当前位置:文档之家› 热轧无缝钢管知识大全包括热轧无缝钢管缺陷

热轧无缝钢管知识大全包括热轧无缝钢管缺陷

热轧无缝钢管知识大全包括热轧无缝钢管缺陷
热轧无缝钢管知识大全包括热轧无缝钢管缺陷

2、热轧钢管生产工艺流程

2.1一般工艺流程

热轧无缝钢管的生产工艺流程包括坯料轧前准备、管坯加热、穿孔、轧制、定减径和钢管冷却、精整等几个基本工序。

当今热轧无缝钢管生产的一般主要变形工序有三个:穿孔、轧管和定减径;其各自的工艺目的和要求为:

2.1.1穿孔:将实心的管坯变为空心的毛管;我们可以理解为定型,既将轧件断面定为圆环状;其设备被称为穿孔机。对穿孔工艺的要求是:首先要保证穿出的毛管壁厚均匀,椭圆度小,几何尺寸精度高;其次是毛管的内外表面要较光滑,不得有结疤、折叠、裂纹等缺陷;第三是要有相应的穿孔速度和轧制周期,以适应整个机组的生产节奏,使毛管的终轧温度能满足轧管机的要求。

2.1.2轧管:将厚壁的毛管变为薄壁(接近成品壁厚)的荒管;我们可以视其为定壁,即根据后续的工序减径量和经验公式确定本工序荒管的壁厚值;该设备被称为轧管机。对轧管工艺的要求是:第一是将厚壁毛管变成薄壁荒管(减壁延伸)时首先要保证荒管具有较高的壁厚均匀度;其次荒管具有良好的内外表面质量。

2.1.3定减径(包括张减):大圆变小圆,简称定径;相应的设备为定(减)径机,其主要作用是消除前道工序轧制过程中造成的荒管外径不一(同一支或同一批),以提高热轧成品管的外径精度和真圆度。对定减径工艺的要求是:首先在一定的总减径率和较小的单机架减径率条件下来达到定径目的,第二可实现使用一种规格管坯生产多种规格成品管的任务,第三还可进一步改善钢管的外表面质量。

20世纪80年代末,曾出现过试图取消轧管工序,仅使用穿孔加定减的方法生产无缝钢管,简称CPS,即斜轧穿孔和张减的英文缩写),并在南非的Tosa厂进

行了工业试验,用来生产外径:33.4~179.8mm,壁厚3.4~25mm的钢管,其中定径最小外径为101.6mm;张减最大外径我101.6mm。经过实践检验,该工艺在产生壁厚大于10mm的钢管时质量尚可,但在生产壁厚小于8mm的钢管时通过定径、张减不能完全消除穿孔毛管的螺旋线,影响了钢管的外观质量。在随后的改造中不得不在穿孔机于定减径机之间增设了一台MINI-MPM(4机架)来确保产品质量。

2.2各热轧机组生产工艺过程特点

我们通常将毛管的壁厚加工称之为轧管。轧管是钢管成型过程中最重要的一个工序环节。这个环节的主要任务是按照成品钢管的要求将厚壁的毛管减薄至与成品钢管相适应的程度,即它必须考虑到后继定、减径工序时壁厚的变化,这个环节还要提高毛管的内外表面质量和壁厚的均匀度。通过轧管减壁延伸工序后的管子一般称为荒管。轧管减壁方法的基本特点是在毛管内按上刚性芯棒,由外部工具(轧辊或模孔)对毛管壁厚进行压缩减壁。依据变形原理和设备特点的不同,它有许多种生产方法,如表1所示。一般习惯根据轧管机的形式来命名热轧机组。轧管机分单机架和多机架,单机架有自动轧管机、阿塞尔轧机、ACCU-ROLL等,斜轧管机都是单机架的;连轧管机都是多机架的,通常4~8个机架,如MPM、PQF等。目前主要使用连轧(属于纵轧)与斜轧两种轧管工艺。

表1 轧管减壁的工艺方法

2..2.1连续轧管机的几种形式:连轧管机是在毛管内穿入长芯棒后,经过多机架顺序布置且相临机架辊缝互错(二辊式辊缝互错90°,如图1所示;三辊式辊缝

互错60°)的连轧机轧成钢管,它是当今被最广泛应用的纵轧钢管方法。连轧管机轧制过程中,轧件变形实际上是受多组(4~8组)轧辊与芯棒的反复作用从圆到椭圆…椭圆再到圆的过程。

连轧管机的发展历史悠久,早在19世纪末就曾尝试在长芯棒上进行轧管,但种种原因,至1950年世界上仅有6台连轧管机。1960年后,随着科学技术的进步和生产的发展,特别是电子计算机技术的飞速发展和应用,使连轧管机在生产工艺和设备上日趋完善,得到了迅速的发展和推广。在浮动芯棒连轧管机的基础上,限动芯棒连轧管机于20世纪60年代中期进行了工艺试验,获得了可喜的成果。1978年世界上第一套限动芯棒连轧管机(MPM)在意大利达尔明钢管厂建成投产,连轧管工艺发展到了一个新的水准。20世纪90年代末又推出了三辊连轧管机(PQF)技术,使连轧管工艺装备跃上了更高的台阶。

