当前位置:文档之家› 一元一次方程,二元一次方程组,一元二次方程

一元一次方程,二元一次方程组,一元二次方程

一元一次方程,二元一次方程组,一元二次方程
一元一次方程,二元一次方程组,一元二次方程

一元一次方程,二元一次方程组,一元二次方程

教学目的

1. 回顾已学过的关于方程(组)与方程的解的概念

掌握方程的一些特点以及常规考点,特别是一元二次方程和二元一次方程组的解题技巧和容易犯错的地方,巩固关于一元二次方程和二元一次方程组的解的应用的问题解决方法。

重难点

1. 二元一次方程组,一元二次方程的应用

在做关于应用题的时候要会理清各个量之间的关系,并运用存在的关系建立方程 教学过程

一.一次方程与一次方程组

1.方程(组)与方程的解的概念

(1)方程:含有未知数的等式叫做方程

(2)方程的解:使方程左右两边的值相等的未知数的值叫做方程的解。

(3)一元一次方程:只含有一个未知数,且未知数的次数是一次的整式的方程叫做一元一次方程;它的标准形式是ax+b=0(a ≠0)。

(4)二元一次方程:含有两个未知数,并且含未知数的项的次数都是一次的整式方程叫做二元一次方程,它的基本形式是ax+by=0(a ≠0, b ≠0)。

(5)二元一次方程组:几个一次方程组成的含有两个未知数的一组方程叫做二元一次方程组。

(6)二元一次方程组的解:方程组里每个方程的公共解叫做二元一次方程组的解

2.解方程的依据

等式的性质:

(1) 等式的两边都加上或者减去同一个整式,得到的结果仍是等式

(2) 等式的两边都乘或除以同一个不为零的数或整式,所得结果仍是等式

2. 方程或方程组的解法与步骤

(1) 解一元一次方程的一般步骤:①去分母②去括号③移项④合并同类项⑤未

知数的系数化为一

(2) 解二元一次方程组的基本思路:通过消元使其转化为一元一次方程来解,

通常的消元法有代入法和加减法。

3. 列方程(组)解应用题的一般步骤

(1) 审题,特别注意关键的字和词的意义,弄清相关数量关系,已知什么,求

什么;

(2) 设未知数(注意单位的同意);

(3) 根据相灯关系列出方程(组);

(4) 解方程(组),并检验;

(5) 写出答案(包括单位名称)。

注意:列方程(组)解应用题的关键是:确定等量关系。

基础训练(一)

1. 在方程y x 4

13 =5中,用含x 的代数式表示y 为y = ;当x =3时,y

= .

2.如果x =3,y =2是方程326=+by x 的解,则b = .

3.解下列方程

7(2x-1)-3(4x-1)=4(3x+2)-1 15-(8-5x)=7x+(4-3x)

{4519323a b a b +=--= {

2207441x y x y ++=-=-

4.若方程组

{31x y x y +=-=与方程组{

84mx ny mx ny +=-=的解相同,求m 、n 的值.

5.已知关于、的二元一次方程组的解满足二元一次方程,求的值。

二,一元二次方程

1. 一元二次方程的概念

只含有一个未知数,并且未知数的最高次数是二次的整式方程叫做一元二次方程。一般形式是ax 2+bx+c=0(a ≠0),其中二次项的系数是a ,一次项的系数是b,常数项是c 。

2. 一元二次方程的解法:

(1) 配方法;(2)公式法(3)因式分解法(十字相乘法)

3. 关于x 的一元二次方程ax 2+bx+c=0(a ≠0),的根的判别式Δ=b 2-4ac ax 2+bx+c=0(a ≠0)中,Δ>0

方程有两个不等实数根. ax 2+bx+c=0(a ≠0)中,Δ=0方程有两个相等实数根.

ax 2+bx+c=0(a ≠0)中,Δ<0

方程没有实数根. 基础训练(二)

1.一元二次方程ax

2+bx+c=0的两根是x 1、 x 2,则x 1+ x 2=___;

x 1· x 2=_______;

2.用适当的方法求解方程: (1)、(x-1)2=3 (2)、x 2

-4x+3=0

3.已知关于一元二次方程(k+1)x 2+2x-1=0有两个不相同的实数根,则k 的取值范围是。

4.已知关于x 的一元二次方程x 2=2(1-m)x-m 2

的两个实数根分别为x 1、 x 2。

(1)求m 的取值范围;

(2)设y= x 1+x 2,当y 取得最小值时,求相应m 的值,并求出最小值。

综合练习

1.如果x y y x b a b a 2427773-+-和是同类项,则x 、y 的值是( )

A.x =-3,y =2

B.x =2,y =-3

C.x =-2,y =3

D.x =3,y =-2

2.若(x-y+3)2+|2x+y|=0,则x= ______________.

3.在方程3x +4y =16中,当x =3时,y =___;若x 、y 都是正整数,这个方程的解为_____.

4.关于x 、y 的方程组??

?=-=+m y x m y x 932的解是方程3x +2y =34的一组解,那么m =( ) A .2

B .-1

C .1

D .-2 5方程(m+2)x x +4x+3m+1=0是关于一元二次方程,则m= ______________

4. 方程2

532)1(2=+-x x 化为一般形式是_______________,它的一次项系数为________。 5. 解方程

???=-=+1392x y y x

?????=---=+1213343144y x y x

2x 2-7x+6=0 (x+1)(x+2)=2x+4

7.(1)当a 为何值时, 方程组

的解互为相反数?(2)若解满足x+y>0,a 的范围是多少?

8. 受气候等因素的影响,今年某些农产品的价格有所上涨. 张大叔在承包的10亩地里所种植的甲、乙两种蔬菜共获利13800元.其中甲种蔬菜每亩获利1200元,乙种蔬菜每亩获利1500元.则甲、乙两种蔬菜各种植了多少亩?

