当前位置:文档之家› 凸轮轴详细

凸轮轴详细

凸轮轴详细
凸轮轴详细

凸轮轴是活塞发动机里的一个部件。它的作用是控制气门的开启和闭合动作。虽然在四冲程发动机里凸轮轴的转速是曲轴的一半(在二冲程发动机中凸轮轴的转速与曲轴相同),不过通常它的转速依然很高,而且需要承受很大的扭矩,因此设计中对凸轮轴在强度和支撑方面的要求很高,其材质一般是特种铸铁,偶尔也有采用锻件的。由于气门运动规律关系到一台发动机的动力和运转特性,因此凸轮轴设计在发动机的设计过程中占据着十分重要的地位。

目前,大部分发动机制造企业都采用整体式凸轮轴,其材料有的采用中碳低合金锻钢(经高频淬火),有的采用球墨铸铁。整体式凸轮轴加工工艺包括粗加工、半精加工和精加工。生产中采用自动线多工位机床,设备投资较大,生产线占地面积多,生产成本较高。而装配式凸轮轴只需半精加工和精加工,凸轮、齿轮、轴套可采用不同的材料,因此产品质量可减轻30%~50%;可柔性化生产,设备投资小,生产线占地面积少,生产成本较低。

1 装配式凸轮轴工艺流程

装配式凸轮轴工艺流程为校直→加工两端面中心孔、螺纹孔、驱动孔(2台加工中心并行加工)→车轴颈、齿轮毛坯、前止端面及导向轮毂→磨轴颈及导向轮毂→滚齿→压销→磨凸轮(3台磨床并行加工)→凸轮淬火→去毛刺→校直轴颈→凸轮轴颈及凸轮抛光→清洗→综合检测。

装配式凸轮轴内凸轮、轴套、偏心环、齿轮等零部件先后联成完整凸轮轴。装配过程是人工将所有凸轮轴组装。部件包括凸轮、主轴颈、齿坯放到安装上料盒中,钢管穿到各部件孔中,在安装上料盒中进行初定位。启动设备后,该上料盒进入设备中,首先用工装测头进行部件到位检测,并验证凸轮放置位置是否正确。验证通过后,使用机械手将凸轮轴上料到凸轮轴压球工位,然后各部件定位块启动以精确定位凸轮、轴颈、齿轮。到位后同时夹紧各部件,并伸出顶杆将直径超过管子内径的钢球穿过整个钢管内径,钢管外的凸轮轴部件在受到钢管膨胀伸展作用力下和钢管相互弹性变形最终形成装配式凸轮轴,这种凸轮轴组合工艺称为管内滚压扩张法。

2 凸轮轴装配工艺方法

2.1 热套法

常温下,外部零件的孔和内部钢管的外径之间有过盈,装配之前先对外部零件(凸轮、轴套)进行加热,对内部钢管进行冷却,借以消除过盈。这种工艺方法在短暂时间内完成联接过程,在轴向尺寸和角度位置方面都有很高精度。

2.2 内部高压成形法(IHU)

已经淬硬的凸轮圈与利用内部的高压力,使钢管变形形成轴向联接。通过在凸轮旁将钢管材料往外压出1/10 mm左右而达到凸轮的轴向定位。这种IHU工艺制成的装配式凸轮轴已成功应用在奥迪公司2003年投入批量生产的V6TDI轿车柴油机中。IHU装配式凸轮轴是由壁厚为2.5 mm或3.0 mm精密钢管上安装等温淬火的凸轮和钢管堵头组成。

整个周长上等壁厚的凸轮被置入一台专门的设备中,这台设备可保证轴向对准凸轮中心线和凸轮转角位置。钢管穿过如此定位好的凸轮推入,一台真空抓取机将预先定位好的各个零件放到带IHU工具的液压机上,IHU工具的模腔形状正好与制好的毛坯轴的外形轮廓相一致。将液体介质注入管内后,钢管两端用轴向塞头封死。通过将管内压力提高,使整个钢管发生塑性变形,直到贴合在IHU工具上。此时,钢管和凸轮之间接产生了力联接和形状联接。

2.3 管内滚压扩张法

利用滑动滚压原理使得薄壁钢管在带孔的外部零件中发生局部的扩张。可以利用带有滚压过盈量,穿过内管的滚压工具,使内管发生塑性扩张。上海通用汽车有限公司发动机装配式凸轮轴就采用钢球在钢管内部扩张方式。

