当前位置:文档之家› 数学建模:生产计划

数学建模:生产计划

数学建模:生产计划
数学建模:生产计划

问题二:生产计划

某厂用一套设备生产若干种产品。工厂靠银行贷款筹集资金,根据市场需求安排生产,现考虑以下的简化情形:

1) 设生产甲乙两种产品, 市场对它们的需求分别为d1,d2 (件/天),该设备生产它们的最大能力分别为U1,U2(件/天),生产成本分别为c1,c2(元/件)。当改变产品时因更换零部件等引起的生产甲乙前的准备费用分别为s1,s2(元)。生产出的产品因超过当天的需求而导致的贮存费用,按生产成本的月利率r引起的积压资金的k倍计算(每月按30天计)。

设每种产品的生产率都可以从零到最大能力之间连续调节,每种产品当前的需求均需满足。请您为工厂制订合理、易行的生产计划,使上面考虑到的费用之和尽可能小。

2)考虑有n种产品的情形,自行给出一组数据进行计算,讨论模型有解的条件。

提示:考虑稳定的、周期性的计划(不必考虑初始情况)

解:

1)设每次生产周期中a天生产甲产品,第i天产量为x1i件;b天生产乙产品,第j天产量为x2j件。

则目标函数如下:

约束条件为:

d1

d2

x1i U1

x2j U2

解以上线性规划即可得出。

2)设每次生产周期中生产第i种产品一共用时k i天,且在这k i天中的第j天产量为x ij件。其中,i,j0.

由题可得,目标函数如下:

约束条件为:

di

x ij Ui

0

0

解以上线性规划即可。

以上线性规划都是以一般形式给出了题目的解答,模型缺少一定的数据,缺乏一定得说服力。

建模与仿真

第1章建模与仿真的基本概念 参照P8例子,列举一个你相对熟悉的简单实际系统为例,采用非形式描述出来。 第2章建模方法论 1、什么是数学建模形式化的表示?试列举一例说明形式化表示与非形式化表示的区别。 模型的非形式描述是说明实际系统的本质,但不是详尽描述。是对模型进行深入研究的基础。主要由模型的实体、包括参变量的描述变量、实体间的相互关系及有必要阐述的假设组成。模型的非形式描述主要说明实体、描述变量、实体间的相互关系及假设等。 例子:环形罗宾服务模型的非形式描述: 实体 CPU,USR1,…,USR5 描述变量 CPU:Who,Now(现在是谁)----范围{1,2,…,5}; Who.Now=i表示USRi由CPU服务。 USR:Completion.State(完成情况)----范围[0,1];它表示USR完成整个程序任务的比例。参变量 X-----范围[0,1];它表示USRi每次完成程序的比率。 i 实体相互关系 (1)CPU 以固定速度依次为用户服务,即Who.Now为1,2,3,4,5,1,2…..循环运行。 X工作。假设:CPU对USR的服务时间固定,不(2)当Who.Now=I,CPU完成USRi余下的 i X决定。 依赖于USR的程序;USRi的进程是由各自的参变量 i 2、何谓“黑盒”“白盒”“灰盒”系统? “黑盒”系统是指系统内部结构和特性不清楚的系统。对于“黑盒”系统,如果允许直接进行实验测量并通过实验对假设模型加以验证和修正。对属于黑盒但又不允许直接实验观测的系统,则采用数据收集和统计归纳的方法来假设模型。 对于内部结构和特性清楚的系统,即白盒系统,可以利用已知的一些基本定律,经过分析和演绎导出系统模型。 3、模型有效性和模型可信性相同吗?有何不同? 模型的有效性可用实际系统数据和模型产生的数据之间的符合程度来度量。它分三个不同级别的模型有效:复制有效、预测有效和结构有效。不同级别的模型有效,存在不同的行为水平、状态结构水平和分解结构水平的系统描述。 模型的可信度指模型的真实程度。一个模型的可信度可分为: 在行为水平上的可信性,即模型是否重现真实系统的行为。 在状态结构水平上可信性,即模型能否与真实系统在状态上互相对应,通过这样的模型可以对未来的行为进行唯一的预测。 在分解结构水平上的可信性,即模型能否表示出真实系统内部的工作情况,而且是惟一表示出来。 不论对于哪一个可信性水平,可信性的考虑贯穿在整个建模阶段及以后各阶段,必须考虑以下几个方面: 1在演绎中的可信性。2在归纳中的可信性。3在目的方面的可信性。 4、基于计算机建模方法论与一般建模方法论有何不同?(P32) 经典的建模与仿真的主要研究思路,首先界定研究对象-实际系统的边界和建模目标,利用已有的数学建模工具和成果,建立相应的数学模型,并用计算装置进行仿真。这种经典的建