连轧管机在PQF出现以前,都是两辊式的,即由两个轧辊为一组组成孔型,二辊式的机架既有与地面呈45°交错布置的,也有与地面垂直、水平交错布置的;PQF为三辊式的,即由三个轧辊为一组组成孔型;;MPM与PQF孔型构成见(图2);连轧管时,孔型顶部的金属由于受到轧辊外压力和芯棒内压力作用而产生轴向延伸,并向圆周横向宽展,而孔型侧壁部分的金属与芯棒不接触,但它被顶部轴向延伸的金属对它附加的拉应力作用而产生轴向延伸,并同时产生轴向拉缩。不论两辊式的还是三辊式的连轧管机,按芯棒的运行方式可分为以下三种形式。

2.2.1.1浮动芯棒连轧管机(或全浮动芯棒连轧管机):简称MM(Mandrel Mill),一般设有8个机架。轧制过程中对芯棒速度不加以控制,芯棒由被辗轧金属的摩擦力带动自由跟随管子通过轧机,芯棒的运行速度是不受控的;轧制过程中芯棒的运行速度随着各机架的咬入、抛钢有波动,从而引起管子壁厚的波动;轧制结束后,芯棒随荒管轧出至连轧机后的输出辊道,在轧制中、薄壁管时芯棒的几乎全长都在荒管内,见图3;带有芯棒的荒管横移至脱棒线,由脱棒机将芯棒从荒管中抽出以便冷却、润滑后循环使用。其特点是轧制节奏快,每分钟可轧4支甚至更多的钢管;但荒管的壁厚精度稍低、设有脱棒机其工艺流程较长、芯棒的长度接近于管子的长度;适合生产较小规格(外径小于177.8mm)的无缝钢管。比较有代表性的浮动芯棒连轧管机有德国米尔海姆厂的RK2机组和我国宝钢的φ140 mm机组。

浮动芯棒连轧管机的工作特点是:由于在轧制时不控制芯棒速度,因此在整个轧制过程中,芯棒速度多次变化。例如,在一台8机架的连轧管机上,当金属进入第一机架时,芯棒在摩擦力的作用下,以接近第一机架的轧制速度运行;当金属进入第二机架时,芯棒速度就要改变,以第一和第二机架轧制速度之间的

某个速度运行;当进入第三机架时,则芯棒速度已变为第一、第二和第三机架轧制速度之间的某个速度;依此类推,直至进入第八机架,芯棒速度便经过了8次变化,已1~8机架间的某个速度运行,进入一个相对稳定的轧制阶段。在此阶段,前面机架的轧制速度比芯棒速度慢(称为慢速机架),后面机架的轧制速度比芯棒速度快(称为快速机架),如果中间某个机架的轧制速度恰好与芯棒运行速度相同则称为同步机架。随后当金属逐渐从有关机架中轧出时,在芯棒速度变化为2~8机架间的某个速度;当金属由第二机架轧出,则芯棒速度又变为第三至第八机架间的某个速度,以此类推,直至金属从第八机架轧出为止。

由上可以看出,在钢管的轧制过程中,芯棒的速度至少要变化15次,芯棒速度的变化将导致金属流动条件的改变。浮动芯棒连轧管机由于轧制过程中芯棒速度改变而使得金属流动发生变化,因金属流动的不规律而引起钢管纵向的壁厚和直径变化,尽管对此采取了不少措施并取得了一定的效果,当轧制条件的变化依然存在,且产品管的尺寸精度始终不如限动芯棒轧机。此外,芯棒长,使制造费用加大,制造困难,且长芯棒的重量也很大,钢管带着过重的芯棒在辊道上运行将会导致钢管表面损伤。故目前浮动芯棒连轧管机均用于小型机组。

连轧管时,荒管可以看作是在不同直径的轧辊间连续轧制形成的。穿在钢管中的芯棒可以看作是曲率半径无穷大的内轧辊。浮动芯棒轧制时,芯棒除受到轧辊经轧件传递来的作用力外,再无其他外力作用。当轧件头部经第一机架咬入后,随着轧件逐一走向后面的延伸机架,作用在芯棒上的机架数相继增多,故芯棒速度不断提高,这个阶段称为“咬入”阶段。当轧件头部进入最末机架后,整个轧件处在连轧管机所有机架的轧制中,芯棒速度维持不变,称为“稳定扎着急”阶段。当轧件尾部离开第一机架后,芯棒速度友逐级提高,直到轧出延伸,称为“轧

