当前位置:文档之家› 针对简易单极子蓝牙天线的一些设计细则V1.0.0

针对简易单极子蓝牙天线的一些设计细则V1.0.0

针对简易单极子蓝牙天线的一些设计细则V1.0.0
针对简易单极子蓝牙天线的一些设计细则V1.0.0

单极子天线的设计

第五章 常用单极子天线的设计与实例 §5.1常用的单极子天线...........................................................................................................- 2 - §5.1.1单极子天线..........................................................................................................- 2 - §5.1.2单极子天线的辐射场和电特性...........................................................................- 4 - §5.1.3单极子天线的馈电方法.....................................................................................- 11 - §5.2宽频带平面单极子天线的设计......................................................................................- 13 - §5.2.1 具有切角的平面单极子天线................................................................................- 14 - §5.2.2 具有短路节加载的平面单极子天线....................................................................- 17 - 5.3 总结....................................................................................................................................- 22 -

蓝牙天线

蓝牙天线 蓝牙可以是一种低成本、低功率以及短距离无线通讯的技术,可以广泛的应用在任何个人行动通讯设备上。而随着1999年1.0版蓝牙规范的正式制订,一场短距离无线通讯网路的革命似乎已经展开,而由蓝牙概念所发展出来的无线个人局域网络(Personal Area Network, PAN)也正式成立。 到目前为止,由于市面上所推出的蓝牙相关产品尚未完全普及,「蓝牙」这个让人耳熟能详的名词在产品应用上还是给人有「犹抱琵琶半遮面」的感觉。探究其产品尚未全面化推出的原因除了蓝牙规范尚未完全底定外(2.0版正在发展中);另一重要的因素则是整个蓝牙模块的价格仍然居高不下,使得蓝牙产品的售价偏高,以Ericsson所推出的蓝牙耳机为例,其预估的售价便高达200美元左右。于是,降低模块的价格便成了蓝牙芯片提供厂商与外围组件制造厂商致力发展的方向。 「天线」,是在无线通讯系统中用来传送与接收电磁波能量的重要必备组件。由于目前技术尚无法将天线整合至半导体制程的芯片中,故在蓝牙模块里除了核心的系统芯片外,天线是另一具有影响蓝牙模块传输特性的关键性组件。在各种不同的蓝牙应用产品中,所使用的天线设计方法与制作材质也不尽相同。选用适当的天线除了有助于搭配产品的外型以及提升蓝牙模块的传输特性外,还可以更进一步降低整个蓝牙模块的成本。这是提供给蓝牙系统厂商在寻求低价格的系统芯片外,另一个可能降低模块成本的考量方向。在本文中将介绍蓝牙天线的设计考量、相关重要参数、蓝牙天线的种类以及在产品上的应用考量。 重要的天线参数 天线最主要的功能在于转换传播介质中(通常是空气介质)辐射电磁波能量与收发机所送出或收到的能量。在能量转换的过程中,会出现有收发机与天线及天线与传播介质之间的不连续接口。在无线通讯系统中,天线必须依照这两个接口的特性来做适当的设计,以使得收发机、天线以及传播介质之间形成一个连续的能量传输路径,如此便可以顺利的将发射机的能量藉由发射天线辐射到传播介质中,并藉由接收天线将辐射电磁波的能量传送到接收机端。为了能够说明这两个接口的各项特性,图1列出了一些重要的参数,以下就这些参数的定义加以说明: 天线输入阻抗(Input Impedance) 天线的输入阻抗是以收发机与天线间的接口往天线端看入所得到的阻抗值。为了让天线与收发机电路间达到阻抗匹配(Impedance Matching)以降低因不匹配现象所造成的反射损失(Return Loss),故天线的输入阻抗必须与收发机电路的输出阻抗互相匹配,如此一来才不至于使得大部份能量在天线与收发机之间就损耗掉。以一般的天线设计来说,通常输入阻抗是无法做大范围的改变。最普遍的设计方式是将天线的输入阻抗设计在一般电路中所常使用的50奥姆,如此便可以与收发机电路的输出阻抗达到50奥姆匹配。但是在特殊的收发机电路设计中,输出阻抗不一定会是50奥姆,此时便需在收发机电路与天线输入端之间设计一个外加的阻抗匹配网络来将天线的输入阻抗值转换到收发机的输出阻抗值。

