当前位置:文档之家› 用扭摆法测定转动惯量实验数据处理实例

用扭摆法测定转动惯量实验数据处理实例

用扭摆法测定转动惯量实验数据处理实例
用扭摆法测定转动惯量实验数据处理实例

转动惯量实验数据处理实例

〔数据记录与处理〕

1、 测量扭转常数和载物金属盘转动惯量

表1 测量塑料圆柱的直径D 数据

次数

1

2

3

4

5

平均值 S/mm

u/mm

σ/mm

D/mm

99.96

99.98

99.98

99.98

99.96

99.97

0.05

0.01

0.05

表2 测量载物金属盘与塑料圆柱的质量和摆动周期数据

(1)塑料圆柱的转动惯量理论值

).(10

895.88

12

4

2

1m kg D

m I -?==

'

估算不确定度:).(10

009.022

4

2

2

'

1

'1

m kg D

m I D m I -?=???

?

??+???

??=σσσ

塑料圆柱转动惯量理论值结果表示:%

1.0)

.(10)009.0895.8(2

4

1=?±='-B m kg I

(2)测量扭转系数

仪器弹簧的扭转系数k :

)...(10

5470.374000

.02400

.110895.8442

22

2

2

4

2

2

2

1'

12

m N s

m kg T T I k =?=-?=-=---π

π

估算不确定度:).(10004.022422

20210'12

2

02

11'12

2

2

12

01

'1

m N T T T I T

T T I T T T T

I

k -?=???

?

?

?-+????

??-+-=

σσσπ

σ 扭转常数k 的结果表示:

%

12.0)

.(10)004.0547.3(2

=?±=-B m N k

(3)金属载物盘的转动惯量

).(10

925.414

.3474000

.010

547.342

4

2

2

2

2

200m kg T k I --?=???=

=

π

(4)塑料圆柱的转动惯量测量值

).(10

904.810

925.414

.3424

.110

547.342

4

4

2

2

2

02

211m kg I T k I ---?=?-???=

-=

π

相对百分误差:%1.0%100895

.8895

.8904.8%100111=?-=

?'

'-=

I I I B

2、测量金属圆筒和木球的转动惯量

表3 金属圆筒的内径d 、外径D 与木球的直径D 测量数据

表4 金属圆筒、木球的质量与摆动周期测量数据

(1)金属圆筒的转动惯量

理论值:).(10

623.110)93.9397.99(6902.08

1)(8

12

3

6

222

2

2

m kg d D m I --?=?+??=+='

测量值:).(10640.110925.454.110

3.54741

412

3

4

2

2

-2

02

22

2m kg I kT I --?=?-???=

-=π

π

相对百分误差:%1%100623

.11623

.640.1%1002

2

2=?-=

?''-=

I I I B

(2)木球的转动惯量

理论值:).(10

340.110

1.1367235.010

1 1012

3

6

22

3

m kg mD I --?=???=='

测量值:).(10

339.110179.022.110

3.54741412

3

4

2

2

-2

2

2

3m kg I kT

I --?=?-???=

-=π

π

球支架

相对百分误差:%07.0%100339

.1340

.1339.1%1003

3

3=?-=

?''-=I I I B

4、验证平行轴定理

表5 金属圆筒、木球的质量与摆动周期测量数据

其他测量数据如下:

金属杆长度,610.0mm ;质量,133.5g ;金属杆夹质量,65.0g ;球夹质量,42.5;滑块质量,0.4587kg 。 (1)作I x ~x 2

图线

根据图线可知,I x 与x 2

成线性关系,实验结果与平行轴定理相符,验证了平行轴定理。I x 与x 2

的线性拟合关系为

I x =0.0482x 2+0.0277,其中单位的I x 为10-3kg.m 2;x 2的为10-4m 2

由此可知,两个金属滑块的质量m =0.482kg ;两个金属滑块绕质心轴的转动惯量I c =0.277×10-4kg.m 2。

(2)金属细杆转动惯量的理论值和实验值 金属细杆的转动惯量理论值I ‘杆:

).(10

140.46100.01335.012

11212

3

22

m kg mL I -???=

='=杆

金属细杆的转动惯量测量值I 杆:

).(10

134.410

232.015.210

3.54741412

3

4

22

-2

2

42

m kg I kT I --??-???=

-=

=杆支架杆π

π

相对百分误差:%14.0%100140

.4140

.4134.4%1004

=?-=

?''-=

I I I B 杆

〔实验结果与结论〕

在常温常压条件下,测量结果为:

1.塑料圆柱转动惯量理论值

%

1.0)

.(10)009.0895.8(2

4

1=?±='-B m kg I

2.扭转常数

%

12.0)

.(10)004.0547.3(2

=?±=-B m N k

3.验证平行轴定理实验结果与理论相符。

化工原理精馏实验报告

北 京 化 工 大 学 实 验 报 告 课程名称: 化工原理实验 实验日期: 2011.04.24 班 级: 化工0801 姓 名: 王晓 同 组 人:丁大鹏,王平,王海玮 装置型号: 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气-液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的1.2-2.0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E e N E N 式中 E —总板效率; N —理论板数(不包括塔釜); Ne —实际板数。

