当前位置:文档之家› 马吕斯定律

马吕斯定律

马吕斯定律
马吕斯定律

第12节 偏振片 马吕斯定律

一、 偏

偏振化方向(起偏方向)

1、 起偏、起偏器

2、 检偏、检偏器

A B 线偏振光通过偏振片,旋转偏振片,透射光强明暗交替变化 自然光通过偏振片变为线偏振光,旋转偏振片,透射光强不变 示教

二、 马吕斯定律 线偏振光通过一个偏振片后,

透射光强I 与入射光强之间满足

0I α2

0cos I I = 马吕斯定律

α证:设入射线偏振光的振幅 0A αcos 0//A A =,αsin 0A A =⊥ α220

2

//

0cos ==A A I I

α20cos I I = 注意:只对入射线偏振光成立

若入射光是自然光,01

I I = 讨论:0=α,0I I =

2/πα=,0=I

例:让一束自然光通过两个

偏振化方向相互垂直的

偏振片,透射光强=?

如果在两个偏振片之间 加上另一个偏振片,其 偏振化方向与第一个偏

振偏振化方向夹角为α,

透射光强αα220sin cos 21

I I =

如果每个偏振片吸收的平行于偏振化方向的光振动能量 %10透射光强%90sin %90cos %9021

220?????=ααI I

第13节 反射和折射光的偏振

入射面:(入射线,法线)

Π反射定律i i =′

折射定律γsin sin 21

n i n = M ′

反射光和折射光都是部分偏振光 反射光中,⊥

振动多于//振动

折射光中,//振动多于振动

⊥1

20n n arctg i i ==时 反射光为完全偏振光,只包含⊥0i :布儒斯特角(起偏角) 1

20n n tgi =

:布儒斯特定律 注意:(1)0i i =时,只反射部分⊥振动,不反射//振动 折射光中包含其余的⊥振动和全部的//振动

折射光仍是部分偏振光

(2)0i i =时,反射光线⊥折射光线

证明:γsin sin 201n i n =,120n n tgi ==0

0cos sin i i ,0201cos sin i n i n = γsin 2n =,02cos i n γsin ==0cos i )sin(0i ?π,20πγ=+i

(3)自然光以布儒斯特角 照射玻璃片堆,可使

折射光成为完全偏振光

折射光中只剩下//振动

例:一束自然光以布儒斯特角从空气照射

玻璃片,界面2上的反射光是

()自然光

A (

B )完全偏振光,光矢量振动方向⊥

()完全偏振光,光矢量振动方向// C ()部分偏振光

D 解:对界面1,是布儒斯特角,对界面2,0i γ是布儒斯特角 120n n tgi =,20πγ=+i ,210n n ctgi tg ==γ 例:

第14节 晶体的双折射现象

一、晶体的双折射现象

用自然光照射某些晶体(方解石)表面 产生两条折射光线 双折射现象,示教

特点:

(1) 寻常光线(o 光),遵守折射定律

非常光线(e 光),不遵守折射定律

(2) 两条光线都是线偏振光,振向不同

(3) 光轴(光线沿该方向入射不产生双折射)p253,单轴晶体,双轴晶体

某条光线与光轴构成的平面:该光线的主平面 (光,光轴):o 光主平面 Πo (光,光轴):e 光主平面

Πe (4)光振向o ⊥o 光主平面

光振向//光主平面

e e 二、 对双折射的解释

产生双折射的原因: o 光、光在晶体中的传播速度不同

e o 光波面是球面,光波面是旋转椭球面

e 沿光轴方向o 光、e 光速度相同

垂直光轴方向o 光、e 光速度相差最大

o V :e 光速度

o

o V e V

o V e e o 晶体对光的折射率,o o n V c =/o e e n V c =/晶体对e 光的折射率 、:晶体的主折射率

o n e n 1、 平行光斜入射(光轴位于 2、平行光垂直入射(光轴位于 入射面内,光轴与界面斜交) 入射面内,光轴与界面斜交)

3、 平行光垂直入射(光轴平行

4、平行光垂直入射(光轴位于 界面,光轴位于入射面内) 入射面内,光轴垂直界面)

光轴

光同传播方向,但速度不同 光同传播方向,速度相同 e o ,e o , 仍属于双折射 不属于双折射

5、 平行光斜入射(光轴//界面,光轴垂直入射面)

光、光都遵守折射定律,o e e e o o n n i n γγsin sin sin 1==

三、 偏振棱镜

1、 尼科耳(棱镜)

用加拿大树胶粘在一起

加拿大树胶对o 2、 渥拉斯顿镜

两块方解石直角棱镜构成

两者光轴相垂直

负晶体,,e e V >o V e n n <垂直板面振动的光线: 对第一块棱镜是o 光

对第二块棱镜是e 光

平行板面振动的光线: 对第一块棱镜是e 光

对第二块棱镜是o 光

垂直板面振动的光线由o 光,光密→光疏,折射光偏离法线 →e 平行板面振动的光线由e 光,光疏→光密,折射光靠近法线 →o 两条光线分开,都是线偏振光

四、 偏振片

某些双折射晶体对o 光和e

获得偏振光的方法:(1)偏振片(2)偏振棱镜

(3)以布儒斯特角照射玻璃片

例:两块偏振片叠放在一起,其偏振化方向夹角,用强度相同的

o 30自然光和线偏振光混合而成的光束垂直入射,已知两成分的入 射光透射后强度相等

求:(1)入射光中线偏振光振向与第一块偏振片偏振化方向夹角

(2)透射光强与入射光强之比

(3)若每个偏振片对透射光吸收率为,

%5 再求透射光强与入射光强之比

解:(1)设入射线偏振光强为I ,入射自然光强为I

o o 30cos 2130cos cos 222I I =α,21cos 2=α,

o

45=α (2)375.083

230

cos 2130cos cos 222==+=I I I o

o α入射光强透射光强

(3)=入射光强透射光强

=I I I 2%

9530cos %9521%9530cos %95cos 222?