(完整版)双频单极子天线毕业设计

摘要 本设计介绍了射频双频单极子天线的基本原理以及基于HFSS的射频双频单极子天线的设计过程。双频天线一个最为简单的颁发就是采用印刷单极子天线来实现,这类天线所需成本极低,而且结构和加工都极为简易,是目前为止众多学者的研究方向。本篇论文主要设计与仿真射频双频单极子天线。 半波偶极子天线和单极子天线是迄今为止应用较为广泛的天线。利用镜像原理,引入接地面可以将半波偶极子天线的长度减少一半,即1/4波长单极子天线。 然后,文中设计并仿真了一个单极子天线,能够使用在无线局域网中。其L 型单极子天线由微带线直接馈电,天线工作于IEEE802.11a和802.11b两个工作频段,实现了天线的双频工作特性。仿真结果表明,该天线低频单极子天线垂直方向长度等于19mm时,该单极子天线的双频振

点,也就是高频振点对应IEEE802.11a (5.15GHz~5.825GHz),低频振点对应IEEE802.11b (2.4GHz~2.4825GHz),能够应用在无线局域网所涉及到到相关频段力,同时具备较佳的辐射方向图性质。 关键词:双频单极子;射频; WLAN; HFSS Design of Radio-Frequency Monopole Antenna ABSTRACT This design introduces the basic principles of radio dual-band monopole antenna and a dual-band radio-based HFSS monopole antenna design process. Printed monopole antenna as a dual-band antenna in the form of a simple structure, easy processing, low cost, is also a hot topic in the antenna field. In this thesis, dual-band monopole antenna

CSR 2.4GHz 天线设计参考指南

2.4GHz Inverted-F and Meander Line Antennas Application Note
May 2007
CSR Cambridge Science Park Milton Road Cambridge CB4 0WH United Kingdom Registered in England 4187346 Tel: +44 (0)1223 692000 Fax: +44 (0)1223 692001 https://www.doczj.com/doc/f83246596.html,
? CSR plc 2003-2007 This material is subject to CSR’s non-disclosure agreement.
CS-101512-ANP2

Contents
Contents
1 2 3 4 5 6 7 8 9 Introduction .................................................................................................................................................... 3 Inverted-F Antenna ........................................................................................................................................ 4 Meander Line Antenna................................................................................................................................... 5 Real Designs .................................................................................................................................................. 6 Proximity to Metal Objects ............................................................................................................................ 7 Proximity to Dielectric Materials................................................................................................................... 8
2.4GHz Inverted-F and Meander Line Antennas
Network Analyser........................................................................................................................................... 9 Final Tuning.................................................................................................................................................. 10 Conclusion ................................................................................................................................................... 12
Terms and Definitions ........................................................................................................................................ 13 Document History ............................................................................................................................................... 14
List of Figures Figure 2.1: Inverted-F Antenna ............................................................................................................................... 4 Figure 3.1: Meander Line Antenna.......................................................................................................................... 5 Figure 3.2: Input Impedance of Two Meander Line Antennas................................................................................. 5 Figure 4.1: Approximate Dimensions of Inverted-F Antenna................................................................................... 6 Figure 4.2: Approximate Dimensions of Meander Line Antenna ............................................................................. 6 Figure 7.1: Preparation Before Measurement ......................................................................................................... 9 Figure 7.2: Assembled System Ready to Measure ................................................................................................. 9 Figure 8.1: Locating Product in Far Field of Antenna ............................................................................................ 10 Figure 8.2: Final Tuning Procedure....................................................................................................................... 11
CS-101512-ANP2
? CSR plc 2003-2007 This material is subject to CSR’s non-disclosure agreement.
Page 2 of 14

半波偶极子天线的HFSS仿真设计

天线原理与设计华中科技大学 半波偶极子天线的HFSS仿真设计 一、实验目的 1、学会简单搭建天线仿真环境的方法,主要是熟悉HFSS软件的使用方法; 2、了解利用HFSS仿真软件设计和仿真天线的原理、过程和方法; 3、通过天线的仿真,了解天线的主要性能参数,如驻波比特性、smith圆图特性、方向图 特性等; 4、通过对半波偶极子天线的仿真,学会对其他类型天线仿真的方法; 二、实验仪器 1、装有windows系统的PC一台 2、HFSS13.0软件 3、截图软件 三、实验原理 1、首先明白一点:半波偶极子天线就是对称阵子天线。 图1 对称振子对称结构及坐标 2、对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。一臂的导线半径为a,长度为l。两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=2l。对称振子的长度与波长相比拟,本身已可以构成实用天线。 3、在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布。取图1的坐标,并忽略振子损耗,则其电流分布可以表示为: 式中,Im为天线上波腹点的电流;k=w/c为相移常数、根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心点对称;超过半波长就会出现反相电流。 4、在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z)、长度为dz的电流元件串联而成。利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。

