当前位置:文档之家› 融合蛋白ELP30 Trx的表达省略PEG8000对其相变温度的影响 张立超

融合蛋白ELP30 Trx的表达省略PEG8000对其相变温度的影响 张立超

融合蛋白ELP30 Trx的表达省略PEG8000对其相变温度的影响 张立超
融合蛋白ELP30 Trx的表达省略PEG8000对其相变温度的影响 张立超

GST融合蛋白构建、表达与纯化

GST 表达融合蛋白 载体 pGEX-KG 大小:5006bp ,氨苄青霉素抗性(Amp r ),IPTG 诱导表达 酶切位点:BamHI 930、SmaI 937、EcoRI 962、XbaI 966、NcoI 974、SalI 980、XhoI 985、SacI 992、 HindIII 994 GST 分子量: 构建pGEX-KG-YFG 重组质粒 1、分析所感兴趣的基因(your favorite gene, YFG ) Primer Premier 5.0软件,分析YFG 含有哪些酶切位点,注意是否与pGEX-KG 载体的多克隆位点有重合 2、确定合适的双酶切位点

3、设计PCR上、下游引物 Primer Premier 5.0软件,设计PCR上、下游引物 酶切位点外最多含6个碱基 3’端不是A,最好是G或C,但是不推荐使用GC或CG结尾 3’端至少保证有10个碱基完全配对 得分(Rating)大于70 [注意] 上游引物:是否添加适当碱基,确保不打乱开放阅读框 下游引物:添加终止密码子(UAA、UAG、UGA) 4、引物合成及保存 合成:上海生工生物工程技术服务有限公司(Email:beijing@https://www.doczj.com/doc/f510273678.html,,Tel:81767586);纯化方法:柱层析or聚丙烯酰胺凝胶电泳?;价格1.30/碱基保存:贮存浓度:100pmol/μl(100μM),工作浓度:10pmol/μl(10μM),-20°C保存 5、PCR扩增YFG

模板:质粒10ng/μl稀释少量-20°C保存 引物:10pmol/μl(10μM)-20°C保存 Taq酶:NEB Quick-Load Taq 2×Master Mix 扩增片段小于2.0kb 反应条件 (1)预变性94°C 5 min (2)变性94°C 30 s (3)退火待定30 s (4)延伸72°C 待定 (5)重复2-5 25-30个循环 (6)补平缺口72°C 10 min (7)暂存10°C [注意] 退火温度:参考4(G+C)+2(A+T)-4(互补碱基),参考Ta Opt(Primer Premier 5.0)延伸时间:Taq酶:1kb/min 循环数小于30,减少错配 琼脂糖电泳检测PCR产物 0.8%有效分离范围:10~0.8kb;1.0%有效分离浓度7~0.5kb 50ml TAE加入5μl EB母液(5mg/ml) 100V,30-45min 拍照或者紫外灯下切胶回收 6、构建pGEX-KG-YFG 酶切:双酶切PCR产物、pGEX-KG 回收:PCR产物直接回收、pGEX-KG电泳之后切胶回收 连接:pGEX-KG 50ng、插入片段150ng 转化铺平板:Amp r 挑单克隆:Amp r(四个菌落足够了) 鉴定:小提质粒酶切or菌体PCR 7、转化BL21(DE3)pLysS菌株检测GST融合蛋白的表达 (1)冰上融化BL21(DE3)pLysS感受态细胞(天根) (2)2 ml离心管中,加入25μl BL21+ 3μl质粒(300-500ng),混匀(质粒≤感受态1/10)(3)冰上放置30min (4)42°C,90s

原核诱导表达汇总

原核诱导表达的标准操作程序(SOP) 一.目的: 使本实验室工作人员了解诱导表达的操作过程,并能实际动手进行原核诱导表达一系列实验。 二.适用范围: 本SOP适用于对新基因克隆的表达,并针对新基因产生的可溶性蛋白。 三.实验原理: E.coli的乳糖操纵子含Z、Y及A三个结构基因,分别编码半乳糖苷酶、透酶和乙酰基转移酶,此外还有一个操纵序列O、一个启动序列P及一个调节基因I。I基因编码一种阻遏蛋白,后者与O序列结合,使操纵子受阻遏而处于关闭状态。在启动序列P上游还有一个代谢物基因激活蛋白(CAP)结合位点。由P序列、O序列和CAP 结合位点共同构成lac操纵子的调控区,三个酶的编码基因即由同一调控区调节,实现基因产物的协调表达。在没有乳糖存在时,lac操纵子处于阻遏状态。此时,I序列在PI启动序列操纵下表达的Lac阻遏蛋白与O序列结合,阻碍RNA聚合酶与P 序列结合,抑制转录起动。当有乳糖存在时,lac操纵子即可被诱导。在这个操纵子体系中,真正的诱导剂并非乳糖本身。乳糖进入细胞,经b-半乳糖苷酶催化,转变为半乳糖。后者作为一种诱导剂分子结合阻遏蛋白,使蛋白构象变化,导致阻遏蛋白与O序列解离、发生转录。异丙基硫代半乳糖苷(IPTG)是一种作用极强的诱导剂,不被细菌代谢而十分稳定,因此被实验室广泛应用。 四、试剂准备: (一)实验器材的灭菌: 枪头的灭菌: 1mL,200μL,20μL的枪头放入枪头盒,用报纸包住(2层),放入高压灭菌锅中灭菌,121℃,20min。80℃烘箱中烘干,常温放置。 螺口管及离心管的灭菌: 将螺口管和离心管分别放入铝制饭盒中(盖子要拧松,离心管的管盖打开),放入高压灭菌锅中灭菌,121℃,20min。80℃烘箱中烘干,常温放置。 50mL离心管的灭菌: 将50mL离心管用报纸包住(2层),放入高压灭菌锅中灭菌,121℃,20min。80℃烘箱中烘干,常温放置。 (二)LB培养基的配制 液体LB培养基(1L):蛋白胨10g 氯化钠10g 酵母提取物5g 调PH值到7.5,高压灭菌,4℃保存。 固体LB培养基(1L):蛋白胨10g