9. 某庄旅游景点为了吸引游客,推出的团体票收费标准如下:如果团体人数不超过25人,每张票价150元,如果超过25人,每增加1人,每张票价降低2元,但每张票价不得低于100元。阳光旅行社共支付团体票价4800元,则阳光旅行社共购买多少张团体票?

一元二次方程专题复习讲义(知识点-考点-题型总结)-----hao---use--ok

一元二次方程专题复习 一、知识结构: 一元二次方程?? ???*?韦达定理根的判别解与解法 二、考点精析 考点一、概念 (1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ax ⑶难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。 针对练习: ★1、方程782=x 的一次项系数是 ,常数项是 。

★2、若方程()021=--m x m 是关于x 的一元一次方程, ⑴求m 的值;⑵写出关于x 的一元一次方程。 ★★3、若方程()112=?+ -x m x m 是关于x 的一元二次方程,则m 的取值范 围是 。 ★★★4、若方程2x2=0是一元二次方程,则下列不可能的是( ) 2 21 C21 1 考点二、方程的解 ⑴概念:使方程两边相等的未知数的值,就是方程的解。 ⑵应用:利用根的概念求代数式的值; 典型例题: 例1、已知322-+y y 的值为2,则1242++y y 的值为 。 例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。 例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根, 则m 的值为 。 针对练习: ★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 ★2、已知关于x 的方程022=-+kx x 的一个解与方程 311=-+x x 的解相同。 ⑴求k 的值; ⑵方程的另一个解。

一元二次方程及解法经典习题及解析

一元二次方程及解法经典习题及解析 知识技能: 一、填空题: 1.下列方程中是一元二次方程的序号是 . 42=x ① 522=+y x ② ③01332=-+x x 052=x ④ 5232=+x x ⑤ 412=+x x ⑥ x x x x x x 2)5(0143223-=+=+-。。。。⑧⑦ 2.已知,关于2的方程12)5(2=-+ax x a 是一元二次方程,则a 3.当=k 时,方程05)3()4(22=+-+-x k x k 不是关于X 的一元二次方程. 4.解一元二次方程的一般方法有 , , , · 5.一元二次方程)0(02=/=++a c bx ax 的求根公式为: . 6.(2004·沈阳市)方程0322=--x x 的根是 . 7.不解方程,判断一元二次方程022632 =+--x x x 的根的情况是 . 8.(2004·锦州市)若关于X 的方程052=++k x x 有实数根,则k 的取值范围是 . 9.已知:当m 时,方程0)2()12(22=-+++m x m x 有实数根. 10.关于x 的方程0)4(2)1(222=++-+k kx x k 的根的情况是 . 二、选择题: 11.(2004·北京市海淀区)若a 的值使得1)2(42 2-+=++x a x x 成立,则a 的值为( ) A .5 8.4 C .3 D .2 12.把方程x x 332-=-化为02=++c bx ax 后,a 、b 、c 的值分别为( ) 3.3.0.--A 3.3.1.--B 3.3.1.-C 3.3.1.--D 13.方程02=+x x 的解是( ) x A .=土1 0.=x B 1,0.21-==x x C 1.=x D

一元一次方程的应用——和差倍分问题专题练习(解析版)

一元一次方程的应用——和差倍分问题专题练习 一、选择题 1、在一次美化校园活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和支援植树的分别有多少人?若设支援拔草的有x人,则下列方程中正确的是(). A. 32+x=2×18 B. 32+x=2(38-x) C. 52-x=2(18+x) D. 52-x=2×18 答案:B 解答:设支援拔草的有x人, 则支援植树的有(20-x)人, 由题意得:32+x=2(18+20-x) 32+x=2(38-x). 故符合题意的为B选项. 2、某物流中心的A仓库有货物180吨,B仓库有货物120吨,现在需把B仓库一部分货物运到A仓库,使B仓库货物占A仓库货物总量的30%.设把B仓库的货物运送x吨到A仓库,则可列方程(). A. 120-x=30%×180 B. 120-x=30%(180+x) C. 120+x=30%×180 D. 180-x=30%(120+x) 答案:B 解答:设把B仓库的货物运送x吨到A仓库, 根据题意得,120-x=30%(180+x). 选B. 3、某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是(). A. 2×1000(26-x)=800x B. 1000(13-x)=800x C. 1000(26-x)=2×800x D. 1000(26-x)=800x 答案:C

解答:∵安排x名工人生产螺钉,∴安排(26-x)名工人生产螺母,则每天生产螺钉800x个,每天生产螺母1000(26-x)个,根据“螺母个数=2×螺钉个数”可列方程为1000(26-x)=2×800x.选C. 4、已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为(). A. 2cm B. 3cm C. 4cm D. 5cm 答案:B 解答:设大小处于中间的边长是xcm,则最大的边是(x+1)cm,最小的边长是(x-1)cm.则(x+1)+x+(x-1)=12, 解得:x=4, 则最短的边长是:4-1=3cm. 选B. 5、甲、乙、丙三种商品单价的比是6:5:4,已知甲商品比丙商品的单价多12元,则三种商品的单价之和为(). A. 75元 B. 90元 C. 95元 D. 100元 答案:B 解答:设甲、乙、丙三种商品的单价分别为6x,5x,4x, 则6x-4x=12, 解得x=6,∴三种商品的单价之和为6×6+5×6+4×6=90. 6、父亲现在32岁,儿子现在5岁,x年前,父亲的年龄是儿子年龄的10倍,则x应满足的方程是(). A. 32-x=5x B. 32-x=10(5-x) C. 32-x=5×10 D. 32+x=5×10 答案:B 解答:x年前,父亲年龄是:32-x,儿子年龄是5-x,父亲的年龄=10×儿子的年龄,列式为:32-x=10(5-x). 7、我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x人,依题意列方程得().