图2 对称振子辐射场的计算 如图2 所示,电流元I(z)所产生的辐射场为 其中 5、方向函数 四、实验步骤 1、设计变量 设置求解类型为Driven Model 类型,并设置长度单位为毫米。 提前定义对称阵子天线的基本参数并初始化 2、创建偶极子天线模型,即圆柱形的天线模型。 其中偶极子天线的另外一个臂是通过坐标轴复制来实现的。 3、设置端口激励 半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面。 4、设置辐射边界条件 要在HFSS中计算分析天线的辐射场,则必须设置辐射边界条件。这里创建一个沿Z轴放置的圆柱模型,材质为空气。把圆柱体的表面设置为辐射边界条件。 5、外加激励求解设置 分析的半波偶极子天线的中心频率在3G Hz,同时添加2.5 G Hz ~3.5 G Hz频段内的扫频设置,扫频类型为快速扫频。

蓝牙天线设计

引言 蓝牙是一种支持设备短距离通信(一般是1Om之内)的无线电技术,能在设备之间进行无线信息交换,其工作频段是2.4~2.483 GHz的全球通信自由频段,目前已广泛应用在移动通信设备中。天线是蓝牙无线系统中用来传送与接收电磁波能量的重要必备组件。由于目前技术尚无法将天线整合至半导体芯片中,故在蓝牙模块里除了核心的系统芯片外,天线是另一个影响蓝牙模块传输特性的关键性组件。本文给出了一款倒F型天线的设计,该天线尺寸小,设计简约,制造成本低,工作效率高,适用于蓝牙系统应用。 1 天线设计 倒F型天线是上世纪末发展起来的一种天线,具有结构简单、重量轻、可共形、制造成本低、辐射效率高、容易实现多频段工作等独特优点,因此,近几年来,倒F型天线得到了广泛的应用研究和发展。 倒F天线是在倒L天线abc的垂直元末端加上一个倒L结构edb构成。它使用附加的edb结构来调整天线和馈电同轴线的匹配。该天线具有低轮廓结构,辐射场具有水平和垂直两种极化,另外由于结构紧凑而且具有等方向辐射特性,同时其良好的接地设计可以有效提高天线的工作效率。图1所示是典型的倒F型天线结构图,该天线可以看作是e端短路,a端开路的谐振器,所以,a端电压最大,电流为零,e端电压为零,电流最大。由于倒F天线的结构中包含了接地的金属面,可以降低对射频模块中接地金属面的敏感度,因此非常适合用于片上系统。另外,由于倒F天线只需利用金属导体配合适当的馈线来调整天线短路端到接地面的位置,因而制作成本较低,可以直接与PCB电路板焊接在一起。图2所示为倒F型天线在电路板上的布置图。 倒F型天线在电路板上的布置图 2 测量基本原理 图3所示是一个网络分析仪的原理框图。在对倒F天线进行测量时,先由仪器发出扫频信号,并将该信号通过输出口送到被测设备,当信号通