钢管下料问题

钢管下料 摘要 在生活中常遇到通过切割、剪裁、等手段,将原材料加工成所需尺寸的工艺过程,称为原料下料问题。按照进一步工艺要求,确定下料方案,使用料最省或利润最大。本文研究的是钢管下料问题。用数学规划模型确定切割方案,使其既能满足顾客需求,又能用料最省。 对于问题(1),以按照第i 种模式(1,2,,7i =)切割的原料钢管的根数为研究对象,确定下料方案,使其用料最省。 ①以切割后剩余的总余料量最小为目标建立整数线性规划模型如下: 7 17 1min ,1,2,3..0,1,2,,7i i i ji i j i i z c x a x b j s t x i ===?≥=???≥=?∑∑ 利用LINGO 软件进行求解得到一共需要切割27根原料钢管。总余料量为27m 。 ②以切割原料钢管的总根数最少为目标建立整数线性规划模型同上。 利用LINGO 软件进行求解得到一共需要切割25根原料钢管。总余料量为35m 。 在余料没有什么用途的情况下,通常选择使用原料钢管的总根数最少为目标。 对于问题(2),以所使用的第i 种切割模式下每根原料钢管生产4m ,5m ,6m ,和8m 的钢管数量为研究对象(1,2,3i =),此处仅以切割原料钢管的总根数最少为目标,建立整数非线性规划模型如下: 3 13 1 41 41min ,1,2,3,4 ,1,2,3..,1,2,30,1,2,3i i ji i j i j ji j j ji j i z y r y b j c r m i s t c r n i y i =====?≥=???≥=????≤=??≥=?∑∑∑∑ 利用LINGO 软件进行求解得到一共需要切割28根原料钢管。 此整数非线性规划模型的解并不唯一,本文仅给出其中一组解。 关键字:钢管下料,用料最省,切割模式,整数线性规划,整数非线性规划

武汉理工大学数学建模与仿真论文

武汉理工大学2014年数学建模课程论文题目:金属板的切割问题 姓名:李冬波 学院:自动化学院 专业:自动化 学号:012121136329 选课老师:何朗 2014年6月22日

摘要 金属板的切割问题要求对金属板的切割方式进行构思,希望通过数学可以达到效率较高、成本较低的可能性。应该先通过穷举的方法找到所有可能性,在所有可能性中保留最优的可能性。所谓最优即效率较高、成本较低的可能。 在确立了6种切割模式的基础上,再建立非线性规划的数学模型,以模式为基点,将题中订单需求转化为求解金属原料此目标函数的约束条件。在通过LINGO软件的数学规划模型求解功能求解出目标函数值,并通过检验证明,该模型求解出的最少原料使用量与具体切割模式是完全满足题目要求的。 关键词:切割模式、非线性规划、 LINGO

目录 一、问题重述 ------------------------------4 二、问题假设 ------------------------------4 三、模型建立----------------------------------------------5 符号说明------------------------------------------------5 建立模型------------------------------------------------5 四、模型求解----------------------------------------------6 五、求解结果---------------------------------------------7 六、结果检验分析---------------------------------------7 七丶结论-----------------------------------------------8 八、参考文献---------------------------------------------8

数学建模 生产计划问题

第一题:生产计划安排 2)产品ABC的利润分别在什么范围内变动时,上述最优方案不变 3)如果劳动力数量不增,材料不足时可从市场购买,每单位元,问该厂要不要购进原材料扩大生产,以购多少为宜 4)如果生产一种新产品D,单件劳动力消耗8个单位,材料消耗2个单位,每件可获利3元,问该种产品是否值得生产 答: max3x1+x2+4x3! 利润最大值目标函数x1,x2,x3分别为甲乙丙的生产数量 st!限制条件 6x1+3x2+5x3<45! 劳动力的限制条件 3x1+4x2+5x3<30! 材料的限制条件 End!结束限制条件 得到以下结果 1.生产产品甲5件,丙3件,可以得到最大利润,27元 2.甲利润在—元之间变动,最优生产计划不变 3. max3x1+x2+4x3 st 6x1+3x2+5x3<45 end 可得到生产产品乙9件时利润最大,最大利润为36元,应该购入原材料扩大生产,购入15个单位 4. max3x1+x2+4x3+3x4 st 6x1+3x2+5x3+8x4<45 3x1+4x2+5x3+2x4<30 end ginx1 ginx2 ginx3 ginx4 利润没有增加,不值得生产 第二题:工程进度问题 某城市在未来的五年内将启动四个城市住房改造工程,每项工程有不同的开始时间,工程周期也不一样,下表提供了这些项目的基本数据。

工程1和工程4必须在规定的周期内全部完成,必要时,其余的二项工程可以在预算的限制内完成部分。然而,每个工程在他的规定时间内必须至少完成25%。每年底,工程完成的部分立刻入住,并且实现一定比例的收入。例如,如果工程1在第一年完成40%,在第三年完成剩下的60%,在五年计划范围内的相应收入是*50(第二年)+*50(第三年)+(+)*50(第四年)+(+)*50(第五年)=(4*+2*)*50(单位:万元)。试为工程确定最优的时间进度表,使得五年内的总收入达到最大。 答: 假设某年某工程的完成量为Xij, i表示工程的代号,i=1,2,3,j表示年数,j=1,2,3,如第一年工程1完成X11,工程3完成X31,到第二年工程已完成X12,工程3完成X32。 另有一个投入与完成的关系,即第一年的投入总费用的40%,该工程在年底就完成40%,工程1利润: 50*X11+50*(X11+X12)+50*(X11+X12+X13)+50*(X11+X12+X13) 工程2利润: 70*X22+70*(X22+X23)+70*(X22+X23+X24) 工程3利润: 20*X31+150*(X31+X32)+150*(X31+X32+X33)+150*(X31+X32+X33+X34) 工程4利润: 20*X43+20*(X43+X44) max(50*X11+50*(x11+x12)+50*(X11+X12+X13)+50*(X11+X12+X13))+(70*X22+70*(X22+X23) )+70*(X22+X23+X24)+(150*X31+150*(X31+X32)+150*(X31+X32+X33)+150*(X31+X32+X33+X34)) +(20*X43+20*(X43+X44)) st 5000*X11+15000*X31=3000 5000*X12+8000*X22+15000*X32=6000 5000*X13+8000*X23+15000*X33+1200*X43=7000 8000*X24+15000*X34+12000*X44=7000 8000*X25+15000*X35=7000 X11+X12+X13=1 X22+X23+X24+X25≥ X22+X23+X24+X25≤1 X31+X32+X33+X34+X35≥ X31+X32+X33+X34+X35≤1 X43+X44=1 全为大于零的数

