当前位置:文档之家› 磁场对运动电荷的作用专项练习

磁场对运动电荷的作用专项练习

磁场对运动电荷的作用专项练习
磁场对运动电荷的作用专项练习

磁场对运动电荷的作用专项练习

1.如图1是科学史上一张著名的实验照片,显示一个带电粒子在云室中穿过某种金属板运动的径迹.云室放置在匀强磁场中,磁场方向垂直照片向里.云室中横放的金属板对粒子的运动起阻碍作用.分析此运动轨迹可知粒子( )

图1

A .带正电,由下往上运动

B .带正电,由上往下运动

C .带负电,由上往下运动

D .带负电,由下往上运动 答案 A

2.(多选)如图2所示,空间有一垂直纸面向外的磁感应强度为0.5T 的匀强磁场,一质量为0.2kg 且足够长的绝缘木板静止在光滑水平面上,在木板左端放置一质量为0.1kg 、带电荷量q =+0.2C 的滑块,滑块与绝缘木板之间的动摩擦因数为0.5,滑块受到的最大静摩擦力可认为等于滑动摩擦力.现对木板施加方向水平向左、大小为0.6N 的恒力,g 取10m/s 2

,则( )

图2

A .木板和滑块一直做加速度为2m/s 2

的匀加速运动

B .滑块开始做匀加速直线运动,然后做加速度减小的变加速运动,最后做匀速运动

C .最终木板做加速度为2m/s 2

的匀加速直线运动,滑块做速度为10 m/s 的匀速直线运动 D .最终木板做加速度为3m/s 2的匀加速直线运动,滑块做速度为10 m/s 的匀速直线运动 答案 BD

解析 由于动摩擦因数为0.5,静摩擦力能提供的最大加速度为5m/s 2

,所以当0.6N 的恒力作用于木板时,系统一起以a =

F

M +m =

0.60.2+0.1

m/s 2=2 m/s 2

的加速度一起运动,当滑块获得向左运动的速度以后磁场

对其有竖直向上的洛伦兹力,当洛伦兹力等于重力时滑块与木板之间的弹力为零,此时有Bqv =mg ,解得v =10m/s ,此时摩擦力消失,滑块做匀速直线运动,而木板在恒力作用下做匀加速直线运动,a ′=F

M

=3m/s 2

所以B 、D 正确.

3.(多选)质量为m 、带电荷量为q 的小球,从倾角为θ的光滑绝缘斜面上由静止下滑,整个斜面置于方向水平向外的匀强磁场中,其磁感应强度为B ,如图所示.若带电小球下滑后某时刻对斜面的作用力恰好为零,下面说法中正确的是( )

A .小球带负电

B .小球在斜面上运动时做匀加速直线运动

C .小球在斜面上运动时做加速度增大,而速度也增大的变加速直线运动

D .小球在斜面上下滑过程中,小球对斜面压力为零时的速率为

mg cos θ

Bq

【答案】 BD

4.(多选)如图所示,质量为m ,电荷量为+q 的带电粒子,以不同的初速度两次从O 点垂直于磁感线和磁场边界向上射入匀强磁场,在洛伦兹力作用下分别从M 、N 两点射出磁场,测得OM∶ON=3∶4,则下列说法中错误的是( )

A .两次带电粒子在磁场中经历的时间之比为3∶4

B .两次带电粒子在磁场中运动的路程长度之比为3∶4

C .两次带电粒子在磁场中所受的洛伦兹力大小之比为3∶4

D .两次带电粒子在磁场中所受的洛伦兹力大小之比为4∶3

【解析】 设OM =2r 1,ON =2r 2,故r 1r 2=OM ON =34,路程长度之比s M s N =πr 1πr 2=34,B 正确;由r =mv qB 知v 1v 2=r 1

r 2

故f M f N =qv 1B qv 2B =34,C 正确,D 错误;由于T =2πm Bq ,则t M t N =12T M

1

2

T N =1,A 错. 【答案】 AD

5.(多选)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电源两极相连接的两个D 形金属盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图所示.设D 形盒半径为R.若用回旋加速器加速质子时,匀强磁场的磁感应强度为B ,高频交流电频率为f.则下列说法正确的是( )

A .质子被加速后的最大速度不可能超过2πfR

B .质子被加速后的最大速度与加速电场的电压大小无关

C .只要R 足够大,质子的速度可以被加速到任意值

D .不改变B 和f ,该回旋加速器也能用于加速α粒子

【答案】 AB

6.(多选)质量为m 、带电荷量为q 的粒子(忽略重力)在磁感应强度为B 的匀强磁场中做匀速圆周运动,形成空间环形电流.已知粒子的运行速率为v 、半径为r 、周期为T ,环形电流的强度为I ,则下面说法中正确的是( )

A .该带电粒子的比荷为q m =Br

v

B .在时间t 内,粒子转过的圆弧对应的圆心角为θ=qBt m

C .当速率v 增大时,环形电流的强度I 保持不变

D .当速率v 增大时,运动周期T 变小

【解析】 带电粒子做匀速圆周运动,mv 2

r =Bqv ,所以q m =v Br ,A 错误;运动周期T =2πm

Bq ,与速率无关,

D 错误;在时间t 内,粒子转过的圆弧对应的圆心角为θ=t T ·2π=qBt m ,B 正确;I =q T =Bq

2

2πm

,与速率v

无关,C 正确.

【答案】 BC

7.如图所示,ABC 为与匀强磁场垂直的边长为a 的等边三角形,磁场垂直纸面向外,比荷为e

m 的电子以

速度v 0从A 点沿AB 方向射入,欲使电子能经过BC 边,则磁感应强度B 的取值应为( )

A .B>3mv 0ae

B .B<2mv 0

ae C .B<

3mv 0ae D .B>2mv 0

ae

【解析】

【答案】 C

8.(多选)如图所示,在两个不同的匀强磁场中,磁感强度关系为B 1=2B 2,当不计重力的带电粒子从B 1

磁场区域运动到B 2磁场区域时(在运动过程中粒子的速度始终与磁场垂直),则粒子的( )

A .速率将加倍

B .轨道半径将加倍

C .周期将加倍

D .做圆周运动的角速度将加倍

【解析】 粒子在磁场中只受到洛伦兹力,洛伦兹力不会对粒子做功,故速率不变,A 错;由半径公式r =mv Bq ,B 1=2B 2,则当粒子从B 1磁场区域运动到B 2磁场区域时,轨道半径将加倍,B 对;由周期公式T =2πm Bq ,磁感应强度减半,周期将加倍,C 对;角速度ω=2π

T

,故做圆周运动的角速度减半,D 错.

【答案】 BC

9.(多选)如图所示,平面直角坐标系的第Ⅰ象限内有一匀强磁场垂直于纸面向里,磁感应强度为B.一质量为m 、电荷量为q 的粒子以速度v 从O 点沿着与y 轴夹角为30°的方向进入磁场,运动到A 点时速度方向与x 轴的正方向相同,不计粒子的重力,则( )

A .该粒子带正电

B .A 点与x 轴的距离为

mv 2qB

C .粒子由O 到A 经历时间t =

πm 3qB

D .运动过程中粒子的速度不变

【答案】 BC

10.如图是质谱仪的工作原理示意图,带电粒子被加速电场加速后,进入速度选择器(带电粒子的重力不计).速度选择器内有互相垂直的匀强磁场和匀强电场,磁场的磁感应强度为B ,电场的场强为E.挡板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2,挡板S 下方有磁感应强度为B 0的匀强磁场.下列表述正确的是( )

A .质谱仪是分析同位素的重要工具

B .速度选择器中的磁场方向垂直纸面向里

C .能通过狭缝P 的带电粒子的速率等于B E

D .带电粒子打在胶片上的位置越靠近狭缝P ,带电粒子的比荷越小

【答案】 A

11.(多选)有两个匀强磁场区域Ⅰ和Ⅱ,Ⅰ中的磁感应强度是Ⅱ中的k 倍.两个速率相同的电子分别在两磁场区域做圆周运动.与Ⅰ中运动的电子相比,Ⅱ中的电子( )

A .运动轨迹的半径是Ⅰ中的k 倍

B .加速度的大小是Ⅰ中的k 倍

C .做圆周运动的周期是Ⅰ中的k 倍

D .做圆周运动的角速度与Ⅰ中的相等 答案 AC

解析 设电子的质量为m ,速率为v ,电荷量为q ,B 2=B ,B 1=kB

则由牛顿第二定律得:qvB =mv 2

R ①

T =

2πR

v

由①②得:R =mv qB

,T =2πm qB

,所以R 2R 1

=k ,T 2

T 1

=k

根据a =v 2R ,ω=v R 可知a 2a 1=1k ,ω2ω1=1k

所以选项A 、C 正确,选项B 、D 错误.