蛋白表达纯化实验步骤

蛋白表达纯化实验步骤(待改进) 1、取适当相应蛋白高表达的动物组织提total-RNA。 2、设计蛋白表达引物。引物要去除信号肽,要加上适当的酶切位点和保护碱基。 3、RT-PCR,KOD酶扩增获取目的基因c DNA. 4、双酶切,将cDNA.克隆入PET28/32等表达载体。 5、转化到DH5α感受态细菌中扩增,提质粒。 6、将质粒转化入表达菌株,挑菌检测并保种。表达菌株如Bl21(DE3)、Rosetta gami(DE3)、Bl21 codon(DE3)等。 7、蛋白的诱导表达。 1)将表达菌株在3ml LB培养基中摇至OD=0.6左右,加入IPTG,浓度梯度从25μM 到1m M。37度诱导过夜(一般3h以上即有大量表达)。 2)SDS-PAGE电泳检测目的蛋白的表达。注:目的蛋白包涵体表达量一般会达到菌体 蛋白的50%以上,在胶上可以看到明显的粗大的条带。 3)将有表达的菌株10%甘油保种,保存1ml左右就足够了,并记录IPTG浓度范围。 甘油是用0.22μm过滤除菌的,储存浓度一般是30%-60%,使用时自己计算用量。 4)用上述IPTG浓度范围的最低值诱导10ml表达菌,18度,低转速(140-180rpm), 诱导过夜作为包涵体检测样品。 注意:1.如果表达的蛋白对菌体有毒性,可以在加IPTG之前的培养基中加入1%的葡萄糖用来抑制本底表达。葡萄糖会随着细菌的繁殖消耗殆尽,不会影响后面的表达。2. 保种可以取一部分分成50μl一管,每次用一管,避免反复冻融。 8、包涵体检测。方案见附件2 9、如有上清表达,则扩大摇菌。 1)取保种的表达菌株先摇10ml,37度,300rpm摇至OD>=1.5,约5h左右,视菌种

GST融合蛋白的纯化步骤

GST融合蛋白的纯化步骤 一、制取细胞的裂解物: 1.每100ml培养物的细胞沉淀悬于4ml PBS缓冲液; 2.加入溶菌酶至最终浓度1mg/ml,冰上或冷藏放置30min; 3.用针筒将10ml0.2%TritonX-100强行注入细胞裂解物中,剧烈震动数次混匀; 4.加入DNase和RNase至终浓度5ug/ml,4℃震动并温育10min; 5.4℃3000g(5000r/min)离心30min; 6.上清转移到一只新试管,加入DTT至终浓度为1mmol/L; 二、纯化GST融合蛋白: 1.细胞裂解物与50%谷胱甘肽-琼脂糖树脂匀浆混合,每100ml细胞培养物加2ml树脂,于室温下轻摇30min; 2.混合物于4℃以500g(2100r/min)离心5min,小心去掉上清并留样少许进行SDS-PAGE; 3.沉淀中加入10倍标准体积的PBS,颠倒离心管数次混匀,洗去未与树脂结合的蛋白; 4.4℃以500g(2100r/min)离心5min,小心去掉上清并留样少许进行SDS-PAGE; 5.重复步骤3和4两次; 6.结合的GST融合蛋白可用谷胱甘肽洗脱缓冲液洗脱,也可用凝血酶,肠激酶或Xa因子切割,释放靶蛋白; 三、用谷胱甘肽洗脱洗脱融合蛋白: 1.沉淀中加入1倍柱床体积的谷胱甘肽洗脱缓冲液,室温轻轻搅动10min,洗脱树脂上结合的蛋白; 2.4℃以500g(2100r/min)离心5min,上清移至新管中; 3.重复步骤a和b两次,合并3次的上清; 四、蛋白酶解从结合的GST融合蛋白上回收靶细胞: 1.在结合了融合蛋白的树脂中加入凝血酶,肠激酶或Xa因子。每毫升树脂加入50单位1mlPBS 的蛋白酶,颠倒离心管数次混匀,室温下震荡2~16h,用小规模实验确定精确时间; 2.4℃以500g(2100r/min)离心5min,上清小心移至新管中; 3.10%SDS-PAGE分析每一步(细胞抽提,洗涤和洗脱)样品的蛋白质组成。 五、谷胱甘肽琼脂糖树脂的处理: 1.轻轻颠倒盛有谷胱甘肽-琼脂糖树脂的容器,将树脂混成匀浆; 2.取部分匀浆放入15ml聚丙烯管(每100ml细菌培养物需要2ml匀浆); 3.4℃以500g(2100r/min)离心5min,小心去掉上清; 4.在树脂中加入10倍柱床体积的冷的PBS,颠倒数次,混合匀浆,4℃以500g(2100r/min)离心5min,小心去掉上清; 5.每毫升树脂加入1ml冷的PBS,制成50%匀浆,颠倒数次,悬浮冰上放置待用。 查询关键词:GST融合蛋白的纯化步骤,GST蛋白纯化步骤,蛋白纯化 试验用的生化试剂,本公司均可以提供,如有需要,请联系我们,我们将为您提供最满意的服务。

表达蛋白的分离与纯化

表达蛋白的分离与纯化 大肠杆菌表达蛋白以可溶和不溶两种形式存在,需要不同的纯化策略。现在,许多蛋白质正在被发现而事先并不知道它们的功能,这些自然需要将蛋白质分离出来后,进行进一步的研究来获得。分析蛋白质的方法学现已极大的简化和改进。必须承认,蛋白质纯化比起DNA克隆和操作来是更具有艺术性的,尽管DNA序列具有异乎寻常的多样性(因而它是唯一适合遗传物质的),但它却有标准的物理化学性质,而每一种蛋白质则有它自己的由氨基酸序列决定的物理化学性质(因而它具有执行众多生物学功能的用途)。正是蛋白质间的这些物理性质上的差异使它们得以能进行纯化但这也意味着需要对每一种待纯化的蛋白质研发一套新的方法。所幸的是,尽管存在这种固有的困难,但现已有多种方法可以利用,蛋白质纯化策略也已实际可行。目前,待研究蛋白或酶的基因的获得已是相当普遍的事。可诱导表达系统特别是Studier等发展的以噬菌体T7RNA聚合酶为基础的表达系统的出现使人们能近乎常规地获得过表达(overexpression),表达水平可达细胞蛋白的2%以上,有些甚至高达50%。 一、可溶性产物的纯化(融合T7·Tag的表达蛋白) (一)试剂准备 采用T7· Tag Affinity Purification Kit 1.T7·Tag抗体琼脂。 2.B/W缓冲液:4.29mM Na2HPO4,1.47 mM KH2PO4,2.7 mM KCl,3.

