当前位置:文档之家› 硫化物化学式归纳

硫化物化学式归纳

硫化物化学式归纳
硫化物化学式归纳

与碱性氧化物反应:

与碱反应:

明亮的蓝紫色)归中反应)

少量)过量)催化剂

点燃

点燃

少量过量点燃

充足)点燃

(不足)23(2232(22223232223

2

2222222)(222)(222(22222a a a a 222((232aH a a a 22232222SO HSO N OH N SO O H SO N OH N SO SO SO O H SO H SO H O H SO SO O SO SO O S O H S SO S H O

H S N OH N S H O H S N OH N S H O H SO O S H O H S O S H =++=++==++=++=++=++=++=++=+?

?

=

()()O

H SO SO C SO H C O H SO SO Fe SO H Fe SO O Fe O FeS SO O H SO N SO H SO N NaCl

S Cl S N SO H O H SO HBr

SO H O H Br SO SO Na O SO N SO H O SO H SO H O H SO O H HSO N OH N SO H O H SO N OH N SO H CaSO O C SO SO N O N SO 2244222342422

32222242(42322242222422224

2232422324

2232332232)(323

2322222u 2u 63)6282114a a 2a 222a 222a a 2a a 2a a a +↑+=++↑+=++=+↑++=++↓=+=++=++=+=+=++=++=+=+=+??

浓浓高温

浓)(少量)过量

()()()()()歧化反应)

不稳定)

(除汞)(鉴别真假银)黑色的唯一途径)制剧烈反应并发生爆炸)与金属反应:

浓)浓)朱砂浓浓浓(326323266(g g g g 2u u 2(32(a a 2222222232222422242(3222232322222422242222242O H SO K S K KOH S O

H SO SO H S O H NO SO H HNO S S H S H S H S H S A S A S

C S C FeS S Fe S Al S Al S Al S N S N S O H SO Br SO H HBr O H SO S SO H S H O H SO CO SO H C ++=++↑=++↑+=+=+=+=+=+=+=+=++↑+↓=++↑+↓=++↑+↑=+??

?

???

??

??

?

O

H S SO H S H O H SO N S SO H SO Na NaS O H SO B O H B Cl B SO S H FeS Fe S H H Fe SO O H Fe SO SO H SO K MnSO O H SO kMnO 23222424232242232

2-222224232424242243323a 33323)(a (aSO 2a 1(422222252+↓=+++↓=+++↓=+↓+↑+=+++=++++=++++-

+、

白色)白色、实验现象的描述

、易错归纳:的还原性)区别与

常见有机溶剂的溶解性汇总

常用溶剂的沸点、溶解性和毒性 溶剂名称沸点(101.3kPa)溶解性毒性 液氨-33.35℃特殊溶解性:能溶解碱金属和碱土金属剧毒性、腐蚀性 液态二氧化硫-10.08 溶解胺、醚、醇苯酚、有机酸、芳香烃、溴、二硫化碳,多数饱和烃不溶剧毒 甲胺-6.3 是多数有机物和无机物的优良溶剂,液态甲胺与水、醚、苯、丙酮、低级醇混溶,其盐酸盐易溶于水,不溶于醇、醚、酮、氯仿、乙酸乙酯中等毒性,易燃 二甲胺7.4 是有机物和无机物的优良溶剂,溶于水、低级醇、醚、低极性溶剂强烈刺激性 石油醚不溶于水,与丙酮、*****、乙酸乙酯、苯、氯仿及甲醇以上高级醇混溶与低级烷相似 ***** 34.6 微溶于水,易溶与盐酸.与醇、醚、石油醚、苯、氯仿等多数有机溶剂混溶*****性 戊烷36.1 与乙醇、*****等多数有机溶剂混溶低毒性员?婷疋0? 二氯甲烷39.75 与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶低毒,*****性强 二硫化碳46.23 微溶与水,与多种有机溶剂混溶*****性,强刺激性 溶剂石油脑与乙醇、丙酮、戊醇混溶较其他石油系溶剂大 丙酮56.12 与水、醇、醚、烃混溶低毒,类乙醇,但较大 1,1-二氯乙烷57.28 与醇、醚等大多数有机溶剂混溶低毒、局部刺激性 氯仿61.15 与乙醇、*****、石油醚、卤代烃、四氯化碳、二硫化碳等混溶中等毒性,强*****性甲醇64.5 与水、*****、醇、酯、卤代烃、苯、酮混溶中等毒性,*****性 四氢呋喃66 优良溶剂,与水混溶,很好的溶解乙醇、*****、脂肪烃、芳香烃、氯化烃吸入微毒,经口低毒己烷68.7 甲醇部分溶解,比乙醇高的醇、醚丙酮、氯仿混溶低毒。*****性,刺激性 三氟代乙酸71.78 与水,乙醇,*****,丙酮,苯,四氯化碳,己烷混溶,溶解多种脂肪族,芳香族化合物 1,1,1-三氯乙烷74.0 与丙酮、、甲醇、*****、苯、四氯化碳等有机溶剂混溶低毒类溶剂 四氯化碳76.75 与醇、醚、石油醚、石油脑、冰醋酸、二硫化碳、氯代烃混溶氯代甲烷中,毒性最强 乙酸乙酯77.112 与醇、醚、氯仿、丙酮、苯等大多数有机溶剂溶解,能溶解某些金属盐低毒,*****性 乙醇78.3 与水、*****、氯仿、酯、烃类衍生物等有机溶剂混溶微毒类,*****性 丁酮79.64 与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶低毒,毒性强于丙酮 苯80.10 难溶于水,与甘油、乙二醇、乙醇、氯仿、*****、、四氯化碳、二硫化碳、丙酮、甲苯、二甲苯、冰醋酸、脂肪烃等大多有机物混溶强烈毒性 乙睛81.60 与水、甲醇、乙酸甲酯、乙酸乙酯、丙酮、醚、氯仿、四氯化碳、氯乙烯及各种不饱和烃混溶,但是不与饱和烃混溶中等毒性,大量吸入蒸气,引起急性中毒 异丙醇82.40 与乙醇、*****、氯仿、水混溶微毒,类似乙醇 1,2-二氯乙烷83.48 与乙醇、*****、氯仿、四氯化碳等多种有机溶剂混溶高毒性、致癌 乙二醇二甲醚85.2 溶于水,与醇、醚、酮、酯、烃、氯代烃等多种有机溶剂混溶。能溶解各种树脂,还是二氧化硫、氯代甲烷、乙烯等气体的优良溶剂吸入和经口低毒 三氯乙烯87.19 不溶于水,与乙醇.*****、丙酮、苯、乙酸乙酯、脂肪族氯代烃、汽油混溶有机有毒品_ 三乙胺89.6 水:18.7以下混溶,以上微溶。易溶于氯仿、丙酮,溶于乙醇、***** 易爆,皮肤黏膜刺激性强 丙睛97.35 溶解醇、醚、DMF、乙二胺等有机物,与多种金属盐形成加成有机物高度性,与氢氰酸相似 庚烷98.4 与己烷类似低毒,刺激性、*****性