扭摆法测定物体转动惯量

《扭摆法测定物体转动惯量》实验报告 一、实验目的 1. 熟悉扭摆的构造、使用方法和转动惯量测试仪的使用; 2. 利用塑料圆柱体和扭摆测定不同形状物体的转动惯量I 和扭摆弹簧的扭摆常数K ; 3. 验证转动惯量平行轴定理。 二、实验原理 1. 不规则物体的转动惯量 测量载物盘的摆动周期T 0,得到它的转动惯量: 2002 4T K J π= 塑料圆柱体放在载物盘上测出摆动周期T 1,得到总的转动惯量: 21012 4T K J J π += 塑料圆柱体的转动惯量为 ()221 0'21 2 1 48 T T K J mD π-= = 即可得到K ,再将K 代回第一式和第三式可以得到载物盘的转动惯量为 '2 1002 2 10J T J T T =- 只需测得其它的摆动周期,即可算出该物体绕转动轴的转动惯量: 22 4T K J π= 2. 转动惯量的平行轴定理 若质量为m 的物体绕质心轴的转动惯量为J c 时,当转轴平行移动距离x 时,则此物体对新轴线的转动惯量: '2c J J mx =+ 3. 实验中用到的规则物体的转动惯量理论计算公式 圆柱体的转动惯量: 2222 1 28 D m J r h rdr mD h r ππ=?=?

金属圆筒的转动惯量: ()22 18 J J J m D D =+=+外外内内 木球的转动惯量: ()()22 223 211sin cos 42103 m J R R Rd mD R π π π???π-==? 金属细杆的转动惯量: 2220 1 2212 L m J r dr mL L ==? 三、实验步骤 1. 用游标卡尺、钢尺和高度尺分别测定各物体外形尺寸,用电子天平测出相应质量; 2. 根据扭摆上水泡调整扭摆的底座螺钉使顶面水平; 3. 将金属载物盘卡紧在扭摆垂直轴上,调整挡光杆位置和测试仪光电接收探头中间小 孔,测出其摆动周期T ; 4. 将塑料圆柱体放在载物盘上测出摆动周期T 1。已知塑料圆柱体的转动惯量理论值为 J 1’,根据T 0、T 1可求出K 及金属载物盘的转动惯量J 0。 5. 取下塑料圆柱体,在载物盘上放上金属筒测出摆动周期T 2。 6. 取下载物盘,测定木球及支架的摆动周期T 3。 7. 取下木球,将金属细杆和支架中心固定,测定其摆动周期T 4,外加两滑块卡在细杆 上的凹槽内,在对称时测出各自摆动周期,验证平行轴定理。由于此时周期较长,可将摆动次数减少。 四、注意事项 1. 由于弹簧的扭摆常数K 不是固定常数,与摆角有关,所以实验中测周期时使摆角在 90度左右。 2. 光电门和挡光杆不要接触,以免加大摩擦力。 3. 安装支架要全部套入扭摆主轴,并将止动螺丝锁紧,否则记时会出现错误。 4. 取下支架测量物体质量。处理时支架近似为圆柱体。

实验扭摆法测定体转动惯量

实验扭摆法测定体转动惯量

————————————————————————————————作者:————————————————————————————————日期:

实验2-10 扭摆法测物体的转动惯量 【引言】 转动惯量是刚体转动时惯性大小的量度,是表明刚体特性的一个物理量。刚体相对于某转轴的转动惯量,是组成刚体的各质元质量与它们各自到该转轴距离平方的乘积之和。 刚体的转动惯量与以下因素有关: 刚体的质量:各种形状刚体的转动惯量都与它自身的质量成正比; 转轴的位置:并排的两个刚体的大小、形状和质量都相同,但转轴的位置不同,转动惯量也不同; 质量的分布:质量一定、密度相同的刚体,质量分布不同(即刚体的形状不同)转动惯量也不同。 如果刚体形状简单,且质量分布均匀,可以直接计算出它绕特定转轴的转动惯量。对于形状复杂,质量分布不均匀的刚体,计算将极为复杂,通常采用实验方法来测定,例如机械部件、电动机转子和枪炮的弹丸等。 转动惯量的测量,一般都是使刚体以一定形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。本实验使物体做扭转摆动,由摆动周期以及其它参数的测定计算出物体的转动惯量。 在国际单位制中,转动惯量的单位是2 m kg ?(千克·米2)。 【实验目的】 1. 测定弹簧的扭转常数 2. 用扭摆测定几种不同形状物体的转动惯量,并与理论值进行比较 3. 验证转动惯量平行轴定理 【实验仪器】 扭摆 附件为塑料圆柱体 金属空心圆筒 实心球体 金属细长杆(两个滑块可在上面自由移动) 数字式定数计时器 数字式电子秤 【实验原理】 扭摆的构造如图2-10-1所示,在垂直轴1上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。在轴的上方可以装上各种待测物体。垂直轴与支座间装有轴承,以降低磨擦力矩。3为水平仪,用来调整系统平衡。 将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。根据虎克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即 θK M -= (2-10-1) 式中,K 为弹簧的扭转常数,根据转动定律 βI M = 图2-10-1

化工大学精馏实验报告

北京化工大学学生实验报告 姓名: 学号: 专业: 班级: 同组人员: 课程名称:化工原理实验 实验名称:精馏实验 实验日期: 2016.5.13 北京化工大学

实验五精馏实验 摘要:本实验通过测定稳定工作状态下塔顶、塔釜及任意两块塔板的液相折光度,得到该处液相浓度,根据数据绘出x-y图并用图解法求出理论塔板数,从而得到全回流时的全塔效率及单板效率。通过实验,了解精馏塔工作原理。 关键词:精馏,图解法,理论板数,全塔效率,单板效率。 一、目的及任务 ①熟悉精馏的工艺流程,掌握精馏实验的操作方法。 ②了解板式塔的结构,观察塔板上汽-液接触状况。 ③测定全回流时的全塔效率及单塔效率。 ④测定部分回流时的全塔效率。 ⑤测定全塔的浓度(或温度)分布。 ⑥测定塔釜再沸器的沸腾给热系数。 二、基本原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要无穷多塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中午实际意义。但是由于此时所需理论板数最少,又易于达到稳定,故常在工业装置的开停车、排除故障及科学研究时采用。 实际回流比常取最小回流比的1.2~2.0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。