专题复习:一元二次方程的五种常用解法(后附答案)【精品】

专题:一元二次方程的5种解法 方法1 形如x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程用直接开平方法求解 1.用直接开平方法解下列方程: (1)9x2=25; (2)x2-√=0; (3)(2t-1)2=9; (4)(x-3)2-9=0. (5)2(x-1)2-18=0. 用直接开平方法解一元二次方程的三个步骤: (1)看:看是否符合x2=p或(mx+n)2=p(p≥0)的形式; (2)化:对于不符合x2=p或(mx+n)2=p(p≥0)形式的方程先化为符合的形式; (3)求:应用平方根的意义,将一元二次方程化为两个一元一次方程求解.

方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解 2.用配方法解下列方程: (1)x 2-10x+9=0; (2)x 2+2x=2; (3)2x 2-4x+1=0. 3. 用配方法解下列方程: (1)3x 2 +6x -5=0; (2)12 x 2 -6x -7=0; (3)2x 2+7x -4=0. 用配方法解一元二次方程的“五步法” (1)移项:使方程的左边为二次项和一次项,右边为常数项. (2)化1:当方程的二次项系数不为1时,在方程的两边同除以二次项系数,把二次项系数化为1. (3)配方:在方程的两边同时加上一次项系数一半的平方,把原方程化成(x +n)2=p 的形式. (4)开方:若p ≥0,则两边直接开平方得到一元一次方程;若p <0,则原方程无解. (5)求解:解所得到的一元一次方程,求出原方程的解.

方法3 易化成一般形式(二次项系数不为1)时,用公式法求解4.用公式法解方程: (1)x2+3x+1=0; (2)2x2-5x-7=0; (3)(x+1)(x-1)+2(x+3)=8; (4)y2-2√2y+2=0; (5)(x+1)(2x-6)=1; (6)x2+5x+18=3(x+4).

2.2《一元二次方程的解法》专题训练题及答案

湘教版九年级数学上册 第2章 反比例函数 一元二次方程 2.2 一元二次方程的解法 根据平方根的意义解一元二次方程 专题训练题 1.已知x =2是一元二次方程x 2-2mx +4=0的一个解,则m 的值为( ) A .2 B .0 C .0或2 D .0或-2 2.若关于x 的一元二次方程ax 2+bx +c =0有一个根为1,则下列结论正确的是( ) A .a +b +c =1 B .a +b +c =0 C .a -b +c =0 D .a -b +c =1 3.已知m 是一元二次方程x 2-x -1=0的一个根,那么代数式m 2-m 的值等于( ) A .1 B .0 C .-1 D .2 4.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为( ) A .1 B .-1 C .0 D .-2 5.已知关于x 的一元二次方程(x +1)2-m =0有实数根,则m 的取值范围是( ) A .m ≥-34 B .m ≥0 C .m ≥1 D .m ≥2 6.方程x 2-3=0的根是( ) A .x =3 B .x 1=3,x 2=-3 C .x = 3 D .x 1=3,x 2=- 3 7.一元二次方程(x +6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x +6=4,则另一个一元一次方程是( ) A .x -6=-4 B .x -6=4 C .x +6=4 D .x +6=-4 8.方程-4x 2+1=0的解是( ) A .x =12 B .x =-12 C .x =±12 D .x =±2 9.方程(x -4)2=11的根为( ) A .x 1=-4+11,x 2=-4-11 B .x 1=4+11,x 2=4-11 C .x 1=11+4,x 2=11-4 D .x 1=4+11,x 2=-4-11 10.对于形如(x +m )2=n 的方程,它的解的正确表述为( ) A .都能用直接开平方法求解得x =-m ±n B .当n ≥0时,x =m ±n C .当n ≥0时,x =-m ±n D .当n ≥0时,x =±n -m 11.下列方程中,适合用直接开平方法求解的是( ) A .x 2+5x +1=0 B .x 2-6x -4=0 C .(x +3)2=16 D .(x +2)(x -2)=4x 12.方程4x 2-81=0的解为________. 13.解下列方程: (1)16x 2=25; (2)(2x +1)2-1=0.

一元二次方程及一元二次方程的解法测试题(绝对经典)