化学溶解性表

化学溶解性表 图例 溶:该物质可溶于水 难:难溶于水(溶解度小于0.01g,几乎可以看成不溶,但实际溶解了极少量,绝对不溶于水的物质几乎没有) 微:微溶于水 挥:易挥发或易分解 —:该物质不存在或遇水发生水解

常见沉淀 白色:BaSO4 BaCO3 CaCO3 AgCl Ag2CO3 Mg(OH)2 Fe(OH)2 Al(OH)3 CuCO3 ZnCO3 MnCO3 Zn(OH)2 蓝色:Cu(OH)2 浅黄色:AgBr 红褐色:Fe(OH)3 溶解性口诀 溶解性口诀一 钾钠铵盐溶水快,① 硫酸盐除去钡银铅钙。② 氯化物不溶氯化银, 硝酸盐溶液都透明。③ 氢氧根多溶一个钡④ 口诀中未有皆下沉。⑤ 注:①钾钠铵盐都溶于水; ②硫酸盐中只有硫酸钡、硫酸铅不溶(硫酸钙硫酸银微溶也是沉淀); ③硝酸盐都溶于水; ④碱性物质中除了钾离子钠离子铵离子锂离子还有钡离子也可溶 ⑤口诀中没有涉及的盐类都不溶于水; 溶解性口诀二 钾、钠、铵盐、硝酸盐; 氯化物除银、亚汞; 硫酸盐除钡和铅; 碳酸、磷酸盐,只溶钾、钠、铵。 说明,以上四句歌谣概括了8类相加在水中溶解与不溶的情况。 溶解性口诀三 钾钠铵硝皆可溶、盐酸盐不溶银亚汞; 硫酸盐不溶钡和铅、碳磷酸盐多不溶。 多数酸溶碱少溶、只有钾钠铵钡溶 溶解性口诀四 钾、钠、硝酸溶,(钾盐、钠盐和硝酸盐都溶于水。) 盐酸除银(亚)汞,(盐酸盐里除氯化银和氯化亚汞外都溶。) 再说硫酸盐,不容有钡、铅,(硫酸盐中不溶的是硫酸钡和硫酸铅。) 其余几类盐,(碳酸盐、亚硫酸盐、磷酸盐、硅酸盐和硫化物) 只溶钾、钠、铵,(只有相应的钾盐、钠盐和铵盐可溶) 最后说碱类,钾、钠、铵和钡。(氢氧化钾、氢氧化钠、氢氧化钡和氨水可溶) 另有几种微溶物,可单独记住。 溶解性口诀五(适合初中化学课本后面的附录) 钾钠铵盐硝酸盐① 氢氧根多钡离子② 硫酸盐除钡钙银③ 碳酸溶氢钾钠铵④ 生成沉淀氯化银⑤ 溶解性口诀六(初学记忆) 不是沉淀物……我们初中的口诀是 钾【化合物】、钠【化合物】、铵【铵根】、硝【硝酸盐】都可溶 氯化物里银不溶 硫酸盐里钡不溶 注:①钾盐、钠盐、铵盐、硝酸盐都溶于水 ②除了以上四种,氢氧根和钡离子结合时也溶于水 ③硫酸根除了和钡离子、钙离子、银离子结合时不溶于水,其他都溶 ④碳酸根除了和氢离子、钾离子、钠离子和铵离子结合时溶于水,其他都不溶 ⑤氯离子只有和银离子结合时不溶于水

硫化物的溶解性(精.选)

硫化物的溶解性 杜晓莹 高一化学第六章《氧族元素》在讲授“氢硫酸与某些重金属盐反应”这一性质时,经常会碰到这样的问题: H2S + CuSO4=CuS↓+ H2SO4 H2S + Pb(NO3)2=PbS↓+ 2HNO3 H2S + FeCl2 -→(不反应) 如果是通过对鲜明的实验现象让学生接受上述反应并不困难。但是往往有学生会有这样的疑问:这些反应为什么有的能发生,有的不能发生?能发生的反应是不是复分解反应?弱酸怎么能制取强酸?要理解这些问题就必须弄清硫化物在水中的溶解性。新教材对硫化物的要求已不是很高,为了方便学生学习和教师参考,现将硫化物的溶解性归纳如下。 硫化物可以看作是氢硫酸所生成的正盐,一般认为是由电负性较硫小的元素与硫形成的化合物,其中大多数为金属硫化物。自然界中金属硫化物矿约200余种。有辉铜矿Cu2S、辉锑矿Sb2S3、辉钼矿MoS2、闪锌矿ZnS、方铅矿PbS、辰砂HgS、黄铁矿FeS2、雄黄As4S4、雌黄As2S3、辉铋矿Bi2S3、黄铜矿CuFeS2、斑铜矿Cu5FeS4等,无碱金属、碱土金属(Be除外)硫化物矿。 在金属硫化物中,碱金属硫化物和CaS、BaS是易溶于水的,其余碱土金属硫化物微溶于水(除BeS难溶),其余大多数硫化物都是难溶于水,并具有不同颜色的固体。实际应用中常利用硫化物的特殊颜色来鉴别和判断所含的金属离子。 硫化物在水中或酸中的溶解包括溶解和电离两个过程,根据溶解平衡的观点硫化物的溶解过程显然与溶液中的硫离子浓度有很大关系,故了解硫化物的溶解性首先要知道H2S的溶解性。在饱和的H2S水溶液中H+和S2-浓度之间的关系是: [ H+ ]2[ S2- ]=9.23×10-22 从上式可以看出,溶液的PH值与S2-浓度密切相关。 同样,难溶金属硫化物在水中的溶解情况也与其溶度积常数有一定关系。若溶液中金属离子和硫离子浓度的乘积小于该金属硫化物的Kθsp,此时该硫化物在溶液中以溶解状态存在。实际操作中,可用控制溶液酸度的方法使一些金属硫化物溶解。在酸性溶液中H+浓度大,S2-浓度低,所以只能沉淀出溶度积小的金属硫化物。而在碱性溶液中H+浓度小,S2-浓度高,可以将多种金属离子沉淀成硫化物。 在水中,由于S2-离子是弱酸根离子,所以金属硫化物无论是微溶还是易溶,都有不同程度的水解作用。即使是难溶金属硫化物,其溶解部分也会发生水解。使溶液显碱性: Na2S + H2O =NaHS + NaOH(Na2S溶液显强碱性,可作为强碱使用) 2CaS + 2H2O =Ca(OH)2 + Ca(HS)2 2BaS + 2H2O =Ca(OH)2 + Ba(HS)2