数学建模钢管下料问题

重庆交通大学 学生实验报告 实验课程名称数学建模 ^ 开课实验室数学实验室 学院信息院11 级软件专业班 1 班 学生姓名 学号 ¥ 开课时间2013 至2014 学年第 1 学期

! 】 )

/ 实验一 钢管下料问题 摘要 ( 生产中常会遇到通过切割、剪裁、冲压等手段,将原材料加工成规定大小的某种,称为原料下料问题.按照进一步的工艺要求,确定下料方案,使用料最省,或利润最大是典型的优化问题.下面我们采用数学规划模型建立线性规划模型并借助LINGO 来解决这类问题. 关键词线性规划最优解钢管下料 一,问题重述 1、问题的提出 某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割出售.从钢管厂进货得到的原材料的钢管的长度都是1850mm ,现在一顾客需要15根290 mm,28根315 mm,21根350 mm和30根455 mm的钢管.为了简化生产过程,规定所使用的切割模式的种类不能超过4种,使用频率最高的一种切割模式按照一根原料钢管价值的1/10增加费用,使用频率次之的切割模式按照一根原料钢管价值的2/10增加费用,以此类推,且每种切割模式下的切割次数不能太多(一根原钢管最多生产5根产品),此外为了减少余料浪费,每种切割模式下的余料浪费不能超过100 mm,为了使总费用最小,应该如何下料 ` 2、问题的分析 首先确定合理的切割模式,其次对于不同的分别进行计算得到加工费用,通

过不同的切割模式进行比较,按照一定的排列组合,得最优的切割模式组,进而使工加工的总费用最少. 二,基本假设与符号说明 1、基本假设 假设每根钢管的长度相等且切割模式理想化.不考虑偶然因素导致的整个切割过程无法进行. 2、定义符号说明 (1)设每根钢管的价格为a ,为简化问题先不进行对a 的计算. (2)四种不同的切割模式:1x 、2x 、3x 、4x . 》 (3)其对应的钢管数量分别为:i r 1、i r 2、i r 3、i r 4(非负整数). 三、模型的建立 由于不同的模式不能超过四种,可以用i x 表示i 按照第种模式(i =1,2,3,4)切割的原料钢管的根数,显然它们应当是非负整数.设所使用的第i 种切割模式下 每根原料钢管生产290mm ,315mm,,350mm 和455mm 的钢管数量分别为i r 1,i r 2,i r 3,i r 4(非负整数). 决策目标 切割钢管总费用最小,目标为: Min=(1x ?+2x ?+3x ?+4x ?)?a (1) 为简化问题先不带入a 约束条件 为满足客户需求应有 11r ?1x +12r ?2x +13r ?3x +14r ?4x ≧15 (2) ( 21r ?1x +22r ?2x +23r ?3x +24r ?4x ≧28 (3) 31r ?1x +32r ?2x +33r ?3x +34r ?4x ≧21 (4) 41r ?1x +42r ?2x +43r ?3x +44r ?4x ≧15 (5) 每一种切割模式必须可行、合理,所以每根钢管的成品量不能大于1850mm 也不能小于1750mm.于是: 1750≦290?11r +315?21r +350?31r +455?41r ≦1850 (6) 1750≦290?12r +315?22r +350?32r +455?42r ≦1850 (7) 1750≦290?13r +315?23r +350?33r +455?43r ≦1850

数学建模之钢管下料问题案例分析

钢管下料问题 某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出,从钢管厂进货时得到的原料钢管都是19m 。 (1)现在一客户需要50根4m 、20根6m 和15根8m 的钢管。应如何下料最节省? (2) 零售商如果采用的不同切割模式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割模式不能超过3种。此外,该客户除需要(1)中的三种钢管外,还需要10根5m 的钢管。应如何下料最节省。 问题(1)分析与模型建立 首先分析1根19m 的钢管切割为4m 、6m 、8m 的钢管的模式,所有模式相当于求解不等式方程: 12346819 k k k ++≤ 的整数解。但要求剩余材料12319(468)4r k k k =-++<。 容易得到所有模式见表1。 决策变量 用i x 表示按照第i 种模式(i=1,2,…,7)切割的原料钢管的根数。 以切割原料钢管的总根数最少为目标,则有 1234567min z x x x x x x x =++++++ 约束条件 为满足客户的需求,4米长的钢管至少50根,有

1236743250x x x x x ++++≥ 6米长的钢管至少20根,有 25673220x x x x +++≥ 8米长的钢管至少15根,有 346215x x x ++≥ 因此模型为: 1234567min z x x x x x x x =++++++ 123672567346432503220..215,1,2,,7 i x x x x x x x x x s t x x x x i ++++≥??+++≥??++≥??=? 取整 解得: 12345670,12,0,0,0,15,0x x x x x x x ======= 目标值z=27。 即12根钢管采用切割模式2:3根4m ,1根6m ,余料1m 。 15根钢管采用切割模式6:1根4m ,1根6m ,1根8m ,余料1m 。 切割模式只采用了2种,余料为27m ,使用钢管27根。 LINGO 程序: model: sets: model/1..7/:x; endsets min=x(1)+x(2)+x(3)+x(4)+x(5)+x(6)+x(7); 4*x(1)+3*x(2)+2*x(3)+x(6)+x(7)>=50; x(2)+3*x(5)+x(6)+2*x(7)>=20; x(3)+2*x(4)+x(6)>=15; @for(model(i):@gin(x(i))); end 问题(2)模型建立 首先分析1根19m 的钢管切割为4m 、6m 、8m 、5m 的钢管的模式,所有模式相当