0.137mM NaCl,1%吐温-20,pH7.3。 4. 洗脱缓冲液: 0.1M柠檬酸,pH2.2。 5. 中和缓冲液:2M Tris,pH10.4。 1.PEG 20000。 (二)操作步骤 1.100ml 含重组表达质粒的菌体诱导后,离心5000g×5min,弃上清,收获菌体,用10ml预冷的B/W缓冲液重悬。 2. 重悬液于冰上超声处理,直至样品不再粘稠,4℃离心14000g×30min,取上清液,0.45μm膜抽滤后作为样品液。 3. 将结合T7·Tag抗体的琼脂充分悬起,平衡至室温,装入层析柱中。 4. B/W缓冲液平衡后样品液过柱。 5. 10ml B/W缓冲液过柱,洗去未结合蛋白。 6. 用5ml洗脱缓冲液过柱,每次1ml,洗脱液用含150μl中和缓冲液的离心管收集,混匀后置于冰上,直接SDS-PAGE分析。 7. 将洗脱下来的蛋白放入透析袋中,双蒸水透析24hr,中间换液数次。 8.用PEG 20000浓缩蛋白。 (三)注意事项 蛋白在过层析柱前,要0.45μm膜抽滤,否则几次纯化后,柱子中会有不溶物。 二、包涵体的纯化

GST-Pull-Down原理

分子克隆第三版有详细介绍,结合其中的示意图很容易理解 GST融合蛋白沉降技术利用了GST对谷胧甘肤偶联球珠的亲和性,从非相互作用蛋白的溶液中纯化相互作用蛋白。GST融合的探针蛋白从细菌中表达和纯化,并平行制备细胞裂解液(可被35S标记或非标记),再将GST融合蛋白探针和细胞裂解液在谷胧甘肤琼脂糖球珠存在下混合并孵育,以使蛋白结合。GST融合探针蛋白和任何结合分子被离心收集,获得的混合物经洗涤后,用过量游离的谷胧甘肤洗脱或直接在SDS-PAGE上样缓冲液中煮沸。蛋白质经SDS-PAGE分离后进行下一步的western印迹、放射自显影及蛋白质染色分析。GST沉降技术对探测蛋白在溶液中的相互作用特别有用,而这种相互作用在膜的分析中可能是检测不到的。 GST沉降实验通常有两种应用:确定融合(或探针)蛋白与未知(或靶)蛋白间 新的相互作用(Kaelin et al. 1991, Grlinick and Chao 1996),以及证实探针蛋白与已知蛋白质间可疑的相互作用(例子请见Posern et al. 199$, Grgureaich et al. 1999, Hunteret al. 1999, Sun et al. 1999)。这两种实验的设计和实施都有所不同。

GST pull down 是一种在体外研究蛋白质相互作用的方法,基本原理是这样的:假定A蛋白和B 蛋白可能有相互作用,我们就将其中一个蛋白比如A蛋白融合GST标签,然后将GST-A和B以及能特异结合GST的Sephrose 4B beads 孵育一定时间,然后充分洗涤未结合的蛋白,煮沸beads进行SDS-PAGE电泳,然后进行放射自显影(如果两个蛋白通过体外翻译并且S35标记的话),就可以看见GST-A和B分别对应的条带,表明GST-A和B因相互作用而被GST-A pull down,如果没有相互作用,就只有GST-A相对应的一条带。我们实验室就是这么做的,当然也有细菌表达GST-A蛋白,而B蛋白通过细胞裂解液中得到,电泳后直接western blot检测。 1、首先你的目的是“要检测这两种蛋白是否与寄主细胞之间存在相互作用”,也即是说要寻找这两种蛋白的相互作用蛋白---在寄主细胞表面,也就是说你要寻找的相互作用蛋白是膜蛋白,对吗?pulldown似乎不是达到你目的的最佳办法,因为你首先要提膜蛋白。而膜蛋白一般都疏水,量少,好像难以pulldown----缓冲液系统不适合。我想,你真正的目的是检测寄主细胞表面是否有你这两个蛋白的受体或配体,细胞ELISA应该可以胜任这个目的。其他方法你可以在查查看? 2、如何保证你融合蛋白(细胞提取物)的尽可能大的活性,只有一条:快速、低温纯化。即,要保证你纯化过程尽量低温,时间尽量短,得到蛋白后立刻冻纯-70。当然,你还是有必要做下你蛋白活性到底丧失有多快。 3、如果你还是执意要做pulldown,最好还是直接买珠子,试剂盒太贵了,不划算。

影响生鲜乳蛋白质含量的因素及调控措施.

影响生鲜乳蛋白质含量的因素及调控措施 刘桂瑞,李正洪,李兆林 摘要:生鲜乳中乳蛋白含量受许多因素的影响,如遗传、生理阶段、环境、疾病及饲养方式等,而奶牛日粮营养成分是影响生鲜乳中乳蛋白含量的主要因素。合理配制平衡日粮 ,对提高乳蛋白含量有重要作用。 关键词:乳蛋白;含量;影响因素 牛奶中蛋白质和脂肪含量是决定牛奶营养价值的重要指标之一。乳蛋白是一种营养价值很高的蛋白质,它的氨基酸含量和构成比例基本上与人体所需氨基酸的数量、比例接近。乳蛋白含量受许多因素的影响,如遗传、生理阶段、环境、疾病及饲养方式等,而奶牛日粮营养是影响生鲜乳中乳蛋白含量的重要因素。合理配制平衡日粮,对提高乳蛋白含量具有重要作用。 1 乳中蛋白质的合成 现已证明,90%以上的乳蛋白是在乳腺中由氨基酸合成。对动物静脉注射14C-标记的氨基酸以及进行动静脉差的测定均证明,酪蛋白、β-乳球蛋白和α-乳清蛋白是由乳腺中的游离氨基酸合成的,而这些氨基酸来自血液。乳腺细胞自身还有合成非必需氨基酸的能力,为合成乳蛋白提供原料。乳腺合成蛋白质的过程与其他组织相同。乳腺细胞合成的大部分蛋白质最终要分泌出去,主要乳蛋白的合成在粗面内质网的核糖体上开始,然后由信号肽引导进入内质网腔,并在内质网和高尔基体内进行磷酸化和糖基化等化学修饰过程,再由分泌泡转送到上皮细胞顶膜,通过胞吐的方式释放到腺泡腔中。这一机制已被广泛接受 收稿日期:2011-03-21(Mercier等,1982[1]。 乳腺是一个合成蛋白质十分活跃的场所。乳蛋白编码基因的表达具有明显的组织特异性和阶段特异性,即乳蛋白质的合成仅在乳腺上皮细胞中进行,表达量高,并且发生在哺乳母体即将分娩之前和分娩之后的相当长一段时间的泌乳期中,乳腺合成