硫化物的溶解性归纳

硫化物的溶解性归纳氢硫酸可形成正盐和酸式盐,酸式盐均易溶于水,而正盐中除碱金属(包括NH4+)的硫化物和BaS易溶于水外,碱土金属硫化物微溶于水(BeS难溶),其它硫化物大多难溶于水,并具有特征的颜色。大多数金属硫化物难溶于水。从结构方面来看,S2-的半径比较大,因此变形性较大,在与重金属离子结合时,由于离子相互极化作用,使这些金属硫化物中的M—S键显共价性,造成此类硫化物难溶于水。显然,金属离子的极化作用越强,其硫化物溶解度越小。根据硫化物在酸中的溶解情况,将其分为四类。见表11-13。表11-13 硫化物的分类 溶于稀盐酸(0.3mol·L-1HCl) 难溶于稀盐酸 溶于浓盐酸 难溶于浓盐酸 溶于浓硝酸仅溶于王水 MnS CoS (肉色) (黑色) ZnS NiS (白色) (黑色) FeS (黑色) SnS Sb2S3 (褐色) (橙色) SnS2Sb2S5 (黄色) (橙色) PbS CdS (黑色) (黄色) Bi2S3 (暗棕) CuS As2S3 (黑色) (浅黄) Cu2S As2S6 (黑色) (浅黄) Ag2S (黑色) HgS (黑色) Hg2S (黑色) >10-2410-25 > > 10-30<10-30<<10-30 现以MS型硫化物为例,结合上述分类情况进行讨论。 (1) 不溶于水但溶于稀盐酸的硫化物。此类硫化物的>10-24,与稀盐酸反应即可有效地降低S2-浓度而使之溶解。例如: ZnS + 2H+─→ Zn2+ + H2S↑ (2) 不溶于水和稀盐酸,但溶于浓盐酸的硫化物。此类硫化物的在10-25~10-30之间,与浓盐酸作用除产生H2S气体外,还生成配合物,降低了金属离子的浓度。例如:

硫化物的溶解性归纳

硫化物的溶解性归纳 氢硫酸可形成正盐和酸式盐,酸式盐均易溶于水,而正盐中除碱金属(包括NH4+)的硫化物和BaS易溶于水外,碱土金属硫化物微溶于水(BeS 难溶),其它硫化物大多难溶于水,并具有特征的颜色。大多数金属硫化物难溶于水。从结构方面来看,S2-的半径比较大,因此变形性较大,在与重金属离子结合时,由于离子相互极化作用,使这些金属硫化 物中的M—S键显共价性,造成此类硫化物难溶于水。显然,金属离子的极化作用越强,其硫化物溶解度越小。根据硫化物在酸中的溶解情况,将其分为四类。见表11-13。表11-13 硫化物的分类 现以MS型硫化物为例,结合上述分类情况进行讨论。 (1) 不溶于水但溶于稀盐酸的硫化物。此类硫化物的>10-24,与稀盐酸反应即可有效地降低S2-浓度而使之溶解。例如: ZnS + 2H+─→ Zn2+ + H2S↑ (2) 不溶于水和稀盐酸,但溶于浓盐酸的硫化物。此类硫化物的在10-25~10-30之间,与浓盐酸作用除产生H2S气体外,还生成配合物,降低了金属离子的浓度。例如: PbS + 4HCl ─→ H2[PbCl4] + H2S↑

(3) 不溶于水和盐酸,但溶于浓硝酸的硫化物。此类硫化物的<10-30,与浓硝酸可发生氧化还原反应,溶液中的S2-被氧化为S,S2-浓度大为降低而导致硫化物的溶解。例如: 3CuS + 8HN03─→ 3Cu(NO3)2+ 3S↓+ 2NO↑ + 4H2O (4) 仅溶于王水的硫化物。对于更小的硫化物如HgS来说,必须用王水才能溶解。因为王水不仅能使S2-氧化,还能使Hg2+与Cl-结合,从而使硫化物溶解。反应如下: 3HgS + 2HNO3+ 12HCl ─→ 3H2[HgCl4] + 3S↓+ 2NO↑+ 4H2O 由于氢硫酸是弱酸,故硫化物都有不同程度的水解性。碱金属硫化物,例如Na2S溶于水,因水解而使溶液呈碱性。工业上常用价格便宜的Na2S代替NaOH 作为碱使用,故硫化钠俗称“硫化碱”。其水解反应式如下: S2- + H2O HS- + OH- 碱土金属硫化物遇水也会发生水解,例如: 2CaS + 2H2O Ca(HS)2 + Ca(OH)2 某些氧化数较高金属的硫化物如Al2S3、Cr2S3等遇水发生完全水解: Al2S3 + 6H2O ─→ 2Al(OH)3↓ + 3H2S↑ Cr2S3 + 6H2O ─→ 2Cr(OH)3↓ + 3H2S↑ 因此这些金属硫化物在水溶液中是不存在的。制备这些硫化物必须用干法,如用金属铝粉和硫粉直接化合生成Al2S3。 可溶性硫化物可用作还原剂,制造硫化染料、脱毛剂、农药和鞣革,也用于制荧光粉。 判断金属硫化物的溶解性 (1)K→Na的金属硫化物易溶于水。 (2)Mg→Al的金属硫化物易水解,在水中不存在。 (3)Zn→Pb的金属硫化物均不溶于水。 16 判断金属硫化物的颜色 (1)K→Zn的金属硫化物为无色或白色。

淡水水体溶解有机氮对有毒藻种的生物有效性(2)