数学建模之下料问题

数学建模第三次作业 下料问题 摘要 本文是针对如何对钢管进行下料问题,根据题目要求以及下料时有关问题进行建立切割费用最少以及切割总根数最少两个目标函数通过结果分析需要使用何种切割模式。 生产方式所花费的成本价格或多或少有所不同,如何选取合理的生产方式以节约成本成为了很多厂家的急需解决的问题。这不仅仅关系到厂家的利益,也影响到一个国家甚至整个人类星球的可利用资源,人们的生活水平不断提高对物资的需求量也不断上升,制定有效合理的生产方式不仅可以为生产者节约成本也可以为社会节约资源,以达到资源利用最大化。本文以用于切割钢管花费最省及切割总根数最少为优化目标,通过构建多元函数和建立线性整数规划模型,利用数学及相关方面的知识对钢管的切割方式进行优化求解最佳方案。 本文最大的特色在于通过求解出切割钢管花费最省及切割总根数最少时分别得出两种目标函数取最小值时的切割模式。通过结果发现两种目标函数取最小值时所需切割根数都一样。于是选择切割钢管花费最省为目标函数,此时的切割模式达到最少,这样既满足了总根数最小有满足了切割费用最小。 关键词:切割模式LINGO软件线性整数

一、问题的提出 某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后出售。从钢管厂进货时得到的原料钢管的长度都是1850mm。现有一客户需要15根290mm、28根315mm、21根350mm和30根455mm的钢管。为了简化生产过程,规定所使用的切割模式的种类不能超过4种,使用频率最高的一种切割模式按照一根原料钢管价值的1/10增加费用,使用频率次之的切割模式按照一根原料钢管价值的2/10增加费用,依次类推,且每种切割模式下的切割次数不能太多(一根钢管最多生产5根产品)。此外,为了减少余料浪费,每种切割模式下的余料不能超过100mm。为了使总费用最小,应如何下料? 二、基本假设 1、假设所研究的每根钢管的长度均为1850mm的钢管。 2、假设每次切割都准确无误。 3、假设切割费用短时间内不会波动为固定值。 5、假设钢管余料价值为0. 6、假设一切运作基本正常不会产生意外事件。 7、每一根钢管的费用都一样,为一常值。 三、符号说明

数学建模钢管

数学建模钢管下料问题

实验一 钢管下料问题 摘要 生产中常会遇到通过切割、剪裁、冲压等手段,将原材料加工成规定大小的某种,称为原料下料问题.按照进一步的工艺要求,确定下料方案,使用料最省,或利润最大是典型的优化问题.下面我们采用数学规划模型建立线性规划模型并借助LINGO 9.0来解决这类问题. 关键词线性规划最优解钢管下料 一,问题重述 1、问题的提出 某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割出售.从钢管厂进货得到的原材料的钢管的长度都是1850mm ,现在一顾客需要15根290 mm,28根315 mm,21根350 mm和30根455 mm的钢管.为了简化生产过程,规定所使用的切割模式的种类不能超过4种,使用频率最高的一种切割模式按照一根原料钢管价值的1/10增加费用,使用频率次之的切割模式按照一根原料钢管价值的2/10增加费用,以此类推,且每种切割模式下的切割次数不能太多(一根原钢管最多生产5根产品),此外为了减少余料浪费,每种切割模式下的余料浪费不能超过100 mm,为了使总费用最小,应该如何下料? 2、问题的分析 首先确定合理的切割模式,其次对于不同的分别进行计算得到加工费用,通过不同的切割模式进行比较,按照一定的排列组合,得最优的切割模式组,进而使工加工的总费用最少. 二,基本假设与符号说明 1、基本假设 假设每根钢管的长度相等且切割模式理想化.不考虑偶然因素导致的整个切割过程无法进行. 2、定义符号说明

(1)设每根钢管的价格为a ,为简化问题先不进行对a 的计算. (2)四种不同的切割模式:1x 、2x 、3x 、4x . (3)其对应的钢管数量分别为:i r 1、i r 2、i r 3、i r 4(非负整数). 三、模型的建立 由于不同的模式不能超过四种,可以用i x 表示i 按照第种模式(i =1,2,3,4)切割的原料钢管的根数,显然它们应当是非负整数.设所使用的第i 种切割模式下每根原料钢管生产290mm ,315mm,,350mm 和455mm 的钢管数量分别为i r 1,i r 2, i r 3,i r 4(非负整数). 决策目标 切割钢管总费用最小,目标为: Min=(1x ?1.1+2x ?1.2+3x ?1.3+4x ?1.4)?a (1) 为简化问题先不带入a 约束条件 为满足客户需求应有 11r ?1x +12r ?2x +13r ?3x +14r ?4x ≧15 (2) 21r ?1x +22r ?2x +23r ?3x +24r ?4x ≧28 (3) 31r ?1x +32r ?2x +33r ?3x +34r ?4x ≧21 (4) 41r ?1x +42r ?2x +43r ?3x +44r ?4x ≧15 (5) 每一种切割模式必须可行、合理,所以每根钢管的成品量不能大于1850mm 也不能小于1750mm.于是: 1750≦290?11r +315?21r +350?31r +455?41r ≦1850 (6) 1750≦290?12r +315?22r +350?32r +455?42r ≦1850 (7) 1750≦290?13r +315?23r +350?33r +455?43r ≦1850 (8) 1750≦290?14r +315?24r +350?34r +455?44r ≦1850 (9) 由于排列顺序无关紧要因此有 1x ≧2x ≧3x ≧4x (10) 又由于总根数不能少于 (15?290+28?315+21?350+30?455)/1850≧18.47 (11) 也不能大于 (15?290+28?315+21?350+30?455)/1750≦19.525 (12) 由于一根原钢管最多生产5根产品,所以有 i r 1+i r 2+i r 3+i r 4≦5 (13)