?+???o o α

=338.0%)95(832

马吕斯定律实验报告

竭诚为您提供优质文档/双击可除 马吕斯定律实验报告 篇一:偏振光实验报告 实验报告 姓名:高阳班级:F0703028学号:5070309013同组姓名:王雪峰 实验日期:20XX-3-3 指导老师:助教10 实验成绩:批阅日期: 偏振光学实验 【实验目的】 1.观察光的偏振现象,验证马吕斯定律 2.了解1/2波 片,1/4波片的作用 3.掌握椭圆偏振光,圆偏振光的产生与检测. 【实验原理】 1.光的偏振性 光是一种电磁波,由于电磁波对物质的作用主要是电场,故在光学中把电场强度e称为光矢量。在垂直于光波传播方

向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为偏振态。如果光在传播过程中,若光矢量保持在固定平面上振动,这种振动状态称为平面振动态,此平面就称为振动面(见图1)。此时光矢量在垂直与传播方向平面上的投影为一条直线,故又称为线偏振态。若光矢量绕着传播方向旋转,其端点描绘的轨道为一个圆,这种偏振态称为圆偏振态。如光矢量端点旋转的轨迹为一椭圆,就成为椭圆偏振态(见图2)。 2.偏振片 虽然普通光源发出自然光,但在自然界中存在着各种偏振光,目前广泛使用 的偏振光的器件是人造偏振片,它利用二向色性获得偏振光(有些各向同性介质,在某种作用下会呈现各向异性,能强烈吸收入射光矢量在某方向上的分量,而通过其垂直分量,从而使入射的自然光变为偏振光介质的这种性质称为二向色性。)。偏振器件即可以用来使自然光变为平面偏振光——起偏,也可以用来鉴别线偏振光、自然光和部分偏振光——检偏。用作起偏的偏振片叫做起偏器,用作检偏的偏振器件叫做检偏器。实际上,起偏器和检偏器是通用的。 3.马吕斯定律 设两偏振片的透振方向之间的夹角为α,透过起偏器的线偏振光振幅为A0,

偏振光实验数据处理分析

偏振光实验数据处理分析 ——关于验证马吕斯定律的数据处理方法 一、 马吕斯定律: 1.一束光强度为的线偏振光,透过检偏器以后,透射光的光强度为α20cos I I = (1) 其中是线偏振光的光振动方向与检偏器透振方向间的夹角,该式称为马吕斯定律。 2.在光路中放入偏振片 作为起偏器,获得振动方向与 透振方向一致的线偏振光,线偏 振光的强度为入射自然光强度的 。 马吕斯定律光路图 3.在光路中放入偏振片,作为检偏器,其透振方向 与的夹角为,透过的光振 幅为 αcos A A 2 20 2 = (2) 式中为透过的线偏振光的振幅。因为 ,所以,光强度为α20cos I I = 这就是马吕斯定律,马吕斯定律说明了入射到偏振片上的线偏振光,其透射光强度的变化规律。 二、 简单实验过程 以He-Ne 激光作光源,用偏振片起偏和检偏,光电池接收,用电检流计量度光强的大小。实验从两偏振片方向(或称光轴)平行或垂直开始,记录光电流。测量时每转15记录一个数据,转180,取12个位置读数。 2 P 1 P

三、 数据处理 以角度为横坐标,光电流为纵坐标画图,并与余弦函数的平方值随着角度的变化关系比较 表1 将表1中角度θ和电流i 的数据输入,并通过工作表计算出2cosθ的值。打开Origin 数据处理软件,将含有原始数据的excel 工作表在Origin 数据处理软件中打开。 当图形窗口为当前窗口时,可以采用从菜单进行电流i 和cos 2θ的直线拟合,其拟合的函数为 Y=A+BX i 采用最小二乘法估计方程参数: B X -Y A = ∑ ∑ = N i 2 i N i i i X -X Y -Y X -X B )() )(( 对马吕斯定律的验证一般采用的方法是由实验得到的角度θ和电流i 的数据,进而用作图法得出cos 2θ和I 成正比的线性关系,如果cos 2θ与电流i 的线性关系良好,则说明马吕斯定律得以验证。然而学生用作图法验证马吕斯实验时,是用目测测试点分布而画出cos 2θ和电流i 之间的直线图,目测时测试点呈直线与否的界限难以确定,手工作图过程中也必然引入误差,以至于使实验中真正导致误差较大的原因容易被掩盖。同时,这种处理方法也使实验中产生的有规律性的误差被忽略,其结果往往达不到定量验证的目的。用Origin 数据分析软件依据最小二乘法原理进行实验数据处理,可由相关系数R 定量表示测试点的线性程度,达到定量验证物理规律的目的。由回归标准差SD 可得到实验误差。

物理公式大全

2018届高考物理公式知识点整理 一、力学公式 1、 胡克定律: F = Kx (x 为伸长量或压缩量,K 为倔强系数,只与弹簧的原长、粗细和 材料有关) 2、 重力: G = mg (g 随高度、纬度、地质结构而变化) 3 、求F 1、F 2两个共点力的合力的公式: F=θCOS F F F F 212 2212++ 合力的方向与F 1成角: tg =F F F 212sin cos θ θ + 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: F 1-F 2 F F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力 为零。 F=0 或F x =0 F y =0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力 (一个力)的合力一定等值反向 ( 2 ) 有固定转动轴物体的平衡条件: 力矩代数和为零. 力矩:M=FL (L 为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1 ) 滑动摩擦力: f= N 说明 : a 、N 为接触面间的弹力,可以大于G ;也可以等于G;也可以小于G b 、 为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面 积大小、接触面相对运动快慢以及正压力N 无关. (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关. 大小范围: O f 静 f m (f m 为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一 定 夹角。 b 、摩擦力可以作正功,也可以作负功,还可以不作功。 c 、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 α F 2 F F 1 θ