12.如图4所示,圆形区域内有一垂直纸面的匀强磁场,P 为磁场边界上的一点.有无数带有同样电荷、具有同样质量的粒子在纸面内沿各个方向以相同的速率通过P 点进入磁场.这些粒子射出边界的位置均处于边界的某一段圆弧上,这段圆弧的弧长是圆周长的1

3.将磁感应强度的大小从原来的B 1变为B 2,结果相应

的弧长变为原来的一半,则B 2B 1

等于( )

图4

A.2

B.3C .2D .3 答案 B

解析 当轨道半径小于或等于磁场区半径时,粒子射出圆形磁场的点离入射点最远距离为轨迹直径.如图所示,

13.如图5所示,边界OA 与OC 之间分布有垂直纸面向里的匀强磁场,边界OA 上有一个粒子源S .某一时刻,从S 平行于纸面向各个方向发射出大量带正电的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相同,经过一段时间有大量粒子从边界OC 射出磁场.已知∠AOC =60°,从边界OC 射出的粒子在磁场中运动的最短时间等于T

6(T 为粒子在磁场中运动的周期),则从边界OC 射出的粒子在磁场

中运动的最长时间为( )

图5

A.T 3

B.T 2

C.2T 3

D.5T 6

答案 B

14.如图所示,斜面顶端在同一高度的三个光滑斜面AB 、AC 、AD ,均处于水平方向的匀强磁场中。一个带负电的绝缘物块,分别从三个斜面顶端A 点由静止释放,设滑到底端的时间分别为t AB 、t AC 、t AD ,则( )

A .t A

B =t A

C =t A

D B .t AB >t AC >t AD C .t AB

解析: 带负电物块在磁场中的光滑斜面上受重力、支持力和垂直斜面向下的洛伦兹力,设斜面的高度为h ,倾角为θ,可得物块的加速度为a =g sin θ,由公式x =12at 2=h sin θ解得t =2h

g sin 2θ,

可知θ越大,t 越小,选项C 正确。

答案: C

15.如图所示,a 、b 是两个匀强磁场边界上的两点,左边匀强磁场的磁感线垂直纸面向里,右边匀强磁场的磁感线垂直纸面向外,两边的磁感应强度大小相等。电荷量为2e 的正离子以某一速度从a 点垂直磁场边界向左射出,当它运动到b 点时,击中并吸收了一个处于静止状态的电子,不计正离子和电子的重力且忽略正离子和电子间的相互作用,则它们在磁场中的运动轨迹是( )

答案: D

16.两个质量、带电量绝对值均相同的粒子a 、b ,以不同的速率沿AO 方向射入圆形匀强磁场区域,其运动轨迹如图。不计粒子重力,则下列说法正确的是( )

A .a 粒子带正电

B .b 粒子带负电

C .a 粒子速度较小

D .b 粒子在磁场中运动时间较长

解析: 由题图结合左手定则可知a 粒子带负电,b 粒子带正电,A 、B 错误。由题图知R a

qvB =mv 2R ?v =qB m R ,C 正确;由题图知偏转角θb <θa ,而t =m

qB

θ,故D 错误。

答案: C

17.如图所示,MN 为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出)。一带电粒子从紧贴铝板上表面的P 点垂直于铝板向上射出,从Q 点穿越铝板后到达PQ 的中点O 。已知粒

子穿越铝板时,其动能损失一半,速度方向和电荷量不变。不计重力。铝板上方和下方的磁感应强度大小之比为( )

A .2

B . 2

C .1

D .

22

答案: D

18.某一空间存在着磁感应强度为B 且大小不变、方向随时间t 做周期性变化的匀强磁场(如图甲所示),规定垂直纸面向里的磁场方向为正。为了使静止于该磁场中的带正电的粒子能按

a →

b →

c →

d →

e →

f 的顺序做横“∞”字曲线运动(即如图乙所示的轨迹),下列办法可行的是(粒子只受

磁场力的作用,其他力不计)( )

A .若粒子的初始位置在a 处,在t =3T

8时给粒子一个沿切线方向水平向右的初速度

B .若粒子的初始位置在f 处,在t =T

2时给粒子一个沿切线方向竖直向下的初速度

C .若粒子的初始位置在e 处,在t =11

8T 时给粒子一个沿切线方向水平向左的初速度

D .若粒子的初始位置在b 处,在t =T

2

时给粒子一个沿切线方向竖直向上的初速度

解析: 要使粒子的运动轨迹如题图乙所示,粒子做圆周运动的周期应为T 0=πm qB =T

2,结合左手

定则可知,选项A 、D 正确。

答案: AD

19.如图所示,在区域Ⅰ和区域Ⅱ内分别存在与纸面垂直但方向相反的匀强磁场,区域Ⅱ内磁感

应强度是区域Ⅰ内磁感应强度的2倍,一带电粒子在区域Ⅰ左侧边界处以垂直边界的速度进入区域Ⅰ,发现粒子离开区域Ⅰ时速度方向改变了30°,然后进入区域Ⅱ,测得粒子在区域Ⅱ内的运动时间与区域Ⅰ内的运动时间相等,则下列说法正确的是( )

A.粒子在区域Ⅰ和区域Ⅱ中的速率之比为1∶1

B.粒子在区域Ⅰ和区域Ⅱ中的角速度之比为2∶1

C.粒子在区域Ⅰ和区域Ⅱ中的圆心角之比为1∶2

D.区域Ⅰ和区域Ⅱ的宽度之比为1∶1

解析:

答案:ACD

20.如图所示,S处有一电子源,可向纸面内任意方向发射电子,平板MN垂直于纸面,在纸面内的长度L=9.1 cm,中点O与S间的距离d=4.55 cm,MN与SO直线的夹角为θ,板所在平面有电子源的一侧区域有方向垂直于纸面向外的匀强磁场,磁感应强度B=2.0×10-4 T。电子质量m=9.1×10-31 kg,电荷量e=-1.6×10-19 C,不计电子重力。电子源发射速度v=1.6×106 m/s的一个电子,该电子打在板上可能位置的区域的长度为l,则( )

A .θ=90°时,l =9.1 cm

B .θ=60°时,l =9.1 cm

C .θ=45°时,l =4.55 cm

D .θ=30°时,l =4.55 cm 解析: 电子在匀强磁场运动的轨道半径为

R =mv

qB

=4.55 cm

答案: AD

21.如图所示,一个质量为m 、电荷量为q 的带电粒子从x 轴上的P (a,0)点以速度v ,沿与x 轴正方向成60°角的方向射入第一象限内的匀强磁场中,并恰好垂直于y 轴射出第一象限。求匀强磁场的磁感应强度B 和射出点的坐标。

解析: 轨迹示意图如图所示,由射入、射出点的半径可找到圆心O ′,并得出半径为r =2a

3=mv Bq

得B =

3mv

2aq

;射出点坐标为(0,3a )。

答案:

3mv

2aq

(0,3a ) 22.如图所示的平面坐标系xOy ,在整个区域内充满了匀强磁场,磁场方向垂直坐标平面,磁感应强度B 随时间变化的关系如图b 所示。开始时刻,磁场方向垂直纸面向里(如图),t =0时刻有一带正电的粒子(不计重力)从坐标原点O 沿x 轴正方向进入磁场,初速度为v 0=2×103

m/s 。已知该带电粒子的比荷为q

m

=1.0×104

C/kg 。试求:

(1)t 1=4π3

×10-4

s 时粒子所处位置的坐标(x 1,y 1);

(2)带电粒子进入磁场运动后第一次到达y 轴时离出发点的距离h 。

比较粒子在磁场中做圆周运动的周期T 和磁场变化周期可知,粒子在t 1时间内运动了三分之一圆周,其圆心为O 1,运动轨迹对应的圆心角为120°,作出粒子在磁场中运动的轨迹如图所示。由图中几何关系有:

x 1=R cos 30°④

y 1=R (1+sin 30°)=1.5R ⑤

联立①④⑤并代入数据得:x 1=

3

5

m ,y 1=0.6 m 。 故t 1=43π×10-4

s 时,粒子所处位置的坐标为? ??

??35 m ,0.6 m

(2)根据磁场的变化规律知,粒子在磁场的前半个周期后三分之一内做圆周运动的方向将发生变

答案: (1)?

??

??

35 m ,0.6 m (2)1.6 m 23.在图甲中,带正电粒子从静止开始经过电势差为U 的电场加速后,从G 点垂直于MN 进入偏转磁场,该偏转磁场是一个以直线MN 为上边界、方向垂直于纸面向外的匀强磁场,磁场的磁感应强度为B ,带电粒子经偏转磁场后,最终到达照相底片上的H 点,如图甲所示,测得G 、H 间的距离为d ,粒子的重力可忽略不计.