2.4 凸轮压力套装定位法

这种工艺首次在钢管外面滚压加工出圆周方向的槽子,凸轮的孔内加工出轴向的线槽,然后从轴向将加工好的凸轮套上钢管并推入,由于钢管外径和凸轮孔之间有过盈,所以当凸轮推入到钢管上面以后就会发生塑性变形,钢管表面和凸轮孔都有一些锥度,推入之后非常牢固。蒂森克虏伯集团在大连的装配式凸轮轴的装配工艺就是采取这种方法。

3 装配式凸轮轴制造工艺特点

a.省略了毛坯件粗加工,工艺流程简单。装配式凸轮轴的各个零件加工余量小,精度高,不像整体式凸轮轴要从毛坯件(铸件或锻件)开始进行大量的毛坯粗加工和繁杂的工艺后,才能达到所要求的形状。装配式凸轮轴只需要在装配后进行半精加工和精加工,从而缩短了整个工艺流程。

b.加工余量小,便于高效率生产。各凸轮采用精铸部件,因而加工余量小。设备加工单件时间短,产能高,有利于规模化生产。如凸轮按最终形状精铸,减少了磨削余量,从而缩短了磨削时间。

c.不同的零件可使用不同的材料,以提高产品性能和加工性能。发动机对不同零件(轴套、凸轮、齿轮)有着不同的性能要求,装配式凸轮轴可在不同零件上采用不同材料。如凸轮采用粉末冶金或铸钢,凸轮轴采用冷拔钢管。这不仅有利于优化产品性能,也有利于改善凸轮轴加工性能和优化成本。

d.适应产品多品种柔性化要求。通过更换不同的轴颈和磨削不同的凸轮型线即可生产出多品种的凸轮轴。该系列产品的基本参数是一致的,包括轴颈、凸轮基圆半径、钢管直径、轴方向、长度间距等,生产线只需通过更换安装盒中的轴颈模具和切换磨床程序即可。

4 装配式凸轮轴加工工艺发展方向

a.柔性化的生产线布局。生产线布置采用单元自动化模块。单元内有龙门架式机械手上、下料,在瓶颈单元内预留位置便于扩展。单元问输送可采用自动化或人工运输,这样有利于生产线开动率的提高。

b.柔性化的产品。凸轮轴的材料和结构可根据产品设计需要灵活变化,以更多地满足市场要求,通过轴颈和凸轮型线的变化提供多品种产品。

c.高速磨削、高速磨削CBN(氮化硼)工具的使用。可以大幅度提高磨削效率,减少设备使用台数。磨削力小,零件加工精度高,工件表面粗糙度降低。砂轮寿命延长,生产成本降低。

d.多砂轮磨削和两个砂轮头架的使用。在提高砂轮转速的同时采用多砂轮磨削是另一种减少加工节拍的方法,如多砂轮磨削凸轮的同时磨轴颈外径,一台磨床使用两个砂轮头架同步加工凸轮等。

e.在线量仪的使用。为保证尺寸稳定性,装配式凸轮轴加工的关键设备越来越多地使用在线检测自动补偿功能。

f.粉末冶金等材料的使用。

g.工序集中方式加工。该方式就是将车、铣、钻、磨削的工序内容分别集中在一起,采用柔性设备组成的制造单元集中式加工。这样,将最大限度地减少工件装夹次数和上下料输送等辅助时间,有利于减少误差和提高生产效率。

h.设备单元可采用双主轴或双机床来减少加工节拍,如一个磨削单元可组合两台磨床,共用一套控制系统,并通过内置的龙门架式上下料装置输送工件。与采用两台独立的机床相比,不但节省了设备费用,而且大大减小了占地面积,并且每台磨床可使用多主轴完成磨