生态环境学报 2010, 19(1): 45-50 https://www.doczj.com/doc/f710859406.html, Ecology and Environmental Sciences E-mail: editor@https://www.doczj.com/doc/f710859406.html, 基金项目:福建省自然科学基金青年基金项目(2009J05033);国家自然科学基金青年基金项目(20807033) 作者简介:罗专溪(1979年生),男,博士,主要从事污染物在水环境介质中的行为过程研究。E-mail: zxluo@https://www.doczj.com/doc/f710859406.html, *通讯作者:颜昌宙,研究员,博士。E-mail: czyan@https://www.doczj.com/doc/f710859406.html, 收稿日期:2009-10-30 淡水水体溶解有机氮对有毒藻种的生物有效性 罗专溪1 ,魏群山1 ,王振红2 ,颜昌宙 1* 1. 中国科学院城市环境研究所城市环境与健康重点实验室, 福建 厦门 361021; 2. 漳州师范学院化学与环境科学系, 福建 漳州 363000 摘要:溶解有机氮(Dissolved organic nitrogen, DON )是多数天然水体中溶解氮的主要组成部分。天然水体DON 是许多微生命体包括有毒藻种的氮营养源,在供水安全以及水体富营养化等方面的生态环境效应不容忽视。文章系统地介绍了淡水水体DON 含量与来源、生物有效性与估算方法,以及对有毒藻种生长的影响。DON 的来源是影响水体中DON 含量动态特征的关键因素。DON 来源包括陆地径流,植物碎屑,土壤淋溶液,沉积物释放,大气沉降,藻类、大型植物、细菌与细胞死亡或自我分解,微型及大型浮游动物捕食和排泄、分泌物释放等。研究表明约有12%~72%的DON 可迅速被生物所利用,具显著差异,究其原因可能是其来源组成、化学本质(分子质量与极性)、测试生物组成、是否有细菌作用等因素造成的。不同藻种具有不同氮源利用能力,DON 对藻类生长具有直接或间接的作用,并可能影响藻类群落结构(有毒藻类成为优势种)。考虑到水环境保护与饮用水安全供水的重要性,未来研究应重视淡水水体DON 生物有效性与其化学本质的揭示,尤其是对有毒藻种。 关键词:溶解有机氮;生物有效性;有毒藻种 中图分类号:X17 文献标识码:A 文章编号:1674-5906(2010)01-0045-06 全世界河流中的总氮有14%~90%由有机氮组成[1]。而作为有机氮的主要成分,溶解有机氮(Dissolved organic nitrogen, DON )是多数天然水体中溶解氮的主要组成部分,所占百分比约达60%~69%[2]。传统观点认为DON 是一类难以被利用、生物有效性(bioavailability )低的有机氮库,不会促进水体水质富营养化[3][4],因而不重视DON 的管理和控制[5],甚至在水体氮负荷估算时忽略不计DON 含量[6][4]。DON 是天然水体有机质的重要组成成分,其含量、生物有效性及其生态环境效应逐渐受到关注[6]-[8]。目前世界上DON 的研究报道主要关注河口、近海和海洋生态系统,而淡水生态系统中的DON 研究相对较为缺乏。 能利用DON 的浮游植物,特别是一些有毒藻种(如水华束丝藻Aphanizomenon flosaquate 、铜绿微囊藻 Microcystis aeruginosa )具有其他藻种所没有的强大竞争力,可在无机氮缺乏而有机氮浓度相对较高的环境中很好的生长[9]-[10]。有毒藻种可以产生肝毒素、神经毒素等藻毒素[11],不利于作为饮用水源的淡水水体的安全保障。 当前我国微污染原水普遍存在有机物含量超标、含氮化合物浓度高、藻类大量繁殖等问题。另外,DON 绝大部分物质本身对人体具有直接或间接的毒害作用。因而本文综合分析淡水水体DON 对有毒藻种的生物有效性,希望有助于揭示淡水水体DON 的潜在生态风险与环境效应。 1 淡水水体DON 含量与来源 1.1 淡水水体的DON 含量 多数自然水体中的TDN 含量与其中的DON 密切相关。开阔海洋表面DON 约占TDN 的83%,河口DON 约占13%;近海约占18%[2]。在淡水生态系统中,其DON 浓度要比DIN 浓度高0[13]。如美国乔治亚州Satilla 河水的DON 浓度 (以N 计,下同) 为59.0 μmol/L ,而其TDN 浓度 (以N 计,下同) 仅 为62.6 μmol/L [14]。 又如日本琵琶湖的DON 浓度为4.0~7.2 μmol/L ,而其TDN 浓度仅为7.0~8.0 μmol/L [15]。以色列 Kinneret 湖为中富营养化湖泊,其水中DON 含量(1975—1974年均值)呈现季节差异性,9月份DON 占TDN 的65%,而三月份DON 占TDN 比例变小,仅为39%[2]。分析报道的文献,目前世界上DON 的研究报道主要关注河口、近海和海洋生态系统,而淡水生态系统中的DON 研究(包括DON 动态特征的量化描述及其影响因素等)较为缺乏。 当前,测定DON 含量的所有方法都是采用差减法,需依赖于测定总溶解性氮(TDN, Total dissolved nitrogen )浓度的测定,然后再减去溶解性无机氮(DIN, dissolved inorganic nitrogen )浓 度(分别测定的NH 4+,NO 3-和NO 2-浓度的加和) ,这使得测定结果具有3方面的分析误差,即测定TDN 、NH 4+和(NO 3-、NO 2-)的分析误差,因此DON 含量测定时,为了提高其测定精度,应尽可

高中化学 金属硫化物的溶解情况

金属硫化物 ?金属硫化物: (1)碱金属硫化物(Li----Cs)全部易溶于水。(硫化铵在低温下0度左右易溶于 水,但是在常温下会逐渐分解为氨和硫化氢) (2)碱土金属硫化物(除了Be)(Mg----Ba)易溶于水,但是同时完全水解为氢 氧化物和硫氢化物。 (3)铝,铍,铬的硫化物全部水解为硫化氢气体和氢氧化物沉淀。 (4)FeS,ZnS,MnS,NiS,CoS不溶于水但溶于稀盐酸。 (5)Bi2S3,SnS,SnS2,PbS,CdS,Bi2S5等不溶于水和稀盐酸,只溶于浓盐酸。 (6)CuS,Cu2S,Ag2S不溶于水,稀盐酸,浓盐酸,只溶于浓硝酸。 (7)Hg2S,HgS不溶于水,浓稀盐酸,浓硝酸,只溶于王水。 ?金属硫化物的溶解性归纳: 1.溶于水的有:等,由于的水解,此类金属硫化物的水溶液显碱性: 。 2.不溶于水但溶于稀盐酸的有:FeS、ZnS、MnS等。如: 。 3.不溶于稀盐酸但溶于浓盐酸的有:Cds、SnS、PbS等。 4.不溶于浓盐酸但溶于硝酸溶液的有:CuS等。 5.仅溶于王水的有:HgS等。