偏振光实验报告

实验题目:偏振光的研究 实验者:PB08210426 李亚韬 实验目的:掌握分光计的工作原理,熟悉偏振光的原理和性质。验证马吕斯定律,并根据 布儒斯特定律测定介质的折射率。 实验原理: 为了研究光的偏振态和利用光的偏振特性进行各种分析和测量工作,需要各种偏振元件:产生偏振光的元件、改变光的偏振态的元件等,下面分类介绍。 1 产生偏振光的元件 在激光器发明之前,一般的自然光源产生的光都是非偏振光,因此要产生偏振光都要使用产生偏振光的元件。根据这些元件在实验中的作用,分为起偏器和检偏器。起偏器是将自然光变成线偏振光的元件,检偏器是用于鉴别光的偏振态的元件。在激光器谐振腔中可以利用布儒斯特角使输出的激光束是线偏振光。 将自然光变成偏振光的方法有很多,一个方法是利用光在界面反射和透射时光的偏振现象。我们的先人在很早就已经对水平面的反射光有所研究,但定量的研究最早在1815年由布儒斯特完成。反射光中的垂直于入射面的光振动(称s 分量)多于平行于入射面的光振动(称p 分量);而透射光则正好相反。在改变入射角的时候,出现了一个特殊的现象,即入射角为一特定值时,反射光成为完全线偏振光(s 分量)。折射光为部分偏振光,而且此时的反射光线和折射光线垂直,这种现象称之为布儒斯特定律。该方法是可以获得线偏振光的方法 之一。如图1所示。因为此时 20π γ= +i ,γsin sin 201n i n =, 12 0000sin cos sin n n sin i i i tgi === γ,若n 1=1(为空气的折射率),则 2tgi n = (1) 0i 叫做布儒斯特角,所以通过测量布儒斯特角的大小可以测量介质的折射率。 由以上介绍可以知道利用反射可以产生偏振光,同样利用透射(多次透射)也可以产 生偏振光(玻璃堆)。第二种是光学棱镜,如尼科耳棱镜、格兰棱镜等,它是利用晶体的双折射的原理制成的。在晶体中存在一个特殊的方向(光轴方向),当光束沿着这个方向传播时,光束不分裂,光束偏离这个方向传播时,光束将分裂为两束,其中一束光遵守折射定律叫做寻常光(o 光),另一束光一般不遵守折射定律叫做非寻常光(e 光)。o 光和e 光都是线偏振光(也叫完全偏振光),两者的光矢量的振动方向(在一般使用状态下)互相垂直。改变射向晶体的入射光线的方向可以找到光轴方向,沿着这个方向,o 光和e 光的传播速度相等,折射率相同。晶体可以有一个光轴,叫做单轴晶体,如方解石、石英,也可以有两个光轴,叫双轴晶体,如云母、硫磺等。包含光轴和任一光线的平面叫对应于该光线的主平面,o 光电矢量的振动方向垂直于o 光主平面,e 光电矢量的振动方向平行于e 光主平面。 格兰棱镜由两块方解石直角棱镜构成,两棱镜间有空气间隙,方解石的光轴平行于棱镜的棱。自然光垂直于界面射入棱镜后分为o 光和e 光,o 光在空气隙上全反射,只有e 光透过棱镜射出。

2.实数基本定理的等价性证明

§ 2 实数基本定理等价性的证明 证明若干个命题等价的一般方法. 本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进行:Ⅰ: 确界原理单调有界原理区间套定理Cauchy收敛准则 确界原理 ; Ⅱ: 区间套定理致密性定理Cauchy收敛准则 ; Ⅲ: 区间套定理Heine–Borel 有限复盖定理区间套定理 . 一. “Ⅰ”的证明: (“确界原理单调有界原理”已证明过 ). 1. 用“确界原理”证明“单调有界原理”: 定理 1 单调有界数列必收敛 . 2. 用“单调有界原理”证明“区间套定理”: 定理 2 设是一闭区间套. 则存在唯一的点,使对有. 推论1 若是区间套确定的公共点, 则对, 当时, 总有. 推论2 若是区间套确定的公共点, 则有↗, ↘, . 3. 用“区间套定理”证明“Cauchy收敛准则”: 定理 3 数列收敛是Cauchy列.

引理Cauchy列是有界列. ( 证 ) 定理 4 的证明: ( 只证充分性 ) 教科书P217—218上的证明留作阅 读 . 现采用三等分的方法证明, 该证法比较直观. 4.用“Cauchy收敛准则”证明“确界原理”: 定理5 非空有上界数集必有上确界;非空有下界数集必有下确界 . 证(只证“非空有上界数集必有上确界”)设为非空有上界数集 . 当为有限集时 , 显然有上确 界 .下设为无限集, 取不是的上界, 为的上界. 对分区间, 取, 使不是 的上界, 为的上界. 依此得闭区间列. 验证为Cauchy 列, 由Cauchy收敛准则, 收敛; 同理收敛. 易见↘. 设↘.有↗. 下证.用反证法验证的上界性和最小性. 二. “Ⅱ”的证明: 1. 用“区间套定理”证明“致密性定理”: 定理6 ( Weierstrass ) 任一有界数列必有收敛子列. 证(突出子列抽取技巧) 定理7 每一个有界无穷点集必有聚点. 2.用“致密性定理”证明“Cauchy收敛准则”: 定理8 数列收敛是Cauchy列.