床组合。车床和加工中心也都可以采用双主轴的方式来提高效率。蒂森克虏伯集团在大连建立了装配式凸轮轴工厂,为发动机制造企业提供装配式凸轮轴。

采用装配式凸轮轴,发动机性能得到提高,明显改善了燃油经济性,降低了排放,减少了振动,同时也降低了制造成本。目前,装配式凸轮轴已越来越受到发动机制造企业的欢迎。

凸轮轴位置传感器

曲轴和凸轮轴位置传感器 1、功用与类型 曲轴位置传感器(Crankshaft Position Sensor,CPS)又称为发动机转速与曲轴转角传感器,其功用是采集曲轴转动角度和发动机转速信号,并输入电子控制单元(ECu),以便确定点火时刻和喷油时刻。 凸轮轴位置传感器(Camshaft Position Sensor,CPS)又称为气缸识别传感器(Cylinder Identification Sensor,CIS),为了区别于曲轴位置传感器(CPS),凸轮轴位置传感器一般都用CIS表示。凸轮轴位置传感器的功用是采集配气凸轮轴的位置信号,并输入ECU,以便ECU识别气缸1压缩上止点,从而进行顺序喷油控制、点火时刻控制和爆燃控制。此外,凸轮轴位置信号还用于发动机起动时识别出第一次点火时刻。因为凸轮轴位置传感器能够识别哪一个气缸活塞即将到达上止点,所以称为气缸识别传感器。 2.光电式曲轴与凸轮轴位置传感器 (1)结构特点 日产公司生产的光电式曲轴与凸轮轴位置传感器是由分电器改进而成的,主要由信号盘(即信号转子)、信号发生器、配电器、传感器壳体和线束插头等组成。 信号盘是传感器的信号转子,压装在传感器轴上,如图2-22所示。在靠近信号盘的边缘位置制作有均匀间隔弧度的内、外两圈透光孔。其中,外圈制作有360个透光孔(缝隙),间隔弧度为1。(透光孔占0.5。,遮光孔占0.5。),用于产生曲轴转角与转速信号;内圈制作有6个透光孔(长方形孑L),间隔弧度为60。,用于产生各个气缸的上止点信号,其中有一个长方形的宽边稍长,用于产生气缸1的上止点信号。 信号发生器固定在传感器壳体上,它由Ne信号(转速与转角信号)发生器、G信号(上止点信号)发生器以及信号处理电路组成。Ne信号与G信号发生器均由一个发光二极管(LED)和一个光敏晶体管(或光敏二极管)组成,两个LED分别正对着两个光敏晶体管。 (2)工作原理 光电式传感器的工作原理如图2-22所示。信号盘安装在发光二极管(LED)与光敏晶体管(或光敏二极管)之间。当信号盘上的透光孔旋转到LED 与光敏晶体管之间时,LED发出的光线就会照射到光敏晶体管上,此时光敏晶体管导通,其集电极输出低电平(0.1~O.3V);当信号盘上的遮光部分旋转到LED与光敏晶体管之间时,LED发出的光线就不能照射到光敏晶体管上,此时光敏晶体管截止,其集电极输出高电平(4.8~5.2V)。 如果信号盘连续旋转,透光孔和遮光部分就会交替地转过LED而透光或遮光,光敏晶体管集电极就会交替地输出高电平和低电平。当传感器轴随曲轴和配气凸轮轴转动时,信号盘上的透光孔和遮光部分便从LED与光敏晶体管之间转过,LED发出的光线受信号盘透光和遮光作用就会交替照射

凸轮轴工作原理介绍

凸轮轴需要承载的冲击力非常的大,因此凸轮轴材质的强度和承载力的需求也非常的高,一般要求是碳钢和合金钢锻造,凸轮轴的位置一般分为上中下三种,还分为了单、双、顶等多个数量的集聚。现在使用的凸轮轴多的还是顶置式,这种构造形式主要带来的是运动件少、传动链短、刚度大等优点。下面带大家简单了解一下凸轮轴工作原理。 【凸轮轴工作原理】 凸轮轴介只是活塞发动机里面的一个配件,主要是通过他来进行气门的开启和关闭的。需要承载的冲击力非常的大,因此凸轮轴材质的强度和承载力的需求也非常的高。制造的材料一般都是好的碳钢和合金钢锻造,还有是使用合金铸铁或者是球墨铸铁铸造而成的,凸轮轴工作表面还会进行热处理和磨光处理。 凸轮轴构造:凸轮轴的位置一般分为上中下三种,还分为了单、双、顶等多个数量的集聚。上置式一般处于的位置在气缸盖上,中置式一般处于的位置在机体的上面,下置式一般处于的位置在曲轴箱内部。现在使用的凸轮轴多的还是顶置式,这种构造形式主要带来的是运动件少、传动链短、刚度大等优点。