. 第二章一元二次方程单元测验 一、选择题:(每小题3分,共36分) 1. 下列方程中是一元二次方程的是 ( ) (A )22)1(2-=-x x (B )01232=+-x x (C )042=-x x (D )02352 =-x x 2. 方程1)14(2 =-x 的根为( ) (A )4121==x x (B )2121==x x (C ),01=x 212=x (D ),2 1 1-=x 02=x 3. 解方程 7(8x + 3)=6(8x + 3)2 的最佳方法应选择( ) (A )因式分解法 (B )直接开平方法 (C )配方法 (D )公式法 4. 下列方程中, 有两个不相等的实数根的方程是( ) (A )x 2 –3x + 4=0 (B )x 2–x –3=0 (C )x 2–12x + 36=0 (D )x 2–2x + 3=0 5、已知m是方程012 =--x x 的一个根,则代数m2 -m的值等于 ( ) A 、1 B 、-1 C 、0 D 、2 6、若方程0152 =--x x 的两根为的值为则 、212111,x x x x +( ) A 、5 B 、51 C 、5- D 、5 1- 7. 以知三角形的两边长分别是2和9, 第三边的长是一元二次方程x 2 –14x + 48=0的解, 则这个三角形 的周长是( )(A )11 (B )17 (C )17或19 (D )19 8. 下列说法中正确的是 ( )(A )方程2 80x -=有两个相等的实数根; (B )方程252x x =-没有实数根;(C )如果一元二次方程20ax bx c ++=有两个实数根,那么0?=; (D )如果a c 、异号,那么方程2 0ax bx c ++=有两个不相等的实数根. 9. 若一元二次方程(1–2k)x 2 + 12x –10=0有实数根, 则K 的最大整数值为( ) (A )1 (B )2 (C )–1 (D )0 10.把方程2x 2 -3x+1=0化为(x+a)2 =b 的形式,正确的是( ) A. 23162x ??- = ???; B.2312416x ??-= ???; C. 2 31416x ? ?-= ? ?? ; D.以上都不对 11、 若方程02 =++q px x 的两个实根中只有一个根为0,那么 ( ) (A )0==q p ; (B )0,0≠=q p ; (C )0,0=≠q p ; (D )0,0≠≠q p . 12、下面是李刚同学在一次测验中解答的填空题,其中答对的是 ( ) A . 若x 2=4,则x =2 B .方程x (2x -1)=2x -1的解为x =1 C .若x 2 +2x +k =0有一根为2,则8=-k D .若分式1 2 32-+-x x x 值为零,则x =1,2 二、填空题:(每小题3分,共30分) 1、方程()()-267-x 5x =+,化为一般形式为 ,其中二次项系数和一次项系数的和为 。 2. 当x =________时,分式1 4 32+--x x x 的值为零。 3. 若关于x 的方程02)1(2 =+--m mx x m 有实数根,则m 的取值范围是______ 4.若方程042 2 =++m x x ,则m= . 5.已知0822 =--x x , 那么=--7632 x x _______________. 6. 若关于x 的一元二次方程02 =++c bx ax (a ≠0)的两根分别为1,—2,则b a -的值为______. 7. 若2 2 2 (3)25a b +-=,则22 a b +=____ 8.若一元二次方程02 =++c bx ax 中,024=+-c b a ,则此方程必有一根为________. 9、若两个连续整数的积是20,则他们的和是________。 10.某企业前年的销售额为500万元,今年上升到720万元,如果这两年平均每年增长率相同,则去年销售额为 11. 如果x x 12、是方程x x 2 720-+=的两个根,那么x x 12+=____________。 13. 已知一元二次方程x x 2 350--=的两根分别为x x 12、,那么x x 12 22 +的值是____。 14. 若方程x x k 2 20-+=的两根的倒数和是 8 3 ,则k =____________。 15.已知关于x 的方程(2k+1)x 2 -kx+3=0,当k______时,?方程为一元二次方程,? 当k______时,方程为一元一次方程,其根为______.

一元二次方程的解法大全

一元二次方程的解法大全【直接开平方法解一元二次方程】 把方程ax2+c=0(a≠0), 这解一元二次方程的方法叫做直接开平方法。 例:用直接开平方法解方程: 1.9x2-25=0; 2.(3x+2)2-4=0; 4.(2x+3)2=3(4x+3). 解:1.9x2-25=0 9x2=25 2.(3x+2)2-4=0 (3x+2)2=4 3x+2=±2 3x=-2±2

∴x1=x2=3. 4.(2x+3)2=3(4x+3) 4x2+12x+9=12x+9 4x2=0 ∴x1=x=0. 【配方法解一元二次方程】 将一元二次方程化成一般形式,如ax2+bx+c=0(a≠0);把常数项移到方程的右边,如ax2+bx=-c;方程的两边都除以二次项系数,使二次项系数为1,如 x2+ 例:用配方法解下列方程: 1.x2-4x-3=0;2.6x2+x=35; 3.4x2+4x+1=7;4.2x2-3x-3=0. 解:1.x2-4x-3=0 x2-4x=3 x2-4x+4=3+4 (x-2)2=7 2.6x2+x=35

3.4x2+4x+1=7 4.2x2-3x-3=0 【公式法解一元二次方程】一元二次方程ax2+bx+c=0(a

广泛的代换意义,只要是有实数根的一元二次方程,均可将a,b,c的值代入两根公式中直接解出,所以把这种方法 =0(a≠0)的求根公式。 例:用公式法解一元二次方程: 2.2x2+7x-4=0; 4.x2-a(3x-2a+b)-b2=0(a-2b≥0,求x). 2.2x2+7x-4=0 ∵a=2,b=7,c=-4. b2-4ac=72-4×2×(-4)=49+32=81

小专题(一)-一元二次方程的解法

专题(一)一元二次方程的解法 1.用直接开平方法解下列方程: (1)x2-16=0;(2)3x2-27=0; (3)(x-2)2=9;(4)(2y-3)2=16. 2.用配方法解下列方程: (1)x2-4x-1=0; (2)2x2-4x-8=0; (3)3x2-6x+4=0; (4)2x2+7x+3=0.

3.用公式法解下列方程: (1)x2-23x+3=0; (2)-3x2+5x+2=0; (3)4x2+3x-2=0; (4)3x=2(x+1)(x-1). 4.用因式分解法解下列方程: (1)x2-3x=0; (2)(x-3)2-9=0;

(3)(3x-2)2+(2-3x)=0; (4)2(t-1)2+8t=0; (5)3x+15=-2x2-10x; (6)x2-3x=(2-x)(x-3). 5.用合适的方法解下列方程: (1)4(x-3)2-25(x-2)2=0; (2)5(x-3)2=x2-9;