数学建模论文——下料问题

3.下料问题 班级:计科0901班姓名:徐松林学号:2009115010130 摘要: 本文建立模型,以最少数量的原材料以及最少的余料浪费来满足客户的需求。主要考虑到两方面的问题。钢管零售商是短时间内出售钢管,则应该以最少原材料根数为目标函数来建模模型;钢管零售商是长时间内出售钢管,则应该以最少余料浪费为目标函数。有效地使用背包问题及线性规划、非线性规划等算法,算出最优解。特别是钢管零售商是短时间内出售钢管,需要分析切割模式的种类1到4种的各个情况的整数最优解,再依次比较每个情况的最优解得出总的最优解。 关键词:余料、原材料、加工费、总费用。 一、问题背景 工厂在实际生产中需要对标准尺寸的原材料进行切割,以满足进一步加工的需要,成为下料问题。 相关数据表明,原材料成本占总生产成本的百分比可以高达45%~60%,而下料方案的优劣直接影响原材料的利用率,进而影响原材料成本。因此需要建立优化的下料方案,以最少数量的原材料以及最少的余料浪费,尽可能按时完成需求任务。 二.问题描述及提出 某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出.从钢管厂进货时得到的原料钢管长度都是1850mm.现有一客户需要15根290mm、28根315mm、21根350mm 和30根455mm的钢管.为了简化生产过程,规定所使用的切割模式的种类不能超过4种,使用频率最高的一种切割模式按照一根原料钢管价值的1/10增加费用,使用频率次之的切割模式按照一根原料钢管价值的2/10增加费用,依此类推,且每种切割模式下的切割次数不能太多(一根原料钢管最多生产5根产品)。此外,为了减少余料浪费,每种切割模式下的余料浪费不能超过100mm.为了使总费用最小,应如何下料? 在该目标下要求考虑下面两个问题: 1.若钢管零售商是短时间内出售钢管(即每次将钢管按照顾客的要求切割后售 出,多余的零件不准备下次售出),则每次应该以最少原材料根数为目标函数。

数学建模--钢管下料问题

钢管下料问题 摘要: 如何建立整数规划模型并得出整数规划模型的求解方法是本实验要点, 本题建立最常见的线性整数规划,利用分支定界法和Lingo 软件进行求解原料下料类问题,即生产中通过切割、剪裁、冲压等手段,将原材料加工成所需大小;按照工艺要求,确定下料方案,使所用材料最省,或利润最大。分支定界法可用于解纯整数或混合的整数规划问题,此方法灵活且便于用计算机求解,所以现在它已是解整数规划的重要方法。Lingo 软件的功能是可以求解非线性规划(也可以做线性规划,整数规划等),特点是运算速度快,允许使用集合来描述大规模的优化问题。 大规模数学规划的描述分为四个部分: model: 1.集合部分(如没有,可省略) SETS: 集合名/元素1,元素2,…,元素n/:属性1,属性2,… ENDSETS 2.目标函数与约束部分 3.数据部分(如没有,可省略) 4.初始化部分(如不需要初始值,可省略) end 关键字:材料 Lingo 软件 整数规划 问题描述: 某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出,从钢管厂进货时得到的原料都是19米。 (1)现有一顾客需要50根4米、20根6米和15根8 米的钢管。应如何下料最节省? (2)零售商如果采用的不同切割模式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割模式不能超过3种。此外,该客户除需要(1)中的三种钢管外,还需要10根5米的钢管。应如何下料最节省。 (1)问题简化: 问题1. 如何下料最节省 ? 节省的标准是什么? 原料钢管:每根19米 4米50根 6米20根 8米15根

下料问题数学建模(钢管)

防盗窗下料问题 摘要 本文针对寻找经济效果最优的钢管下料方案,建立了优化模型。问题中的圆形管下料设定目标为切割原料圆形管数量尽可能少且在使用一定数量圆形管的过程中使被切割利用过的原料总进价尽可能低。问题中的方形管原料不足以提供所需截得的所用钢管,故设目标为使截得后剩余方形管总余量最小。模型的建立过程中,首先运用了C语言程序,利用逐层分析方法,罗列出针对一根钢材的截取模式;然后根据条件得出约束关系,写出函数关系并对圆形管下料建立了线性模型,对方形管下料建立了非线性模型;接着,在对模型按实际情况进行简化后,借助lingo程序对模型求解,得出了模型的最优解,并给出了最符合经济效果最优原则的截取方案。 关键词:钢管下料;最优化;lingo;