一、凸轮轴单顶置:直列形式的4缸或者6缸使用的这种,工作的原理主要是通过摇臂控制气门的开启,内置弹簧让其气门回到关闭的位置。由于气门的速度很快,所以在弹簧的选择时追求的是材质够强劲,气门一定好和弹簧与摇臂相连接。如果弹簧不够强劲造成的后果就是过多的磨损,使其缸体损坏。主要是通过皮带驱动。 二、凸轮轴双顶置:也就是每一个缸体内有两个凸轮,一些直列的发动机一般就会有两个凸轮。也是由于一个凸轮提供的做功不够而增加的一个,也是尽量的满足进气和排气的需求。工作原理其实和单顶置一样,带来的进出气更加的顺畅。主要是通过皮带驱动。 三、凸轮轴顶置:刚刚有说到这种形式的使用是广泛的,工作原理也是和前面两种一样。他主要是位于气缸的头上,没有位于发动机的缸体内部。由于上面两种是通过顶杆,在工作的过程中还增加了惯性的动力,这样也使得弹簧的负荷也相应的增加,这样也会限制发动机的转速。顶置形式的出现使其发动机的高速成为了可能,然而顶杆发动机又是通过齿轮或者短链进行驱动的。从驱动方式来看就比前面两种更稳固、更高速。

发动机凸轮轴检测方法综述

发动机凸轮轴检测方法综述 Summarize to The Measure Method of Engine Cam Shaft 摘要论述了凸轮轴测量仪的测量原理和凸轮测量数据的处理与评定方法。 Abstract: The article mainly introduces the principle of the cam shaft measuring system and the method of data processing and assess in cam shaft measuring system. 关键词凸轮轴测量数据处理评定 keywords: cam shaft ,measure, data processing , assess. 1概述 凸轮机构广泛应用于自动化机械、精密仪器、自动化控制系统中,作为发动机的关键部件,凸轮轴是影响发动机气门开闭间隙大小和配气效率的主要因素。随着凸轮轴自动化加工水平的不断提高,为了高精度、高效率地检测凸轮轴,并正确处理、评定它的各项工艺误差,及时快速地反馈凸轮轴的质量信息,传统的光学机械量仪以及采用人工数据处理的方法,已不能适应凸轮轴工艺质量管理的实际检测需要。为此广州威而信精密仪器有限公司研制了基于计算机为检测、处理核心的L系列凸轮轴测量仪,它可以实现对凸轮轴加工质量的高效、高精度检测,从而对凸轮轴磨床的磨削工艺进行实时监控,以保证产品质量和提高生产效率。 发动机凸轮轴的测量包括与设计有关因素的测量项目和与质量管理有关因素的测量项目。L-2000型凸轮轴测量仪的主要功能有: (1)检测凸轮轴的轴颈(凸轮轴的装配基准)误差(圆度,跳动); (2)检测凸轮轴的桃型(包括基圆段,爬行段,升程段等)误差;

凸轮型线设计课件

内燃机课程设计 凸轮说明书 题目90kW四行程四缸汽油机凸轮型线设计学院机电工程学院 专业热能与动力工程专业 班级热动1002 学号 姓名 指导老师刘军 日期2013-6-25

90kW四行程四缸汽油机凸轮型线设计 前言 四冲程汽车发动机都采用气门式配气机构,其功用是按照发动机的工作顺序和工作循环要求,定时开启和关闭各缸的进、排气门,使新气进入气缸,废气从气缸排出。其中,凸轮机构作为机械中一种常用机构,在自动学和半自动学当中应用十分广泛,凸轮外形设计在配气机构设计中极为重要,这是由于气门开关的快慢、开度的大小、开启时间的长短都取决于配气机构的形状。因此,配气凸轮的外形设计和配气凸轮型线设计就决定了时间的大小、配气机构各零件的运动规律及其承载情况。 任务书首先对凸轮进行设计,然后利用最大速度和最大加速度位置基于高次方程凸轮运动规律进行凸轮型线的优化设计,建立数学模型,并设计图论过渡段和绘制图轮廓图。 凸轮的设计 1.给定的参数及要求 (1)凸轮设计转速n c =4636r/min; (2)进气门开启角233°(曲轴转角),凸轮工作段包角 116.5°; (3)排气门开启角220°(曲轴转角),凸轮工作段包角 110°; (4)气门重叠角15°(曲轴转角),凸轮转角7.5°; (5)凸轮基圆直径 28mm; (6)进气门最大气门升程h vmax =8.2,排气门最大气门升程h vmax =8。 2.凸轮型线类型的选择 配气机构是发动机的一个重要系统,其设计好坏对发动机的性能、可靠性和