(1)设粒子的电荷量为q ,质量为m ,求该粒子的比荷q

m

(2)若偏转磁场的区域为圆形,且与MN 相切于G 点,如图乙所示,其他条件不变.要保证上述粒子从G 点垂直于MN 进入偏转磁场后不能打到MN 边界上(MN 足够长),求磁场区域的半径R 应满足的条件.

【解析】 (1)带电粒子经过电场加速,进入偏转磁场时速度为v ,由动能定理,有qU =12mv 2

进入磁场后带电粒子做匀速圆周运动,轨道半径为r , qvB =m v 2

r ②

打到H 点有r =d

2③

由①②③得q m =8U

B 2d

2.

【答案】 (1)

8U B 2d 2 (2)R≤d 2

24.在某平面上有一半径为R 的圆形区域,区域内、外均有垂直于该平面的匀强磁场,圆外磁场范围足够大,已知两部分磁场方向相反且磁感应强度都为B ,方向如图所示.现在圆形区域的边界上的A 点有一个电荷量为q ,质量为m 的带正电粒子,以沿OA 方向的速度经过A 点,已知该粒子只受到磁场对它的作用力.

(1)若粒子在其与圆心O 的连线绕O 点旋转一周时恰好能回到A 点,试求该粒子运动速度v 的最大值; (2)在粒子恰能回到A 点的情况下,求该粒子回到A 点所需的最短时间. 【解析】 (1)粒子运动的半径为r ,则r =mv

Bq

如图所示,O 1为粒子运动的第一段圆弧AC 的圆心,O 2为粒子运动的第二段圆弧CD 的圆心,根据几何关系可知

tan θ=r R

∠AOC=∠COD=2θ

因为粒子每次在圆形区域外运动的时间和圆形区域内运动的时间互补为一个周期T ,所以粒子穿越圆形边界的次数越少,所花时间就越短,因此取n =3代入到③可得

θ=π3

而粒子在圆形区域外运动的圆弧的圆心角为α, α=2π-2?

??

??π2-θ=53

π⑧

故所求的粒子回到A 点的最短运动时间 t =T +α2πT =11πm

3Bq

.

【答案】 (1)

3BqR m (2)11πm

3Bq

25.如图6所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径.两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m 、电荷量为+q 的粒子由小孔下方d

2处静止释放,加速后

粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场.不计粒子的重力.

图6

(1)求极板间电场强度的大小;

(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小.

答案 (1)mv 2qd (2)4mv qD 或4mv

3qD

联立③④式得B =4mv

qD

⑤ 若粒子轨迹与小圆内切,由几何关系得R =3D

4

联立③⑥式得B =4mv

3qD

26.为了进一步提高回旋加速器的能量,科学家建造了“扇形聚焦回旋加速器”.在扇形聚焦过程中,离子能以不变的速率在闭合平衡轨道上周期性旋转。扇形聚焦磁场分布的简化图如图7所示,圆心为O 的圆形区域等分成六个扇形区域,其中三个为峰区,三个为谷区,峰区和谷区相间分布.峰区内存在方向垂直纸面向里的匀强磁场,磁感应强度为B ,谷区内没有磁场.质量为m ,电荷量为q 的正离子,以不变的速率v 旋转,其闭合平衡轨道如图中虚线所示.

图7

(1)求闭合平衡轨道在峰区内圆弧的半径r ,并判断离子旋转的方向是顺时针还是逆时针; (2)求轨道在一个峰区内圆弧的圆心角θ,及离子绕闭合平衡轨道旋转的周期T ;

(3)在谷区也施加垂直纸面向里的匀强磁场,磁感应强度为B ′,新的闭合平衡轨道在一个峰区内的圆心角θ变为90°,求B ′和B 的关系.已知:sin (α±β )=sin αcos β±cos αsin β,cos α=1-2sin

2

α

2

. 答案 (1)mv qB 逆时针 (2)2π

3

π+33m

qB

(3)B ′=

3-1

2

B

周期T =l +L

v

代入得T =

π+33

m

qB

(3)如图乙,谷区内的圆心角θ′=120°-90°=30° 谷区内的轨道圆弧半径r ′=

mv qB ′

由几何关系r sin θ2=r ′sin θ′

2

由三角关系sin 30°2=sin15°=6-2

4

代入得B ′=3-12

B .

磁场对运动电荷的作用力

§3.5 磁场对运动电荷的作用力 ★本课奋斗目标:洛伦兹力的计算和方向的判断 活动一:参考课本P95页,完成下列小题 1、如图所示,玻璃管已抽成真空。当左右两个电极按图示的极性连接到高压电源时,阴极会发射电子。电子在电场的加速下飞向阳极,画出图1中电子束的运动轨迹? 2、如果在图1的基础上加上一个垂直于纸面向里的匀强磁场,图2所示,(电子束向右运动,形成的电流向,如果是一根导线内的电流,导线受安培力的方向向,所以电子受力方向向,于是电子运动轨迹向偏转。)你能画出这时电子束的运动轨迹吗? 3、运动电荷在磁场中受到的作用力,叫做。 4、洛伦兹力的方向的判断──左手定则: 让磁感线手心,四指指向的方向,或负电荷运动的,拇指所指电荷所受的方向。 5、洛伦兹力的大小:洛伦兹力公式。 6、洛伦兹力与电荷运动方向,所以洛伦兹力对运动电荷,不会电荷运动的速率。 反馈1:试判断下图中所示的带电粒子刚进入磁场时所受的洛伦兹力的方向. 2:来自宇宙的电子流,以与地球表面垂直的方向射向赤道上空的某一点,则这些电子在进入地球周围的空间时,将()A.竖直向下沿直线射向地面B.相对于预定地面向东偏转 C.相对于预定点稍向西偏转D.相对于预定点稍向北偏转 3. 有一匀强磁场,磁感应强度大小为1.2T,方向由南指向北,如有一质子沿竖直向下的方向进入磁场,磁场作用在质子上的力为9.6×10-14N,则质子射入时速为 ,质子在磁场中向方向偏转。

活动二:阅读课本P97页,分析电视显像管工作原理 1、如右图所示,没有磁场时,电子束打在荧光屏上 点; 2、如果要是电子束打在A 点,偏转磁场应该沿什 么方向? 3、如果要是电子束打在B 点,偏转磁场应该沿什 么方向? 4、如果要使电子束打在荧光屏上的位置由B 逐渐向A 点移动,偏转磁场应该怎样变化? 5、显像管中使电子束偏转的磁场是由两对线圈产生的,叫做偏转线圈。为了与显像管的管颈贴在一起,偏转线圈做成 。 6、实际上在偏转区的水平方向和竖直方向都有偏转磁场,其方向、强弱都在不断变化,因此电子束打在荧光屏上的光点就像课本图 3.5-5那样不断移动,这在电视技术中叫做 。电子束从最上一行到最下一行扫描一遍叫 ,电视机中每秒要进行50场扫描,所以我们感觉整个荧光屏都在发光。 【同步检测】 1. 一个电子穿过某一空间而未发生偏转,则 ( ) A .此空间一定不存在磁场 B .此空间可能有方向与电子速度平行的磁场 C .此空间可能有磁场 ,方向与电子速度垂直 D .以上说法都不对 2. 如图所示,带电粒子所受洛伦兹力方向垂直纸面向外的是 ( ) 3. 电子以速度v 0垂直进入磁感应强度为B 的匀强磁场中,则 ( ) A .磁场对电子的作用力始终不做功 B .磁场对电子的作用力始终不变 C .电子的动能始终不变 D .电子的加速度始终不变 4.如图所示,空间有磁感应强度为B ,方向竖直向上的匀强磁场, 一束电子流以初速v 从水平方向射入,为了使电子流经过磁场时不偏 转(不计重力),则在磁场区域内必须同时存在一个匀强电场,这个 电场的场强大小与方向应是 ( ) A .B/v ,方向竖直向上 B .B/v ,方向水平向左 C .Bv ,垂直纸面向里 D .Bv ,垂直纸面向外 第2题 第4题

