉伸时的力学性能:弹性阶段、屈服阶段、强化阶段、局部变形阶段 极限:比例极限、弹性极限、屈服极限、强化极限 6、 名义(条件)屈服极限:将产生0.2%塑性应变时的应力作为屈服指标 7、 延伸率δ是衡量材料的塑性指标塑性材料 随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。 >5%的材料称为塑性材料: <5%的材料称为脆性材料 8、 失效:断裂和出现塑性变形统称为失效 9、 应变能:弹性固体在外力作用下,因变形而储存的能量 10、应力集中:因杆件外形突然变化而引起的局部应力急剧增大的现象 11、扭转变形:在杆件的两端各作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动。 12、翘曲:变形后杆的横截面已不再保持为平面;自由扭转:等直杆两端受扭转力偶作用且翘曲不受任何限制;约束扭转:横截面上除切应力外还有正应力 13、三种形式的梁:简支梁、外伸梁、悬臂梁 14、组合变形:由两种或两种以上基本变形组合的变形 15、截面核心:对每一个截面,环绕形心都有一个封闭区域,当压力作用于这一封闭区域内时,截面上只有压应力。 16、根据强度条件 可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。 17、低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。 18、积分法求梁的挠曲线方程时,通常用到边界条件和连续性条件;因杆件外形突然变化引起的局部应力急剧增大的现象称为应力集中;轴向受压直杆丧失其直线平衡形态的现象称为失稳 19、圆杆扭转时,根据(切应力互等定理),其纵向截面上也存在切应力。 20、组合图形对某一轴的静矩等于(各组成图形对同一轴静矩)的代数和。 21、图形对于若干相互平行轴的惯性矩中,其中数值最小的是对( 距形心最近的)轴的惯性矩。 22、当简支梁只受集中力和集中力偶作用时,则最大剪力必发生在(集中力作用面的一侧)。 23、应用公式z My I σ=时,必须满足的两个条件是(各向同性的线弹性材料)和小变形。 24、一点的应力状态是该点(所有截面上的应力情况)。 在平面应力状态下,单元体相互垂直平面上的正应力之和等于(常数)。 25、强度理论是(关于材料破坏原因)的假说。 在复杂应力状态下,应根据(危险点的应力状态和材料性质等因素)选择合适的强度理论。 26、强度是指构件抵抗 破坏 的能力;刚度是指构件抵抗 变形 的能力;稳定性是指构件维持其原有的 平衡状态 的能力。 27、弹性模量E 是衡量材料抵抗弹性变形能力的指标。 28、使材料丧失正常工作能力的应力,称为极限应力

材料力学公式汇总

材料力学公式汇总 一、应力与强度条件 1、拉压 []σσ≤= max max A N 2、剪切 []ττ≤= A Q max 挤压 [] 挤压挤压挤压σσ≤= A P 3、圆轴扭转 []ττ≤=W t T max 4、平面弯曲 ①[]σσ≤= max z max W M ②[]max t max t max max σσ≤=y I M z t max c max max y I M z c =σ[]cnax σ≤ ③[]ττ≤?=b I S Q z * max z max max 5、斜弯曲 []σσ≤+= max y y z z max W M W M 6、拉(压)弯组合 []σσ≤+= max max z W M A N []t max t z max t σσ≤+= y I M A N z []c max c z z max c σσ≤-=A N y I M 注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论 []στσσ≤+=+= z 2n 2w 2n 2w r34W M M ②第四强度理论 []στσσ≤+= += z 2n 2w 2n 2 w r475.03W M M 二、变形及刚度条件 1、拉压 ∑ ? === ?L EA x x N EA L N EA NL L d )(i i 2、扭转 ()? = ∑==Φp p i i p GI dx x T GI L T GI TL πφ0180?=Φ=p GI T L (m / ) 3、弯曲 (1)积分法:)()(''x M x EIy = C x x M x EI x EIy +==?d )()()('θ D Cx x x x M x EIy ++=?? d ]d )([)( (2)叠加法:()21,P P f …=()()21P f P f ++…, ()21,P P θ=()()++21P P θθ… (3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号) EI ML B =θ EI PL B 22=θ EI qL B 63 = θP A B M A B A B q L L L

相关主题
文本预览
相关文档 最新文档