蓝牙天线技术分析与应用介绍

蓝牙天线技术分析与应用介绍
蓝牙可以是一种低成本、低功率以及短距离无线通讯的技术,可以广泛的应 用在任何个人行动通讯设备上。而随着 1999 年 1.0 版蓝牙规范的正式制订,一 场短距离无线通讯网路的革命似乎已经展开, 而由蓝牙概念所发展出来的无线个 人局域网络(Personal Area Network, PAN)也正式成立。 到目前为止,由于市面上所推出的蓝牙相关产品尚未完全普及,「蓝牙」这 个让人耳熟能详的名词在产品应用上还是给人有「犹抱琵琶半遮面」的感觉。探 究 其 产 品 尚 未 全 面 化 推 出 的 原 因 除 了 蓝 牙 规 范 尚 未 完 全 底 定 外 (2.0 版 正 在 发 展 中); 另一 重要 的因 素 则是 整个 蓝 牙模 块的 价 格仍 然居 高 不下 ,使 得 蓝牙 产品 的 售价偏高,以 Ericsson 所推出的蓝牙耳机为例,其预估的售价便高达 200 美元 左右。于是,降低模块的价格便成了蓝牙芯片提供厂商与外围组件制造厂商致力 发展的方向。 「天线」 是在无线通讯系统中用来传送与接收电磁波能量的重要必备组件。 , 由于目前技术尚无法将天线整合至半导体制程的芯片中, 故在蓝牙模块里除了核 心的系统芯片外,天线是另一具有影响蓝牙模块传输特性的关键性组件。在各种 不同的蓝牙应用产品中,所使用的天线设计方法与制作材质也不尽相同。选用适 当的天线除了有助于搭配产品的外型以及提升蓝牙模块的传输特性外, 还可以更 进一步降低整个蓝牙模块的成本。 这是提供给蓝牙系统厂商在寻求低价格的系统 芯片外,另一个可能降低模块成本的考量方向。在本文中将介绍蓝牙天线的设计 考量、相关重要参数、蓝牙天线的种类以及在产品上的应用考量。 重要的天线参数 天 线 最 主 要 的 功 能 在 于 转 换 传 播 介 质 中 (通 常 是 空 气 介 质 )辐 射 电 磁 波 能 量 与收发机所送出或收到的能量。在能量转换的过程中,会出现有收发机与天线及 天线与传播介质之间的不连续接口。在无线通讯系统中,天线必须依照这两个接 口的特性来做适当的设计,以使得收发机、天线以及传播介质之间形成一个连续 的能量传输路径, 如此便可以顺利的将发射机的能量藉由发射天线辐射到传播介 质中,并藉由接收天线将辐射电磁波的能量传送到接收机端。为了能够说明这两

蓝牙模块硬件设计指导(参考)

蓝牙模块硬件设计指导(参考) 1.简介 该文档基于某款蓝牙模块的硬件设计经验总结,仅作硬件设计参考之用。 2.天线设计 2.1PIFA天线设计 2.1.1尺寸要求 该天线是经过调频特性的理论计算得出的尺寸大小,并经过实际设计验证的经验值,跟板材及环境都有关系。按如下规格设计最远距离(无遮挡)可达20米。 图1 2.1.2布线要求 首先,建议将天线按尺寸设计成元件封装,方便摆放及后续项目设计,并可以防止拖动造成尺寸大小变化,而来回修改。 其次,该天线是与地线连接的,天线有效部分的周围及其下层(即背面)不应用有元器、布线,更不应该铺铜,否则影响信号发射和接收,甚至无法正常工作。 第三,该天线的接地点要求大面积接地,并多打过孔。第四,该天线要求设计在PCB板的板边,尽量朝前面板,并要求周围避开铁质结构件。 2.1.3板材要求 板材请选用:FR4,介电常数为 4.2 2.2外引天线设计 请断开PIFA天线的连接电路,并用10pF的电容连接外引天线。外引天线的线材要求采用50欧高频屏敝电缆,并在尾部去掉3CM长的屏敝层。线头的中间信号线焊接在天线输出

端,而屏敝铁线也应该焊在就近地线位置,该天线尾部应放置于前面板靠前位置或者引至铁壳之外。 3.电源设计 电源的参数要求应根据具体型号的参数来设计,详细请见相应型号的SPEC文档。 注:为了保证模块的工作的稳定性及语音输出不受干扰,建议蓝牙模块独立电源供电,并保证电源稳定,输出功率符合模块的最大功耗。 另外,掉电时,要保证蓝牙的掉电完全(即保证掉电电压可以小于 1.5V超50mS);实在无法满足条件,请加进复位芯片对模块复位引脚进行复位电平控制。 建议:主控CPU增加对蓝牙模块的电源控制,即可保证模块掉电完全,也可避免蓝牙模块的状态与CPU的状态不一置。 4.音频电路设计 音频电路的设计直接影响到蓝牙模块输的音质指标,所以,应独立区分布线,保证音频信号的完整性。 4.1差分输出设计要求 有的模块音频输出是差分信号输出,需要外部加差分信号转单端信号电路。如下图所示: 图2 其中,差分线的布板走线应尽量短且等长,做好地线屏敝工作,避免其信号线干扰。 第二,其接地网络应与目标系统的音频地(如汽车音响的功放接地点)连接之后再与大地相连,避免地线引进干扰。 第三,建议图示中所有10K电阻的精度都采用1%的。第四,保证电源的电压稳定。