磁场对运动电荷的作用

课题:3.6磁场对运动电荷的作用(3) 编印 审核高二物理组 课时安排: 课时 总第 课时 执教时间 【学习目标】理解几种仪器的工作原理。. 【重难点】速度选择器、回旋加速器 【自主学习】 一、速度选择器 如图所示,由于电子等基本粒子所受重力可忽略不计,运动方向相同而速率不同的正离子组成的离子束射入相互正交的匀强电场和匀强磁场所组成的场区,已知电场强度大小为E 、方向向下,磁场的磁感强度为B ,方向垂直于纸面向里,若粒子的运动轨迹不发生偏转(重力不计),必须满足平衡条件:Bqv =qE ,故v=E/B ,这样就把满足v=E/B 的粒子从速度选择器中选择了出来。带电粒子不发生偏转的条件跟粒子的质量、所带电荷量、电荷的性质均无关,只跟粒子的速 度有关,且对速度的方向进行选择。若粒子从图中右侧入射则不能穿出场区。 二、质谱仪 容器A 中含有电荷量相同而质量有微小差别的粒子,这些粒子从小孔S 1飘入下方电势差为U 的加速电场中,经加速电场后从小孔S 2进入速度选择器的带 电粒子,只有速度大小为v =1 B E 的粒子能做匀速直线运动,从小孔S 3进入磁感应强度为B 的匀磁场中做匀速圆周运动, 在经半个周期后,打在照相底片D 上,在底片上形成谱线 状的细条,叫做质谱线,根据质谱线的位置可以算出粒子的 质量。粒子进入加速电场时的速度很小,可以认为等于零。 粒子通过加速电场,根据动能定理在:2 1m v 2=q U , 粒子通过速度选择器,根据匀速运动条件有:v =1 B E 若测出粒子在偏转磁场中的轨道直径为d ,则又有:d =2r = 2qB mv 2=21B qB mE 2 所以,同位素的荷质比和质量分别为:m q =21B dB E 2;m =E 2B qdB 21。 三、回旋加速器 D 形盒状电极装在真空室中,整个真空室放在磁极之间,磁场方向 垂直于D 形盒,两个D 形盒之间留一个窄缝,两极分别与高频电源的 两极相连。当粒子经过D 形电极之间的窄缝处的电场时,得到高频电压 的加速,在D 形盒内,由于屏蔽作用,盒内只有磁场分布,这样带电粒 子在D 形盒内沿螺线轨道运动,达到预期的速率后,用引出装置引出。

第2节 磁场中的运动电荷

第2节磁场中的运动电荷 1.通过实验,认识运动电荷在磁场中受到的洛伦兹力. 2.知道影响洛伦兹力大小和方向的因素.当电荷的运动方向与磁场方向垂直时,会运用左手定则判断洛伦兹力的方向,会计算特殊情况下洛伦兹力的大小.(重点+难点) 3.知道电子是由汤姆孙发现的.认识洛伦兹力在发现电子中的作用. 4.了解极光产生的机理,体会自然界的奥妙. 一、洛伦兹力 1.定义:磁场对运动电荷的作用力叫洛伦兹力. 2.方向:洛伦兹力的方向用左手定则来判断:伸开左手,使拇指与其余四指垂直,且处于同一平面内.让磁感线垂直穿入手心,四指指向正电荷运动的方向(若是负电荷,则四指指向负电荷运动的反方向),拇指所指的方向就是洛伦兹力的方向. 3.大小 (1)当电荷的运动方向与磁场方向垂直时,电荷受到的洛伦兹力的大小:F=qvB. (2)当电荷的运动方向与磁场方向平行时,电荷不受洛伦兹力作用F=0. 所有电荷在磁场中都受力吗? 提示:不一定,只有运动电荷且速度与磁场方向不平行时,才受力的作用. 二、电子的发现 电子的发现与X射线和物质放射性的发现一起被称为19世纪、20世纪之交的三大发现.电子的发现为近代物理的发展奠定了重要的实验基础,同时它也突破了原子不可再分的传统思想,促使人们去探寻原子内部的奥秘. 三、极光的解释 太阳或其他星体时刻都有大量的高能粒子放出,称为宇宙射线.地球是个巨大的磁体,当宇宙射线掠过地球附近时,带电粒子受到地磁场的作用朝地球的磁极方向运动.这些粒子在运动过程中撞击大气,激发气体原子产生光辐射,这就是极光. 宇宙射线是有害的,地磁场改变了宇宙射线中带电粒子的运动方向,对地球上的生命起到了保护作用. 对洛伦兹力的理解和方向判断 1.决定洛伦兹力方向的因素有三个:电荷的电性(正、负)、速度方向、磁感应强度的方向.当电荷一定(电性一定)时,其他两个因素中,如果只让一个因素相反,则洛伦兹力方向必定相反;如果同时让两个因素相反,则洛伦兹力方向不变. 2.当电荷运动方向与磁场方向垂直时,由左手定则可知,洛伦兹力F的方向既与磁场B的方向垂直,又与电荷的运动方向垂直,即力F垂直于v与B所决定的平面. 所以,已知电荷电性及v、B的方向,则F的方向唯一确定,但已知电性及B(或v)、F的方向,v(或B)的方向不能唯一确定. 命题视角1对洛伦兹力的理解 关于洛伦兹力的下列说法中正确的是() A.洛伦兹力的方向总是垂直于磁场方向但不一定垂直电荷运动的方向

磁场对运动电荷的作用力

第四节磁场对运动电荷的作用力 学习目标:1.知道磁场对电流作用实质是磁场对运动电荷作用的宏观表现。 2.能根据安培力的表达式F=BIL推导洛仑兹力的表达式f=qvB,培养学生的推理能 力和知识迁移能力。并能够应用公式进行简单计算。 3.理解洛仑兹力的方向由左手定则判定,并会用左手定则熟练地判定。 重、难点:洛仑兹力产生、大小、方向、特点。 【导学过程】 ◇课前预习◇ 一、相关知识点的回顾 1.磁场对电流的作用力叫安培力,安培力的大小与哪些因素有关?写出安培力的表达式。2.安培力的方向怎样判断?左手定则的内容?安培力的方向与电流、磁场的方向有什么关系? 3.在第二章我们曾经学过电流,电流的大小是怎样定义的?电流的流向与电荷的运动方向有怎样的关系 二、预习能掌握的内容 1.阴极射线是一束高速运动的(“质子”、“电子”)流。课文中实验发现阴极射线在磁场中发生偏转说明。我们把这个力叫。 2.通电导线受到的安培力,实际上是洛仑兹力的。 3.与安培力方向判断类似,洛仑兹力的方向判断也用。 4.在宏观图中画出安培力的方向,在微观图中画出洛仑兹力的方向。(思考:如果是电子定向移动,在微观图上怎样画电荷的速度、洛仑兹力方向)。体会左手定则判断洛仑兹力方法。 宏观微观 ◇课堂互动◇ 一、洛仑兹力的定义 【探究活动】观察实验演示阴极射线在磁场中的偏转现象。 ⅰ)不加磁场 ⅱ)射线与磁场垂直 总结:⑴叫洛仑兹力。 ⑵安培力是大量电荷所受的宏观体现。

二、洛仑兹力的大小 【探究讨论】如何定量描述洛仑兹力的大小?可以建立如下的电流物理模型,推导出洛伦兹力的计算式: 设有一段长度为L 的通电导线,横截面积为S ,导线每单位体积中含有的自由电荷数为n , 每个自由电荷的电量为q ,定向移动的平均速率为v ,将这段导线垂直于磁场方向放入磁感应强度B 的匀强磁场中 1.这段导线中电流I 的微观表达式是多少? I= 2.这段导体所受的安培力为多大? F= 3.这段导体中含有多少自由电荷数? N= 4.每个自由电荷所受的洛伦兹力大小为多大? f= 问: ①f=qvB 的适用条件如何? ②当电荷速度V 的方向与磁感应强度B 的方向平行时,洛伦兹力f 又怎样? ③运动电荷在磁场中一定受洛仑兹力的作用吗?为什么?(实验观察阴极射线 v ∥B 现象) 总结:①当电荷运动方向与磁场方向平行时, 。 ②当电荷运动方向与磁场方向垂直时, 。 【例1】电子的速率v =3×106 m/s ,垂直射入B =0.10 T 的匀强磁场中,它受到的洛伦兹力是多 大? 【例2】下列说法正确的是:( ) A 、运动电荷在磁感应强度不为零的地方,一定受到洛仑兹力的作用 B 、运动电荷在某处不受洛仑兹力,则该处的磁感应强度一定为零 宏观 微观 v +q

磁场对电流的作用

《磁场对电流的作用》教案 教学目标 知识与能力 1.知道磁场对通电导体有作用力。 2.知道通电导体在磁场中受力的方向与电流方向和磁感应线方向有关,改变电流方向或改变磁感线方向,导体的受力方 向随着改变。 3.知道通电线圈在磁场中转动的道理。 4.知道通电导体和通电线圈在磁场中受力而运动,是消耗了电能,得到了机械能。 5.培养学生观察能力和推理、归纳、概括物理知识的能力。 过程与方法 培养学生理论联系实际的意识 感态度与价值观 通过了解物理知识如何转化成实际技术应用,进一步提高学习科学技术知识的兴趣。

教学重点、难点 重点 1磁场对通电的导体有力的作用 2通电的导体的受力方向跟磁场方向和电流方向有关 难点 左手定则的运用 (二)教具 小型直流电动机一台,学生用电源一台,大蹄形磁铁一块,干电池一节,用铝箔自制的圆筒一根(粗细、长短与铅笔差不 多),两根铝箔条(用透明胶与铝箔筒的两端相连接),支架 (吊铝箔筒用),如课本图12—10的挂图,线圈(参见图12 —2),抄有题目的小黑板一块(也可用幻灯片代替)。 (三)教学过程 1复习相关知识并提问: 1.磁场的基本性质是它对放入其中的磁体产生()作用, 磁体间的相互作用就是通过()发生的。 2.将一根导线平行地放在静止的小磁针上方,当导线通电时, 发现小磁针(),说明电流周围存在()。