注意:遇水后,都水解,且相互促进,反应方程式为 ,因而不能与水共存,只能在干态下制取。 硫的价态转化规律: 硫元素的价态比较多,常见的有-2、0、+4、+6 价,它们间的转化关系是:现将它们在化学反应中复杂的变化规律归结如下: 1.邻位价态转化规律 (1)是硫元素的最低价态,只有还原性。它与氧化剂反应,其价态一般会升至相邻的价态()。 (2)S能发生自身氧化还原反应(即歧化反应),在反应时分别升至和降至与其相邻的价态。如 (3)处于中间价态,既有氧化性又有还原性。与弱氧化剂作用时,被氧化成相邻的高价态;与弱还原剂作用时,被还原成相邻的低价态。如 (4)是硫元素的最高价态,只有氧化性。遇到还原剂时,其价态一般降至相邻的 价态()。如 2.跳位转化规律 (1)遇到强氧化剂时,价态会发生跳位转化。如

物质溶解度表汇总

1.锕、氨、铵 物质化学式0℃10℃20℃30℃40℃50℃60℃70℃80℃90℃100℃氢氧化锕Ac(OH)3 0.0022 氨NH3 88.5 70 56 44.5 34 36.5 20 15 11 8 7 叠氮化氨NH2N2 16 25.3 37.1 苯甲酸氨NH4C7H5O2 20 碳酸氢氨NH4CO3 11.9 16.1 21.7 28.4 36.6 59.2 109 170 354 溴化氨NH4Br 60.6 68.1 76.4 83.2 91.2 108 125 135 145 碳酸氨(NH4)2CO3100 氯酸氨NH4ClO328.7 氯化氨NH4Cl 29.4 33.2 37.2 41.4 45.8 50.4 55.3 60.2 65.6 71.2 77.3 氯铂酸铵(NH4)2PtCl60.289 0.374 0.499 0.637 0.815 1.44 2.16 2.61 3.36 铬酸铵(NH4)2CrO425 29.2 34 39.3 45.3 59 76.1 重铬酸铵(NH4)2Cr2O718.2 25.5 35.6 46.5 58.5 86 115 156 砷酸二氢铵NH4H2AsO433.7 48.7 63.8 83 107 122 磷酸二氢铵NH4H2PO422.7 39.5 37.4 46.4 56.7 82.5 118 173 氟硅酸铵(NH4)2SiF6 18.6 甲酸铵NH4HCO2 102 143 204 311 533 磷酸一氢铵(NH4)2HPO4 42.9 62.9 68.9 75.1 81.8 97.2 碳酸氢铵NH4HSO4 100 酒石酸氢铵NH4HC4H4O6 1.88 2.7 碘酸铵NH4IO3 2.6 碘化铵NH4I 155 163 172 182 191 209 229 250 硝酸铵NH4NO3 118 150 192 242 297 421 580 740 871 高碘酸铵(NH4)5IO6 2.7 草酸铵(NH4)2C2O4 2.2 3.21 4.45 6.09 8.18 14 22.4 27.9 34.7 高氯酸铵NH4ClO4 12 16.4 21.7 37.7 34.6 49.9 68.9 高锰酸铵NH4MnO4 0.8 磷酸铵(NH4)3PO4 26.1 硒酸铵(NH4)2SeO4 96 105 115 126 143 192 硫酸铵(NH4)2SO4 70.6 73 75.4 78 81 88 95 103 亚硫酸铵(NH4)2SO3 47.9 54 60.8 68.8 78.4 104 114 150 153 酒石酸铵(NH4)2C4H4O6 45 55 63 70.5 76.5 86.9 硫氰酸铵NH4SCN 120 144 170 208 234 346 硫代硫酸铵(NH4)2S2O3 2.15 钒酸铵NH4VO3 0.48 0.84 1.32 2.42

天然水体中的溶解性有机氮

全世界河流中的总氮有14%~90%由有机氮组成。而作为有机氮的主要成分,溶解有机氮(Dissolved organic nitrogen, DON)是多数天然水体中溶解氮的主要组成部分,所占百分比约达60%~69%。传统观点认为DON是一类难以被利用、生物有效性(bioavailability)低的有机氮库,不会促进水体水质富营养化,因而不重视DON的管理和控制,甚至在水体氮负荷估算时忽略不计DON含量。DON 是天然水体有机质的重要组成成分,其含量、生物有效性及其生态环境效应逐渐受到关注。目前世界上DON的研究报道主要关注河口、近海和海洋生态系统,而淡水生态系统中的DON研究相对较为缺乏。 能利用DON的浮游植物,特别是一些有毒藻种(如水华束丝藻Aphanizomenon flosaquate、铜绿微囊藻Microcystis aeruginosa)具有其他藻种所没有的强大竞争力,可在无机氮缺乏而有机氮浓度相对较高的环境中很好的生长。有毒藻种可以产生肝毒素、神经毒素等藻毒素,不利于作为饮用水源的淡水水体的安全保障。当前我国微污染原水普遍存在有机物含量超标、含氮化合物浓度高、藻类大量繁殖等问题。另外,DON绝大部分物质本身对人体具有直接或间接的毒害作用。研究发现,水中DON 大部分组成物质本身对人体具有直接或间接致毒作用,可生成更多的消毒副产物、产生较为严重的膜污染等,因此DON 相关研究已成为国际饮用水处理领域新的研究方向。尤其是近年来,研究人员发现DON 易和消毒剂发生反应生成含氮消毒副产物( N-DBPs) ,如卤化腈、二甲基亚硝胺、卤代硝基甲烷、卤代酰胺等,这些N-DBPs 的浓度远低于三卤甲烷、卤乙酸等常规消毒副产物,但其“三致”特性却远超过后者。DON 是N-DBPs 的前体物,有效削减DON 是控制消毒过程中N-DBPs 生成的重要手段,而了解微污染原水中DON 的组成规律是关键。 1.淡水水体DON 含量与来源 (1)含量 多数自然水体中的TDN含量与其中的DON密切相关。开阔海洋表面DON 约占TDN的83%,河口DON约占13%;近海约占18%。在淡水生态系统中,其DON浓度要比DIN浓度高。 当前,测定DON含量的所有方法都是采用差减法,需依赖于测定总溶解性氮(TDN, Totaldissolved nitrogen)浓度的测定,然后再减去溶解性无机氮(DIN,