问题提出 某不锈钢装饰公司承接了一住宅小区的防盗窗安装工程,为此购进了一批型号为304的不锈钢管,分为方形管和圆形管两种,方管规格为25×25×1.2(mm),圆管规格Φ19×1.2(mm)。每种管管长有4米和6米两种,其中4米圆形管5000根,6米圆形管9000根,4米方形管2000根,6米方形管2000根。 根据小区的实际情况,需要截取1.2m圆管8000根, 1.5m圆管16500根,1.8m圆管12000根,1.4m方形管6000根,1.7m方形管4200根,3m方形管2800根。 请根据上述的实际情况建立数学模型,寻找经济效果最优的下料方案。 基本假设和符号说明 1、假设钢管切割过程中无原料损耗或损坏; 2、假设余料不可焊接; 3、假设同种钢材可采用的切割模式数量不限; 4、假设不同长度钢管运费、存储资源价值没有区别; 5、假设该304型号不锈钢管未经切割则价值不变,可在其它地方使用。 为便于描述问题,文中引入一些符号来代替基本变量,如表一所示: 问题分析与模型建立 问题中的圆形管原料足够,寻找经济效果最优的下料方案,即目标为切割原料圆形管数量尽可能少。考虑到6米圆形管与4米圆形管的采购价格应该是不同的,所以我们寻求的是在使用一定数量6米圆形管与4米圆形管的过程中使被切割利用过的原料总进价尽可能低。 首先要确定针对6米和4米不同规格的圆形管合理的截取模式各有哪几种。然后我们从所有截取模式中选取若干种截取模式,并设计出最佳的截取方案。 问题中的方形管原料不足以提供所需截得的所用钢管,所用的原料必然都要用于切割,不存在使用总钢管数量最少的说法,故我们可建立模型使截得后剩余方形管总余量最小。

数学建模心得体会3篇

竭诚为您提供优质的服务,优质的文档,谢谢阅读/双击去除 数学建模心得体会3篇 通过对专题七的学习,我知道了数学探究与数学建模在中学中学习的重要性,知道了什么是数学建模,数学建模就是把一个具体的实际问题转化为一个数学问题,然后用数学方法去解决它,之后我们再把它放回到实际当中去,用我们的模型解释现实生活中的种种现象和规律。 知道了数学建模的几点要求:一个是问题一定源于学生的日常生活和现实当中,了解和经历解决实际问题的过程,并且根据学生已有的经验发现要提出的问题。同时,希望同学们在这一过程中感受数学的实用价值和获得良好的情感 体验。当然也希望同学们在这样的过程当中,学会通过实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样学生要有一个尝试,一个探索的过程查询

资料等手段来获取信息,之后采取各种合作的方式解决问题,养成与人交流的能力。 实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样的话学生要有一个尝试,一个探索的过程。数学探究活动的关健词就是探究,探究是一个活动或者是一个过程,也是一种学习方式,我们比较强调是用这样的方式影响学生,让他主动的参与,在这个活动当中得到更多的知识。 探究的结果我们认为不一定是最重要的,当然我们希望探究出来一个结果,通过这种活动影响学生,改变他的学习方式,增加他的学习兴趣和能力。我们也关心,大家也可以看到在标准里面,有非常突出的数学建模的这些内容,但是它的要求、定位和为什么把这些领域加到我的标准当中,你应该怎么看待这部分内容。 数学建模学习心得体会 刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,

数学建模1-中级职称_工程系列电气装备专业技术人员继续教育线上学习

中级职称_工程系列电气装备专业技术人员继续教育线上学习_答案 数学建模1 1.在敏感问题调查中,为了减轻被调查者的抵触情绪,瓦纳设计了一种随机问答法,这种方法需要向调查者提几个问题(6.0分) A.1 B.2 C.3 D.4 我的答案:B √答对 2.如果原料钢管的长度为19米,当客户的需求为4米、6米、8米有几种合理的切割模式?(6.0分) A.6 B.7 C.8 D.不确定 我的答案:B √答对 3.原料钢管的长度为19米,客户的需求为4米50根、6米20根、8米15根,则需要的最少原料钢管数为(6.0分) A.24 B.25 C.26

D.27 我的答案:B ×答错 4.在合理切割模式下,余料的长度应该(6.0分) A.小于客户需要钢管的最小长度 B.小于客户需要钢管的最大长度 C.大于客户需要钢管的最小长度 D.大于客户需要钢管的大长度 我的答案:A √答对 5.为调查大学中某一年级学生参加外语考试作弊的比例,用随机问答法进行调查。设计的两个问题为:问题1:你在这次考试中有作弊行为;问题2:你在这次考试中无作弊行为。设计的题号卡共100张,其中75张标有数字1,25张标有数字2。请200名学生根据任意抽得的卡上的标号对问题1或问题2用“是”或“否”回答(抽出的卡再放回),结果有60名回答为“是”,则该年级学生外语考试作弊的比例约为( 6.0分) A.1% B.5% C.10% D.15% 我的答案:C √答对

1.钢管下料问题中,对于大规模问题,用模型的约束条件界定合理模式时采用的做法是(8.0分)) A.增加约束 B.缩小可行域 C.减小约束 D.增大可行域 我的答案:AB √答对 2.利用瓦纳的随机问答法进行敏感问题调查时,调查结果与下列哪些量有关(8.0分)) A.调查的人数 B.回答“是”的人数 C.标有不同数字的题号卡所占的比例 D.进行调查的时间 我的答案:ABC √答对 3.钢管下料问题2中,在客户增加了需求之后,客户需求的钢管米数为(8.0分)) A.4 B.5 C.6 D.8 我的答案:ABCD √答对 4.钢管下料问题中,在合理切割模式下,余料的米数可以为(8.0分))

智慧树知到《数学建模与系统仿真》章节测试答案

第一章单元测试 1、数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构. A:错 B:对 答案:【对】 2、数学建模是利用数学方法解决实际问题的一种实践.即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解,是对实际问题的完全解答和真实反映,结果真实可靠。 A:对 B:错 答案:【错】 3、数学模型是用数学符号、数学公式、程序、图、表等刻画客观事物的本质属性与内在联系的理想化表述. 数学建模就是建立数学模型的全过程(包括表述、求解、解释、检验). A:对 B:错 答案:【对】 4、数学模型(Mathematical Model):重过程;数学建模(Mathematical Modeling):重结果。 A:错 B:对 答案:【错】 5、人口增长的Logistic模型,人口增长过程是先慢后快。 A:错 B:对