2.引入新课 本章主要研究电能:第一节和第二节我们研究了获得电能的原理和方法,第三节我们研究了电能的输送,电能输送到用电单位,要使用电能,这就涉及到用电器,以前我们研究了电灯、电炉、电话等用电器,今天我们要研究另一种用电器一电动机。 出示电动机,给它通电,学生看到电动机转动,提高了学习兴趣。 提问:电动机是根据什么原理工作的呢? 讲述:要回答这个问题,还得请同学们回忆一下奥斯特实验的发现—电流周围存在磁场,电流通过它产生的磁场对磁体施加作用力(如电流通过它的磁场使周围小磁针受力而转动)。根据物体间力的作用是相互的,电流对磁体施加力时,磁体也应该对电流有力的作用。下面我们通过实验来研究这个推断。 3.进行新课 (1)通电导体在磁场里受到力的作用 板书课题:〈第四节磁场对电流的作用〉

磁场对运动电荷的作用

磁场对运动电荷的作用 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

磁场对运动电荷的作用 对点训练:对洛伦兹力的理解 1.(多选)(2017·广东六校联考)有关电荷所受电场力和磁场力的说法中,正确的是() A.电荷在磁场中一定受磁场力的作用 B.电荷在电场中一定受电场力的作用 C.电荷受电场力的方向与该处的电场方向一致 D.电荷若受磁场力,则受力方向与该处的磁场方向垂直 解析:选BD带电粒子受洛伦兹力的条件:运动电荷且速度方向与磁场方向不平行,故电荷在磁场中不一定受磁场力作用,A项错误;电场具有对放入其中的电荷有力的作用的性质,B项正确;正电荷受力方向与电场方向一致,而负电荷受力方向与电场方向相反,C项错误;磁场对运动电荷的作用力垂直磁场方向且垂直速度方向,D项正确。 2.(多选)(2017·南昌调研)空间有一磁感应强度为B的水平匀强磁场,质量为m、电荷量为q的质点以垂直于磁场方向的速度v0水平进入该磁场,在飞出磁场时高度下降了h,重力加速度为g,则下列说法正确的是() A.带电质点进入磁场时所受洛伦兹力可能向上 B.带电质点进入磁场时所受洛伦兹力一定向下 C.带电质点飞出磁场时速度的大小为v0 D.带电质点飞出磁场时速度的大小为v02+2gh 解析:选AD因为磁场为水平方向,带电质点水平且垂直于磁场方向飞入该磁场,若磁感应强度方向为垂直纸面向里,利用左手定则,可以知

道若质点带正电,从左向右飞入瞬间洛伦兹力方向向上,若质点带负电,飞入瞬间洛伦兹力方向向下,A 对,B 错;利用动能定理mgh =12m v 2-12 m v 02,得v =v 02+2gh ,C 错,D 对。 对点训练:带电粒子在匀强磁场中的运动 3.如图所示,匀强磁场中有一电荷量为q 的正离子,由 a 点沿半圆轨道运动,当它运动到 b 点时,突然吸收了附近 若干电子,接着沿另一半圆轨道运动到c 点,已知a 、b 、c 在同一直线上,且ac =12 ab ,电子的电荷量为e ,电子质量可忽略不计,则该离子吸收的电子个数为( ) 解析:选D 正离子由a 到b 的过程,轨迹半径r 1= ab 2,此过程有q v B =m v 2 r 1 ,正离子在b 点附近吸收n 个电子,因电子质量不计,所以正离子的速度不变,电荷量变为q -ne ,正离子从b 到c 的过程中,轨迹半径r 2 =bc 2=34ab ,且(q -ne )v B =m v 2r 2,解得n =q 3e ,D 正确。 4.(2017·深圳二调)一个重力不计的带电粒子垂直进入匀强磁场,在与磁场垂直的平面内做匀速圆周运动。则下列能表示运动周期T 与半径R 之间的关系图像的是( ) 解析:选D 带电粒子在匀强磁场中做匀速圆周运动时,q v B =m v 2 R R =m v qB ,由圆周运动规律,T =2πR v =2πm qB ,可见粒子运动周期与半径无关,

人教版物理选修1-1第二章第四节磁场对运动电荷的作用同步训练D卷(考试)

人教版物理选修1-1第二章第四节磁场对运动电荷的作用同步训练D卷(考试)姓名:________ 班级:________ 成绩:________ 一、选择题(共15小题) (共15题;共30分) 1. (2分) (2020高二下·大庆月考) 如图所示,直角坐标系xOy位于竖直平面内。第Ⅲ、Ⅳ象限内有垂直于坐标平面向外的匀强磁场,第Ⅳ象限同时存在方向平行于y轴的匀强电场(图中未画出),一带电小球从x轴上的A点由静止释放,恰好从P点垂直于y轴进入第Ⅳ象限,然后做匀速圆周运动,从Q点垂直于x轴进入第Ⅰ象限,Q点距O点的距离为d,重力加速度为g。根据以上信息,能求出的物理量有() A . 小球做圆周运动的动能大小 B . 电场强度的大小和方向 C . 小球在第Ⅳ象限运动的时间 D . 磁感应强度大小 【考点】 2. (2分) (2017高二上·福建期末) 两个带电粒子由静止经同一电场加速后垂直磁感线方向进入同一匀强磁场,两粒子质量之比为1:2.电量之比为1:2,则两带电粒子受洛仑兹力之比为() A . 2:1 B . 1:1 C . 1:2 D . 1:4 【考点】

3. (2分)(2018·杭州模拟) 在玻璃皿的中心放一个圆柱形电极,紧贴边缘内壁放一个圆环形电极,并把它们与电池的两极相连,然后在玻璃皿中放入导电液体,例如盐水.如果把玻璃皿放在磁场中,如图所示,.通过所学的知识可知,当接通电源后从上向下看() A . 液体将顺时针旋转 B . 液体将逆时针旋转 C . 若仅调换N、S极位置,液体旋转方向不变 D . 若仅调换电源正、负极位置,液体旋转方向不变 【考点】 4. (2分) (2020高二上·吉林期末) 带正电的甲、乙、丙三个粒子(不计重力)分别以v甲、v乙、v丙速度垂直射入电场和磁场相互垂直的复合场中,其轨迹如图所示,则下列说法正确的是() A . v甲

磁场对运动电荷的作用

年级:高复班授课时间:2015.01.14-15 授课教师:科目:物理课题磁场对运动电荷的作用 教学目标1.熟练掌握磁场对运动电荷的作用,理解洛伦兹力的特点,会计算洛伦兹力的大小,能用左手定则判断洛伦兹力的方向 2.熟练掌握带电粒子在匀强磁场中做圆周运动的规律,能对实际问题进行分析和计算 教学重点与难点 1.带电粒子在匀强磁场中运动的特点 2.带电粒子在匀强磁场中运动的极值问题 教学过程一、洛伦兹力 1.洛伦兹力:磁场对运动电荷的作用力叫洛伦兹力. 2.洛伦兹力的方向 (1)判定方法 左手定则:掌心——磁感线穿过掌心; 四指——指向正电荷运动的方向或负电荷运动的反方向; 拇指——指向洛伦兹力的方向. (2)方向特点:F⊥B,F⊥v,即F垂直于B和v决定的平面(注意:洛伦兹力不做功).3.洛伦兹力的大小 (1)v∥B时,洛伦兹力F=0.(θ=0°或180°) (2)v⊥B时,洛伦兹力F=q v B.(θ=90°) 二、带电粒子在匀强磁场中的运动 1.若v∥B,带电粒子不受洛伦兹力,在匀强磁场中做匀速直线运动. 2.若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v做匀速圆周运动. (1)向心力由洛伦兹力提供:q v B= R v m 2 =2 ω mR; (2)轨道半径公式:R= m v qB; (3)周期:T= 2πR v= 2πm qB;(周期T与速度v、轨道半径R无关) (4)频率:f= R v π2 = m qB π2 ; (5)角速度:ω= 2π T=m qB . 三、带电粒子在匀强磁场中做匀速圆周运动的圆心、半径、运动时间的确定 1.圆心的确定 (1)已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图1所示,P为入射点,M为出射点,O 为轨道圆心.