寿命有极大的影响。其中凸轮型线设计是配气机构设计中最为关键的部分,在确定了系统参数后,重要的问题是根据发动机的性能和用途,正确选择凸轮型线类型及凸轮参数。 凸轮型线有多种,如复合正弦,复合摆线,低次方,高次方,多项动力,谐波凸轮等。其中,高次方、多项动力、谐波凸轮等具有连续的高阶倒数的凸轮型线,具有良好的动力性能,能满足较高转速发动机配气机构工作平稳性的要求。 由于凸轮设计转速为n c =2318 r/min ,即每分钟凸轮轴转2318圈,属于高速发动机,且为使发动机运动件少,传动链短,整个机构的刚度大,因此我们用双圆弧凸轮的凸轮轴上置式配置机构。 由于四冲程发动机每完成一个工作循环,每个气缸进、排气一次。这时曲轴转两周,而凸轮轴只旋转一周,所以曲轴与凸轮轴的转速比或传动比为2:1,即由上式已知可知曲轴的转速为2318*2=4636r/min 。 3.计算凸轮的外形尺寸 图一 圆弧凸轮的几何参数示意图 由上图可知,圆弧凸轮有五个参数:基圆半径r 0=PR ,腹弧半径r 1=OA ,

凸轮轴和配气相位:配气机构精髓所在

凸轮轴和配气相位:配气机构精髓所在对于四冲程汽油机来说,发动机能够良好工作的基础有四点:一是需要良好的气缸密封性,保证气缸压力正常,这由活塞、气缸、活塞环、气缸垫、气门、缸盖保证;二是合适混合气的浓度,这由燃油供给系统指供;三是良好的润滑和冷却、这由发动机的冷却系统来保证;四是足够的点火能量,这由点火系统提供;五是正确的配气时间和点火时间:即在进气时进气门适时的打开,当压缩和作功时必须关闭,当排气时排气门要及时打开,保证燃烧后的废气排出。在混合气被压缩到一定程度后,点火系统要适时的点燃混合气。对于这些必需有时间保证的控制,在原系统的设计的基础上,需要维修工在装配时保证配气时间和点火时间的正确,这些操作的理论基础即是发动机的工作原理和配气相位。面对多种设计的配气机构和点火系统,本文将分析发动机工作原理和配气机位在发动机维修中的指导意义。 配气相位是研究发动机工作时气门的开启和关闭时间的,配气相位的基础是气门的早开和晚关。因为气门的开启和关闭由凸轮驱动,而凸轮的曲线设计决定了气门在打开和关闭时需要一段时间,而全开的时间更短,为了保证充气效率,在凸轮设计上保证气门提前打开并迟后关闭。 理解四冲程发动机的工作原理对理解配气相位有重要作用 为了了解配气相位,要从四冲程发动机的工作原理中应掌握三点内容: 一是进气、压缩、作功、排气这四个冲程中活塞的运动方向,冲程开始时活塞处于哪个点、结束时处于哪个点:进气和作功活塞下行,开始于上止点、结束于下止点;压缩与排气活塞上行,开始于下止点、结束于上止点。