摆动法测量转动惯量

文案大全 图 4-1单摆原理 实验4 用复摆测量刚体的转动惯量 一、实验目的 1.学习掌握对长度和时间的较精确的测量; 2.掌握重力加速度的方法,并加深对刚体转动理论的理解; 3.学习用作图法处理、分析数据。 二、实验仪器 JD-2物理摆、光电计时器等 三、实验原理 1.单摆 如图4-1(单摆球的质量为m )当球的半径远小于摆长l 时,应用动量矩定理,在角坐标系可得小球自由摆动的微分方程为: 01212=+θθSin l g dt d (4-1) 式中t 为时间,g 为重力加速度,l 为摆长。 当1θ(rad )很小时, 11sin θθ≈ (4-2) 则(4-1)式可简化为: 01212=+θθl g dt d (4-3) 令 l g =2 1ω (4-4) (4-3)式的解为: )sin(1101αωθθ+=t (4-5 ) 式中10θ,α由初值条件所决定。

图4-2 物理摆(复摆) 周期 g l T π 21= (4-6) 2.物理摆 一个可绕固定轴摆动的刚体称为复摆或物理摆。如图4-2,设物理摆的质心为C ,质量为M ,悬点为O ,绕O 点在铅直面内转动的转动惯量为0J ,OC 距离为h ,在重力作用下,由刚体绕定轴转动的转动定律可得微分方程为 θθ sin 220Mgh dt d J -= (4-7) 令 0 2 J Mgh = ω (4-8) 仿单摆,在θ很小时,(4-7)式的解为: )sin(αωθθ+=t (4-9) Mgh J T 0 2π = (4-10) 设摆体沿过质心C 的转动惯量为C J ,由平行轴定理可知: 20Mh J J C += (4-11) 将(4-11)代入(4-10)可得: g h Mgh J T C +=π 2 (4-12) (4-12)式就是物理摆的自由摆动周期T 和(4-13)式右端各参变量之间的关系。实验就是围绕(4-12)式而展开的。 因为对任何C J 都有C J ∝M ,因此(4-13)式的T 与M 无关,仅与M 的分布相关。 令2 Ma J =,a 称为回转半径, 则有 g h gh a T += 2 (4-13)

转动惯量实验报告(2)

南昌大学物理实验报告 课程名称:扭摆法测定物体转动惯量 实验名称:扭摆法测定物体转动惯量 学院:信息工程学院专业班级:测控技术与仪器152班 学生姓名:夏正彬学号:5801215044 实验地点:基础实验大楼座位号:13 实验时间:第四周星期二(下午)一点开始

一、实验目的: 1.测定弹簧的扭转常数 k, 2.测定形状不同物体的转动惯量并与理论值比较, 3.验证转动惯量平行轴定理。 二、实验原理: 将物体在水平面内转过一角度?后,在弹簧的恢复力矩作用下物体就开始绕垂 直轴做往返扭转运动。根据胡可定律,弹簧受扭转而产生的恢复力矩 M 与所转过的 角度?成正比,即 M=-k? 式中 k 为弹簧的扭转常量,根据转动惯量 M=Iβ即β= 式中 I 为物体绕转轴的转动惯量,β为角角速度,由上式得 β==-=-ω2θ 上式ω2=,忽略轴承的摩擦阻力钜。 上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正 比,且方向相反,此方程的解为 θ=Acos(ωt+φ) 式中,A 为谐振动的角振幅,φ为初相位,ω为角速度,此谐振动的周期为 T==2π(4-4)

由式(4-4)可知,只要试验测得物体扭摆的摆动周期,并在 I 和 k 中任

何一个量已知时即可算出另一个量。 转动惯量组合定理:若一个物体由几部分组成,每一部分相对转轴的转动惯量分别为 I ?,I ?,I ?…, 那么整个物体对转动轴的转动惯量为 I ? +I ?+I ?+…本实验用一个几何 形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论共式直接计算 得到,再算出本仪器弹簧的 k 值。 如先测载物盘转动的周期 T?,有 T=2π(4-5)再测载物盘加塑料圆柱转动的周期 T?,有 T?=2π(4-6)I?′为塑料圆柱转动惯量理论计算值 I ?′= (4-7) 由式(4-5)和式(4-6)可得 k=4π2 (4-8) 若要测定其他形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,由公式(4-4)即可算出该物体绕转动轴的转动惯量: I=-I?(4-9)

化工原理精馏实验报告

北京化工大学 实验报告 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气- 液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔 板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则

需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是 一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E N e 式中E —总板效率;N—理论板数(不包括塔釜);Ne —实际板数。 2)单板效率E ml E x n 1 x n E ml * x n 1 x n* 式中E ml—以液相浓度表示的单板效率; x n,x n-1—第n 块板的和第(n-1 )块板得液相浓度; x n*—与第n 块板气相浓度相平衡的液相浓度。 总板效率与单板效率的数值通常由实验测定。单板效率是评价塔板性能优劣的重要数据。物系性质、板型及操作负荷是影响单板效率的重要因素。当物系与板型确定后,可通过改变气液负荷达到最高的板效率;对于不同的板型,可以在保持相同的物系及操作条件下,测定其单板效率,已评价其性能的优劣。总板效率反映全塔各塔板的平均分离效果,常用于板式塔设计中。 若改变塔釜再沸器中电加热器的电压,塔板上升蒸汽量将会改变,同时,塔釜再沸器电加热器表面的温度将发生变化,其沸腾给热系数也将发生变化,从而可以得到沸腾给热系数也加热量的关系。由牛顿冷却定律,可知 Q A t m