IPTG诱导蛋白表达的原理

IPTG诱导蛋白表达得原理 IPTG诱导得产物就是重组后表达载体中得插入序列所能够翻译得蛋白,并可视载体构建情况翻译后续得标签序列。 用乳糖操纵子作为启动子进行蛋白质表达得时候,需要诱导物进行诱导(相当于点火),但乳糖可以被细胞利用掉,所以利用IPTG(异丙基-β—D-硫代半乳糖苷)在结构上与乳糖得相似性也可以将基因表达启动,但它不能被细胞利用掉,从而实现持续得表达、 IPTG就是一种诱导外源基因表达得诱导剂,它不仅仅如我们学过得作为乳糖得类似物诱导大肠杆菌表达半乳糖苷酶,它就是一种普遍应用得诱导剂,能诱导菌种表达多种外源基因。 但就是它能诱导基因表达得具体原理我却了解得不就是很多,我在网上查到以下一些内容,供查阅者借鉴. 最早应用于得表达系统就是Lac乳糖操纵子,乳糖得类似物IPTG 可以与lacI产物结合,使其构象改变离开lacO,从而激活转录、?这种可诱导得转录调控成为了大肠杆菌表达系统载体构建得常用元件。tac启动子就是trp启动子与lacUV5得拼接杂合启动子,且转录水平更高,比lacUV5更优越。trc启动子就是trp启动子与lac启动子得拼合启动子,同样具有比trp更高得转录效率与受lacI 阻遏蛋白调控得强启动子特性.在常规得大肠杆菌中,lacI阻遏蛋白表达量不高,仅能满足细胞自身得lac操纵子,无法应付多拷贝得质粒得需求,导致非诱导条件下较高得本底表达,为了让表达系统严谨调控产物表达,能过量表达lacI阻遏蛋白得lacIq突变菌株

常被选为Lac/Tac/trc表达系统得表达菌株。现在得Lac/Tac/trc 载体上通常还带有lacIq 基因,以表达更多lacI阻遏蛋白实现严谨得诱导调控。IPTG 广泛用于诱导表达系统,但就是IPTG有一定毒性,有人认为在制备医疗目得得重组蛋白并不合适,因而也有用乳糖代替IPTG作为诱导物得研究。另外一种研究方向就是用lacI得温度敏感突变体,30度下抑制转录,42度开发。热诱导不用添加外来得诱导物,成本低,但就是由于发酵过程中加热升温比较慢而影响诱导效果,而且热诱导本身会导致大肠杆菌得热休克蛋白激活,一些蛋白酶会影响产物稳定、 T7启动子就是当今大肠杆菌表达系统得主流,这个功能强大兼专一性高得启动子经过巧妙得设计而成为原核表达得首选,尤其以Novagen公司得pET系统为杰出代表.强大得T7启动子完全专一受控于T7 RNA聚合酶,而高活性得T7 RNA聚合酶合成mRNA得速度比大肠杆菌RNA聚合酶快5倍——当二者同时存在时,宿主本身基因得转录竞争不过T7表达系统,几乎所有得细胞资源都用于表达目得蛋白;诱导表达后仅几个小时目得蛋白通常可以占到细胞总蛋白得50%以上。由于大肠杆菌本身不含T7 RNA聚合酶,需要将外源得T7 RNA 聚合酶引入宿主菌,因而T7RNA 聚合酶得调控模式就决定了T7系统得调控模式-—非诱导条件下,可以使目得基因完全处于沉默状态而不转录,从而避免目得基因毒性对宿主细胞以及质粒稳定性得影响;通过控制诱导条件控制T7 RNA聚合酶得量,就可以控制产物表达量,某些情况下可以提高产物得可溶

GST融合蛋白的纯化

GST融合蛋白的纯化 诱导和收集菌体 在一定的诱导条件下IPTG诱导蛋白的合成。18~25℃的低温条件下培养可以使大部分蛋白融合蛋白可溶性表达,并保持较高的活性。IPTG浓度一般为 0.1~1.0mM。 5000rpm 5min离心收集菌体。 亲和层析柱的制备 取存放谷胱甘肽琼脂糖的瓶子颠倒数次,使其混匀,取1.5ml混合液加入层析柱中,加10ml 20%乙醇,使琼脂糖在柱中自然沉降。 将20%乙醇流尽后,加10ml PBS清洗柱子,待管中PBS液面刚好没过凝胶时,套上滴口的套子,待用。 每100ml菌液的菌体用4ml PBS(加1%Triton-100、蛋白酶抑制剂)悬浮。 在冰水中超声波破碎细胞(1分钟/次×5次,每次间隔1分钟)。 将裂解液分装至小管,4℃10000rpm离心5分钟。 收集上清液,加DTT至终浓度为1mM。 0.45um过滤后加入亲和层析柱。 室温下使混合液自然通过层析柱,保留0.5ml过滤液做PAGE电泳检测用。 用10ml PBS洗柱子3遍,每次临近结束时收集洗涤液0.5ml测OD值。 配制10mM的还原型谷胱甘肽溶液,即洗脱液3ml(0.009g溶于3ml 50mM Tris-Cl溶液中)。 用洗脱液洗脱GST融合蛋白,每管0.5ml接收洗脱液。 测各管洗脱液蛋白浓度。 PAGE电泳检测纯度。 亲和层析柱的再生:用0.04M NaOH洗10ml×3次,用10ml PBS平衡后,加20%乙醇储存于4度。或者按照beads使用说明书上的方法再生。 如果洗脱液中的还原型谷胱甘肽对实验有影响时,需用分子筛去除。 如果需要不带标签的蛋白,则蛋白被柱子吸附后,用蛋白酶进行切割;或者用分子筛过滤后,在筛子上进行酶切。