常见物质溶解性及溶度积

本溶解性表崔扬(vmbn)录入,2003-5-5,修正于2003-7-27

]锕、氨、铵 物质化学式0°C10°C20°C30°C40°C50°C60°C70°C80°C90°C100°C 氢氧化锕(III)Ac(OH) 3 0.0022 氨NH 3 88.5 70 56 44.5 34 26.5 20 15 11 8 7 叠氮化铵NH 4N 3 16 25.3 37.1 苯甲酸铵NH 4C 7 H 5 O 2 20 碳酸氢铵NH 4HCO 3 11.9 16.1 21.7 28.4 36.6 59.2 109 170 354 溴化铵NH 4 Br60.6 68.1 76.4 83.2 91.2 108 125 135 145 碳酸铵(NH 4) 2 CO 3 100 氯酸铵NH 4ClO 3 28.7 氯化铵NH 4 Cl29.4 33.2 37.2 41.4 45.8 50.4 55.3 60.2 65.6 71.2 77.3 氯铂酸铵(NH 4) 2 PtCl 6 0.289 0.374 0.499 0.637 0.815 1.44 2.16 2.61 3.36

铬酸铵(NH 4) 2 CrO 4 25 29.2 34 39.3 45.3 59 76.1 重铬酸铵(NH 4) 2 Cr 2 O 7 18.2 25.5 35.6 46.5 58.5 86 115 156 砷酸二氢铵NH 4H 2 AsO 4 33.7 48.7 63.8 83 107 122 磷酸二氢铵NH 4H 2 PO 4 22.7 39.5 37.4 46.4 56.7 82.5 118 173 氟硅酸铵(NH 4) 2 SiF 6 18.6 甲酸铵NH 4HCO 2 102 143 204 311 533 磷酸一氢铵(NH 4) 2 HPO 4 42.9 62.9 68.9 75.1 81.8 97.2 硫酸氢铵NH 4HSO 4 100 酒石酸氢铵NH 4HC 4 H 4 O 6 1.88 2.7 碘酸铵NH 4IO 3 2.6 碘化铵NH 4 I155 163 172 182 191 209 229 250 硝酸铵NH 4NO 3 118 150 192 242 297 421 580 740 871

高中化学常用物质溶解性表及沉淀颜色(xin)

高中化学常用物质溶解性表及沉淀颜色 钾、钠铵盐都可溶, 硝盐遇水影无踪; 硫(酸)盐不溶铅和钡, 氯(化)物不溶银、亚汞。 氢气应早去晚归,酒精灯迟到早退,试管口下倾水滴。 升失氧,降得还;若说剂,两相反。 无“弱”不水解,谁“弱”谁水解;愈“弱”愈水解, 又“弱”剧水解;谁“强”显谁性,双“弱”由K定。 左边水写分子式,中间符号写可逆,右边不写“↑”和“↓”。 钾钠铵盐溶水快,① 硫酸盐除去钡铅钙。② 氯化物不溶氯化银, 硝酸盐溶液都透明。③ 口诀中未有皆下沉。④ 注: ①钾钠铵盐都溶于水; ②硫酸盐中只有硫酸钡、硫酸铅、硫酸钙不溶; ③硝酸盐都溶于水; ④口诀中没有涉及的盐类都不溶于水;

钾、钠、铵盐、硝酸盐; 氯化物除银、亚汞; 硫酸盐除钡和铅; 碳酸、磷酸盐,只溶钾、钠、铵。 说明,以上四句歌谣概括了8类相加在水中溶解与不溶的情况。 钾钠铵硝皆可溶、盐酸盐不溶银亚汞; 硫酸盐不溶钡和铅、碳磷酸盐多不溶。 多数酸溶碱少溶、只有钾钠铵钡溶 钾、钠、硝酸溶,(钾盐、钠盐和硝酸盐都溶于水。) 盐酸除银(亚)汞,(盐酸盐里除氯化银和氯化亚汞外都溶。) 再说硫酸盐,不容有钡、铅,(硫酸盐中不溶的是硫酸钡和硫酸铅。)其余几类盐,(碳酸盐、亚硫酸盐、磷酸盐、硅酸盐和硫化物) 只溶钾、钠、铵,(只有相应的钾盐、钠盐和铵盐可溶) 最后说碱类,钾、钠、铵和钡。(氢氧化钾、氢氧化钠、氢氧化钡和氨水可溶) 另有几种微溶物,可单独记住。 钾钠铵盐硝酸盐 完全溶解不困难 氯化亚汞氯化银 硫酸钡和硫酸铅 生成沉淀记心间 氢硫酸盐和碱类 碳酸磷酸硝酸盐 可溶只有钾钠铵