答案:【错】 6、MATLAB的主要功能有 A:符号计算 B:绘图功能 C:与其它程序语言交互的接口 D:数值计算 答案:【 符号计算; 绘图功能; 与其它程序语言交互的接口; 数值计算】 7、Mathematica的基本功能有 A:语言功能(Programing Language) B:符号运算(Algebric Computation) C:数值运算(Numeric Computation) D:图像处理(Graphics ) 答案:【语言功能(Programing Language); 符号运算(Algebric Computation); 数值运算(Numeric Computation); 图像处理(Graphics )】 8、数值计算是下列哪些软件的一个主要功能A:Maple

关于钢材下料问题的数学建模论文

B题钢管下料问题 摘要 应客户要求,某钢厂用两类同规格但不同长度的钢管切割出四种不同长度的成品钢管。故该原料下料问题为典型的优化模型。钢厂在切割钢管时,又要求每种钢管的切割模式都不能超过5种,故我们先分别列出两种原料钢管出现频率较高的切割模式,每一问都需要针对不同钢管节约要求分别求出5种切割模式的最佳组合。 第一问要求余料最少,在切割模式的选择方面,我们尽量要求余料为零,并在此基础上要求切割得成品钢管除满足客户要求外,多余客户要求的钢管数也要尽可能的少,运用Lingo软件求出余料最少时,需要65根A类钢管采用4种切割模式切割,需要40根B类钢管采用2种切割模式切割,总余料为20米。 第二问要求总根数最少,故我们只要求总根数最少,在这里我们分了两种情况:有余料时,需A类钢管65根,采用5种切割模式,需B类钢管38根,采用4种切割模式,余料各为2米;无余料时,需A类钢管75根,采用3种切割模式,需B类钢管39根,采用4种切割模式。 第三问我们运用Lingo软件求出较优解为当m=0.4时最大收益h=a-159,具体切割模式见模型求解部分。为了找到替代比例与最大收益的关系,我们分别给m赋值为0、10%、20%、30%、40%时,用Lingo解得各自的最大收益,并用四次拟合的方法大致算出了最大收益z和替代比例m的关系,为432 3 1 3 8 1 5 . 7 m = +-+-- m m h a m 6 6 . 1 1 3 8 2 4 3 1 . 7 9 . 7 2 (a为总售出额)。 第四问就是将钢厂下料问题一般化,将本文中模型进行推广,得出了可普遍应用的一般化模型。 关键词:优化模型、整数规划模型、线性规划模型、非线性规划模型、Lingo、四次拟合

智慧树知到《数学建模与系统仿真》章节测试[完整答案]

智慧树知到《数学建模与系统仿真》章节测 试[完整答案] 智慧树知到《数学建模与系统仿真》章节测试答案 第一章单元测试 1、数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构. A:错 B:对 答案:【对】 2、数学建模是利用数学方法解决实际问题的一种实践.即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解,是对实际问题的完全解答和真实反映,结果真实可靠。 A:对 B:错 答案:【错】 3、数学模型是用数学符号、数学公式、程序、图、表等刻画客观事物的本质属性与内在联系的理想化表述. 数学建模就是建立数学模型的全过程(包括表述、求解、解释、检验). A:对 B:错

答案:【对】 4、数学模型(Mathematical Model):重过程;数学建模(Mathematical Modeling):重结果。 A:错 B:对 答案:【错】 5、人口增长的Logistic模型,人口增长过程是先慢后快。 A:错 B:对 答案:【错】 6、MATLAB的主要功能有 A:符号计算 B:绘图功能 C:与其它程序语言交互的接口 D:数值计算 答案:【 符号计算; 绘图功能; 与其它程序语言交互的接口; 数值计算】 7、Mathematica的基本功能有 A:语言功能(Programing Language)

B:符号运算(Algebric Computation) C:数值运算(Numeric Computation) D:图像处理(Graphics ) 答案:【语言功能(Programing Language); 符号运算(Algebric Computation); 数值运算(Numeric Computation); 图像处理(Graphics )】 8、数值计算是下列哪些软件的一个主要功能 A:Maple B:Java C:MATLAB D:Mathematica 答案:【Maple; MATLAB; Mathematica】 9、评阅数学建模论文的标准有: A:完全一致的结果 B:表述的清晰性 C:建模的创造性 D:论文假设的合理性 答案:【表述的清晰性;

数学建模之规划问题

数学建模之规划问题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

一、线性规划 1.简介 适用情况 用现有资源来安排生产,以取得最大经济效益的问题。如: (1)资源的合理利用 (2)投资的风险与利用问题 (3)合理下料问题 (4)合理配料问题 (5)运 输 问 题 (6)作物布局问题 (7)多周期生产平滑模型 (8)公交车调度安排 建立线性规划的条件 (1)要求解问题的目标函数能用数值指标来反映,且为线性函数; (2)要求达到的目标是在一定条件下实现的,这些约束可用线性等式或不等式描述。 线性规划模型的构成 决策变量、目标函数、约束条件。 2、一般线性规划问题 数学标准形式: 目标函数: 1 max == ∑n j j j z c x 约束条件:1 ,1,2,...,,..0,1,2,...,.=?==???≥=?∑n ij j i j j a x b i m s t x j n matlab 标准形式: 3、可以转化为线性规划的问题 例:求解下列数学规划问题