(3)t 2-22t +18=0. 参考答案 1.(1)移项,得x 2=16,根据平方根的定义,得x =±4,即x 1=4,x 2=-4. (2)移项,得3x 2=27,两边同除以3,得x 2=9,根据平方根的定义,得x =±3,即x 1=3,x 2=-3. (3)根据平方根的定义,得x -2=±3,即x 1=5,x 2=-1. (4)根据平方根的定义,得2y -3=±4,即y 1=72,y 2=-12. 2.(1)移项,得x 2-4x =1.配方,得x 2-4x +22=1+4,即(x -2)2=5.直接开平方,得x -2=±5,∴x 1=2+5,x 2=2- 5. (2)移项,得2x 2-4x =8.两边都除以2,得x 2-2x =4.配方,得x 2-2x +1=4+1.∴(x -1)2=5.∴x -1=± 5.∴x 1=1+5,x 2=1- 5. (3)移项,得3x 2-6x =-4.二次项系数化为1,得x 2-2x =-43.配方,得x 2-2x +12=-43+12,即(x -1)2=-13.∵ 实数的平方不可能是负数,∴原方程无实数根. (4)移项,得2x 2+7x =-3.方程两边同除以2,得x 2+72x =-32.配方,得x 2+72x +(74)2=-32+(74)2,即(x +74)2=2516. 直接开平方,得x +74=±54.∴x 1=-12,x 2=-3. 3.(1)∵a =1,b =-23,c =3,b 2-4ac =(-23)2-4×1×3=0,∴x =-(-23)±02×1 = 3.∴x 1=x 2= 3. (2)方程的两边同乘-1,得3x 2-5x -2=0.∵a =3,b =-5,c =-2,b 2-4ac =(-5)2-4×3×(-2)=49>0,∴x =-(-5)±492×3=5±76,∴x 1=2,x 2=-13. (3)a =4,b =3,c =--4ac =32-4×4×(-2)=41>=-3±412×4=-3±418.∴x 1=-3+418,x 2=-3-418 . (4)将原方程化为一般形式,得2x 2-3x -2=0.∵a =2,b =-3,c =-2,b 2-4ac =(-3)2-4×2×(- 2)=11>0,∴x =3±1122 =6±224.∴x 1=6+224,x 2=6-224.

一元一次方程的应用和差倍分问题教案

北京市陈经纶中学分校 课时教案活页纸 总课题 列一元一次方程解应用题 总课时 6课时 第 1 课时 课题 和差倍分问题 课型 新授课 2011年10月24 教材 分析 在运用一元一次方程解决实际问题的处理上,教材力求体现实际问题转化为数学问题的过程,分析问题、解决问题的过程,使学生在解决数学问题的过程中学习、并形成解决问题的策略,理解数学的思想和方法,学会数学地思考。在教科书的第四节安排了“问题解决的基本步骤”,初步介绍了波利亚的解决问题模式(四个步骤),这样的处理方式既符合学生的认知特点,又突出了问题解决的过程和方法。当然,这种方法在后续内容的学习中会不断加以渗透和应用,在九年级上、下各设置一章予以阐述。 学情 分析 学生在基本掌握一元一次方程的解法后,教科书通过几个典型例子,引导学生把实际问题转化为数学问题,建立方程的模型,体验一元一次方程与实际的密切联系。通过例题的教学,使学生逐步掌握运用方程解决实际问题的一般过程;通过画线段示意图、列表等手段使学生初步学会分析问题、寻找等量关系的方法;通过不同的设元方法、变换问题的条件、根据方

程设计问题情境等内容,培养学生思维的灵活性、发散性,最终达到提高解决问题能力的目的。 教学 目标 熟悉一元一次方程的应用中的“和差倍分问题”,体会借助图表分析复杂问题中的数量关系,提高学生分析问题、解决问题的能力,进一步体会方程解决问题的作用,树立把实际问题转化为数学问题的思想。 教学 重点 让学生进一步体会方程是刻画现实世界的重要数学模型,而解方程是解决实际问题的重要组成部分; 在学习移项法则的基础上,学习含有括号的一元一次方程的解法。 教学 难点 探索列方程解决问题的过程; 教学 方法 启发式讨论 教具 PPT和导学案 教师活动 学生活动 时间

专题:一元二次方程的八种解法(后附答案)【精品】

专题:一元二次方程的八种解法 方法1 形如x2=p或(mx+n)2=p(p≥0)时,用直接开平方法求解用直接开平方法解一元二次方程的三个步骤: (1)看:看是否符合x2=p或(mx+n)2=p(p≥0)的形式; (2)化:对于不符合x2=p或(mx+n)2=p(p≥0)形式的方程先化为符合的形式; (3)求:应用平方根的意义,将一元二次方程化为两个一元一次方程求解. 1.用直接开平方法解下列方程: (1)x2-25=0; (2)4x2=1; (3)81x2-25=0; (4)(2y-3)2-64=0; (5)3(x+1)2=1 3 ; (6)(3x+2)2=25; (7)(x+1)2-4=0; (8)(2-x)2-9=0.

方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解用配方法解一元二次方程的“五步法” (1)移项:使方程的左边为二次项和一次项,右边为常数项. (2)化1:当方程的二次项系数不为1时,在方程的两边同除以二次项系数,把二次项系数化为1. (3)配方:在方程的两边同时加上一次项系数一半的平方,把原方程化成(x+n)2=p的形式. (4)开方:若p≥0,则两边直接开平方得到一元一次方程;若p<0,则原方程无解. (5)求解:解所得到的一元一次方程,求出原方程的解. 2.用配方法解下列方程: (1)x2-2x-2=0; (2)x2-10x+29=0; (3)x2+2x=2; (4)x2-6x+1=2x-15;

3.用配方法解下列方程: (1)3x 2 +6x -5=0; (2)12 x 2-6x -7=0. (3)x 2 +16x -13=0; (4)2x 2-3x -6=0; 方法3 能化成形如(x+a )(x+b )=0时,用因式分解法求解 用因式分解法解一元二次方程的“四步法” (“右化零,左分解,两因式,各求解”) 4.用因式分解法解下列方程: (1)x 2-8x =0; (2)5x 2+20x +20=0;

九年级数学上册小专题(一) 一元二次方程的解法

编号:954555300022221782598333158 学校:战神市白虎镇禳灾村小学* 教师:战虎禳* 班级:战神参班* 专题(一)一元二次方程的解法 1.用直接开平方法解下列方程: (1)x2-16=0; (2)3x2-27=0; (3)(x-2)2=9; (4)(2y-3)2=16. 2.用配方法解下列方程: (1)x2-4x-1=0; (2)2x2-4x-8=0;

(3)3x2-6x+4=0; (4)2x2+7x+3=0. 3.用公式法解下列方程: (1)x2-23x+3=0; (2)-3x2+5x+2=0; (3)4x2+3x-2=0; (4)3x=2(x+1)(x-1).