转动惯量实验报告

转动惯量实验报告 一.实验目的 (1) 学会用落体法转动实验仪测定刚体的转动惯量; (2) 研究刚体的转动惯量与形状、大小及转轴位置的关系。 三.实验仪器描述 本实验所用NNZ-2型刚体转动实验仪由主机和测量仪表与拉线牵引台辅机及待测刚体球、环、盘、棒等组成。主机包括基础转盘和测量传感器;辅机由转数表和计时表、拉线、悬臂及砝码。 四.实验内容 1.测量基础转盘的转动惯量 2.测量圆环(或圆盘)的转动惯量 3.测双球的转动惯量并用球体验证平行移轴定理。 五.测量及实验步骤

1.测量基础转盘的转动惯量: 将主机上的霍尔传感器输出端插头和电磁铁及电插头,插入辅机的对应插口。将砝码托盘上的挂线穿过悬臂上的滑轮并使其一端固定在转轴上。(1)调节好主机和辅机的高度,使拉线与悬臂轴线平行,为此,悬臂上设有两个定位钉,使拉线通过两个定位钉即可。 (2)打开辅机上的电源开关,这时电磁铁会自动将基础转盘锁住。我们已将转数设为16个脉冲,即测量转2周的转动时间。 (3)绕线与测试准备--测试键-完成测试:主机因电磁铁失电而解锁,砝码从静止开始下落,刚体转动2周后,电磁铁自动吸合,重新锁紧转动的刚体,并显示刚体转动2周的下落时间。绕线键-主机解锁,重新绕线,绕线合适位置后完毕按下准备键,仪表全部数据归零,做好测量准备,主机(转动刚体)通过电磁铁被锁紧;按下测试键,再次测试转动2周的时间。 这里要特别强调,绕线到合适位置的含义。因为我们要测出刚体完整转动2周的时间,霍尔传感器给出开始和结束讯号的位置就必须是同一位置,这是减少误差的重要环节。 (4)测试在砝码托盘上放200g砝码,然后点按一下测试键,电磁铁失电,砝码带动刚体作匀加速转动,计时仪表开始计时,当刚体转动2周结束

北京化工大学精馏实验报告

北 京 化 工 大 学 化 工 原 理 实 验 告 : : : : : : 实验名称 班级 姓名 学 号 同组成员 实验日期 精馏实验 2015.5.13 实验 日 期

精馏实验 一、实验目的 1、熟悉填料塔的构造与操作; 2、熟悉精馏的工艺流程,掌握精馏实验的操作方法; 3、了解板式精馏塔的结构,观察塔板上汽液接触状况; 4、掌握液相体积总传质系数K a的测定方法并分析影响因素 x 5、测定全回流时的全塔效率及单板效率; 6、测量部分回流时的全塔效率和单板效率 二、实验原理 在板式精馏塔中,混合液的蒸汽逐板上升,回流液逐板下降,气液两相在塔板上接触,实现传质、传热过程而达到分离的目的。如果在每层塔板上,上升的蒸汽与下降的液体处于平衡状态,则该塔板称之为理论塔板。然而在实际操做过程中由于接触时间有限,气液两相不可能达到平衡,即实际塔板的分离效果达不到一块理论塔板的作用。因此,完成一定的分离任务,精馏塔所需的实际塔板数总是比理论塔板数多。 回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块板的精馏塔。这在工业上是不可行的,所以最小回流比只是一个操作限度。若在全回流下操作,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。实际回流比常取最小回流比的1.2~2.0倍。 本实验处于全回流情况下,既无任何产品采出,又无原料加入,此时所需理论板最少,又易于达到稳定,可以很好的分析精馏塔的性能。影响塔板效率的因素很多,大致可归结为:流体的物理性质(如粘度、密度、相对挥发度和表面张力等)、塔板结构以及塔的操作