目的蛋白的诱导表达

目的蛋白的诱导表达 1.诱导目的蛋白表达 (1)从平板或甘油保存菌中接一环重组工程菌和pET-22b(+)空载体转化细胞,加入3 ml Amp(100ug/ml)+LB的培养液中,37℃,250rmp摇床培养过夜。(2)将过夜培养的重组工程菌和pET-22b(+)空载体转化细胞分别按1%的比例转种于30 ml Amp(100ug/ml)+LB的培养液中。 (3)37℃摇床培养至OD600到0.4-1。 (4)从重组工程菌和pET-22b(+)空载体转化细胞中各取10ml培养物作为未诱导对照;在剩下的样品中加入1M IPTG储液至终浓度1mM,继续培养2-3 小时。 (5)将摇瓶置于冰上5分钟,5000g 4℃离心15分钟收集菌体,菌体保存于-20℃冰箱或SDS-PAGE分析等。 2.表达条件的优化: 1)IPTG的诱导浓度的确定: (1)重组工程菌的诱导:从平板或甘油保存菌中接一环重组工程菌和pET-22b(+)空载体转化细胞,加入3 ml Amp(100ug/ml)+LB的培养液中, 37℃,250rmp摇床培养过夜。 (2)将过夜培养的重组工程菌按1%的比例转种于30 ml Amp(100ug/ml)+LB的培养液中。 (3)在37℃,250rmp摇床培养至OD600约为0.8。 (4)按6ml/份上述培养物分装,分别加入IPTG至终浓度0, 0.5, 1, 1.5, 2.0mM。(5)37℃,250rmp摇床培养8h,在无菌条件下取样并测定OD600值。 (6)所取样品1ml/份分装,5000g 4℃离心15分钟收集菌体。 (7)菌体保存于-20℃冰箱或SDS-PAGE分析或蛋白含量测定。 2)IPTG诱导温度条件的优化: (1)重组工程菌的诱导:从平板或甘油保存菌中接一环重组工程菌和pET-22b(+)空载体转化细胞,加入3 ml Amp(100ug/ml)+LB的培养液中, 37℃,250rmp摇床培养过夜。 (2)将过夜培养的重组工程菌按1%的比例转种于30 ml Amp(100ug/ml)+LB的培养液中。 (3)在37℃,250rmp摇床培养至OD600约为0.8。 (4)在诱导之前,将30ml培养液分为5份,每份各6ml,其中4份加入IPTG,另1份不加IPTG作为不诱导对照。加入IPTG至终浓度为1.0mM,选取几个适当温度点(可从15-37℃之间选择)250rmp摇床培养。 (5)培养8h后,在无菌条件下取出样品6ml,并测定OD600值。 (6)所取样品1ml/份分装,5000g 4℃离心15分钟收集菌体。 (7)菌体保存于-20℃冰箱或SDS-PAGE分析或蛋白含量测定。 3)诱导时间优化 (1)重组工程菌的诱导:从平板或甘油保存菌中接一环重组工程菌和pET-22b(+)空载体转化细胞,加入3 ml Amp(100ug/ml)+LB的培养液中, 37℃,250rmp摇床培养过夜。

GST蛋白纯化步骤

制备细胞裂解物: 1.每100ml培养物的细胞沉淀悬于4ml PBS; 2.加入溶菌酶至终浓度1mg/ml,冰上放置30min; 3.用针筒将10ml 0.2%Triton X-100强行注入细胞裂解物中,剧烈震动数次混匀; 4.加入DNase和RNase至终浓度5ug/ml,4℃震动温育10min; 5. 4℃3000g(5000r/min)离心30min; 6.上清转移到一只新试管,加入DTT至终浓度为1mmol/L; 纯化融合蛋白: 7.细胞裂解物与50%谷胱甘肽-琼脂糖树脂匀浆混合,每100ml 细胞培养物加2ml树脂,于室温下轻摇30min; 8混合物于4℃以500g(2100r/min)离心5min,小心去掉上清并留样少许进行SDS-PAGE; 9.沉淀中加入10倍标准体积的PBS,颠倒离心管数次混匀,洗去未与树脂结合的蛋白; 10. 4℃以500g(2100r/min)离心5min,小心去掉上清并留样少许进行SDS-PAGE; 11.重复步骤9和10两次; 12.结合的GST融合蛋白可用谷胱甘肽洗脱缓冲液洗脱,也可用凝血酶,肠激酶或Xa因子切割,释放靶蛋白; 用谷胱甘肽洗脱洗脱融合蛋白: a.沉淀中加入1倍柱床体积的谷胱甘肽洗脱缓冲液,室温轻轻搅动10min,洗脱树脂上结合的蛋白; b. 4℃以500g(2100r/min)离心5min,上清移至新管中; c.重复步骤a和b两次,合并3次的上清; 蛋白酶解从结合的GST融合蛋白上回收靶细胞: a.在结合了融合蛋白的树脂中加入凝血酶,肠激酶或Xa因子。每毫升树脂加入50单位荣誉1mlPBS的蛋白酶,颠倒离心管数次混匀,室温下震荡2~16h,用小规模实验确定精确时间; b. 4℃以500g(2100r/min)离心5min,上清小心移至新管中; 13.10%SDS-PAGE分析每一步(细胞抽提,洗涤和洗脱)样品的蛋白质组成。 谷胱甘肽琼脂糖树脂的处理: 1.轻轻颠倒盛有谷胱甘肽-琼脂糖树脂的容器,将树脂混成匀浆; 2.取部分匀浆放入15ml聚丙烯管(每100ml细菌培养物需要2ml匀浆); 3. 4℃以500g(2100r/min)离心5min,小心去掉上清; 4.在树脂中加入10倍柱床体积的冷的PBS,颠倒数次,混合匀浆,4℃以500g(2100r/min)离心5min,小心去掉上清; 5.每毫升树脂加入1ml冷的PBS,制成50%匀浆,颠倒数次,悬浮冰上放置待用。