钾、钠、硝酸溶,(钾盐、钠盐和硝酸盐都溶于水。) 盐酸除银(亚)汞,(盐酸盐里除氯化银和氯化亚汞外都溶。) 再说硫酸盐,不容有钡、铅,(硫酸盐中不溶的是硫酸钡和硫酸铅。) 其余几类盐,(碳酸盐、亚硫酸盐、磷酸盐、硅酸盐和硫化物) 只溶钾、钠、铵,(只有相应的钾盐、钠盐和铵盐可溶) 最后说碱类,钾、钠、铵和钡。(氢氧化钾、氢氧化钠、氢氧化钡和氨水可溶) 另有几种微溶物,可单独记住 高中化学常用物质溶解性表及沉淀颜色Fe2O3+3H2SO4= Fe2(SO4)3+3H2O 铁锈溶解溶液呈黄色铁器除锈 Al2O3+3H2SO4= Al2(SO4)3+3H2O 白色固体溶解 CuO+H2SO4=CuSO4+H2O 黑色固体溶解溶液呈蓝色 ZnO+H2SO4=ZnSO4+H2O 白色固体溶解 MgO+H2SO4=MgSO4+H2O 白色固体溶解 2NaOH+H2SO4=Na2SO4+2H2O Cu(OH)2+H2SO4=CuSO4+2H2O 蓝色固体溶解 Ca(OH)2+H2SO4=CaSO4+2H2O Mg(OH)2+H2SO4=MgSO4+2H2O 白色固体溶解 2Al(OH)3+3H2SO4=Al2(SO4)3+3H2O 白色固体溶解 2Fe(OH)3+3H2SO4=Fe2(SO4)3+3H2O 红褐色沉淀溶解溶液呈黄色 Ba(OH)2+ H2SO4=BaSO4+2H2O 生成白色沉淀不溶解于稀硝酸检验SO42的原理BaCl2+ H2SO4=BaSO4+2HCl 生成白色沉淀不溶解于稀硝酸检验SO42的原理Ba(NO3)2+H2SO4=BaSO4+2HNO3 生成白色沉淀不溶解于稀硝酸检验SO42的原 理 Na2O+2HNO3=2NaNO3+H2O 白色固体溶解 CuO+2HNO3=Cu(NO3)2+H2O 黑色固体溶解溶液呈蓝色 ZnO+2HNO3=Zn(NO3)2+ H2O 白色固体溶解 MgO+2HNO3=Mg(NO3)2+ H2O 白色固体溶解 CaO+2HNO3=Ca(NO3)2+ H2O 白色固体溶解 NaOH+HNO3=NaNO3+ H2O Cu(OH)2+2HNO3=Cu(NO3)2+2H2O 蓝色固体溶解 Mg(OH)2+2HNO3=Mg(NO3)2+2H2O 白色固体溶解 Al(OH)3+3HNO3=Al(NO3)3+3H2O 白色固体溶解 Ca(OH)2+2HNO3=Ca(NO3)2+2H2O Fe(OH)3+3HNO3=Fe(NO3)3+3H2O 红褐色沉淀溶解溶液呈黄色 3NaOH + H3PO4=3H2O + Na3PO4 3NH3+H3PO4=(NH4)3PO4 2NaOH+CO2=Na2CO3+ H2O 吸收COO2H2中的CO2 2NaOH+SO2=Na2SO3+ H2O 2NaOH+SO3=Na2SO4+ H2O 处理硫酸工厂的尾气 (SO2) FeCl3+3NaOH=Fe(OH)3+3NaCl 溶液黄色褪去有红褐色沉淀生成

溶解性有机氮测定方法

溶解性有机氮测定方法 (1)待测滤液的制备 称取5.00g风干样准确到0.01g,置于50ml塑料瓶中,加入25ml 1mol/l的KCL溶液,加盖,以180 r/min 振荡1h,取出静置5-10min后将悬液的上部清液用干滤纸过滤,得待测滤液。(风干样少且较黑则可称取2.00-4.00g,只需保证KCL溶液浸提时水:土=5:1 即可)(2)溶解性全氮—碱性过硫酸钾氧化—紫外分光光度法 取上述待测滤液8ml于试管中,加入10mL氧化剂,在121-123度高压锅中氧化30min(或是在水浴中加热,温度升至100摄氏度保持90min)。氧化完后,小心取出,待冷却后使用紫外分光光度计,用石英比色皿测定出该溶液在220nm和275nm处的吸光度A220和A275,记录下来,同时做好空白对比。 制备氧化剂:将6g氢氧化钠和30g过硫酸钾溶于蒸馏水中并定容至1L。(注意应先将氢氧化钠制得溶液,等至室温后,与过硫酸钾混合后定容) 配制TDN标准曲线: 称取0.7214g硝酸钾溶于水,转入1L容量瓶中定容摇匀,制得浓度为100mg/L的氮标准储存液,稀释10倍至10mg/L。吸取10mg/L的硝态氮标准溶液0.00mL、1.00mL、2.00mL、3.00mL、4.00mL、5.00mL、6.00mL (对应浓度分别为0 .00mg/L、0.02 mg/L、0.04 mg/L、0.06 mg/L、0.08 mg/L、0.10 mg/L、0.12mg/L)于50ml的容量瓶中,各加入10mL氧化剂,与样品同样经高温高压氧化后定容,得氮的标准系列溶液。再分别测定标准系列溶液在220nm和275nm处的吸光度A220和A275。以A(A= A220-2A275)为纵坐标,氮浓度为横坐标绘制得标准曲线。(3)铵态氮—靛酚蓝比色法 取上述滤液4.00 ml(一般吸取土壤浸出液2-10ml)于50mL容量瓶中,用浸提剂KCL 溶液补充至10 ml,再加入苯酚溶液5.00 ml和次氯酸钠碱性溶液5.00mL,摇匀。在20 ℃左右的室温下放置1h显色后,加掩蔽剂1ml以溶解可能产生的沉淀物,然后用水定容至刻度。用1cm玻璃比色皿于625nm波长处进行比色,记录下吸光度。用空白实验溶液调节零点,空白需要加入与样品等量的苯酚溶液和次氯酸钠溶液及掩蔽剂。 注:掩蔽剂应在20 ℃左右的室温下放置1h显色后加入。过早加入会使得显色反应过慢,蓝色偏弱;加入过晚则生成的氢氧化物沉淀可能老化而不易溶解。 配制铵态氮标准曲线: 称取0.4717g烘干的硫酸铵定容至1L,制得100mg/L的铵态氮标准储存液,测定当天将储存液稀释至40倍即为铵氮标准液(2.5mg/L)。分别移取2.5mg.L-1铵态氮(NH4+-N)标