用扭摆法测定物体转动惯量

用扭摆法测定物体转动惯量 (一)教学基本要求 学会用扭摆法测量物体转动惯量的原理和方法。 了解转动惯量的平行轴定理,理解“对称法”验证平行轴定理的实验思想,学会验证平行轴定理的实验方法。 掌握定标测量思想方法。 学会转动惯量测试仪的使用方法。 学会测量时间的累积放大法。 掌握不确定度的估算方法。 (二)讲课提纲 1.实验简介 转动惯量是表征转动物体惯性大小的物理量,是研究、设计、控制转动物体运动规律的重要工程技术参数。如钟表摆轮、精密电表动圈的体形设计、枪炮的弹丸、电机的转子、机器零件、导弹和卫星的发射等,都不能忽视转动惯量的大小。因此测定物体的转动惯量具有重要的实际意义。刚体的转动惯量与刚体的质量分布、形状和转轴的位置都有关系。对于形状较简单的刚体,可以通过计算求出它绕定轴的转动惯量,但形状较复杂的刚体计算起来非常困难,通常采用实验方法来测定。 2.实验设计思想和实现方法 (1)基本原理 转动惯量的测量,基本实验方法是转换测量,使物体以一定的形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。 实验中采用扭摆法测量不同形状物体的转动惯量,就是使物体摆动,测量摆动周期,通过物体 摆动周期T 与转动惯量I 的关系 k I T π 2=来测量转动惯量。 (2)间接比较法测量,确定扭转常数K 已知标准物体的转动惯量I 1,被测物体的转动惯量I 0;被测物体的摆动周期T 0,标准物体被测物体的摆动周期T 1。通过间接比较法可测得 202 12 010T T T I I -= 也可以确定出扭转常数K 2 021124T T I k -=π 定出仪器的扭转常数k 值,测出物体的摆动周期T ,就可计算出转动惯量I 。 (3)“对称法”验证平行轴定理 平行轴定理:若质量为m 的物体(小金属滑块)绕通过质心轴的转动惯量为I 0时,当转轴平行移动距离x 时,则此物体的转动惯量变为I 0+mx 2。为了避免相对转轴出现非对称情况,由于重力矩的作用使摆轴不垂直而增大测量误差。实验中采用两个金属滑块辅助金属杆的对称测量法,验证金属滑块的平行轴定理。这样,I 0为两个金属滑块绕通过质心轴的转动惯量,m 为两个金属滑块的质量,杆绕摆轴的转动惯量I 杆,当转轴平行移动距离x 时(实际上移动的是通过质心的轴),测得的转动惯量 I =I 杆+I 0+mx 2 扭摆的构造 1-垂直轴,2-蜗簧,3-水平仪

扭摆法测定物体的转动惯量实验报告

扭摆法测定物体的转动惯量 一、实验目的 1.测定扭摆的仪器常数(弹簧的扭转常数)K 。 2.测定熟料圆柱体、金属圆筒、木球与金属细长杆的转动惯量。 3.验证转动惯量的平行轴定理。 二、实验器材 扭摆、转动惯量测试仪、金属圆筒、实心塑料圆柱体、木球、验证转动惯量平行轴定理用的金属细杆(杆上有两块可以自由移动的金属滑块)、游标卡尺、米尺 托盘天平。 三、实验原理 1.测量物体转动惯量的构思与原理 将物体在水平面内转过以角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。更具胡克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即 式中K 为弹簧的扭转常数。 若使I 为物体绕转轴的转动惯量,β为角加速度,由转动定律M I β=可得 令2K I ω= ,忽略轴承的磨察阻力距,得 上式表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。方程的解为 式中A 为简谐振动的角振幅,?为初相位角,ω为角速度。谐振动的周期为 由上式可知,只要通过实验测得物体扭摆的摆动周期,并在I 和K 中任何一个量已知时即可计算出另外一个量。 本实验使用一个几何形状规则的小塑料圆柱,它的转动惯量可以根据质量和几何尺寸用理论公式直接计算得到,将其放在扭摆的金属载物盘上,通过测定其在扭摆仪上摆动时的周期,可算出仪器弹簧的K 值。若要测定其他形状物体的转动惯量,只需将待测物体安放在同一扭摆仪顶部的各种夹具上,测定其摆动周期,即可算出该物体绕转动轴的转动惯量。 假设扭摆上只放置金属载物圆盘时的转动惯量为0I ,周期为0T ,则 若在载物圆盘上放置已知转动惯量为'1I 的小塑料圆柱后,周期为1T ,由转动惯量的可加性,总的转动惯量为'01I I +,则 解得 以及 若要测量任何一种物体的转动惯量,可将其放在金属载物盘上,测出摆动周期T ,就可算出其转动惯量I ,即

转动惯量的测定实验报告

理论力学转动惯量 实验报告

【实验目的】 1. 了解多功能计数计时毫秒仪实时测量(时间)的基本方法 2. 用刚体转动法测定物体的转动惯量 3. 验证刚体转动的平行轴定理 4. 验证刚体的转动惯量与外力矩无关 【实验原理】 1.转动力矩、转动惯量和角加速度关系系统在外力矩作用下的运动方程 T×r+Mμ=Jβ2(1)由牛顿第二定律可知,砝码下落时的运动方程为:mg-T=ma 即绳子的张力T=m(g-rβ2) 砝码与系统脱离后的运动方程 Mμ=Jβ1(2)由方程(1)(2)可得 J=mr(g-rβ2)/(β2-β1) (3) 2.角加速度的测量 θ=ω0t+?βt2(4)若在t1、t2时刻测得角位移θ1、θ2 则θ1=ω0 t1+?βt2(5) θ2=ω0 t2+?βt2(6) 所以,由方程(5)、(6)可得 β=2(θ2 t1-θ1 t2)/ t1 t2(t2- t1)【实验仪器】