二是四个冲程中气门的状态:进气时进气门打开、排气时排气门打开,在其它冲程时处于关闭状态; 三是什么时间点火:压缩即将结束,活塞到达上止点前的某一时刻,火花塞点燃气缸的混合气; 进气门开启时间:为了实现进气门早开,在进气冲程的前一个冲程即排气冲程即将结束时,也就是活塞到达上止点前某刻进气门开始开启,当排气结束活塞处于上止点时,进气门处于微开状态,这体现了进气门的早开。 进气门完全关闭时间:进气结束活塞处于下止点时,进气门并没有完全关闭,当活塞上行一段,此时已是压缩冲程,进气门才完全关闭,这体现了进气门的晚关。 排气门开启时间:为了实现排气门早开,在排气冲程的前一个冲程即作功冲程即将结束时,也就是活塞到达下止点前某刻排气门开始开启,当作功结束活塞处于下止点时,排气门处于微开状态,这体现了排气门的早开。 排气门完全关闭时间:排气结束活塞处于上止点时,排气门并没有完全关闭,当活塞下行一段,此时已是进气冲程,排气门才完全关闭,这体现了排气门的晚关。 配气相位中重要的是两个点:压缩结束上止点和排气结束上止点。在压缩结束活塞处于上止点时,进气门和排气门均处于完全关闭状态;而在排气结束活塞处于上止点时,进气门和排气门均没有完全关闭,此时即将完全关闭的是排气门、而即将打开的是进气门。 维修中的应用主要是能依据凸轮轴位置来判断某缸是处于压缩结束还是排气结束上止点。 多缸发动机同位缸的概念 多缸发动机为了保证工作平稳,要求各缸作功应均匀间隔,所以在曲轴的设计上出现了有两个缸的活塞运动方向相同,此时的两个缸被称为同位缸。当两缸活塞上行时,一个缸处于压缩冲程、另一个缸处于排气冲程,当他们处于上止点时,运用配气相位的知识,通过凸轮轴位置可以判断哪个缸处于排气结束,哪个缸处于压缩结束:两个气门均完全关闭的气缸处于压缩结束,而两个气门均处于微开一点的气缸是排气结束。 满足配气相位的要求,在曲轴的驱动下,定时的打开的关闭气门;采取化油器供油的发动机,凸轮轴上还设有偏心轮,用于驱动汽油泵;同时凸轮轴上的螺旋齿轮驱动分电器,有些发动机的螺旋齿轮同时驱动分电器和机油泵

如何区分发动机CG、CB、GS、YB (带图二)

如何区分发动机CG、CB、GS、YB 看了一些资料,知道摩托车发动机分为很多种,如CG、CB、GS、YB等,并分析了各自的性能。 看完之后,还是迷迷糊糊,不知道到底怎么区分这些发动机。 请高手介绍下,如果从外观(以图的方式)分辨这些发动机,并说说目前常见的国产品牌摩托车分别用什么发动机。 谢谢! CG,是顶杆机,CB GSX YBR是链条机! #3 摩托车,顶杆机和链条机的优点和缺点 CG 顶杆机 顶杆发动机配气机构只要由气门摇臂,挺柱,下置摇臂,和凸轮轴构成,凸轮机构在曲轴箱内,这样的形式叫OHV,也就是下置凸轮式发动机,是一种比较原始的结构,其优点是结构简单可靠性高。缺点是配气机构是往复运动,外加机件质量大,高转惯性大,极高转速工作下挺柱会因为惯性跳离摇臂,产生哒哒的噪音,所以这种形式的发动机不适合相对高速运 CB 链条机 发动机配气机构主要有时规链,链轮,凸轮轴,气门摇臂,链条张紧器,小链压条等构成,国内小链机一般都是OHC型(顶置凸轮轴)也有少数DOHC的(双顶置凸轮轴)因为凸轮轴转速必须是曲轴的1/2,所以通过时规链条带动凸轮链轮完成动力传递和减速。这样的形式优点是配气机构的重量小,运转惯性低,适合相对高的转速工作,噪音小。 CB机和CG机对比和今后发展的去向 顶杆式配气机构(CG机) 工作原理: 曲轴正时齿轮与凸轮轴齿轮相啮合,当发动机运转时,曲轴旋转,曲轴正时齿轮带动凸轮轴

齿轮旋转。凸轮轴随凸轮轴齿轮转动,使得凸轮从动件(下摇臂)随凸轮曲线的起伏而摆动。下摇臂的摆动,使顶杆上下运动,再通过气门摇臂的传动,使进、排气门按凸轮型线的规律打开、关闭。 凸轮型线: 因为进、排气口的空气流量与气门升程成正比。气门升程越大,气门开度就越大,气门流通截面的面积也就越大,空气流量就越大。而凸轮的曲线高度变化即可控制气门的升程,从而控制气缸不同工作阶段时的进、排气量。因此,合理的凸轮型线对发动机的工作非常重要。工作特点: 配气机构中,顶杆作往复运动,运动惯量大。在发动机高速运转时,顶杆以每秒几十次的高速上下运动,对下摇臂、气门摇臂形成冲击,产生冲击噪音。另外,高速旋转的曲轴正时齿轮与凸轮轴齿轮之间也会产生啮合噪音。发动机转速越高,这些噪音也越大。 顶杆对下摇臂和气门摇臂间的高速冲击,致使它们的接合面磨损很大。高速往复运动的零件产生很大的冲击载荷,加剧发动机零件间的磨损。发动机运转不平稳,振动较大。 由于顶杆等部件往复运动,产生的惯性力作用在气门摇臂上,在高速时将导致气门关闭过迟。进气门关闭过迟,将造成混合气倒流,压力损失。排气门关闭过迟,将造成可燃气泄漏,油耗上升,排放废气增加。 由于凸轮轴位于下部,凸轮与摇臂之间的传动零件过多,配气机构的刚性较差。在发动机运转时,这些零件在周期性作用力下产生变形及振动,使得气门的运动规律发生畸变,气门的开闭时间与幅度相对于凸轮型线产生了偏差,发动机的配气相位不准。将导致功率下降,油耗增加