蛋白质与酶工程复习题

一.选择题: 1.影响蛋白质化学修饰反应的主要因素有:() 一是蛋白质功能基的反应活性;二是修饰剂的反应活性。 2. 蛋白质化学修饰有以下作用(以酶为例),请指出错误的一条: ( ) (1)改造酶的作用特性(包括改变酶活性、专一性、对效应物响应性能及对辅助因子的要求);(2)提高酶的稳定性;(3)扩大在体内应用可能性(防止在体内非专一性水解、减少和消除免疫原性以利于医疗应用). 3.蛋白质侧链上的巯基在进行烷基化修饰时,常用的烷基化试剂是:() 碘乙酸、碘乙酰胺、N-乙基马来酰亚胺、5,5-二硫 -2- 硝基苯甲酸 4. 下面哪一项叙述是错误的: () 5. 人类基因组计划的启动和草图完成时间在:() 1990年正式启动,2000年6月26日人类基因组工作草图完成。 6. 人类基因组计划的启动到人类基因组序列图测序完成时间在: ( ) 1990年正式启动到2003年4月14日 7. 通过比较两个或多个蛋白质序列的相似区域和保守性位点,确定相互间具有共同功能的序列模式和分子进化关系,进一步分析其结构和功能。此方法为: ( ) 序列两两比对 8. 通过对目标蛋白质进行定位突变或化学修饰改变其结构和功能,为蛋白质分子设计中的:() 称为“小改“,最广泛使用的方法,主要是通过定点突变或盒式替换技术来有目的地改变几个氨基酸残基 9. 通过对来源于不同蛋白质的结构域进行拼接和组装,为蛋白质分子设计中的:()“中改“,”分子剪裁“ 10. 完全从头设计出一种具有特异结构与功能的全新蛋白质,为蛋白质分子设计中的:()“全新蛋白质设计“或”蛋白质从头设计“ 11 下面哪一条不是真核基因在原核中正确表达的必备条件:() 第一,克隆到原核表达系统中的序列必须是去掉内含子的cDNA序列;第二,要用原核的启动子;第三,真核基因可能在表达过程中需要有分子伴侣帮助折叠成正确的构象才会有活性;第四,注意控制表达条件,尽量不要形成包涵体。 12 外源基因在大肠杆菌()高效表达时,常会发生一种特殊的生理现象,形成包涵体。 13 由欧洲生物信息学研究所进行维护和管理的SWISS-PROT数据库:() SWISS-PROT是经过注释的蛋白质序列数据库,由欧洲生物信息学研究所(EBI)维护。数据库由蛋白质序列条目构成,每个条目包含蛋白质序列、引用文献信息、分类学信息、注释等,注释中包括蛋白质的功能、转录后修饰、特殊位点和区域、二级结构、四级结构、与其它序列的相似性、序列残缺与疾病的关系、序列变异体和冲突等信息。SWISS-PROT中尽可能减少了冗余序列,并与其它30多个数据建立了交叉引用,其中包括核酸序列库、蛋白质序列库和蛋白质结构库等。利用序列提取系统(SRS)可以方便地检索SWISS-PROT和其它EBI的数据库。SWISS-PROT只接受直接测序获得的蛋白质序列,序列提交可以在其Web页面上完成。 14 核酸序列数据库GenBank是由:() 美国国立生物技术信息数据库是由美国国立生物技术信息中心(中心(NCBI)维护的一级核酸序列数据库。)维护的一级核酸序列数据库;数据库的数据来源有三种(1)、直接来源于测序工作者提交的序列;(2)、与其它数据机构协作交换的数据;(3)、美国专利局提供的专利数据。