1、IM-2刚体转动惯量实验仪(含霍尔开关传感器、计数计时多功能毫秒仪、一根细绳、一个质量为100g的砝码等,塔轮直径从下至上分别为30mm、40mm、50mm、60mm,载物台上的孔中心与圆盘中心的距离分别为40mm、80mm、120mm) 2、一个钢质圆环(内径为175mm,外径为215mm,质量为995g) 3、两个钢质圆柱(直径为38mm,质量为400g) 【实验步骤】 1. 实验准备 在桌面上放置IM-2转动惯量实验仪,并利用基座上的三颗调平螺钉,将仪器调平。将滑轮支架固定在实验台面边缘,调整滑轮高度及方位,使滑轮槽与选取的绕线塔轮槽等高,且其方位相互垂直。 通用电脑计时器上光电门的开关应接通,另一路断开作备用。当用于本实验时,设置1个光电脉冲记数1次,1次测量记录大约20组数。 2. 测量并计算实验台的转动惯量 1) 放置仪器,滑轮置于实验台外3-4cm处,调节仪器水平。设置毫秒仪计数次数为20。 2) 连接传感器与计数计时毫秒仪,调节霍尔开关与磁钢间距为,转离磁钢,复位毫秒仪,转动到磁钢与霍尔开关相对时,毫秒仪低电平指示灯亮,开始计时和计数。 3) 将质量为m=100g的砝码的一端打结,沿塔轮上开的细缝塞入,并整齐地绕于半径为r的塔轮。 4) 调节滑轮的方向和高度,使挂线与绕线塔轮相切,挂线与绕线轮的中间呈水平。 5) 释放砝码,砝码在重力作用下带动转动体系做加速度转动。 6) 计数计时毫秒仪自动记录系统从0π开始作1π,2π……角位移相对应的时刻。 3. 测量并计算实验台放上试样后的转动惯量 将待测试样放上载物台并使试样几何中心轴与转动轴中心重合,按与测量空实验台转动惯量同样的方法可分别测量砝码作用下的角加速度β2与砝码脱离后的角加速度β1,由(3)式可计算实验台放上试样后的转动惯量J,再减去实验步骤2中算得的空实验台转动惯量即可得到所测试样的转动惯量。将该测量值与理论值比较,计算测量值的相对误差。 4. 验证平行轴定理 将两圆柱体对称插入载物台上与中心距离为d的圆孔中,测量并计算两圆柱体在此位置的转动惯量,将测量值与理论计算值比较,计算测量值的相对误差。 5. 验证刚体定轴转动惯量与外力矩无关 通过改变塔轮直径对转盘施加不同的外力矩,测定在不同外力矩下转盘的转动惯量,与理论值进行比较,在一定允许的误差范围内验证结论。 【实验数据与处理】 1.测量空盘的转动惯量 塔轮半径r=40mm 砝码100g

摆动法测量转动惯量

. 实验4 用复摆测量刚体的转动惯量 一、实验目的 1.学习掌握对长度和时间的较精确的测量; 2.掌握重力加速度的方法,并加深对刚体转动理论的理解; 3.学习用作图法处理、分析数据。 二、实验仪器 JD-2物理摆、光电计时器等 三、实验原理 1.单摆 l时,应用动量矩定理,在角)当球的半径远小于摆长4-1(单摆球的质量为m如图坐标系可得 小球自由摆动的微分方程为: 2?gd?1?0?Sin(4-1) 12dtl l为摆长。为重力加速度,当t为时间,g式中?(rad)很小1时, ???sin(4-2) 11单摆原理4-1图则()式可简化为:4-1专业资料. ––60 基础物理实验Ⅲ 2?gd?10??)(4-3 12ldtg2令??(4-4)

1l(4-3 )式的解为:????)sin(??t) (4-5 1101式中??由初值条件所决定。,10l?2T?)(4-6 周期1g 2.物理摆,质,设物理摆的质心为C一个可绕固定轴摆动的刚体称为复摆或物理摆。如图4-2点在铅直面内转动的转动惯量为,悬点为MO,绕O 量为 J h,在重力作用下,由刚体绕定轴转动的转,OC距离为0动定律可得微分方程为 2?d?sin??MghJ(4-7) 02dtMgh2?? 4-8)(令J0)复摆4-2 物理摆(图?仿单摆,在(很小时,4-7)式的解为: ????)sin(?t?(4-9) J0?2T?(4-10) hgM. . 的转动惯量为设摆体沿过质心C J,由平行轴定理可知:C2MhJ?J? (4-11) C0 4-10)可得:将(4-11)代入( Jh C??2T?)(4-12 gMgh)式右端各参变量之间的关系。实验4-13式就是物理摆的自由摆动周期T和((4-12) )式而展开的。就是围绕(4-12因为对任何JJ M的分布相关。无关,仅与M4-13)式的T都有与∝M,因此(CC2令aMa?J称为回转半径,,

精馏实验实验报告

精馏实验实验报告 姓名 班级 学号

1.实验前,请想象并尝试描述气速与整塔压降的关系? 依照教材P228页,当液体喷淋量为零时,压降与空塔气速呈直线关系,与气体以湍流形式流过管道的关系类似;有一定喷淋量时,压降因管道变窄增大,但几乎与无喷淋量时平行;过截点以后,气体对液体产生阻滞作用,填料表面持液量增多,压降随气速较快增长;过了泛点之后,液体变为连续相而气体变为分散相,阻力猛增。 2.实验前,请同学们回顾精馏塔的塔板与填料的发展历程? 舌形塔板 斜孔塔板 鼓泡式塔板 散堆填料 规整填料

3.实验前,请尝试回答精馏操作过程中,使混合物较彻底分离的基本条件? 1、相对挥发度差异较大; 2、每一块板能使气液充分接触; 3、塔高足够高; 4、再沸器与冷凝器温度稳定; 5、混合物不形成共沸物; 6、运行规范稳定,不出现漏液、烨沫夹带、气泡夹带、液泛等非规范操作; 7、加料不反混; 二、实验记录 包括操作条件、实验现象、原始数据表,要求数据的有效数字、单位格式规范。 【原始数据表】 6 77.9 87.8 35.1 24.0 127 瓦数/kw 次数塔顶组成/% 塔釜组成/% 3 1 18.75 81.25 86.30 13.70 2 15.5 3 84.47 88.83 13.17 5 1 12.52 88.48 88.20 11.80 2 13.12 86.88 89.10 10.90 6 1 11.91 88.09 88.35 11.65 2 11.71 88.29 88.14 11.86