4.用因式分解法解下列方程: (1)x2-3x=0; (2)(x-3)2-9=0; (3)(3x-2)2+(2-3x)=0; (4)2(t-1)2+8t=0; (5)3x+15=-2x2-10x; (6)x2-3x=(2-x)(x-3). 5.用合适的方法解下列方程: (1)4(x-3)2-25(x-2)2=0;

(2)5(x -3)2=x 2-9; (3)t 2- 22t +18 =0. 参考答案 1.(1)移项,得x 2=16,根据平方根的定义,得x =±4,即x 1=4,x 2=-4. (2)移项,得3x 2=27,两边同除以3,得x 2=9,根据平方根的定义,得x =±3,即x 1=3,x 2=-3. (3)根据平方根的定义,得x -2=±3,即x 1=5,x 2=-1. (4)根据平方根的定义,得2y -3=±4,即y 1=72,y 2=-12 . 2.(1)移项,得x 2-4x =1.配方,得x 2-4x +22=1+4,即(x -2)2=5.直接开平方,得x -2=±5,∴x 1=2+5,x 2=2- 5. (2)移项,得2x 2-4x =8.两边都除以2,得x 2-2x =4.配方,得x 2-2x +1=4+1.∴(x -1)2=5.∴x -1=±5.∴x 1=1+5,x 2=1- 5. (3)移项,得3x 2-6x =-4.二次项系数化为1,得x 2-2x =-43.配方,得x 2-2x +12=-43+12,即(x -1)2=-13 .∵实数的平方不可能是负数,∴原方程无实数根. (4)移项,得2x 2+7x =-3.方程两边同除以2,得x 2+72x =-32.配方,得x 2+72x +(74)2=-32+(74)2,即(x +74)2=2516 .直接开平方,得x +74=±54.∴x 1=-12 ,x 2=-3. 3.(1)∵a =1,b =-23,c =3,b 2-4ac =(-23)2-4×1×3=0,∴x =-(-23)±02×1= 3.∴x 1=x 2= 3. (2)方程的两边同乘-1,得3x 2-5x -2=0.∵a =3,b =-5,c =-2,b 2-4ac =(-5)2-4×3×(-2)=49>0,∴x =-(-5)±492×3 =5±76,∴x 1=2,x 2=-13. (3)a =4,b =3,c =-2.b 2-4ac =32-4×4×(-2)=41>0.x =-3±412×4 =-3±418.∴x 1=-3+418,x 2=-3-418. (4)将原方程化为一般形式,得2x 2-3x -2=0.∵a =2,b =-3,c =-2,b 2-4ac =(-3)2-4×2×(- 2)=11>0,∴x =3±1122 =6±224.∴x 1=6+224,x 2=6-224.

和差倍分问题

第八章二元一次方程组 8.3实际问题与二元一次方程组 8.3.1 和差倍分问题 一、学习目标 1.能够找出实际问题中的已知数和未知数,分析它们之间的等量关系,列出方程组。 2.掌握用二元一次方程组解决实际问题的步骤,体会用二元一次方程组比一元一次方程简便。 3.通过方程模型建立二元一次方程组,培养学生运用方程组思想分析问题、解决问题的能力。 二、自主学习 自学指导1(8分钟) 学生自主学习阅读课本p99页【探究1】,完成下面问题: 1.问题中有哪些已知量?那些未知量? 2.问题中等量关系有哪些? 3.本题的等量关系: 大牛的饲料量+小牛的饲料量=1天总的饲料量 原来: 30只大牛1天所需饲料+15只小牛1天所需饲料=675; 后来: 42只大牛1天所需饲料+20只小牛1天约需饲料=940 4.数学建模----列方程组解决实际问题

设未知数:设一只大牛1天需要饲料 x kg ,一只小牛1天需要饲料y kg. 列方程组: 解方程组: 对实际问题作答: 每只大牛和每只小牛1天各需用饲料为20kg 和5kg 自学检测1(5分钟) 只列方程组不求解: 某校师生积极为汶川地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,帐篷有两种规格:可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元.学校花去捐款96000元,正好可供2300人临时居住.求该校采购了多少顶3人小帐篷,多少顶10人大帐篷? 分析:大帐篷居住人数*数量+小帐篷居住人数*数量=安置总人数 大帐篷单价*数量+小帐篷单价*数量=花去捐款数 解:(1)设该校采购了x 顶3人小帐篷,y 顶10人大帐篷, 答:该校采购了100顶3人小帐篷,200顶10人大帐篷 . 3015675, 4220940. x y x y +=??+=????==520y x

23.2.5一元二次方程的解法(五)应用题1 学案

23.2.5《一元二次方程的解法》学案(5) 学习目标: 1、使学生能根据量之间的关系,列出一元二次方程的应用题。 2、提高学生分析问题、解决问题的能力。 3、培养学生数学应用的意识。 学习重难点: 认真审题,分析题中数量关系,适当设未知数,寻找等量关系,列出方程是本节课的重点,也是难点。 学习过程: 一、课前预习: 1、叙述列一元一次方程解应用题的步骤。 2、一元二次方程有哪些解法 3、用多种方法解方程22 -=++ (31)69 x x x 二、课上探究: 自主探究: 绿苑小区规划设计时,准备在每两幢楼房之间,安排面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少? 解:设宽为x米,可列出方程 解出方程: 合作交流: 列一元二次方程解应用题的步骤: 。 (鼓励用自己的语言总结出解题步骤。) 自主学习: 例1.如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方米.求截去正方形的边长。 分析:设截去正方形的边长x厘米,底面(图中虚线线部分)长等于 厘米,宽等于厘米,S底面= 。 请同学们自己列出方程并解这个方程,讨论它的解是否符合题意。