IPTG诱导蛋白表达全面介绍

IPTG全面介绍:优点·使用·配制·特点 摘要: 异丙基硫代半乳糖苷(IPTG)是一种作用极强的诱导剂,不被细菌代谢而十分稳定,因此被实验室广泛应用。IPTG 常用于需要诱导β-半乳糖苷酶活性的克隆实验。它常与X-Gal 或Bluo-Gal 结合使用,用于重组细菌菌落的蓝白筛选,这些菌落可以诱导lac 操纵子在大肠杆菌中的表达。IPTG 与lacI 阻遏蛋白结合并改变其构象而发挥作用,防止β-半乳糖苷酶编码基因lacZ 的抑制。 中文名:异丙基-β-D-硫代半乳糖苷( IPTG) 英文名称:Isopropyl-beta-D-thiogalactopyranoside 用途:异丙基硫代半乳糖苷(IPTG)是一种作用极强的诱导剂,不被细菌代谢而十分稳定,因此被实验室广泛应用。IPTG 常用于需要诱导β-半乳糖苷酶活性的克隆实验。它常与X-Gal 或Bluo-Gal 结合使用,用于重组细菌菌落的蓝白筛选,这些菌落可以诱导lac 操纵子在大肠杆菌中的表达。IPTG 与lacI 阻遏蛋白结合并改变其构象而发挥作用,防止β-半乳糖苷酶编码基因lacZ 的抑制。 使用方法:首先把IPTG配制成23.83 mg/ml(100 mM)的水溶液,并进行过滤除菌后保存。然后在100 ml的琼脂培养基中,加入100 μl 的上述溶液、200 μl的X-Gal(20 mg/ml的二甲基甲酰胺(DMF)溶液)和100 μl的Amp(100 mg/ml),制作成IPTG、X-Gal、Amp平板培养基。当dna 片段插入至pUC系列载体(或其他带有lacZ、Amp基因载体),然后转化至lacZ缺失细胞中后,涂布上述的IPTG、X–Gal、Amp平板培养基,可根据长出菌体的蓝白色,而方便地挑选出基因重组体(白色为具有DNA插入片段的基因重组体)。 配制方法:在8ml蒸馏水中溶解2g IPTG后,用蒸馏水定容至10ml,用0.22μm滤器过滤除菌,分装成1ml小份贮存于-20℃。 优点: 1.能诱导酶的合成,但又不被分解的分子,称为安慰诱导物。由于乳糖虽可诱导酶的合成,但又随之分解,产生很多复杂的动力学问题,因此人们常用安慰诱导物来进行各种实验。 2.IPTG不被菌体代谢,为乳糖类似物,一旦进入细胞就会产生持续长久的诱导效果,所以IPTG的诱导效率高,往往只需要很少量(1mmol/L)即可达到理想诱导效果。由于IPTG不被代谢,在胞内专一诱导外源蛋白的表达。不受细胞代谢的影响,诱导效果持续稳定。乳糖有双效作用,既能做为诱导剂异乳糖的前体物质,又可以做碳源,在诱导过程中,很不稳定,IPTG因其优异的稳定性决定了它适合做实验研究用。 3.IPTG能在缺乏lacY基因下而有效地被抄送。 4.半乳糖苷键中用硫代替了氧,失去了水解活性,但硫代半乳糖苷和同源的氧代化合物与酶位点的亲和力相同,IPTG虽不为β–半乳糖苷酶所识别,但它是lac基因簇十分有效的诱导物。 注意事项:培养噬菌体时,Top agar中的添加量为:25 μl/3 ml(24 mg/ml)。含有 IPTG 的培养基4℃避光保存,须在1~2 周内使用。 保存:2-8°C冷藏保存,配制好后保存于-20°C,室温可放置一个月。远离热源及氧化剂。 IPTG诱导蛋白表达的原理.材料.实验方法 摘要: E.coli的乳糖操纵子(元)含Z、Y及A三个结构基因,分别编码半乳糖苷酶、透酶和乙酰基转移酶,此外还有一个操纵序列O、一个启动子序列P及一个调节基因I.I基因编码一种阻遏蛋白,后者与O序列结合,使操纵子(元)受阻遏而处于关闭状态.在启动序列P上游还有一个分解(代谢)物基因激活蛋白(CAP)结合位点.由P序列、O序列和CAP结合位点共同构成lac操纵子的调控区,三个酶的编码基因即由同一调控 E.coli的乳糖操纵子(元)含Z、Y及A三个结构基因,分别编码半乳糖苷酶、透酶和乙酰基转移酶,此外还有一个操纵序列O、一个启动子序列P及一个调节基因I.I基因编码一种阻遏蛋白,后者与O序列结合,使操纵子(元)受阻遏而处于关闭状态.在启动序列P上游还有一个

分子机制-蛋白检测-GST-pulldown

主题:GST-pulldown 概述: GST pull-down实验是一个行之有效的验证酵母双杂交系统的体外试验技术,近年来越来越受到广大学者的青睐。 其基本原理是将靶蛋白-GST(Glutathione-S-transferase谷胱苷肽巯基转移酶)融合蛋白亲和固化在谷胱甘肽亲和树脂上,作为与目的蛋白亲和的支撑物,充当一种“诱饵蛋白”,目的蛋白溶液过柱,可从中捕获与之相互作用的“捕获蛋白”(目的蛋白),洗脱结合物后通过SDS-PAGE电泳分析,从而证实两种蛋白间的相互作用或筛选相应的目的蛋白,“诱饵蛋白”和“捕获蛋白”均可通过细胞裂解物、纯化蛋白、表达系统以及体外转录翻译系统等方法获得。 目的: 体外检测蛋白质与蛋白质之间相互作用,用于验证两个已知蛋白的相互作用,或者筛选与已知蛋白相互作用的未知蛋白。 原理: 利用重组技术将探针蛋白与GST(Glutathione S transferase)融合,融合蛋白通过GST与固相化在载体上的GTH(Glutathione)亲和结合。因此,当与融合蛋白有相互作用的蛋白通过层析柱时或与此固相复合物混合时就可被吸附而分离。

步骤: 1.Glutathione琼脂糖珠预处理; 2.GST融合蛋白挂柱:取适GST-融合蛋白与已经处理过的beads置于管中,4℃,摇床孵育过夜; 3.孵育过夜的蛋白质与beads的混合液于4℃,离心,上清收集,观察融合蛋白是否饱和地挂在beads上; 4.把转染目的基因的细胞裂解在细胞裂解液里(含蛋白酶抑制剂),最大转速4℃离心,收集上清液; 5.将细胞裂解液上清加入beads; 6.加上SDS上样缓冲液; 7.SDS-PAGE,Western Blot或者质谱仪分析。 流程图:

IPTG诱导蛋白表达的原理及方法步骤

IPTG诱导蛋白表达的原理及方法步骤 E.coli的乳糖操纵子(元)含Z、Y及A三个结构基因,分别编码半乳糖苷酶、透酶和乙酰基转移酶,此外还有一个操纵序列O、一个启动序列P及一个调节基因I。I基因编码一种阻遏蛋白,后者与O序列结合,使操纵子(元)受阻遏而处于关闭状态。在启动序列P上游还有一个分解(代谢)物基因激活蛋白(CAP)结合位点。由P序列、O序列和CAP结合位点共同构成lac操纵子的调控区,三个酶的编码基因即由同一调控区调节,实现基因产物的协调表达。在没有乳糖存在时,lac操纵子(元)处于阻遏状态。此时,I序列在PI启动序列操纵下表达的Lac阻遏蛋白与O序列结合,阻碍RNA聚合酶与P序列结合,抑制转录起动。当有乳糖存在时,lac操纵子(元)即可被诱导。在这个操纵子(元)体系中,真正的诱导剂并非乳糖本身。乳糖进入细胞,经b-半乳糖苷酶催化,转变为半乳糖。后者作为一种诱导剂分子结合阻遏蛋白,使蛋白构象变化,导致阻遏蛋白与O序列解离、发生转录。异丙基硫代半乳糖苷(IPTG)是一种作用极强的诱导剂,不被细菌代谢而十分稳定,因此被实验室广泛应用。 材料 1、诱导表达材料 ( 1 ) LB (Luria—Bertani))培养基 酵母膏 (Yeast extract) 5g 蛋白胨 (Peptone) 10g NaCl 10g 琼脂 (Agar) 1-2% 蒸馏水 (Distilled water) 1000ml pH 7.0 适用范围:大肠杆菌 ( 2 ) IPTG 贮备液:2 g IPTG溶于10 mL 蒸馏水中,0 . 22 μm 滤膜过滤除菌,分装成1 mL /份,-20 ℃ 保存。 ( 3 ) l× 凝胶电泳加样缓冲液: 50 mmol / L Tris -CI ( pH 6 . 8 ) 50 mmol / L DTT 2 % SDS (电泳级) 0.1 %溴酚蓝 10 %甘油 2、大肠杆菌包涵体的分离与蛋白纯化材料