偏振光实验报告

实验1. 验证马吕斯定律 实验原理:某些双折射晶体对于光振动垂直于光轴的线偏振 光有强烈吸收,而对于光振动平行于光轴的线偏振光吸收很少(吸 收o 光,通过e 光),这种对线偏振光的强烈的选择吸收性质,叫 做二向色性。具有二向色性的晶体叫做偏振片。 偏振片可作为起偏器。自然光通过偏振片后,变为振动面平行 于偏振片光轴(透振方向),强度为自然光一半的线偏振光。如图1、图2所示: 图1中靠近光源的偏振片1P 为起偏器,设经过1P 后线偏振光 振幅为0A (图2所示),光强为I 0。2P 与1P 夹角为θ,因此经2P 后 的线偏振光振幅为θcos 0A A =,光强为θθ20220cos cos I A I ==, 此式为马吕斯定律。 实验数据及图形: P 1 P 2 线偏光 单色自然光 线偏光 图1 P 1 P 2 A 0 A 0cos θ θ 图2

从图形中可以看出符合余弦定理,数据正确。 实验2.半波片,1/4波片作用 实验原理:偏振光垂直通过波片以后,按其振动方向(或振 动面)分解为寻常光(o 光)和非常光(e 光)。它们具有相同的 振动频率和固定的相位差(同波晶片的厚度成正比),若将它们投 影到同一方向,就能满足相干条件,实现偏振光的干涉。 分振动面的干涉装置如图3所示,M 和N 是两个偏振片,C 是 波片,单色自然光通过M 变成线偏振光,线偏振光在波片C 中分 解为o 光和e 光,最后投影在N 上,形成干涉。 考虑特殊情况,当M ⊥N 时,即两个偏振片的透振方向垂直时,出射光强为:)cos 1)(2(sin 420δθ-= ⊥I I ;当M ∥N 时,即两个偏振片的透振方向平行时,出射光强为:M N 图3 分振动面干涉装置 I 0 波片 偏振片 偏振片 单色自然光

偏振光实验验证马吕斯定律

偏振光实验——验证马吕斯定律 【原理】 光是电磁波,而且是一种横波。光的电矢量在垂直于传播方向的平面内可以任意取向,若对于传播方向不对称而偏于某个方向称为偏振。光矢量振动方同与传播方向组成振动面,限于某个固定振动方向的称线偏振光,或从振动面来看,也称为平面偏振光。此外,还有一种偏振光,它的光矢量末端在垂直于传播方向的平面上随时间变化的轨迹呈椭圆或圆,故称之为椭圆偏振光或圆偏振光。本实验主要观察线偏振光(平面偏振光)。偏振器一般指线偏振器,它只允许电矢量沿某一特定方向的线偏振光通过。普通光源发出的为自然光,经过偏振器后成为线偏振光,这样的偏振器称起振器。当偏振器用来检验一个光是否偏振光时,则称为检偏器。用二色性物质制作的偏振片允许特定方向的光振动通过(这一特定方向称该偏振片的透光轴),而吸收与透光轴方向垂直的光振动。对于理想起偏器,自然光透过它之后应变成完全线偏振光。当线偏振光再次透过作为理想检偏器的同样的偏振片时,如果检偏器与起偏器透光轴互相平行,则透过的偏振光光强不变。而当二透光轴相互垂直时,透射光完全不能通过,光强为零。一般情况下,二平行放置的偏振片的透光轴互成θ角,设入射到第二片偏振片的偏振光振动振幅为E 0,光强I 0,则从第二片偏振片透射出来的偏振光振动振幅变为θcos 0E ,光强,称作马吕斯定律。本实验即是对它作验证。 θθ2020cos )cos (I E I ==当然,实际的偏振片都不是理想偏振片,由于材料、制作因素以及不可避免的表面反射、散射等原因,马吕斯定律只是近似成立。如果实验中器件安置或操作不够良好,还会产生更大差异,是应尽力避免的。本实验使用光强传感器,光源可选用普通光源或半导体激光光源。利用计算机辅实时测量设备建立光强——角度)(??I 、光强——余弦)cos (φ?I 、光强——平方余弦图,进行研究分析,以令人信服的证据验证马吕斯定律。其中角度的测量,还可以使用旋转移动传感器与偏振片连动,以1440点/转的灵敏度自动记录测量数据。 )cos (2φ?I 【仪器与器材】 Science Workshop750接口盒、光传感器、转动传感器、偏振片(二片)、光源(普通光源、半导体激光光源)光具座。 【实验内容】 1. 测定转动偏振片时,光线通过此偏振片后光强变化,说明光源性质。 2. 验证马吕斯定律,要求从φ?I 、φcos ?I 、三个曲线图综合分析论证,并分析导致实 验结果与理论存在差异的主要原因。 φ2cos ?I 【实验步骤】 Science WorkShop 1. 光传感器(1×档)接入750接口盒的模似信号输入A 口,旋转移动传感器接入数字信号输入通 道,黄色插头接1口,黑色插头接2口。 2. 启动Science WorkShop (科学工作室),在实验设置窗口(无标题·SWS )点击并拖曵模拟式插头 图标至模拟输入A 口图标,选择光传感器,确定。 3. 点击并拖曵数字式插头至数字输入口1的图标,选择旋转移动传感器(RMS ),确定;选择1440格/转,确定。 4. 点击实验设置窗口左方“采样选项……”按钮,设置采样周期为快,10Hz ,确定。 5. 点击并拖曵数字表(12.3)图标到光传感器图标,确定。 6. 点击并拖曵图表图标至光传感器图标,点击图形水平轴变量图标,选择“数码输入1,角位置”,将X 轴从时间改变为角度(弧度)。 7. 双击光传感器图标进行定标(相对光强方式): (1)取下二片偏振片,让光源直接照射光传感器。显示的当前电压值若大于1V ,则传感器盒上的灵

实数系基本定理等价性的完全互证[1]