精讲点拨: 注意:检验方程的解是否符合题意。 自主学习: 例2:学校生物小组有一块长32m,宽20m的矩形试验田,为了管理方便,准备沿平行于两边的方向纵、横各开辟一条等宽的小道.要使种植面积为5402 m, 小道的宽应是多少? 解: 精讲点拨: 要注意分析题意,抓住主要的数量关系,列出方程,把实际问题转化为数学问题来解决。求得方程的根之后,要注意检验是否符合题意,然后得到原问题的解答 自主探究: 思考:是否还有其它的办法解决问题? 合作交流: 通过本节课的学习你有什么收获?在二次根式的化简时注意什么问题? 当堂检测: A组 1、用一块长80cm、宽60cm的薄钢片,在四个角上截去四个相同的边长为xcm的小正方形,然后做成底面积为1500cm的无盖长方体盒子。为求出x,根据题意,列方程并整理得() A、x2-70x+825=0 B、x2+70x-825=0 C、x2-70x-825=0 D、x2+70x+825=0 2、要用一条长为24cm的铁丝围成一个斜边长为10cm的直角三角形,则两条直角边的长分别为() A、4cm,8cm B、6cm,8cm C、4cm,10cm D、7cm,7cm

201x版中考数学专题复习 专题二(11-1)一元二次方程的解法学案

2019版中考数学专题复习 专题二(11-1)一元二次方程的解法学 案 【学习目标】 掌握了解一元二次方程的四种方法以及各种解法的特点,会根据不同方程的特点选用恰当的方法,从而准确、快速地解一元二次方程. 【重点难点】 重点:掌握一元二次方程的四种解法及各种解法的特点. 难点:选择适当的方法解一元二次方程. 【知识回顾】 一.回顾练习 1.下列方程中,是一元二次方程的是( ) A.x 2 -1 =(x +2)2 B.(a -1)x 2+bx +c =0 C.3(x +1) 2=2x 2-5 D.2430x x +-= 2.方程2x -9=0的解是( ) A.x =3 B. x = -2 C.x =4.5 D.3x =± 3.用配方法解方程2420x x -+=,下列配方正确的是( ) A.2(2)2x -= B.2(2)2x += C.2(2)2x -=- D .2 (2)6x -= 4.解一元二次方程5x (x -3)=3(x -3),最简单的方法是( ) A.配方法 B.公式法 C .因式分解法 D.都行 5. 方程x 2-4x +4=0根的情况是( ) A.两个不相等的实数根 B.两个相等的实数根 C.只有一个实数根 D.没有实数根 6.若一元二次方程02=++c bx ax 的两实数根为x 1 、x 2,则有x 1 +x 2= ,x 1 ·x 2= 7.解方程. (1) 422=x (2)0542 =--x x 【综合运用】 1.若关于x 的一元二次方程kx 2+4x +4=0有两个实数根,则k 的取值是

2.已知m 是方程x 2-x -2=0的一个根,那么代数式m 2-m = . 3.你认为下列方程选择怎样的方法比较合适. (1) 5x 2-45=0 (2)x 2+2x -1=0 (3)3x 2=2x (4)x 2 -2x +2 1=0 4.当m 时,方程mx 2-3x =2x 2-mx +2 是一元二次方程. 当m___时,方程(m 2- 4)x 2-(m +2)x -3=0是一元一次方程. 5.用配方法证明,不论x 取任何实数时,代数式x 2-5x+7的值总大于0,再求出当x 取何值时,代数式的值最小?最小值是多少? 6.已知关于x 的一元二次方程 01)12()2(22=+++-x m x m 有两个不相等的实数根,则m 的取值范围是( ) A.43> m B .43≥m C .43>m 且2≠m D .4 3≥m 且2≠m | 7.若(x 2+y 2)2-4(x 2+y 2)-5=0, 则x 2+y 2=___ 8.解方程 (1) (x -2)(3x -5)=1 (2)4222 +=+x x )( 【直击中考】 1.方程(m +1)122--m m x +7x -m =0是一元二次方程,则m = . 2.若关于x 的一元二次方程(m-1)x 2+5x +m 2-3m +2=0的常数项为0,则m 等于( ) A.1 B.2 C.1或2 D.0 3.三角形两边长分别是6和8,第三边长是x 2-16x +60=0的一个实数根,求该三角形的第三条边长和周长.

七年级数学上一元一次方程应用题第一课时:和差倍分问题

例2:甲种铅笔每只0.3元,乙种铅笔每只0.6元,用9元钱买了两种铅笔共20只,两种铅笔各买了多少支? 练习:用买10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元,两种水杯的单价各是多少元? 例3:把一根长100cm的木棍锯成两段,要使其中一段长比另一段长的2倍少5cm,应该在木棍的哪个位置锯开? 练习:一个梯形的下底比上底多2cm,高是5cm,面积是402 cm,求上底 二、数字问题 例1.用式子表示下列两位数或三位数: (1)一个两位数,个位数字是a,十位数字是b:____________ (2)一个两位数,个位数字是a,十位数字比个位数字小1:__________ (3)一个两位数,个位数字是a,比十位数字小1:__________ (4)一个两位数,十位数字是a,个位数字比十位数字的2倍多3; (5)一个三位数,十位数字是a,比百位数字大1,比个位数字少1. 练习:(1)一个两位数,个位上的数字比十位上的数字大 2 个位与十位上的数字之和是10,求这个两位数. (2)一个两位数个位上的数是1,十位上的数是,把1与x对调,新的两位数比原两位 数小18,求十位上的数。

例2:有一列数,按一定规律排列成1,-3,9,-27,81,-243……,其中某三个相邻数的和是-1701这三个数各是多少? 例3:一张普通的月历中,相邻三行里同一列的三个日期数之和能否为30?如果能,这三个数分别是多少? 三、数学作业 1、某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为 550万元,前年的产值是多少? 2、买两种布料共138m,花了540元,其中蓝布料每米3元,黑布料每米5元,两种布料各买了多少m? 3、用一根长60m的绳子围出一个长方形,是他的长是宽的1.5倍,长和宽各是多少? 4、一个两位数的个位上的数的3倍加1是十位上的数,个位上的数与十位上的数的和是9, 这个两位数是多少 5.一个两位数,个位上的数字与十位上的数字之和是7, 若把个位与十位数字对调,则所得 的两位数比原两位数大27,求这个两位数.