蛋白的纯化

第二部分:蛋白的纯化 如何区分蛋白表达在上清还是包涵体? 破碎细胞后离心分别收集上清和沉淀,表达的蛋白可能分布在上清中也有可能分布在沉淀中,还有可能是二者中都有分布。 根据我们实验室的经验,超声碎菌之后,如果菌液比较清亮,沉淀比较少,那表达的蛋白基本上是可溶的。但如果超声完之后,菌液是浑浊的,而且当离心之后,离下的沉淀比较多,而且沉淀的颜色也比较白,那基本上就是包涵体了。包涵体是基因重组蛋白在大肠杆菌中高水平表达时所形成的无活性的蛋白质聚集体,难溶于氺,可溶于变性剂如尿素,盐酸胍等,其实,包涵体也就是我们常说的不可溶蛋白。对于后者,可将上清和沉淀分别跑一个PAGE,看看上清中的量能达到多少,对于某些蛋白来说,一部分是以包涵体形式表达,一部分是以可溶的形式表达,而且量也不少,可以满足后续实验的需要,这个时候最好是纯可溶的,因为包涵体即使最后复性,活性也不太可信。 对于沉淀跑SDS-PAGE,如何处理,用什么使其溶解,还有在大肠杆菌中表达的蛋白,在提取过程中,使用什么蛋白提取缓冲液。 沉淀用Buffer B重悬,(组成:8M尿素+10mMTRIS base+100mM NaH2PO4,用NaOH调节pH到8.0),1克沉淀(湿重)加5ml Buffer B,使其充分溶解(可以放在微量震荡器上震荡20min),然后室温下12000转离心20min,留上清,弃沉淀。 取10ul上清加入10ul 2xSDS上样缓冲液,就可以跑PAGE了。 无论是纯可溶蛋白还是包涵体,在菌体裂解这一步我用的都是Lysis Buffer(组成:10mM 咪唑+300mM NaCl+50mM NaH2PO4,用NaOH调节pH到8.0)每克菌体(湿重)加2-5ml Lysis Buffer,充分悬起后,加入溶菌酶4度作用半小时就可以超声破碎了。 包涵体,简单的说就是翻译的蛋白没有正确折叠而聚集在一起形成的,主要的是疏水作用。实际上就是很多个蛋白分子,这些蛋白并不是交联在一起的,用高浓度的尿素和盐酸胍可以使他们变性,解聚。 电泳检测的话,可以用SDS-PAGE检测,在上样之前,需要用上样缓冲液处理样品,处理后,包涵体也就解聚了,每个蛋白分子与SDS结合,形成了可溶物。 包涵体是不容易破碎的,超声可以破碎菌体释放里面的包涵体,但是不能破碎包涵体;但如果用水煮的话,包涵体会变性,会有一部分可溶于水,所以你跑的上清中有可能有包涵体存在,也有可能没有包涵体; 建议: 还是先将菌体超声破碎,然后离心,取沉淀和上清再跑一次电泳,如果沉淀上清中都有你要的蛋白,说明表达的结果是部分可溶;如果仅上清有就是可溶性表达;如果仅沉淀中有,就是完全包涵体了。不过,一般情况下,应该是第一者的可能性大。

GST融合蛋白纯化方法

GST融合蛋白纯化方法 1目的片段接入pGEX载体; 2涂板,挑单克隆,摇菌至OD600≈1.0,加入IPTG(终浓度1 mM)诱导6-8 h; 3收菌,每升菌液约以50 mL PBS重悬,加入1%Triton X-100(v/v),1%β-巯基乙醇(v/v),PMSF(终浓度1 mM); 以下步骤均在冰上操作: 4超声破碎菌体,15000 g,10min离心取上清,在上清中加入适量GST-beads,轻轻晃动令其吸附蛋白1 h; 5 2000 g,3min离心弃上清; 6加入至少10倍体积PBS,轻摇至beads悬浮于溶液中,2000 g,3 min离心弃上清; 7重复步骤6 两次; 8加入1 mL GST Elution Buffer,轻摇10 min; 92000 g,3 min离心,收集上清; 10重复步骤8-9至少两次; 11 SDS-PAGE电泳检测蛋白纯度,Bradford法检测蛋白浓度; 12将蛋白置于-20℃保存。 P.S. 大量提取前应取少量菌液,改变IPTG浓度,诱导温度,诱导时间等,以确定蛋白表达的最适条 Thrombin cleavage (using thrombin produced by Amersham) 1. Thrombin cleavage of eluted fusion protein bound to Sepharose * Mix 50 μl of thrombin (< 10 cleavage U/ml) solution and 950 μl of 1 x PBS for each ml of Glutathione Sepharose bed volume Add thrombin protease mixture to Glutathione Sepharose pellet Gently shake or rotate the suspension at r.t. for 2-16 h Centrifuge the suspension at 500 x g for 5’ to pellet the beads and carefully transfer the eluted fraction to a clean tube. 2. Thrombin cleavage of eluted fusion protein. Add 10 μl of thrombin solution (10 cleavage units) per mg fusion protein. If the amount of fusion protein in the eluate has not been determined, add 80 μl (80 U) of thrombin for each ml of Glutathione Sepharose bed volume from with the fusion protein was eluted. Mix gently and incubate at r.t. (22-25C) for 2-16 h. Once digestion is complete, GST can be removed by first removing glutathione by extensive dialysis (2,000 vol/ml) against 1 x PBS followed by batch purification.

相关主题
文本预览
相关文档 最新文档