凸轮型线设计

序号: 编码: 重庆理工大学 第二十四届“开拓杯”学生课外学术科技作品竞赛 参赛作品 作品名称:配气凸轮型线设计 作品类别: A 类别: A自然科学类学术论文 B 科技发明制作 C哲学社会科学类学术论文与社会调查报告

配气凸轮型线设计 摘要:配气机构是内燃机重要组成部分,它控制着内燃机的换气过程,其设计优劣直接影响着内燃机的动力性,经济性和排放性以及工作可靠性。今年来随着内燃机的高速化,低排放化的趋势,人们对其配气机构的性能要求越来越高。而凸轮型线配气机构的核心部分,其设计的合理性影响着配气机构的各个性能指标。凸轮型线的设计既要保证获得尽可能的大时面值和丰满系数以提高换气效率,又要保证加速度曲线连续,、无突变。本次论文针对以上情况,设计出一款缸径为68的配气凸轮,并对其性能做出相应的评价。 关键词:配气机构凸轮升程凸轮型线 Abstract:Air distribution mechanism is an important part of the internal combustion engine, which controls the gas exchange process of the internal combustion engine, the design of which has a direct impact on the engine power, economy and emissions as well as work reliability. This year, with the high speed of the internal combustion engine, the trend of low emission, the performance requirements of the gas distribution agencies are getting higher and higher. And the core part of the cam type air distribution mechanism, the rationality of its design affects the performance indexes of the air distribution mechanism. The design of the cam profile is not only to ensure that the face value and fullness coefficient are obtained as much as possible to improve the ventilation efficiency, but also to ensure that the acceleration curve is continuous, and there is no mutation. This paper, in view of the above situation, design a bore 68 of the cam, and make the corresponding evaluation on its performance. Key word:Valve train Cam lift Cam profile 1.凸轮设计的基本原则

气门异响与凸轮型线的关系

气门异响与凸轮型线的关系 颜景操 (一汽海马动力有限公司海口) 摘要:讨论了气门异响问题与凸轮型线的关系。HM479Q-B发动机在前期开发过程中出现了气门异响的问题。本文详细描述了气门异响问题的解决过程,并分析讨论了有可能产生气门异响问题的几种因素,包括凸轮粗糙度、气门压装变形及凸轮型线缓冲段截止位置气门升程和挺杆速度等。通过以上试验,增加了在凸轮轴设计方面数据的积累。 关键词:气门异响气门间隙气门压装凸轮粗糙度凸轮轴型线 引言 由于HM479Q-B是我司首次自主研制的一款发动机,开发中出现了气门异响的问题,在解决过程中,对有可能产生气门异响问题的各种因素(凸轮粗糙度、气门压装变形、凸轮轴型线)进行了分析并试验验证,最后找出气门异响与凸轮轴型线缓冲段截止点气门升程及挺杆速度之间存在的关系,为凸轮轴设计提供了宝贵的经验。 1、气门异响的发现 气门异响的现象:在怠速时,在气门室侧能清晰地听到有节奏的“嗒、嗒、嗒”响声,转速提高,响声也随之增长。 海马对气门异响有严格的检查标准,根据噪声大小,发动机异响分为A、B、C、D、E等级别,发动机热试中,车间操作人员需要对发动机进行检测并作出评定,只有C级以上的发动机才能判为合格。 08年6月,装配了60台发动机,热试过程中,发现有30台存在气门异响问题,检验人员判定噪声等级为D或E级,即发动机下线合格率只为50%。