【数据处理】 ※空塔气速 首先根据测得的回流液流量求空塔气速。由于实验中采取全回流的方式,回流液质量流量与蒸气质量流量相同。 实验中转子流量计已经将实际溶液的流量转换为水的流量,由公式 2 1 s s V V = (1) 将读数转换为实际回流夜的流量。其中: f ρ取转子密度,近似为铁质,取密度7900kg/m3,1ρ取20 o C 水的密度,2ρ取回流温度下 混合液体的密度。水取998kg/m 3,乙醇取789 kg/m 3。 塔顶、塔釜的溶液组成取两次实验的平均值,并依据公式1 1 n wi m i x ρρ=∑ 计算不同温度下回 流液密度,得到数据如下: 表一、不同功率下的回流液密度 瓦数/kw 塔顶组成/%水 回流液密度kg/m^3 3 17.1 4 818.3751 5 12.82 810.7671 6 11.81 809.008 7 7 23.92 830.6076 7 13.07 811.2035 将所得到的回流液密度带入公式(1),即可得到回流液体积,体积和密度均已知,则可以得到回流液质量。因为全回流,所以根据物料守恒,上升蒸汽的质量与回流液质量相等。 表二、不同功率下的回流液质量流量 瓦数/kw 回流液体积流量L/h 回流液质量流量kg/h 3 7.3 5.9791 5 21.6 17.4929 6 27. 4 22.1651 7 20. 5 17.067 6 7 32.0 25.9294

转动惯量实验报告

刚体绕轴转动惯性的度量。其数值为J=∑mi*ri^2,式中mi 表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离。 求和号(或积分号)遍及整个刚体。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。规则形状的均质刚体,其转动惯量可直接计得。不规则刚体或非均质刚体的转动惯量,一般用实验法测定。转动惯量应用于刚体各种运动的动力学计算中。 描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积。由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。 还有垂直轴定理:垂直轴定理 一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。 表达式:Iz=Ix+Iy 刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。由此折算所得的质点到转轴的距离,称为刚体绕该轴的回转半径κ,其公式为_____,式中M为刚体质量;I为转动惯量。 转动惯量的量纲为L^2M,在SI单位制中,它的单位是

kg·m^2。 刚体绕某一点转动的惯性由更普遍的惯量张量描述。惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。 补充对转动惯量的详细解释及其物理意义: 先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。 E=(1/2)mv^2(v^2为v的2次方) 把v=wr代入上式(w是角速度,r是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r,而再把不同质点积分化得到实际等效的r) 得到E=(1/2)m(wr)^2 由于某一个对象物体在运动当中的本身属性m和r都是不变的,所以把关于m、r的变量用一个变量K代替, K=mr^2 得到E=(1/2)Kw^2 K就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量。 这样分析一个转动问题就可以用能量的角度分析了,而不必

精馏实验报告

本科实验报告 过程工程原理实验(乙) 课程名称: 实验名称:筛板塔精馏操作及效率测定 姓名: 学院係): 学号: 指导教师: 同组同学: 一、实验目的和要求 1、了解板式塔的结构和流程,并掌握其操作方法; 2、测定筛板塔在全回流和部分回流时的全塔效率及全回流时的单板效率; 3、改变操作条件(回流比、加热功率等)观察塔内温度变化,从而了解回流的作用和操作条件 对精馏分离效果的影响。 要求:已知原料液中乙醇的质量浓度为15~20%,要求产品中乙醇的质量浓度在85%以上。二、实验内容和原理 板式精馏塔的塔板是气液两相接触的场所,塔釜产生的上升蒸汽与从塔顶下降的下降液 逐级接触进行传热和传质,下降液经过多次部分气化,重组分含量逐渐增加,上升蒸汽经多 次部分冷凝,轻组分含量逐渐增加,从而使混合物达到一定程度的分离。 (一)全回流操作时的全塔效率E T和单板效率E mV(4)的测定 1、全塔效率(总板效率)E T N T 1 E T T 100% (1) N P 式中:N T—为完成一定分离任务所需的理论板数,包括蒸馏釜;

N P—为完成一定分离任务所需的实际板数,本装置■ =7块。 在全回流操作中,操作线在x-y图上为对角线。根据实验中所测定的塔顶组成X D、塔底组成X W(均为摩尔百分数)在操作线和平衡线间作梯级,即可得到理论板数N T。

2、部分回流时全塔效率 Er 的测定 2.1精馏段操作线方程: yn+i ——精馏段第n+1块塔板上升的蒸汽组成,摩尔分数; x n ——精馏段第n 块塔板下流的液体组成,摩尔分数; R----回流比 R=L/D X D ----塔顶产品液相组成,摩尔分数; 实验中回流量由回流转子流量计 8测量,但实验操作中一般作冷液回流,故实际回流量 需进行校正 式中:L o ——回流转子流量计上的读数值 ,ml/min L ——实际回流量,ml/min tD-----塔顶液相温度,C tR-----回流液温度,C O?-_-塔顶回流液在平均温度(t D +t R )/2 下的比热,KJ/kg ? K r D -----塔顶回流液组成下的汽化潜热, KJ/kg 产品量D 可由产品转子流量计测量,由于产品量 D 和回流量L 的组成和温度相同,故回流 比R 可直接用两者的比值来得到: R - (4) D 式中:D-----产品转子流量计上的读数值,ml/min 实验中根据塔顶取样分析可得 X D ,并测量回流和产品转子流量计读数 L0和D 以及回流温度 tR 和塔顶液相温度tD ,再查附表可得 C P D , rD ,由式(3)( 4)可求得回流比 R ,代入式(2) 即可得精馏段操作 线方程。 2.2加料线(q 线)方程 X F q 1 式中:q------进料的液相分率 y nl R X D (2) 式中 L °[1 C pD (t D 毁] (5)