第38卷第24期2008年12月数学的实践与认识M A TH EM A T I CS I N PRA CT I CE AND TH EO R Y V o l 138 N o 124  D ecem.,2008  教学园地 实数系基本定理等价性的完全互证 刘利刚 (浙江大学数学系,浙江杭州 310027) 摘要: 综合给出了实数系六个基本定理的等价性的完全互证方法,并归纳了各种证明方法的规律,旨在把抽象的证明转化为容易掌握的基本方法. 关键词: 实数系;连续性;等价;极限 收稿日期:2005206210 实数系基本定理是数学分析中重要组成部分,是分析引论中极限理论的基础,也称为实数系的连续性定理.能够反映实数连续性的定理很多,它们是彼此等价的.现有的教材都是按照某一顺序将这些定理进行一次循环证明就验证了它们的等价性[122].虽然不同的教材对于循环证明的顺序有所不同,但每一次循环证明看起来都似乎没有关联,并没有综合归纳其中的方法技巧.这么多相互独立的证明使得不少学生都感到数学分析中这部分内容太抽象,难以理解.因而当遇到一个教材中没有给出的2个定理之间的等价性证明时就无从下手.为此,在讲述这些定理的时候,我们把这些定理的相互证明详细地整理出来,并且归纳给出了这些定理的完全互证方法与规律,使学生在学习这部分内容时不再感到无所适从. 我们使用的教材[1]中给出的实数系的六个基本定理及其描述为: 1)确界存在定理(pp .12):上(下)有界的非空数集必存在唯一上(下)确界. 2)递增(减)有界数列必有极限(pp .34). 3)闭区间套定理(pp .41):设I 1,I 2,…,I n ,…是一串有界闭区间,I 1=I 2=…=I n = …,且I n 的长度 I n →0,称{I n }为闭区间套.则闭区间套{I n }的交∩∞ n =1 I n 必不空且为单点集. 4)Bo lzano 2W eierstrass 定理(pp .44):有界数列必有收敛子列 .5)Cauchy 收敛准则(pp .299):数列{x n }收敛Ζ{x n }是基本数列. 6)有限开覆盖定理(pp .308):若开区间族{O Α}覆盖了有界闭区间[a ,b ],则从{O Α}中必可挑出有限个开区间O Α1,O Α2,…,O Αn 同样覆盖了[a ,b ]:[a ,b ]

高中物理重要定律,公式

高中物理公式、规律汇编表 穆再排尔?艾合麦提

3 2 a k T =一、力学公式 1、 胡克定律: F = Kx (x 为伸长量或压缩量,K 为倔强系数,只与弹簧的原长、粗细和材料有关) 2、 重力: G = mg (g 随高度、纬度、地质结构而变化) 3 、求F 1、F 2两个共点力的合力的公式: 合力的方向与F 1成α角: tg Φ= 212sin cos F F F q q +,当0 90=θ时tan φ=1 2F F 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: ? F 1-F 2 ? ≤ F ≤ F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、摩擦力的公式: (1 ) 滑动摩擦力: f= μN 说明 : a 、N 为接触面间的弹力,可以大于G ;也可以等于G;也可以小于G b 、 μ为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面 积大小、接触面相对运动快慢以及正压力N 无关. (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关. 大小范围: O ≤ f 静≤ f m (f m 为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一 定 夹角。 b 、摩擦力可以作正功,也可以作负功,还可以不作功。 c 、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d 、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用 5、开普勒行星运动定律 开普勒第一定律:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上, 开普勒第二定律:对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积, 开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。 6、 万有引力:公式表示:F=2 21r m Gm G=6.67×10-11Nm 2/kg 2 。 (1)、万有引力和重力 ①重力是由于地球的吸引而使物体受到的力,但重力不就是万有引力. ②在地球两极上的物体所受重力等于地球对它的万有引力,2 GMm mg R = ③若不考虑地球自转的影响,地面上质量为m 的物体所受重力mg 等于地球对物体的引力,即:2 GMm mg R = 式中M 为 1

验证马吕斯定律实验报告

验证马吕斯定律实验报告 用Origin进行线性拟合并修正系统误差——以“验证马吕斯定律”实验为例主要包含的内容:介绍了用Microcal Origin软件进行实验数据处理与线性拟合并进行系统误差修正的具体方法。以验证马吕斯定律实验中入射光振动方向与检偏器主截面之间的夹角θ和通过光电探测器探测到的光电流强度Iθ的数据处理以及Iθ~cos2θ线性拟合为例,并找出系统误差,对测量结果进行修正,展现了Origin软件的便捷、高效、直观等优点。 对于线性曲线拟合,常用的方法有作图法,即在作图纸上人工拟合直线,此方法很方便,但却不是一种建立在严格的统计理论基础上的数据处理方法。在作图纸上人工拟合直线时存在一定的主观随意性,难免会增大误差。而最小二乘法是数据线性拟合中最常用的一种实验数据处理方法。但是,如果运用最小二乘法手工计算拟合参数值,所需的计算比较繁琐,且容易出错。现在计算机中的Excel或是Origin等数据图像分析软件中,在进行线性拟合时大都选用了最小二乘法算法。运用计算机软件进行数据处理和作图,有着简便快速、精确度更高的优点,这也是信息时代发展的要求。本文将选用验证马吕斯定律实验为例,介绍运用Origin 软件进行实验数据线性拟合的具体方法,并通过Origin软件处理实现消除系统误差。 用Origin实现实验数据的线性拟合 下面是以验证马吕斯定律实验为例,说明Origin在运用最小二乘法算法进行实验数据线性拟合的方法步骤。 数据输入与处理 首先将得到的实验数据输入Origin的工作表worksheet中.按其默认设置打开一个工作表窗口,在本文实验中共有11组数据,将其输入工作表中,如图2中A (X1) , I1 (Y1) , I2 (Y1) , I3 (Y1) 所示。然后在工作表中通过Column/Add New Column新增一列,命名为B (X2) 用于存放夹角θ的余弦的平方.选中Column B (X2) ,右击然后选Set Column Values将跳出一个窗口,然后在编辑窗口输入Column B (X2) 的赋值运算公式:Col (B) =cos (Col (A) *pi/180) ^2, 点击OK,则可快速求得夹角θ的余弦的平方。同样的方法再新增一列命名为IMean (Y2) .IMean (Y2) 用于存放光电流Iθ的平均值,其赋值运算公式为:Col (IMean) = (Col (I1) +Col (I2) +Col (I3) ) /3,即得到电流Iθ的平均值。 用Origin进行线性拟合并修正系统误差 调用绘图窗口 点击Plot菜单的Scatter功能项,将弹出绘图坐标轴选项。将B (X2) 设置为X轴,将IMean (Y2) 设置为Y轴后, 出现绘图Graph窗口下的数据点状分布图。 用Origin修正系统误差 这一误差主要是由仪器误差和环境误差等造成的系统误差.要减小系统误差,一是消除产生