2、原因分析 1)是否与凸轮轴的凸桃粗糙度有关:我司凸轮轴产品研制中取消了磷化处理的工艺要求,但是对于凸桃粗糙度的要求没有提高,仍然为Ra0.6,对比其他发动机厂家凸轮轴产品,不做磷化处理的凸桃粗糙度要求均提高到Ra0.2。 2)是否与气门压装变形有关:在对一台异响的HM479Q发动机进行分解后,发现气门弯曲的现象,由于不存在活塞碰气门的问题,装机气门为合格产品也就不存在气门本身弯曲的问题,最后分析确认是气门压装过程中,有压弯的可能,这是不是造成气门异响的原因? 3)是否与凸轮轴设计有关:HM479Q-B是在HM479Q发动机上衍生出来另一款机型,除了是否组装VVT以外,配气机构上只存在着凸轮轴的区别,其余均为共用件。 3、试验验证 1)为验证气门异响是否与凸轮轴的凸桃粗糙度有关,我司请供应商按照我们的要求,试制了两套凸轮轴:①经磷化处理,磷化前凸桃粗糙度要求为Ra0.6; ②取消磷化处理,凸桃粗糙度要求为Ra0.4. 为确保试验的准确性,我们抽了一台存在气门异响的发动机,按照同样的气门间隙标准进行调整,在同一热试台上热试,请同一检验人员对异响等级进行判定,对应三种状态的凸轮轴(①经磷化处理,磷化前凸桃粗糙度要求为Ra0.6; ②取消磷化处理,凸桃粗糙度要求为Ra0.4;e取消磷化处理,凸桃粗糙度要求为Ra0.6。)判定结果均为D级。 则得出结论:凸桃表面磷化处理或粗糙度改为R0.4对异响没有改善。 2)为验证气门异响是否与气门压装变形有关,在对气门压装设备进行了改善,提高了压装的稳定性后,组装了50台套新的缸盖总成用于更换39台存在气门异响的发动机上的缸盖总成。 本次试验,为同时验证调小气门间隙是否对异响有所改善,且排除人为因素对判定结果产生的影响,特别安排热试线4名异响判定人员全部参与评定,前边组装的14台发动机气门间隙按照进气:0.15±0.03mm,排气:0.19±0.03mm;后边25台气门间隙按照进气:0.22±0.04mm,排气:0.31±0.04mm调整。

配气机构凸轮型线优化设计

一、绪论 1.1引言 配气机构是内燃机的重要组成部分。它的功能是实现换气过程,即根据气缸的工作次序,定时地开启和关闭进、排气门,以保证气缸吸入新鲜空气和排除燃烧废气。一台内燃机的经济性能是否优越,工作是否可靠,噪音与振动能否控制在较低的限度,常常与其配气机构设计是否合理有密切关系。 设计合理的配气机构应具有良好的换气性能,进气充分,排气彻底,即具有较大的时面值,泵气损失小,配气正时恰当。与此同时,配气机构还应具有良好的动力性能,工作时运动平稳,振动和噪音较小,不发生强烈的冲击磨损等现象,这就要求配气机构的从动件具有良好的运动加速度变化规律,以及合适的正、负加速度值.内燃机配气凸轮机构是由凸轮轴驱动的,配气机构的这些性能指标很大程度上取决于配气凸轮的结构。本文从改进配气凸轮型线设计角度来进行配气机构优化设计研究。 1.2配气凸轮型线设计 凸轮机构从动件滚子直接与凸轮轮廓而接触并产生相对运动,利用滚子的滚动以减小因相对运动产生的摩擦与磨损,以提高机构的寿命和可靠性。在设计凸轮型线时首先满足从动件的运动规律。 从动件运动规律的应满足下列要求: ①应保证能获得尽量大的时间断面值,气门开启和关闭要快以求在尽可能小的凸轮转角内气门接近全开位置。 ②应保证配气机构各零件所受的冲击和振动尽可能小,以求大得配气机构工作得平稳性和可靠性。 为满足以上从动件的设计要求,一条良好的凸轮型线应能保证: ①适宜的配气相位。使配气相位符合发动机的特性要求,如功率、油耗、怠速及最大功率和扭矩时的转速等,保证配气机构获得尽可能大的时面值或丰满系数,以提高内燃机的充气效率和降低残余废气系数。 ②使发动机具有较好的充气性能。由于发动机的形式不同,需要的气门运动规律也就有所不同。例

相关主题
文本预览
相关文档 最新文档