磁场对运动电荷的作用试题

磁场对运动电荷的作用试题

————————————————————————————————作者:————————————————————————————————日期:

磁场对运动电荷的作用练习题 1.带电荷量为+q 的粒子在匀强磁场中运动,下列说法中正确的是( ) A .只要速度大小相同,所受洛伦兹力就相同 B .如果把+q 改为-q ,且速度反向,大小不变,则洛伦兹力的大小、方向均不变 C .洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直 D .粒子在只受到洛伦兹力作用下运动的动能、速度均不变 答案 B 2.如图1所示,匀强磁场的磁感应强度均为B ,带电粒子的速率均为v ,带电荷量均为q . 试求出图中带电粒子所受洛伦兹力的大小,并指出洛伦兹力的方向. 3.如图所示,半径为r 的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A 点以速度v 0垂直于磁场方向射入磁场中,并从B 点射出,若∠AOB =120°,则该带电粒子在磁场中运动的时间为( ) A.2πr 3v 0 B.23πr 3v 0 C.πr 3v 0 D.3πr 3v 0 答案 D 4.如图4所示,质量为m ,电荷量为+q 的带电粒子,以不同的初速度两次从O 点垂直于磁感线和磁场边界向上射入匀强磁场,在洛伦兹力作用下分别从M 、N 两点射出磁场,测得OM ∶ON =3∶4,则下列说法中错误的是 ( ) A .两次带电粒子在磁场中经历的时间之比为3∶4 B .两次带电粒子在磁场中运动的路程长度之比为3∶4 C .两次带电粒子在磁场中所受的洛伦兹力大小之比为3∶4 D .两次带电粒子在磁场中所受的洛伦兹力大小之比为4∶3 答案 AD

高中物理磁场对电流的作用练习题汇总新选.

磁场的描述磁场对电流的作用 知识点1磁场、磁感应强度、磁感线 1.磁场 (1)基本特性:磁场对处于其中的磁体、电流和运动电荷有磁场力的作用. (2)方向:小磁针的N极所受磁场力的方向. 2.磁感应强度 (1)定义式:B=F IL(通电导线垂直于磁场). (2)方向:小磁针静止时N极的指向. (3)磁感应强度是反映磁场性质的物理量.由磁场本身决定,是用比值法 定义的. 3.磁感线 (1)引入:在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点 的磁感应强度的方向一致. (2)特点:磁感线的特点与电场线的特点类似,主要区别在于磁感线是闭 合的曲线. (3)磁体的磁场和地磁场 图9-1-1 易错判断 (1)磁场中某点磁感应强度的方向,跟放在该点的试探电流元所受磁场力 的方向一致.(×) (2)磁感线是真实存在的.(×) (3)在同一幅图中,磁感线越密,磁场越强.(√) 知识点2电流的磁场及磁场的叠加

1.奥斯特实验 奥斯特实验发现了电流的磁效应,即电流可以产生磁场,首次揭示了电与磁的联系. 2.安培定则的应用 直线电流的磁场通电螺线管的 磁场 环形电流 的磁场 特点无磁极、非匀强,且距导线越远处磁 场越弱 与条形磁铁的 磁场相似,管 内为匀强磁场 且磁场最强, 管外为非匀强 磁场 环形电流 的两侧是 N极和S 极,且离圆 环中心越 远,磁场越 弱 安培 定则 立体图 横截 面图 磁感应强度是矢量,计算时与力的计算方法相同,利用平行四边形定则或正交分解法进行合成与分解. 易错判断 (1)通电导线周围的磁场是匀强磁场.(×) (2)电流的磁场方向可由右手螺旋定则(或安培定则)判定.(√) (3)一切磁现象都起源于电流或运动电荷,一切磁作用都是电流或运动电 荷之间通过磁场而发生的相互作用.(√) 知识点3安培力

磁场对运动电荷的作用

磁场对运动电荷的作用 1.洛伦兹力的方向:用左手定则判定 (1)让磁感线穿过左手的手心,四指指向正电荷的运动方向(或负电荷运动的相反方向),则拇指指的方向就是洛伦兹力的方向。 (2)洛伦兹力的方向既垂直于磁感应强度方向,同时也垂直于电荷运动的方向。 (3)洛伦兹力永远与电荷速度方向垂直,故洛伦兹力对电荷永远不做功。 2.洛伦兹力的大小; (1)当电荷运动速度v的方向与磁感应强度B的方向垂直时,f=qvB。 (2)当电荷运动速度v的方向与孩感应强度B的方向平行时,f=0。 (3)当电荷相对磁场静止时,f=0 (二)带电粒子的圆周运动 1.若带电粒子以一定的速度与磁场方向垂直进人匀强磁场,洛伦兹力f充当向心力,它一定做匀速圆周运动。 2.轨道半径 (l)由qvB=mv2/R(=mω2R=m(2πm/T)2R)得轨迢半径为: R=mv/qB (ω=qB/m,T=2πm/q B) (2)由运动轨迹确定轨道半径的方法;带电粒子在射入和射出匀强磁场两处所受洛伦兹力的延长线一定交于圆心,由圆心和轨迹运用几何知识来确定半径。 (3)运动周期: T=2πmR/v=2πm/qB 带电粒子的运动周期跟粒子的质荷比m/q成正比,跟兹感应强度B成反比,与粒子运动的速率和轨道半径无关。 (一)选择题 1.关于洛伦兹力的下列说法中正确的是 A洛伦兹力的方向总是垂直于磁场方向和电荷运动方向所在的平面。 B.洛伦兹力的方向总是垂直于电荷速度方向,所以它对电荷永远不做功。 C.在磁场中,静止的电荷不受洛伦兹力,运动的电荷一定受洛伦兹力。 D运动电行在某处不受洛伦兹力,则该处的磁感应强度一定为零。 2.如图7-27所示,有一磁感应强度为B,方向竖直向上的匀强磁 场,一束电子流以速度V从水平方向射入,为了使电子流经过磁场时 不发生偏转(不计重力),则磁场区域内必须同时存在一个匀强电场, 这个电场的场强大小和方向是 A.B/v,竖直向上B.B/v,水平向左 C.B/v,垂直纸面向里D.Bv,垂直纸面向外 图7-27 3.一带电粒子(不计重力)以初速度v0。垂直进入匀强磁场中,则 A磁场对带电粒子的作用力是恒力B.磁场对带电粒子的作用力不做功 C.带电粒子的动能不变化 D.带电粒子的动量不发生变化 4.在长直螺线管中,通以交流电,一个电子沿螺线管的轴线方向以初速度v射入长螺线管中,电子在螺线管中的运动情况是 A.做匀速直线运动 B. 沿螺线管轴线做匀加速直线运动 C.沿螺线管轴线做往复运动D.可能沿螺线管轴线做匀减速运动

《磁场对运动电荷的作用力》学案

第五节磁场对运动电荷的作用力 学习目标 1、知道什么是洛伦兹力。 2、利用左手定则会判断洛伦兹力的方向,理解洛伦兹力对电荷不做功。 3、掌握洛伦兹力大小的推理过程。 4、掌握垂直进入磁场方向的带电粒子,受到洛伦兹力大小的计算。 5、了解电视机显像管的工作原理。 学习重点 1、利用左手定则会判断洛伦兹力的方向。 2、掌握垂直进入磁场方向的带电粒子,受到洛伦兹力大小的计算。 学习难点 1、理解洛伦兹力对运动电荷不做功。 2、洛伦兹力方向的判断。 自主学习 1.运动电荷在磁场中受到的作用力,叫做。 2.洛伦兹力的方向的判断──左手定则: 让磁感线手心,四指指向的方向,或负电荷运动的,拇指所指电荷所受的方向。 3.洛伦兹力的大小:洛伦兹力公式。 4.洛伦兹力对运动电荷,不会电荷运动的速率。 5.显像管中使电子束偏转的磁场是由两对线圈产生的,叫做偏转线圈。为了与显像管的管颈贴在一起,偏转线圈做成。 同步导学 例1.试判断图中所示的带电粒子刚进入磁场时所受的洛伦兹力的方向.