光偏振及其应用论文

光偏振及其应用 班级:116041A 姓名:孙思颖 摘要: 本文先全面地介绍了偏振光的定义和分类,其中包括线偏振光、椭圆偏振光和圆偏振光,然后阐释了偏振光的产生方法,给出马吕斯定律,详细地介绍了波光片的结构,以及怎样形成偏振光。 然后,通过四个实验(分别为求得系统偏振率,验证马吕斯定理,测量晶体旋光度,观察椭圆偏振光和圆偏振光)的分析,得到相应的结论,并同时进行了相应的误差分析。 最后,在所做实验基础上进行思考与拓展,并给出创新见解及方法。 Abstract: This paper first introduced the definition and classification of polarized light, including linear polarized light, elliptically and circularly polarized light, and then explains the method to produce polarized light, Ma Lu's law, introduces in detail the structure light sheet, and how the formation of polarized light. Then, through four experiments (respectively to obtain polarization rate, verify the Marius theorem, measurement of crystal rotation, observe the elliptically and circularly polarized light) analysis, obtains the corresponding conclusion, and also analyzes the error. Finally, in the experimental basis of thinking and development, and gives the ideas and methods. 关键词:光波(light wave)、偏振光(Polarizaed Light)、光矢量(The light vector)、自然光(Natural light)、部分偏振光(Partially polarized light)、线偏振光(Linearly polarized light)、椭圆偏振光(Elliptically polarized light)、圆偏振光(Circularly polarized light)、偏振角(Angle of polarization)、寻常光(ordinary light)、非寻常光(extraordinary light)、起偏器(Polarizer)、旋光性(optical activity)。 【理论分析】 1偏振光的基本定义 光波(Figure 1)是电磁波,是 一种横波,垂直于传播方向的振动矢 量有电矢量和磁矢量。由于在光和物 质的相互作用过程中主要是光波中 的电矢量起作用,所以在研究时,通 常以电矢量E作为光波中振动矢量 的代表,叫光矢量。 Figure 1光波示意图 偏振(polarization)指的是波

初中物理公式大全

初中物理公式大全 速度:V(m/S)v= S:路程/t:时间 重力G (N)G=mg(m:质量;g:9.8N/kg或者10N/kg ) 密度:ρ(kg/m3)ρ= m/v (m:质量;V:体积) 合力:F合(N)方向相同:F合=F1+F2 ;方向相反:F合=F1—F2 方向相反时,F1>F2 浮力:F浮(N) F浮=G物—F拉(G视:物体在液体的重力) 浮力:F浮(N) F浮=G物(此公式只适用物体漂浮或悬浮) 浮力:F浮(N) F浮=G排=m排g=ρ液gV排(G排:排开液体的重力;m排:排开液体的质量;ρ液:液体的密度;V排:排开液体的体积(即浸入液体中的体积) ) 杠杆的平衡条件:F1L1= F2L2 (F1:动力;L1:动力臂;F2:阻力;L2:阻力臂) 定滑轮:F=G物S=h (F:绳子自由端受到的拉力;G物:物体的重力;S:绳子自由端移动的距离;h:物体升高的距离) 动滑轮:F= (G物+G轮)/2 S=2 h (G物:物体的重力;G轮:动滑轮的重力) 滑轮组:F= (G物+G轮)S=n h (n:通过动滑轮绳子的段数) 机械功:W (J)W=Fs (F:力;s:在力的方向上移动的距离) 有用功:W有=G物h 总功:W总W总=Fs 适用滑轮组竖直放置时 机械效率:η=W有/W总×100% 功率:P (w)P= w/t (W:功; t:时间) 压强p (Pa)P= F/s (F:压力; S:受力面积) 液体压强:p (Pa)P=ρgh (ρ:液体的密度;h:深度【从液面到所求点的竖直距离】) 热量:Q (J)Q=cm△t (c:物质的比热容;m:质量;△t:温度的变化值)

大学物理实验光的偏振

实验27 光的偏振 一、实验目的 1、观察光的偏振现象,加深对光的偏振的理解。 2、了解偏振光的产生及其检验方法。 3、观测布儒斯特角,测定玻璃折射率。 4、观测椭圆偏振光与圆偏振光。 5、了解1/2波片和1/4波片的用途。 二、实验原理 1、光的偏振状态 光是电磁波,它是横波。通常用电矢量E表示光波的振动矢量。 (1)自然光其电矢量在垂直于传播方向的平面内任意取向,各个方向的取向概率相等,所以在相当长的时间里(10-5秒已足够了),各取向上电矢量的时间平均值是相等的,这样的光称为自然光,如图27-l所示。 (2)平面偏振光电矢量只限于某一确定方向的光,因其电矢量和光线构成一个平面而称其为平面偏振光。如果迎着光线看,电矢量末端的轨迹为一直线,所以平面偏振光也称为线偏振光,如图27-2所示。 (3)部分偏振光电矢量在某一确定方向上较强,而在和它正交的方向上较弱,这种光称为部分偏振光,如图27-3所示。部分偏振光可以看成是线偏振光和自然光的混合。 (4)椭圆偏振光迎着光线看,如果电矢量末端的轨迹为一椭圆,这样的光称为椭圆偏振光。椭圆偏振光可以由两个电矢量互相垂直的、有恒定相位差的线偏振光合成得到。 (5)圆偏振光迎着光线看,如果电矢量末端的轨迹为一个圆,则这样的光称为圆偏振光。圆偏振光可视为长、短轴相等的椭圆偏振光。 图27-4 椭圆偏振光