解:作変量変换1||||,,1,2,3,4,22 +-= ==i i i i i x x x x u v i 并把新变量重新排序成一维变量[]1414, ,,, ,?? ==???? T u y u u v v v ,则可把模型转化为线性规划模型 其中:[]1,2,3,4,1,2,3,4;=T c 12,1,;2??=---??? ?T b 111111131 - - ?? ??= - -???? -1 -1 3??A 。 利用matlab 计算得最优解:12342,0,=-===x x x x 最优值z=2。 程序如下: 略 二、整数规划 1.简介 数学规划中的变量(部分或全部)限制为整数时称为整数规划。目前流行求解整数规划的方法一般适用于整数线性规划。 整数规划特点 1)原线性规划有最优解,当自变量限制为整数后,出现的情况有 ①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。 ②整数规划无可行解。 ③有可行解(存在最优解),但最优解值变差。 2)整数规划最优解不能按照实数最优解简单取整获得。 求解方法分类 (1)分枝定界法—可求纯或混合整数线性规划。 (2)隔平面法—可求纯或混合整数线性规划。 (3)隐枚举法—可求“0-1”整数规划。 (4)匈牙利法—解决指派问题。 (5)蒙特卡洛法—求解各种类型规划. 整数规划的应用模型 (1)固定费用的问题。 (2)指派问题。 (3)合理下料问题。 (4)流动推销员问题。 (5)生产与销售计划问题。

数学建模与数学仿真题目(2013)

数学建模与数学仿真题目(2013) 由2-3人自由组队,对于以下问题任选其一,完成如下工作: ●建立问题的数学模型; ●建模模型的求解算法与程序; ●自选参数进行仿真计算; ●提交建模论文,包括题目、摘要、国内外研究现状、基本假设、理论建模、数值 仿真计算及相关图表,并附有相应的计算程序。 每个题目选做的小组不超过2个,先选先得。各组在课程结束2周以内提交建模论文,并由任课老师在课程结束2周的周末统一组织汇报答辩。 一、竹竿平衡问题 在杂技表演中,经常会看到杂技演员头顶一根竹竿、在竹竿之上再放一根竹竿,通过不断移动脚步来保持两根竹竿竖直平衡。试建立该系统的模型,并通过控制最下层对象的移动来实现上面两个对象的动态平衡。 二、走钢丝问题 杂技演员表演走钢丝时,经常伸开双臂或者双手拿一根长杆来保持平衡。试建立跟系统的模型,并模拟杂技演员的平衡控制过程。 三、蹦床运动员的着床制动 蹦床运动员在表演过程中可以尽情表演大幅度的起落动作,而在表演结束时却又可以一次降落就实现平稳着床,不会再发生双脚跳离蹦床的现象。试通过建模分析研究蹦床运动员表演结束时的着床过程。 四、人口发展与计划生育国策 对于中国自70年代以来施行的计划生育政策进行建模,预测中国人口数量的发展趋势和老龄化趋势,并对中国计划生育政策的调整提出建议。 五、交通枢纽信号灯设计 淄博市南京路与人民路交叉路口为十字路口,根据道路的实际宽度及车流、人流情况,设计交通信号灯的控制规则;当路口车流状况发生改变时,各信号灯的时间应该如何调整。

六、森林救火问题 森林失火后,要确定派出消防队员的数量:队员多,森林损失小,救援费用大;队员少,森林损失大,救援费用小。要求将着火区域内的火全部扑灭,因为抢救出来的林木还具有部分价值。综合考虑损失费和救援费,确定队员数量。 七、动物过河问题 现有大老虎、小老虎、大狮子、小狮子、大豹子、小豹子三家一起过河,河面上只有一条船,六个动物中只有小狮子和小豹子不会划船;当没有家长监护时,小动物就会被其他的大动物吃掉。试设计一种安全的渡河方案。 八、自卸车举升油缸的最大推力 矿用自卸车采用的自卸机构主要有单级油缸、多级油缸和杆系组合式三种方式,其中杆系组合式由于其成本低、安装空间灵活而得到广泛应用。常用的杆系组合式主要有前推连杆组合式、后推连杆组合式、前推杠杆组合式和后推杠杆组合式四种结构。试选一种结构,计算需要的油缸最大推力。 九、智能小车的最速行驶 全国大学生“飞思卡尔”杯智能汽车竞赛是韩国汉阳大学汽车控制实验室在飞思卡尔半导体公司资助下举办的以HCS12单片机为核心的大学生课外科技竞赛。组委会提供一个标准的四轮转向、四轮驱动的汽车模型,参赛队伍要制作一个能够自主识别路径的智能车,在专门设计的跑道上自动识别道路行驶,最快跑完全程而没有冲出跑道并且技术报告评分较高为获胜者。试建立汽车行驶的动力学模型,考虑汽车的附着条件、加速、制动效能,在任意给定的宽度一定、轨迹光滑路面上,建立汽车的行驶控制策略。不必拘泥于“飞思卡尔”比赛指定的路面辨识模式,大家可以在你的控制模型中添加任意合理的传感器。 十、房价调控 近几年来,我国各大城市的房价出现了普遍持续上涨、高居不下的情况。房价的上涨使生活成本大幅增加,导致许多中低收入人群买房难。因此如何有效地抑制房地产价格上扬,是一个备受关注的社会问题。现在请你就以下几个方面的问题进行讨论: ●建立一个城市房价的数学模型,通过这个模型对房价的形成、演化机理进行深入细致 的分析; ●通过分析找出影响房价的主要因素; ●给出抑制房地产价格的政策建议; ●对你的建议可能产生的效果进行科学预测和评价。

相关主题
文本预览
相关文档 最新文档