解答:甲中正电荷所受的洛伦兹力方向向上;乙中正电荷所受的洛伦兹力方向向下;丙中正电荷所受的洛伦兹力方向垂直于纸面指向读者;丁中正电荷所受的洛伦兹力的方向垂直于纸面指向纸里。 例2:来自宇宙的电子流,以与地球表面垂直的方向射向赤道上空的某一点,则这些电子在进入地球周围的空间时,将 ( ) A .竖直向下沿直线射向地面 B .相对于预定地面向东偏转 C .相对于预定点稍向西偏转 D .相对于预定点稍向北偏转 解答:。地球表面地磁场方向由南向北,电子是带负电,根据左手定则可判定,电子自赤道上空竖直下落过程中受洛伦兹力方向向西。故C 项正确 例3:如图3所示,一个带正电q 的小带电体处于垂直纸面向里的匀强磁场中,磁感应强度为B ,若小带电体的质量为m ,为了使它对水平绝缘面正好无压力,应该( ) A .使 B 的数值增大 B .使磁场以速率 v =mg qB ,向上移动 C .使磁场以速率v =mg qB ,向右移动 D .使磁场以速率v =mg qB ,向左移动 解答:为使小球对平面无压力,则应使它受到的洛伦兹力刚好平衡重力,磁场不动而只增大B ,静止电荷在磁场里不受洛伦兹力, A 不可能;磁场向上移动相当于电荷向下运动,受洛伦兹力向右,不可能平衡重力;磁场以V 向右移动,等同于电荷以速率v 向左运动,此时洛伦兹力向下,也不可能平衡重力。故B 、C 也不对;磁场以V 向左移动,等同于电荷以速率 v 向右运动,此时洛伦兹力向上。当 qvB =mg 时,带电体对绝缘水平面无压力,则v =mg qB ,选项 D 正确。 例4: 单摆摆长L ,摆球质量为m ,带有电荷+q ,在垂直于纸面向里的磁感应强度为B 的匀强磁场中摆动,当其向左、向右通过最低点时,线上拉力大小是否相等? 解答:摆球所带电荷等效于一个点电荷,它在磁场中摆动时受到重力mg ,线的拉力F 与洛伦兹力F ′,由于只有重力做功,故机械能守恒,所以摆球向左、向右通过最低点时的 图3

磁场对电荷的作用

磁场对电荷的作用 1.初速度为v 0的电子沿平行于通电长直导线的方向射出,直导线中电 流方向与电子初始运动方向如图所示,则( ) A.电子将向右偏转,速率不变 B.电子将向左偏转,速率改变 C.电子将向左偏转,速率不变 D.电子将向右偏转,速率改变 2.如图所示,水平绝缘面上一个带电荷量为+q 的小带电体处 于垂直于纸面向里的匀强磁场中,磁感应强度为B ,小带电体的质 量为m .为了使它对水平绝缘面正好无压力,应该( ) A.使B 的数值增大 B.使磁场以速率v =mg qB 向上移动 C.使磁场以速率v =mg 向右移动 D.使磁场以速率v =mg 向左移动 3.一m 1∶m 2=1A.B.C.D.4.A.B.C.D.5.磁场中(中,圆环运动的速度图象可能是下图中的( ) 6.一个带电粒子沿垂直于匀强磁场的方向射入云室中.粒子的一段径迹如 图所示,径迹上的每一小段都可近似看成圆弧.由于带电粒子使沿途的气体电 离,因而粒子的能量逐渐减小(带电荷量不变).从图中情况可以确定粒子的运动 方向和带电情况分别为( ) A.粒子从a 运动到b ,带正电 B.粒子从a 运动到b ,带负电 C.粒子从b 运动到a ,带正电 D.粒子从b 运动到a ,带负电 7.如图甲所示,在屏MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂 直纸面向里,P 为屏上的一小孔,PC 与MN 垂直.一群质量为m 、带 电荷量为-q 的粒子(不计重力)以相同的速率v 从P 处沿垂直于磁 场的方向射入磁场区域,粒子的入射方向在与磁场B 垂直的平面 内,且散开在与PC 夹角为θ的范围内.求在屏MN 上被粒子打中 的区域的长度.

磁场对电流和运动电荷的作用章节检测试题(含答案和解析)

磁场对电流和运动电荷的作用章节检测试 题(含答案和解析) 第六磁场对电流和运动电荷的作用测试 一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分) 1.下列天体周围都有磁场,其中指南针不能在其上工作的是() A.地球 B.太阳.月亮D.火星 2.软铁棒放在永磁体的旁边能被磁化,这是由于…() A.在永磁体磁场作用下,软铁棒中形成了分子电流 B.在永磁体磁场作用下,软铁棒中的分子电流消失了 .在永磁体磁场作用下,软铁棒中分子电流的取向变得大致相同 D.在永磁体磁场作用下,软铁棒中分子电流的取向变得更加杂乱无 3.自宇宙的电子流,以与地球表面垂直的方向射向赤道上空的某一点,则这些电子在进入地球周围的空间时,将()

A.竖直向下沿直线射向地面 B.相对于预定地点向东偏转 .相对于预定点稍向西偏转D.相对于预定点稍向北偏转 4.某地地磁场的磁感应强度大约是4.0×10-5 T,一根长为500 的电线,电流为10 A,该导线可能受到的磁场力为() A.0B.0.1 N.0.3 ND.0.4 N 5.磁电式电流表的蹄形磁铁和铁芯间的磁场是均匀地辐射分布的,目的是() A.使磁场成圆柱形,以便框转动 B.使线圈平面在水平位置与磁感线平行 .使线圈平面始终与磁感线平行 D.为了使磁场分布规则 6.直导线ab长为L,水平放置在匀强磁场中,磁场方向如图,磁感应强度为B,导线中通有恒定电流,电流为I,则…() A.导线所受安培力大小为BIL B.若电流方向由b向a,则安培力方向竖直向上 .若使导线在纸面内转过α角,则安培力大小变成BILsinα D.若使导线在纸面内转过α角,则安培力大小变为BILs α

磁场对电流的作用教学设计

磁场对电流的作用教学设计 教学目标: 知识与技能知道磁场对通电导线有力的作用. 知道磁场对通电导线的作用力方向跟磁场方向和电流方向有关. 过程与方法培养学生理论联系实际的意识. 情感、态度与价值观通过了解物理知识如何转化成实际技术应用,进一步提高学习科学技术知识的兴趣。 教学重点: 通电导线在磁场中要受到力的作用。 教学过程 复习相关知识并提问: 1.磁场的基本性质是它对放入其中的磁体产生( ) 作用,磁体间的相互作用就是通过() 发生的。 2. 将一根导线平行地放在静止的小磁针上方,当导线通电时,发现小磁针( ) ,说明电流周围存在( ) 。 演示实验: 演示直流电动机通电转动 提出问题: 1. 电动机为什么会转动呢? 2. 奥斯特实验证明了什么? 通电导体周围存在磁场,并通过磁场使小磁针偏转,即电流对磁体有力的作用。

启发学生: 磁场对电流有没有力的作用呢? 实验: (1) 介绍实验装置,并连接好。渗透设计思想,明确实验研究对象是铜棒。 (2) 让学生明确实验目的,即磁场能否让通电后的铜棒运动。 (3) 实验条件逐步演示并观察实验现象,完成记录表格。 1 静止的铜棒通电后发生什么现象?原因是什么?运动受力 2 铜棒的运动方向、电流的方向和磁感线方向的角度关系? 互相垂直 3 不改变磁场方向而改变电流的方向,铜棒运动方向如何? 改变方向 4 不改变电流的方向,而改变磁场方向,铜棒运动方向怎样?改变方向 (4) 学生根据实验现象,分析得出结论。 通电导体在磁场中受到力的作用。力的方向,电流的方向和磁场线的方向互相垂直。通电导体在磁场里受力的方向跟电流的方向和磁感线的方向有关。 左手定则 伸开左手,使大拇指与四指在同一平面内并跟四指垂直,让磁感线垂直穿入手心,使四指指向电流方向,这时拇指所指的方向就是通电导线在磁场中所受磁力的方向。

《课堂新坐标》2014届高考物理一轮复习配套word版文档:第八章 第2讲 磁场对运动电荷的作用

第2讲 磁场对运动电荷的作用 (对应学生用书第141页) 洛伦兹力的方向和大小 1.洛伦兹力:磁场对运动电荷的作用力. 2.洛伦兹力的方向 (1)判断方法:左手定则 ???? ? 磁感线垂直穿过掌心四指指向正电荷运动的方向拇指指向正电荷所受洛伦兹力的方向 (2)方向特点:f ⊥B ,f ⊥v .即f 垂直于B 和v 决定的平面.(注意:B 和v 不一定垂直). 3.洛伦兹力的大小 f =q v B sin_θ,θ为v 与B 的夹角,如图8-2-1所示. 图8-2-1 (1)v ∥B 时,θ=0°或180°,洛伦兹力f =0. (2)v ⊥B 时,θ=90°,洛伦兹力f =q v B . (3)v =0时,洛伦兹力f =0. (1)判断洛伦兹力的方向一定要分清电荷的正、负. (2)应用公式f =q v B 计算洛伦兹力,一定要注意公式的条件. 【针对训练】 1.带电荷量为+q 的粒子在匀强磁场中运动,下列说法中正确的是( ) A .只要速度大小相同,所受洛伦兹力就相同 B .如果把+q 改为-q ,且速度反向,大小不变,则洛伦兹力的大小、方向均不变 C .洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直 D .粒子在只受到洛伦兹力作用下运动的动能、速度均不变 【解析】 因为洛伦兹力的大小不但与粒子速度大小有关,而且与粒子速度的方向有关,如当粒子速度与磁场垂直时F =q v B ,当粒子速度与磁场平行时F =0.又由于洛伦兹力的方向永远与粒子的速度方向垂直,因而速度方向不同时,洛伦兹力的方向也不同,所以A 选项错.因为+q 改为-q 且速度反向,由左手定则可知洛伦兹力方向不变,再由F =q v B 知