2、布儒斯特定律 反射光的偏振与布儒斯特定律 如图27-5所示,光在两介质(如空气和玻璃片等)界面上,反射光和折射光(透射光)都是部分偏振光。当反射光线与折射光线的夹角恰为90°时,反射光为线偏振光,其电矢量振动方向垂直于入射光线与界面法线所决定的平面(入射面)。此时的透射光中包含平行于入射面的偏振光的全部以及垂直于入射面的偏振光的其余部分,所以透射光仍为部分偏振光。由折射定律很容易导出此时的入射角 α 满足关系 1 2 tan n n = α (27-1) (27-1)式称为布儒斯特定律,入射角 α 称为布儒斯特角,或称为起偏角。若光从空气入射到玻璃(n 2约为1.5),起偏角约56°。 3、偏振片、起偏和检偏、马吕斯定律 (1)由二向色性晶体的选择吸收所产生的偏振 自然光 偏振光 1I 0 起偏器 检偏器 自然光 I ' 图a 偏振片起偏 图b 起偏和检偏 图27-6 偏振片 有些晶体(如电气石)、长链分子晶体(如高碘硫酸奎宁),对两个相互垂直振动的电矢量具有不同的吸收本领,这种选择吸收性称为二向色性。在两平板玻璃间,夹一层二向色性很强的物质就制成了偏振片。自然光通过偏振片时,一个方向的电矢量几乎完全通过(该方向称为偏振片的偏振化方向),而与偏振化方向垂直的电矢量则几乎被完全吸收,因此透射光就成为线偏振光。根据这一特性,偏振片既可用来产生偏振光(起偏),也可用于检验光的偏振状态(检偏)。 (2)马吕斯定律 用强度为I 0的线偏振光入射,透过偏振片的光强为I ,则有如下关系 θ 20cos I I = (27-2) (27-2)式称为马吕斯定律。θ 是入射光的E 矢量振动方向和检偏器偏振化方向之间的夹角。以入射光线为轴转动偏振片,如果透射光强 I 有变化,且转动到某位置时I =0,则表明入射 光为线偏振光,此时 θ =90°。 4、波片 (1)两个互相垂直的、同频率的简谐振动的合成 设有两各互相垂直且同频率的简谐振动,它们的运动方程分别为 )cos() cos(2211?ω?ω+=+=t A y t A x (27-3) 合运动是这两个分运动之和,消去参数t ,得到合运动矢量末端运动轨迹方程为 )(sin )cos(2122 12212 2 2212????-=--+A A xy A y A x (27-4) 上式表明,一般情况下,合振动矢量末端运动轨迹是椭圆,该椭圆在2122A A ?的矩形范围内。如果(27-3)式表示的是两线偏振光,则叠加后一般成为椭圆偏振光。下面讨论相位 差 12???-=?为几种特殊值的情况。 ①当π?k 2=?( k =0, ±1, ±2, …)时,(27-4)式变为

物理常见公式的推导

高中物理公式 一、力胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长、粗细和材料有关) 1、重力: G = mg (g随离地面高度、纬度、地质结构而变化;重力约等于地面上物体受到的地球引力) 3 、求F 1、F2两个共点力的合力:利用平行四边形定则。 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围:? F1-F2 ?≤ F≤ F1 + F2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1)共点力作用下物体的平衡条件:静止或匀速直线运动的物体, 所受合外力为零。 F合=0 或: F x合=0 F y合=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向 (2* )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解) 力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力: 滑动摩擦力: f= μ F N 说明:① F N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G ②μ为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N 无关. 静摩擦力:其大小与其他力有关,由物体的平衡条件或牛顿第二定律求解,不与正压力成正比. 大小范围: O≤ f静≤ f m (f m为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反。 b、摩擦力可以做正功,也可以做负功,还可以不做功。 c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、浮力: F= ρgV (注意单位) 7、万有引力: F=G m m r 12 2 (1)适用条件:两质点间的引力(或可以看作质点,如两个均匀球体)。 (2) G为万有引力恒量,由卡文迪许用扭秤装置首先测量出。 (3)在天体上的应用:(M--天体质量,m—卫星质量, R--天体半径,g--天体表面重力加速度,h—卫星到天体表 面的高度) a 、万有引力=向心力 G V R h m R h m T R h 2 2 2 2 2 4 () ()() + =+=+ ω π

验证马吕斯定律实验报告

马里乌斯定律:马留斯指出:通过偏振器的I(Ο)线性偏振光的强度,透射光的强度(不考虑吸收)是I = I(Ο)cos吗?θ。(θ是入射光线的偏振光的振动方向与偏振器的偏振方向之间的夹角。)马里乌斯定律指出,光线在各向同性均匀介质中传播时,始终与波表面保持正交。,入射波面与出射波面的对应点之间的光路是恒定的,根据电磁波理论,光是剪切波,其振动方向与光的传播方向垂直。在垂直于光波传播方向的平面上,光矢量可能具有不同的振动方向,通常,光矢量保持一定振动方向的状态称为偏振态,偏振器产生的偏振光通过偏振器后,如图所示,OM表示偏振片的偏振方向,on表示偏振偏振器的偏振方向,其夹角为α。自然光穿过偏振器,并沿OM 方向变为线性偏振光。假设其振幅为E0,但偏振器仅允许其分量沿打开方向通过。因此,从偏振器发出的光的振幅为e =e 0cosα。因此,如果入射偏振片的光强度为I0,则偏振片发出的光强度与原始光强度和偏振片角度具有一定关系。Marius在1808年通过实验指出,线性偏振光的强度与IO的强度一起通过偏振器,透射光的强度(不考虑吸收)为:I = IO(COSα)^ 2,其中α是入射光线的偏振光的振动方向与偏振器的偏振方向之间的角度。通过偏振器后,透射光的强度为I = IO(COSα)^2。其中,α是线性偏振光的光振动方向与偏振器的透射方向之间的夹角,称为马里斯定律。将偏振器P1放置在光路中作为偏振器,以获得具有与P1透射方向相同的振动方向的线性偏振光。线性偏振光的强度是入射自然光强度的一半。偏振器P2作为偏振器放置在光路中。P2和P1之间的夹角为:e = EO