半波偶极子天线的HFSS仿真设计

半波偶极子天线的HFSS仿真设计 一、实验目的: 1.以一个简单的半波偶极子天线设计为例,加深对对称阵子天线的了解; 2.熟悉HFSS软件分析和设计天线的基本方法及具体操作; 3.利用HFSS软件仿真设计以了解半波振子天线的结构和工作原理; 4.通过仿真设计掌握天线的基本参数:频率、方向图、增益等。 二、实验步骤: 本次实验设计一个中心频率为3GHz的半波偶极子天线。天线沿着Z轴放置,中心位于坐标原点,天线材质使用理想导体,总长度为0.48λ,半径为λ/200。天线馈电采用集总端口激励方式,端口距离为0.24mm,辐射边界和天线的距离为λ/4。 1、添加和定义设计变量 参考指导书,在Add Property对话框中定义和添加如下变量: 2、设计建模 1)、创建偶极子天线模型 首先创建一个沿Z轴方向放置的细圆柱体模型作为偶极子天线的一个臂,其底面圆心坐标为(0,0,gap/2),半径为dip_radius,长度为dip_length,材质为理想导体,模型命名为Dipole,如下:

然后通过沿着坐标轴复制操作生成偶极子天线的另一个臂。此时就创建出了偶极子的模型如下:

2)、设置端口激励 半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面,并设置端口平面的激励方式为集总端口激励。该矩形面需要把偶极子天线的两个臂连接起来,因此顶点坐标为(0,-dip_radius,-gap/2),长度和宽度分别为2*dip_radius和gap。如下: 然后设置该矩形面的激励方式为集总端口激励。由之前的理论分析可得,半波偶极子天线的输入阻抗为73.2?,为了达到良好的阻抗匹配,将负载阻抗也设置为73.2 ?。随后进行端口积分线的设置。此处积分线为矩形下边缘中点到矩形上边缘中点。3)、设置辐射边界条件 要在仿真软件中计算分析天线的辐射场,必须先设置辐射边界条件。本次设计中采用辐射边界和天线的距离为1/4个工作波长。这里,我们先创建一个沿着Z轴放置的圆

最新双频单极子天线

双频单极子天线

摘要 本设计介绍了射频双频单极子天线的基本原理以及基于HFSS的射频双频单极子天线的设计过程。双频天线一个最为简单的颁发就是采用印刷单极子天线来实现,这类天线所需成本极低,而且结构和加工都极为简易,是目前为止众多学者的研究方向。本篇论文主要设计与仿真射频双频单极子天线。 半波偶极子天线和单极子天线是迄今为止应用较为广泛的天线。利用镜像原理,引入接地面可以将半波偶极子天线的长度减少一半,即 1/4波长单极子天线。 然后,文中设计并仿真了一个单极子天线,能够使用在无线局域网中。其L 型单极子天线由微带线直接馈电,天线工作于IEEE802.11a和802.11b两个工作频段,实现了天线的双频工作特性。仿真结果表明,该天线低频单极子天线垂直方向长度等于19mm时,该单极子天线的双频振点,也就是高频振点对应IEEE802.11a(5.15GHz~5.825GHz),低频振点对应IEEE802.11b(2.4GHz~2.4825GHz),能够应用在无线局域网所涉及到到相关频段力,同时具备较佳的辐射方向图性质。 关键词:双频单极子;射频; WLAN; HFSS

Design of Radio-Frequency Monopole Antenna ABSTRACT This design introduces the basic principles of radio dual-band monopole antenna and a dual-band radio-based HFSS monopole antenna design process. Printed monopole antenna as a dual-band antenna in the form of a simple structure, easy processing, low cost, is also a hot topic in the antenna field. In this thesis, dual-band monopole antenna RF. The use of image theory, the introduction of ground plane can reduce the length of the half-wave dipole antenna half, or a quarter-wave monopole antenna. Then, the paper applied to the design and production of a dual-band WLAN printed monopole antenna. The antennaThe L-type monopole microstrip line directly fed antenna operating in the frequency band IEEE802.11a and 802.11b both work to achieve the characteristics. Measured results show that the low-frequency monopole antenna vertical length equal to 19mm, high frequency and low frequency resonance point of the dual-band monopole antenna design were falling IEEE802.11a (5.15GHz ~ 5.825GHz) and IEEE802.11b (2.4GHz ~ 2.4825GHz) work on the band,