高中物理选修3-1 磁场对运动电荷的作用力例题解析

磁场对运动电荷的作用力·典型例题解析 【例1】图16-49是表示磁场磁感强度B,负电荷运动方向v和磁场对电荷作用力f的相互关系图,这四个图中画得正确的是(B、v、f两两垂直) [ ] 解答:正确的应选A、B、C. 点拨:由左手定则可知四指指示正电荷运动的方向,当负电荷在运动时,四指指示的方向应与速度方向相反. 【例2】带电量为+q的粒子,在匀强磁场中运动,下面说法中正确的是 [ ] A.只要速度大小相同,所受洛伦兹力就相同 B.如果把+q改为-q,且速度反向且大小不变,则洛伦兹力的大小、方向均不变 C.只要带电粒子在磁场中运动,它一定受到洛伦兹力作用 D.带电粒子受到洛伦兹力越小,则该磁场的磁感强度越小 解答:正确的应选B. 点拨:理解洛伦兹力的大小、方向与哪些因素有关是关键. 【例3】如果运动电荷除磁场力外不受其他任何力的作用,则带电粒子在磁场中作下列运动可能成立的是 [ ] A.作匀速直线运动 B、作匀变速直线运动 C.作变加速曲线运动 D.作匀变速曲线运动 点拨:当v∥B时,f=0,故运动电荷不受洛伦兹力作用而作匀速直线运动.当v与B不平行时,f≠0且f与v恒垂直,即f只改变v的方向.故运动电荷作变加速曲线运动. 参考答案:AC 【例4】如图16-50所示,在两平行板间有强度为E的匀强电场,方向竖直向下,一带电量为q的负粒子(重力不计),垂直于电场方向以速度v飞入两板间,为了使粒子沿直线飞出,应在垂直于纸面内加一个怎样方向的磁场,其

磁感应强度为多大? 点拨:要使粒子沿直线飞出,洛伦兹力必须与电场力平衡. 参考答案:磁感应强度的方向应垂直于纸面向内,大小为E/v 跟踪反馈 1.关于带电粒子所受洛伦兹力f、磁感应强度B和粒子速度v三者方向之间的关系,下列说法正确的是 [ ] A.f、B、v三者必定均保持垂直 B.f必定垂直于B、v,但B不一定垂直于v C.B必定垂直于f、v,但f不一定垂直于v D.v必定垂直于f、B,但f不一定垂直于B 2.下列说法正确的是 [ ] A.运动电荷在磁感应强度不为零的地方,一定受到洛伦兹力作用 B.运动电荷在某处不受洛伦兹力作用,则该处的磁感应强度一定为零 C.洛伦兹力既不能改变带电粒子的动能,也不能改变带电粒子的动量 D.洛伦兹力对带电粒子不做功 3.如图16-51所示的正交电场和磁场中,有一粒子沿垂直于电场和磁场的方向飞入其中,并沿直线运动(不考虑重力作用),则此粒子 [ ] A.一定带正电 B.一定带负电 C.可能带正电或负电,也可能不带电 D.一定不带电 4.如图16-52所示,匀强电场方向竖直向下,匀强磁场方向水平向里,有一正离子恰能沿直线从左到右水平飞越此区域,则

2019届高考物理一轮复习讲义:第九章 第2讲 磁场对运动电荷的作用 Word版含答案

第2讲 磁场对运动电荷的作用 板块一 主干梳理·夯实基础 【知识点1】 洛伦兹力、洛伦兹力的方向 Ⅰ 洛伦兹力公式 Ⅱ1.定义:运动电荷在磁场中所受的力。 2.方向 (1)判定方法:应用左手定则,注意四指应指向正电荷运动方向或负电荷运动的反方向。 (2)方向特点:F ⊥B ,F ⊥v 。即F 垂直于B 和v 所决定的平面。(注意B 和v 可以有任意夹角)。 由于F 始终垂直于v 的方向,故洛伦兹力永不做功。 3.洛伦兹力的大小:F =q v B sin θ 其中θ为电荷运动方向与磁场方向之间的夹角。 (1)当电荷运动方向与磁场方向垂直时,F =q v B 。 (2)当电荷运动方向与磁场方向平行时,F =0。 (3)当电荷在磁场中静止时,F =0。 【知识点2】 带电粒子在匀强磁场中的运动 Ⅱ 1.若v ∥B ,带电粒子以入射速度v 做匀速直线运动。 2.若v ⊥B ,带电粒子在垂直于磁感线的平面内,以入射速度v 做匀速圆周运动。 3.基本公式 (1)向心力公式:q v B =m v 2r 。 (2)轨道半径公式:r =m v Bq 。 (3)周期公式:T =2πr v =2πm qB ;f =1T =qB 2πm ;ω=2πT =2πf =qB m 。 (4)T 、f 和ω的特点: T 、f 和ω的大小与轨道半径r 和运行速率v 无关,只与磁场的磁感应强度B 和粒子的比荷q m 有关。比荷q m 相同的带电粒子,在同样的匀强磁场中T 、f 、ω相同。 板块二 考点细研·悟法培优 考点1 洛伦兹力的特点及应用 [对比分析] 1.洛伦兹力的特点 (1)洛伦兹力的方向总是垂直于运动电荷速度方向和磁场方向确定的平面。 (2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化。 (3)运动电荷在磁场中不一定受洛伦兹力作用。 (4)用左手定则判断洛伦兹力方向,注意四指指向正电荷运动的方向或负电荷运动的反方向。 (5)洛伦兹力一定不做功。 2.洛伦兹力与电场力的比较

高中物理 《磁场对运动电荷的作用》教案1 鲁科版选修3-1

磁场对运动电荷的作用 教学目标 知识目标 1.知道什么是洛伦兹力,知道电荷运动方向与磁场方向平行时,电荷受到的洛伦兹力等于零;电荷运动方向与磁场方向垂直时,电荷受到的洛伦兹力最大。 2.会用左手定则熟练地判定洛伦兹力方向. 能力目标 由通电电流所受安培力推导出带电粒子受磁场作用的洛伦兹力的过程,培养学生的迁移能力. 情感目标 通过本节教学,培养学生科学研究的方法论思想:即“推理──假设──实验验证”.教材分析 本节的重点是洛伦滋力的大小和它的方向,在引导学生由安培力的概念得出洛伦滋力的概念后,让学生深入理解洛伦滋力,学习用左手定则判断洛伦滋力的方向,注意强调:磁场对运动电荷有作用力,磁场对静止电荷却没有作用力. 教法建议 在教学中需要注意教师与学生的互动性,教师先复习导入,通过实验验证洛伦兹力的存在,然后启发指导学生自己推导公式.理解洛伦兹力方向的判定方向,注意与点电荷所受电场大小、方向的区别.具体的建议是: 1.教师通过演示实验法引入,复习提问法导出公式,类比电场办法掌握公式的应用.2.学生认真观察实验、思考原因,在教师指导下自己推导,类比理解掌握公式.教学设计方案磁场对运动电荷作用 一素质教育目标 (一)知识教学点 1.知道什么是洛伦兹力,知道电荷运动方向与磁场方向平行时,电荷受到的洛伦兹力等于零;电荷运动方向与磁场方向垂直时,电荷受到的洛伦兹力最大, 2.会用左手定则熟练地判定洛伦兹力方向.

(二)能力训练点 由通电电流所受安培力推导出带电粒子受磁场作用的洛伦兹力的过程,培养学生的迁移能力. (三)德育渗透点 通过本节教学,培养学生进行“推理──假设──实验验证”的科学研究的方法论教育. (四)美育渗透点 注意营造师生感情平等交流的氛围,用优美的语音感染学生.在平等自由的审美情境中,使师生的感情达到共鸣,从而培养学生的审美情感. 二学法引导 1.教师通过演示实验法引入,复习提问法导出公式,类比电场办法掌握公式的应用。 2.学生认真观察实验、思考原因,在教师指导下自己推导,类比理解掌握公式。 三重点、难点、疑点及解决办法 1.重点 洛伦兹力的大小和它的方向。 2.难点 用左手定则判断洛伦兹力的方向。 3.疑点 磁场对运动电荷有作用力,磁场对静止电荷却没有作用力。 4.解决办法 引导和启发学生由安培力的概念得出洛伦兹力的概念,使学生深入理解洛伦兹力的大小和方向。 四课时安排 1课时 五教具学具准备 阴极射线发射器,蹄形磁铁。 六师生互动活动设计 教师先复习导入,通过实验验证洛伦兹力的存在,然后启发指导学生自己推导公式。理

相关主题
文本预览
相关文档 最新文档