扭摆法测定物体转动惯量

物理实验报告 一、【实验名称】 扭摆法测定物体转动惯量 二、【实验目的】 1、 测定扭摆弹簧的扭转常数K 。 2、 测定几种不同形状物体的转动惯量,并与理论值进行比较。 3、改变滑块在金属细杆上的位置,验证转动惯量平行轴定理。 三、【实验原理】 扭摆的结构如图2.1所示,将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下,物体就开始绕垂直轴作往返扭转运动。 根据胡克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即 M= -K θ (2.1) 根据转动定律:M=J β 得 I M = β(2.2) 令I K = 2 ω,由式(2.1)、(2.2)得:θωθθβ2 22 -=-==I K dt d 上述方程表示扭摆运动具有角简谐振动的特性,此方程的解为: )t cos(A ?ωθ+= 此谐振动的周期为: K I T π ω π 22== (2.3) 2 24T K I π = (2.4) 由(2.3)或(2.4)式可知,只要实验测得物体扭摆的摆动周期,并在I 和K 中任何一 个量已知时即可计算出另一个量。 本实验用一个已知形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再算出仪器弹簧的K 值。 如先测载物盘转动的周期T 0,有 T=2K I 0 π (4-5) 再测载物盘加塑料圆柱(大)的转动周期T 1,有 K I I T 1 012'+=π (4-6) 图2.1

图2 TH -2型转动惯量测量仪面板示意图 1I '为塑料圆柱转动惯量理论计算值 1I '=22 1 mr (4-7) 由式(4-5)和式(4-6)可得 K=42 211 2 T T I -'π (4-8) 若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,由公式(2.3)即可算出该物体绕转动轴的转动惯量。 理论分析证明,若质量为m 的物体绕通过质心轴的转动惯量为I 0,当转轴平行移动距离x 时,则此物体对新轴线的转动惯量变为I 0+mx 2。称为转动惯量的平行轴定理。 四、【仪器用具】 1.扭摆及几种待测转动惯量的物体 金属圆筒、实心塑料圆柱体(一长一短)、实心塑料球、验证转动惯量平行轴定理用的细金属杆(杆上有两块可自由移动的金属滑块)。 2.TH -2型转动惯量测量仪 由主机和光电传感器两部分组成。 主机采用新型的单片机作控制系统,用于测量物体转动和摆动的周期,以及旋转体的转速,能自动记录、存储多组实验数据并能够准确地计算多组实验数据的平均值。 光电传感器主要由红外接收管组成,将光信号转换为脉冲电信号,送入主机工作。因人眼无法直接观察仪器工作是否正常,可用遮光物体往返遮挡光电探头发射光束通路,检查计时器是否开始计数。为防止过强光线对光电探头的影响,光电探头不能置放在强光下,实验时采用窗帘遮光,确保计时准确。 3.仪器使用方法 TH -2型转动惯量测量仪面板如图2所示。 (1)调节光电传感器在固定支架上的高度,使被测物体上的挡光杆能自由地通过光电门,再将光电传感器的信号传输线插入主机输入端(位于测试仪背面)。 (2)开启主机电源,“摆动”指示灯亮,参量指示为“P1”、数据显示为“- - - -”。 (3)本机设定扭摆的周期数为10,如要更改,可按“置数”键,显示“n=10”,按“上

实验报告-用扭摆法测定物体的转动惯量

扭摆法测定物体的转动惯量 实验原理: 1.扭摆运动——角简谐振动 (1) 此角谐振动的周期为 (2) 式中,为弹簧的扭转常数式中,为物体绕转轴的转动惯量。 2.弹簧的扭转系数的测定: 实验中用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到, 再由实验数据算出本仪器弹簧的值。方法如下: (1)测载物盘摆动周期,由(2)式其转动惯量为 (2)塑料圆柱体放在载物盘上,测出摆动周期,由(2)式其总转动惯量为 (3)塑料圆柱体的转动惯量理论值为 则由,得

(周期我们采用多次测量求平均值来计算) 3.测任意物体的转动惯量: 若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,即 可算出该物体绕转动轴的转动惯量。 根据2内容,载物盘的转动惯量为 待测物体的转动惯量为 4.转动惯量的平行轴定理 实验内容与要求: 必做内容: 1.熟悉扭摆的构造及使用方法,以及转动惯量测试仪的使用方法。调整扭摆基座底脚螺丝,使水平仪的气 泡位于中心。(认真阅读仪器使用方法和实验注意事项) 2.测定扭摆的弹簧的扭转常数,写出。 3.测定塑料圆柱(金属圆筒)的转动惯量。并与理论值比较,求相对误差。 4.测定金属细杆+夹具的过质心轴的转动惯量。

5.滑块对称放置在细杆两边的凹槽内,改变滑块在金属细杆上的位置,验证转动惯量平行轴定理。 数据记录: 一、测定弹簧的扭转系数 及各种物体的转动惯量: 表格一: ; ;0.01s ; 二、验证平行轴定理: 表格二: ; ; ; 。

) ) () ( 滑块的总转动惯量为: 数据处理:(要求同学们写出详细的计算过程) 1.计算弹簧的扭转系数 ; ; ;; ;; ;; ; 2.计算物体的转动惯量(公式见表格) 3.验证平行轴定理(公式见表格)

相关主题
文本预览
相关文档 最新文档