蓝牙5.0 BLE芯片模块KT1025A硬件说明和设计注意事项

KT1025X硬件说明和设计注意事项 1、首先请以提供的测试DEMO为准“BT201”模块,如果单独使用芯片,没测试过dem直接LAYOUT,此时经验不是很丰富,极有可能出现底噪。所以首先对比好厂商的测试板 注意:蓝牙音频类的产品,出现底噪或者杂音是很常见的,layout的时候请不要很随意,基础知识不牢固的,网上多学习,不要想当然的随便,结果出来杂音就是自然而然的事情 2、天线和一些元器件的封装,请直接参考DEMO模块的PCB文件,资料库里面有 3、还需要注意电源供电: (1)、BT201测试板其实也是有底噪的,只是非常小,人耳基本很难听出来而已 (2)、可以使用手机充电器供电试试,不会有大的底噪 (3)、最好用电池供电,因为电池是觉得对的直流,所以非常干净 (4)、台式电脑的USB输出就有可能产生纹波比较大,会产生底噪 (5)、板子中如果有DCDC,则也容易产生底噪,最优的供电是采用7805之类的LDO 4、如果板子有底噪,该怎么排查? (1)、首先板子的供电,选一个干净的,最好电池供电,断开前级一切电源电路 (2)、然后接出芯片的耳机输出,用耳机听听,是否有底噪,如果没有就查后级功放电路 (3)、如果播放U盘无底噪,而播放蓝牙有底噪,这个不能说明什么问题。 本身蓝牙属于高频射频,对外就会辐射能量,底噪只能尽可能的小,不可能没有。但是好的设计,你听起来是感受不到底噪的,除非仪器去测量。 5、蓝牙底噪的改善方法: (1)、蓝牙天线和蓝牙模块尽量远离模拟电路 (2)、芯片的模拟地一定要接到电源地的输入端 (3)、检查芯片周围的接芯片脚的电容有没有问题,是否短路,或者虚焊 (4)、蓝牙部分的GND要多放过孔。 6、晶振的选型和指标要求? 由于蓝牙对频偏要求比较高,所以晶振的品质对蓝牙的性能至关重要,选型过程中 必须保证晶振的一致性和稳定性。晶振的频率偏差必须≤±10ppm,负载CL推荐12pF。 备注:晶振对地电容C102=C103?=2*CL‐(4pF~6pF),其中CL为晶振负载电容。 (1)、体积无要求的,推荐我DEMO上面的晶振,成本低,性能好 (2)、体积要求小的,推荐24M-3225的,成本稍高,性能好 建议直接用原厂配套的晶体,相信比外面随意采购的要优惠和质量保障

一种单极鞭状天线分析与设计概要

一种单极鞭状天线分析与设计 【摘要】文章分析了一种单极鞭状天线的工作原理、设计方法,并给出了模型天线。针对实测结果对天线结构进行改进,结果显示天线工作频率在334~346MHz,中心频率为340MHz,在整个频带内驻波系数小于2,增益较为稳定,均值达到2.2dBi。这种天线体积小,重量轻,方便携带,重复性和一致性较好。 【关键词】单极鞭状天线电性能驻波系数方向图 1 引言 鞭状天线由于尺寸小、结构紧凑而在当今各类通信设备中被广泛应用,其研究设计也因此受到广泛关注。各种地面电台及车载电台配用了形式多样的鞭状天线,在舰船上也常看到林立的鞭状天线。由于鞭状天线在物理尺寸上仍是小天线,尤其是HF频段低端,电阻小、电抗大,匹配困难,因此大多数鞭状天线应用在窄带工作状态,带宽大约在5%~10%左右[1]。单极鞭状天线属于鞭状类里结构颇为简单的一种,适合于车载等便携工作方式,体积小,辐射效率高,架设方便。 2 理论分析 本文设计的鞭状天线结构采用长度为1/2波长的单极子。单极天线是偶极子天线的一半,这种天线几乎总是高于安装地平面,其基本原理结构如图1所示,由长为h的直立振子和无限大的地板组成。地面的影响可用天线的镜像来代替,这样单极子天线就可等效为自由空间内臂长为2h的对称振子。当然,这样的等效仅对地面上的半空间等效,原因是地板以下没有辐射场[2]。 2.1 辐射场与方向图 架设在无限大理想导电平面上的单极接地天线产生的辐射场,可直接应用自由空间对称振子的计算公式进行计算[3]: · (1) 式中Im为波腹电流。将Im=I0/sinβl,θ=90°-Δ,l=h,(I0为输入电流,Δ仰角,h为单极子天线的高度)。代入上式,得:

蓝牙天线设计

蓝牙天线设计 目前最常见的蓝牙天线有偶极天线(dipole antenna),倒 F 型天线(planar inverted F anternna)、曲流线型天线(meander line antenna)、微小型陶瓷天线(ceramic antenna)、液晶聚合体天线(lcp)和棒状天线(2.4G 频率专用)等。由于这些具有近似全向性的辐射场型以及结构简单、制作成本低的优点,所以非常适合嵌入蓝牙技术装置使用。下面主要介绍 4 种天线的设计方法。 1、倒F 型天线 倒F型天线是由于其结构与倒置的英文字母 F 相似而得名。如下 图 1 所示。其中(L+H)只有四分之一波长,而且在其结构中已经包含有接触地金属面,可以降低对模块中接地金属米难的敏感度,所以非常适合用在蓝牙模块装置中。另外一方面,由于倒 F 型天线只需要利用金属导体配合适当的馈线及天线短路到接地面的位置,故其制作成本低,而且可以直接与pcb电路板焊接在一起,一体化设计。 倒 F 型天线的天线体可以为线状或者片状,若以金属片制作则可以 为SMD(suerface-mountde device)组件焊接在电路板上达到隐藏天线的目的。此时为了支撑金属片不与接地金属面产生短路,通常会在金属片与接地面之间加入绝缘介质。当使用介电常数较高的绝缘材料还可以缩小蓝牙天线尺寸。

图 2 给出了倒 F 型天线的pcb设计封装参数。作为板载天线的一种,倒 F 型天线设计成本低但是增加了一定的体积,但是实际应用中是最长见一的一种。 倒 F 型天线是1/4 波长天线,除去其天线接入点外,其外轮廓 为L 形状。图 2 中蓝牙天线接入点与蓝牙芯片的天线引脚相连接,外轮廓L 型短边接地,天线接入点介于地和天线开放端之间。板载F型天线一般放在pcb 顶层,铺地一般放在顶层并位于天线附近,但天线周围务必不能放置地,周围应是净空区。图 3 给出了倒 F 型天线在PROTEL 中制作成板载天线的应用示范:

RFID偶极子天线设计与仿真

泉州师范学院 毕业论文(设计) 题目 RFID偶极子天线设计与仿真 物理信息工程学院电子信息科学与技术专业 07 级1班学生姓名连劲松学号 070303044 指导教师余燕忠职称副教授 完成日期 2011年4月 教务处制

RFID偶极天线的设计和分析 物理信息工程学院电子信息科学与技术专业 070303044 连劲松 指导教师:余燕忠副教授 【摘要】:RFID偶极天线因其具有结构简单且效率高的优点,且可以设计成适用于全方向通讯的RFID 应用系统,已成为RFID标签天线应用最广泛的天线结构。本文基于Ansoft HFSS平台上,主要对RFID中常用的不同结构的偶极天线进行分析与设计,并且分析影响天线性能的因素,具有很强的实用性。 【关键词】:射频识别;偶极天线;RFID标签

目录 摘要 (1) 0.引言 (3) 1.RFID的发展状况 (3) 1.1发展历史 (3) 1.2国内外研究现状 (4) 2.RFID的理论基础 (4) 2.1RFID的工作原理 (4) 2.2RFID系统中的天线的作用 (5) 3.RFID系统中的天线类型 (5) 3.1线圈天线 (5) 3.2缝隙(微带贴片)天线 (7) 3.3偶极子天线 (7) 4. 本文任务要求 (8) 5.偶极子天线仿真设计与分析 (8) 5.1半波偶极子天线 (8) 5.2弯折偶极子天线 (11) 5.3折合偶极子天线 (15) 5.4变形偶极子天线 (17) 6.影响偶极子天线工作性能的因素 (19) 7.总结 (20) 7.1设计中出现的问题及处理 (20) 7.2设计感想 (20) 参考文献 (21) 致谢 (22)