化合物溶解度积表

醋酸盐氢氧化物*CdS 8.0×10-27 **AgAc 1.94×10-3*AgOH 2.0×10-8*CoS(α-型) 4.0×10-21卤化物*Al(OH) 3 (无定形) 1.3×10-33*CoS(β-型) 2.0×10-25 *AgBr 5.0×10-13*Be(OH) 2(无定形) 1.6×10-22*Cu 2 S 2.5×10-48 *AgCl 1.8×10-10*Ca(OH) 2 5.5×10-6*CuS 6.3×10-36 *AgI 8.3×10-17*Cd(OH) 2 5.27×10-15*FeS 6.3×10-18 BaF 21.84×10-7**Co(OH) 2 (粉红色) 1.09×10-15*HgS(黑色) 1.6×10-52 *CaF 25.3×10-9**Co(OH) 2 (蓝色) 5.92×10-15*HgS(红色)4×10-53 *CuBr 5.3×10-9*Co(OH) 3 1.6×10-44*MnS(晶形) 2.5×10-13 *CuCl 1.2×10-6*Cr(OH) 2 2×10-16**NiS 1.07×10-21 *CuI 1.1×10-12*Cr(OH) 3 6.3×10-31*PbS 8.0×10-28 *Hg 2Cl 2 1.3×10-18*Cu(OH) 2 2.2×10-20*SnS 1×10-25 *Hg 2I 2 4.5×10-29*Fe(OH) 2 8.0×10-16**SnS 2 2×10-27 HgI 22.9×10-29*Fe(OH) 3 4×10-38**ZnS 2.93×10-25 PbBr 26.60×10-6*Mg(OH) 2 1.8×10-11磷酸盐 *PbCl 21.6×10-5*Mn(OH) 2 1.9×10-13*Ag 3 PO 4 1.4×10-16 PbF 23.3×10-8*Ni(OH) 2 (新制备) 2.0×10-15*AlPO 4 6.3×10-19 *PbI 27.1×10-9*Pb(OH) 2 1.2×10-15*CaHPO 4 1×10-7 SrF 2 4.33×10-9*Sn(OH) 2 1.4×10-28*Ca 3 (PO 4 ) 2 2.0×10-29 碳酸盐*Sr(OH) 2 9×10-4**Cd 3 (PO 4 ) 2 2.53×10-33 Ag 2CO 3 8.45×10-12*Zn(OH) 2 1.2×10-17Cu 3 (PO 4 ) 2 1.40×10-37 *BaCO 35.1×10-9草酸盐FePO 4 ·2H 2 O 9.91×10-16 CaCO 33.36×10-9Ag 2 C 2 O 4 5.4×10-12*MgNH 4 PO 4 2.5×10-13 CdCO 31.0×10-12*BaC 2 O 4 1.6×10-7Mg 3 (PO 4 ) 2 1.04×10-24 *CuCO 31.4×10-10*CaC 2 O 4 ·H 2 O 4×10-9*Pb 3 (PO 4 ) 2 8.0×10-43 FeCO 33.13×10-11CuC 2 O 4 4.43×10-10*Zn 3 (PO 4 ) 2 9.0×10-33 Hg 2CO 3 3.6×10-17*FeC 2 O 4 ·2H 2 O 3.2×10-7其它盐 MgCO 36.82×10-6Hg 2 C 2 O 4 1.75×10-13*[Ag+][Ag(CN) 2 -] 7.2×10-11 MnCO 32.24×10-11MgC 2 O 4 ·2H 2 O 4.83×10-6*Ag 4 [Fe(CN) 6 ] 1.6×10-41 NiCO 31.42×10-7MnC 2 O 4 ·2H 2 O 1.70×10-7*Cu 2 [Fe(CN) 6 ] 1.3×10-16 *PbCO 37.4×10-14**PbC 2 O 4 8.51×10-10AgSCN 1.03×10-12 SrCO 35.6×10-10*SrC 2 O 4 ·H 2 O 1.6×10-7CuSCN 4.8×10-15 ZnCO 3 1.46×10-10ZnC 2 O 4 ·2H 2 O 1.38×10-9*AgBrO 3 5.3×10-5 铬酸盐硫酸盐*AgIO 3 3.0×10-8 Ag 2CrO 4 1.12×10-12*Ag 2 SO 4 1.4×10-5Cu(IO 3 ) 2 ·H 2 O 7.4×10-8 *Ag 2Cr 2 O 7 2.0×10-7*BaSO 4 1.1×10-10**KHC 4 H 4 O 6 (酒石酸氢3×10-4

有机氮清单

文献[1]:罗专溪,魏群山,王振红,颜昌宙. 淡水水体溶解有机氮对有毒藻种的生物有效性[J]. 生态环境学报,2010,01:45-50. 内容:本文系统地介绍了淡水水体DON含量与来源、生物有效性与估算方法,以及对有毒藻种生长的影响。文章指出,DON来源包括陆地径流,植物碎屑,土壤淋溶液,沉积物释放,大气沉降,藻类、大型植物、细菌与细胞死亡或自我分解,微型及大型浮游动物捕食和排泄、分泌物释放等。不同藻种具有不同氮源利用能力,DON对藻类生长具有直接或间接的作用,并可能影响藻类群落结构(有毒藻类成为优势种),对水环境保护与饮用水安全供水带来影响。 收获:这篇文献让我们对DON有了最基本和较为系统的了解,不仅总结了DON现有研究的内容与结果,而且对于DON在不同水体中的含量,来源以及生物有效性都进行了分析,同时给出了DON的经典测定方法,并对DON对有毒藻种生长的影响进行了总结分析,指出DON 的来源组成、化学本质(分子质量与极性)、测试生物组成、是否有细菌作用等因素都会对DON 的生物利用情况产生影响。 文献[2]:荣蓉,徐斌,林琳,胡晨燕,夏圣骥,高乃云,叶涛,李大鹏. 微污染黄浦江水溶解性有机氮的分子组成特性分析[J]. 中国给水排水,2013,01:1-5. 内容:本文介绍了溶解性有机氮DON与含氮消毒副产物的基本信息,将微污染黄浦江原水作为研究对象,对水体中DON 的组成特性进行了分析,包括DON的分子质量、亲疏水性、荧光吸收、红外分析以及核磁分析等,并与DOC和UV254进行了对比分析,从而对原水中的DON 进行了表征。分子荧光光谱分析结果表明,黄浦江原水中含有较多的类蛋白、腐殖酸类等含氮有机物; 红外光谱分析结果表明,原水DON 中含有较多的氮氢类、脂肪烃结构、酮类等有机化合物; 核磁共振分析结果表明,原水中含有脂肪烃类和羟基、酯类、醚类等有机物,并且疏水性组分中含有较多的芳香类化合物。 收获:通过这篇文献,我们了解了含氮消毒副产物的形成与危害,同时较为系统学习地到了DON各种特性的表征方法,包括分子质量分析、分子荧光光谱、红外光谱和核磁共振波谱等,对于水体中DON的分析方法有了整体上的了解。 文献[3]:Berman T, Bronk D A. Dissolved organic nitrogen: a dynamic participant in aquatic ecosystems. Aquat Microb Ecol,2003,31: 279–305. 内容:本文对于DON的研究情况进行了综述,包括淡水水体以及海洋中的DON的含量,不同种类DON的分析方法,DON的生物与非生物来源等,同时对于特定种类的DON进行了详细的分析,例如尿素,氨基酸与氨基糖,蛋白质、核酸以及腐殖质等,最后指出DON作为水

相关主题
文本预览
相关文档 最新文档