(COSα)和I = IO(COSα)^2。这是马里斯定律。当α= 0°或180°,I = IO时,透射光最强。当α= 90°或270°,I = 0时,透射光强度为零。对于其他值,光强度在0到Io之间。简单原理:两个偏振器的透射方向之间的角度为α,通过偏振器的偏振光的幅度为Ao,那么通过偏振器的幅度为a,则a = aocosα。因为检测器检测到光强度,所以光强度为I = a ^ 2,I =(aocosα)^ 2 = IO(COSα)^2。两个偏振器靠近在一起,并放置在灯的前面。这样就不会有光如果其中之一旋转180度,旋转过程中会发生什么?答:通过偏振片的光强度先增加,然后减小到零。再问一遍:平行度是最强的,并且在90度没有光线。那30度和60度呢?除了平行和垂直条件外,其他偏转角的光强度如何?根据马里乌斯定理,当I = 3/4 I0、60°且I = 1/4 I0时,验证实验:马里乌斯定律是指当线性偏振光矢量的振动方向与偏振片的光透射轴方向之间的夹角时为θ,通过偏振器的光强度I满足以下公式:I = I0 cos ^ 2θ(1)偏振器pa产生一条偏振光线,强度为I0,其透射方向为mm',通过后通过偏振器PB,根据马吕斯定律,透射光强度为I = I0 cos ^ 2θ。为了定量检测透射光强度,在P B之后放置一个光电管。根据光电管的输出电流I与透射光强度I 的关系,光电管的输出电流为I = ki(2),I = I0 cos ^ 2θ(3),其中I0 = ki0。因此,光电管的输出电流I与偏振器的透射方向之间的角度为余弦平方。

证明热力学第三定律的两种表述是等价的

证明热力学第三定律的两种表述是等价的 080311班 赵青 080311044

证明热力学第三定律的两种表述是等价的 一、热力学第三定律 英文名称: Third law of thermodynamics 热力学第三定律是在低温现象的研究中总结出来的一个普通规律。 1906年,德国物理学家能斯特(Nernst ,右图)在研究低 温条件下物质的变化时,把热力学的原理应用到低温现象和化学反应过程中,发现了一个新的规律,称为能斯特定律,简称能氏定理。这个规律被表述为:“当绝对温度趋于零时,凝聚系(固体和液体)的熵(即热量被温度除的商)在等温过程中的改变趋于零。”即: 0)(lim 0 =?→T T S 式中T S )(?为可逆等温过程中熵的变化。德国著名物理学家普朗克把这一定律改述为:“当绝对温度趋于零时,固体和液体的熵也趋于零。”这就消除了熵常数取值的任意性。 德国物理学家普朗克(Max Karl Ernst Ludwig Planck, 1858~ 1947)(右图) 是量子物理学的开创者和奠基人,他早期的研究领域主要是热力学,他的博士论文就是《论热力学的第二定律》。他在能斯特研究的基础上,利用统计理论指出:各种物 质的完美晶体在绝对零度时熵为零。1911年普朗克也提出了对热力学第三定律的表述,即“与任何等温可逆过程相联系的熵变, 随着温度的趋近于零而趋近于零”。 1912年,能斯特又将这一规律表述为绝对零度不可能达到原理:“不可能使一个物体冷却到绝对温度的零度。”这就是热力学第三定律。 1940 年R.H.否勒和 E.A.古根海姆还提出热力学第三定律的另一种表述形式:任何系统都不能通过有限的步骤使自身温度降低到0K ,称为0K 不能达到原理。此原理和前面所述及的热力学第三定律的几种表述是相互有联系的。但在化学热力学中,多采用前面的表述形式。 通常认为,能氏定理和绝对零度不能达到原理是热力学的两种表述。

物理学中的定律公式

一、物理定律、原理: 1、牛顿第一定律(惯性定律) 2、阿基米德原理 3、光的发射定律 4、欧姆定律 5、焦耳定律 6、能量守恒定律 二、物理规律: 1、平面镜成像的特点 2、光的折射规律 3、凸透镜成像规律 4、两力平衡的条件和运用 5、力和运动的关系 6、液体压强特点 7、物体浮沉条件8、杠杆平衡条件9、分子动理论 10、做功与内能改变的规律11、安培定则12、电荷间的作用规律 13、磁极间的作用规律14、串、并联电路的电阻、电流、电压、电功、电功率、电热的分配规律 三、应记住的常量: 1、热:1标准大气压下,冰水混合物的温度为0℃,沸水的温度为100℃ 体温计的量程:35℃~42℃分度值为0.1℃ 水的比热:C水=4.2×103J/(kg.℃) 2、速度:1m/s=3.6km/h 声音在空气的传播速度:V=340m/s V固>V液>V气 光在真空、空气中的传播速度:C=3×108m/s 电磁波在真空、空气中的传播速度:V=3×108m/s 3、密度:ρ水=ρ人=103kg/m3 ρ水>ρ冰ρ铜>ρ铁>ρ铝 1g/cm3=103kg/m3 1L=1dm3 1mL=1cm3 g=9.8N/kg 4、一个标准大气压:P0=1.01×105Pa=76cm汞柱≈10m水柱 5、元电荷的电量:1e=1.6×10-19C 一节干电池的电压:1.5V 蓄电池的电压:2V 人体的安全电压:不高于36V 照明电路的电压:220V 动力电路的电压:380V 我国交流电的周期是0.02s,频率是50Hz,每秒换向100次。 1度=1Kw.h=3.6×106 J 四、物理中的不变量: 1、密度:是物质的一种特性,跟物体的质量、体积无关。 2、比热:是物质的一种特性,跟物质的吸收的热量、质量、温度改变无关。 3、热值:是燃料的一种特性,跟燃料的燃烧情况、质量、放出热量的多少无关。 4、电阻:是导体的一种属性,它由电阻自身情况(材料、长度、横截面积)决定,而跟所加的电压的大小,通过电流的大小无关。 5、匀速直线运动:物体的速度不变,跟路程的多少,时间长短无关。 五、生活中的物理模型: 1、连通器:如水壶、水位计、船闸等。 2、杠杆:如撬棒、天平、杆秤、独轮车、铡刀等。 3、轮轴:如板手、螺丝刀、自行车的车把等。

相关主题
文本预览
相关文档 最新文档