新型超宽带单极子天线的设计概要

文章编号:1001-893X(201108-0121-04 新型超宽带单极子天线的设计 徐海洋,张厚,梁建刚,王洪光 (空军工程大学导弹学院,陕西三原713800 摘要:研制了一款超宽带印刷单极子天线,通过在接地板上开方形槽,展宽带宽的同时也改善了带内特性。再在金属贴片顶部开扇形槽,进一步在高频段展宽了频带。实测结果显示,改进后的天线-10dB阻抗带宽为2.1~25.5GHz,而原不加槽天线的仿真带宽为2~11.4GHz,带宽展宽了14GHz。仿真和实测结果显示,天线在2.5GHz、8GHz、25GHz的方向图对称性良好。 关键词:超宽带;单极子天线;开槽 中图分类号:TN821 文献标识码:A doi:10.3969/j.issn.1001-893x.2011.08.025 Design of a Novel Ultra wideband Monopole Antenna XU Hai yang,Z HANG Hou,LIANG Jian gang,W ANG Hong guang (Missile Institute,Air Force Engineering University,Sanyuan713800,China Abstract:The UWB(Ultra widebandprinted planar antenna in this paper is notched in the ground plane,so that the bandwidth is expanded,and the inner band performance is improved,too.Then through notching in the top of the patch,the bandwidth is further e xpanded at the high frequency section.The measured result shows that the-10dB impedance bandwidth of the improved antenna is2.1~25.5GHz in contrast to2~11.4GHz of the simulated bandwidth of the initial antenna,as a result,the bandwidth enhances14GHz.The simulated and measured results sho w that the radiation patterns are very symmetrical at2.5GHz,8G Hz and25GHz.

微带单极子

移动通信期末论文 题目:基于HFSS的微带单极子“美化”天线姓名:欧阳倩 学号:20131060189 序号: 33号 专业:通信工程 指导老师:申东娅 2016年6月30日

基于HFSS的微带单极子“美化”天线 摘要 单极子天线或称为直立天线是垂直于地面或导电平面架设的天线,已广泛应用于长、中、短波及超短波波段。半波偶极子天线和单极子天线是迄今为止应用较广泛的天线。这类天线所需成本极低,而且结构和加工都很简易,是目前为止众多学者的研究方向。本文首先介绍了微带单极子天线的基本原理及其结构,然后利用HFSS12.0仿真软件以矩形为基本图形对微带单极子天线进行了仿真与美化。通过观察S参数图,确定了天线大致的谐振点和带宽,研究天线的性能与激励端口尺寸之间的关系,还研究了天线接地面面积与天线性能之间的关系,并找出最佳参数,设计出符合要求,性能完好的超宽带“美化”天线。 关键词:天线微带单极子天线HFSS美化天线

第一章引言 单极子天线十几年发展迅速,随着其技术的改进,使得单极子天线在实际生活中应用越来越广。 目前,为了满足现在通讯设备,科研和天线的朝向几个方面发展,即,体积小,宽带和多波段操作,只能控制模式的需求。单极子天线因其辐射能力强、波长短、高度低、结构简单、易于使用、携带方便、牢固可靠,常被用于制作无线局域网的天线系统。单极子天线不算天线家族的鼻祖,事实上,它产生于水平天线之后。由于水平天线的长波和中波波段,波长较长,天线的架设高度受到限制,受地面的影响,天线的辐射能力弱,而且在此波段主要采取地面传播,造成水平极化波的衰减远大于垂直极化波。为了解决上面的问题人们在长波与中波波段主要适用垂直地面的直立天线,即单极子天线。 所谓“美化天线”,也可称为“伪装天线”,即在不增大传播损耗的情况下,通过各种手段对天线的外表进行伪装、修饰来达到美化的目的,既美化了城市的视觉环境,也减少了居民对无线电磁环境的恐惧和抵触,同时也延长了天线的使用寿限,保证通信的质量。 第二章 HFSS软件仿真 3.2 仿真部分 3.1 设计要求 在所给附录参考图样中,选择一个图样,或类似、或变形的图样,主要在10GHz 以下频段,设计一个微带单极子“美化”天线。微带厚度 1.6mm, 介电常数 4.4。 3.2原始模型 这个美化天线的初始方向是一个机器人,其身体构造大体分为4个矩形,将四个大矩形连接合并之后进行了简单的修饰加工,总体效果如下:

相关主题
文本预览
相关文档 最新文档