一元二次方程的解法复习教案

一元二次方程及其解法《一元二次方程的解法》练习课(2课时) 一、教学目标: 1、掌握一元二次方程的四种解法,会根据方程的不同特点,灵活选用适当的方法求解方程。 2、方程求解过程中注重方式、方法的引导,特殊到一般、字母表示数、整体代入等数学思想方法的渗透。 3、培养学生概括、归纳总结能力。 二、重点、难点: 1 重点:会根据不同的方程特点选用恰当的方法,使解题过程简单合理。 2 难点:通过揭示各种解法的本质联系,渗透降次化归的思想。 三、教学过程: (一)情景引入:三位同学在作业中对方程(2x-1)2=3(2x-1)采用的不同解法如下: 第一位同学:第三位同学: 解:移项:(2x-1)2-3(2x-1) =0 解:整理: (2x-1) [(2x-1)-3]=0 即 2x-1=0或(2x-1)-3=0 X= 或 x=2 第二位同学: = 解:方程两边除以(2x-1): (2x-1)=3 X=2 针对三位同学的解法谈谈你自己的看法: (1)他们的解法都正确吗? (2)哪一位同学的解法较简便呢?

(二)复习提问:我们学了一元二次方程的哪些解法?---- 练习一:按括号中的要求解下列一元二次方程: (1)4(1+x)2=9(直接开平方法);(2)x2+4x+2=0(配方法); (3)3x2+2x-1=0(公式法);(4)(2x+1)2= -3 (2x+1) (因式分解法) 概括四种解法的特点及步骤: 1.直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法,这是最基础的方法,与此前解一元一次方程类似。(在降次时注意正负两个值) 2.配方法:配方法就是把方程配成一个完全平方式,再用直接开平法求解,配方时,方程左右两边同时【加上一次项系数一半的平方】。(方法:先移项,再化二次项系数为一,然后配方,最后利用直接开平法求解。) 3.公式法:用公式法解一元二次方程时首先要将方程化成一般形式,也就是ax2+bx+c=0的形式,然后才能做。在用公式法解一元二次方程中,先算b2-4ac的值。 4.因式分解法:因式分解法就是利用所学过的分解因式的知识来求解。 一般步骤:①将方程右边化为零;②将方程左边分解为两个一次因式乘积;③令每个因式分别等于零,得到两个一元一次方程;④解这两个一元一次方程 练习二:选用适当的方法解下列方程 (1)2(1-x)2-6=0 (3)3(1-x)2=2-2x (2)(2x-1)+3(2x-1)+2=0;(4)(x+2)(x+3)=6 交流讨论:1 与同桌或邻桌同学比较,看谁的解法更简单。 2 你如何根据方程的特征选择解法? 已知代数式x2 - 6x+10 , (1)试说明无论x取何实数时,代数式的值都大于0. (2)求代数式的最小值. (四)课堂练习:

人教版数学九年级上册:专题训练(二) 一元二次方程的解法 同步练习(附答案)

专题训练一元二次方程的解法 ?方法一形如(mx+n)2=p(m≠0,p≥0)的一元二次方程可用直接开平方法 1.若8x2-16=0,则x的值是________. 2.一元二次方程(x+3)2-4=0的根为______________________________________.3.方程2(x+3)2=8的解是() A.x1=2,x2=-2 B.x1=5,x2=1 C.x1=-1,x2=-5 D.x1=1,x2=-7 4.用直接开平方法解下列方程: (1)3x2-1=5;(2)4(x-1)2-9=0. ?方法二二次项系数为1,且一次项系数为偶数的一元二次方程,用配方法求解较简便 5.用配方法解方程x2+6x-5=0,配方结果正确的是() A.(x+3)2=14 B.(x-3)2=14 C.(x+3)2=4 D.(x-3)2=4 6.用配方法解一元二次方程x2-6x-4=0,下列变形正确的是() A.(x-6)2=-4+36 B.(x-6)2=4+36 C.(x-3)2=-4+9 D.(x-3)2=4+9 7.一元二次方程x2-8x=48可表示成(x-a)2=48+b的形式,则a+b的值为() A.20 B.12 C.-12 D.-20 8.用配方法将二次三项式a2-4a+3变形,结果是() A.(a-2)2-1 B.(a+2)2-1 C.(a+2)2-3 D.(a-2)2-6 9.用配方法解下列方程: (1)x2-6x=7;(2)x2+4x-5=0.

?方法三易化成一般形式且系数的绝对值较小的一元二次方程,用公式法求解较简便 10.用公式法解下列方程: (1)2x2-6x-1=0;(2)6x2-13x-5=0; (3)x2-7x=-5;(4)y(y-3)=1. ?方法四一边是0且另一边又易分解成两个一次因式的积的一元二次方程,用因式分解法求解较简便 11.方程(x+1)(x-3)=0的解是() A.x1=1,x2=-3 B.x1=1,x2=3 C.x1=-1,x2=3 D.x1=-1,x2=-3 12.下列方程,适合用因式分解法求解的是() A.x2-4 2x+1=0 B.2x2=x-3 C.(x-2)2=3x-6 D.x2-10x-9=0 13.方程(x+2)(x-3)=x+2的解是__________________________________. 14.用因式分解法解下列方程: (1)(x-5)(x+6)=0;(2)2(x-3)=3x(x-3);(3)3(x-5)2=2(x-5).

相关主题
文本预览
相关文档 最新文档