出”阶段。轧辊工作圆周速度是安“稳定轧制”状态下设定的。轧制过程中轧件又是遵循着体积不变定律的。然而由芯棒引起的轧件速度的升高,使流入后面机架的金属必然增多,也就是说,后面的机架由芯棒送入了比其设定的轧辊圆周速度所允许的还要多的金属,这就出现了使断面积增大的金属积累。这种逐步流入的附加金属造成的较大断面,尽管在最后的机架上得到了加工,但仍然导致在荒管的一些部位上直径变大和壁厚变厚,这种现象称为“竹节”。原则上讲可能在整根钢管上均出现“竹节”。显然“竹节”现象属纵向壁厚不均,对随后的张减机轧制是不利的,应尽可能防止。

为了防止或减少“竹节”形成,孔型设计分配压下量时,在保证总延伸不变的前提下,适当增加前几架压下量。这样,就可在后面几个机架中使芯棒速度的跃增得到减弱,从而减轻芯棒速度变化的影响。良好的芯棒润滑有利于延伸和降低能耗,也可以减少竹节的形成。还可以采用电控技术防止竹节的产生。由电子计算机进行预设定,轧辊转速按要求变化,当轧件通过时对轧辊进行校准,使各机架的出口速度与芯棒速度的变化相适应。

70年代盛行浮动芯棒连轧管机机组。由于受到芯棒重量的限制,至今这种机组仅能生产直径小于177.8mm一下的钢管。

2.2.1.2半浮动(或半限动)芯棒连轧管机:德国人称MRK-S(Mannesmann bohr-Kontimill Stripper);法国人称Neuval-R。半浮动芯棒连轧管机一般7~8个机架。

德国设计的工艺为:在轧制过程中,前半程,芯棒不是自由地随轧件前进,而是受限动机构的控制,以一恒定速度前进,芯棒与轧件的速差分布是不一致的,第1架的轧件出口速度小于芯棒速度;自第2架开始,轧件的速度快于芯棒的

速度,形成稳定的差速轧制状态;当完成主要变形、管子脱离倒数第3架时,限动机构加速释放芯棒,像浮动芯棒一样由钢管将芯棒带出轧机。德国式的半浮动芯棒连轧管机于20世纪80年代初在日本八幡厂建成投产。

法国研制的工艺为:在钢管由最后一个机架轧出时才松开芯棒,即在轧制过程中具有限动芯棒轧机的工艺特点,而在终轧后松开芯棒;芯棒随荒管至连轧机后的输出辊道。法国式的半浮动芯棒连轧管机于20世纪70年代后期在法国的圣索夫钢管厂投入生产。

不论德国工艺还是法国工艺,半浮动芯棒轧管机轧制结束后,约有1/3长的荒管(尾部)包住芯棒前端,见图4;带有芯棒的荒管横移至脱棒线,由脱棒机将芯棒从荒管中抽出以便冷却、润滑后循环使用。其特点是荒管壁厚的精度较高、节奏较快,每分钟可轧3支甚至更多的钢管,芯棒长度虽然比浮动式的短得多,而比限动芯棒轧机略长一些;设有脱棒机工艺其流程较长;适合生产较小规格(外径小于219mm)的无缝钢管。德国模式的代表机组有日本的八幡厂的φ194 mm机组和我国衡阳的φ89 mm机组;法国模式的机组至今仅有一套,就是法国V&M公司圣索夫厂的φ127 mm机组。

半浮动芯棒连轧管机在扎着过程中对芯棒速度也进行控制,但在轧制结束之前即将芯棒放开,像浮动芯棒连轧管机一样由钢管将芯棒带出轧机,然后由脱棒机将芯棒从荒管中抽出。在对芯棒速度进行限动时,就在一定程度上解决了金属流动规律性的问题,将芯棒放开以后,又如同浮动芯棒连轧管机一样要考虑脱棒条件的限制,因此半浮动芯棒连轧管机所轧制的钢管直径不宜太大。

半浮动芯棒连轧管机兼顾了限动芯棒与浮动芯棒轧管机的优点,既保持了较高的轧制节奏,又确保了钢管的壁厚精度及内外表面质量,只是由于需要设置

脱棒机,使其轧制规格的上限受到限制。

2.2.1.3限动芯棒连轧管机:简称MPM(Multi-Stand Pipe Mill),是意大利因西公司推广应用的,一般7~8个机架。轧管时芯棒的运行是限动的、速度是可控的;芯棒的速度应高于第一架的咬入速度而低于第一架的轧出速度。轧制的整个过程中芯棒速度是恒定不变的,从而确保管子壁厚的精度,轧制不同的管子时芯棒的速度可在一定范围内调节。轧制结束后,芯棒停止,由脱管机将荒管从芯棒中脱出,而后芯棒回送离开轧机,拨出轧线冷却、润滑后循环使用。其特点是荒管的壁厚的精度高,用脱管机取代了脱棒机,缩短了工艺流程,芯棒较短;但轧制节奏慢,每分钟可轧2支或稍多一点的钢管;适合生产中等规格(外径小于460mm)的无缝钢管。代表性机组有意大利达尔明的φ356 mm机组和我国天津钢管公司的φ250 mm机组。

为了解决浮动芯棒连轧管机轧制过程中金属流动不规律的问题,缩短芯棒长度,解决芯棒制造上的困难,20世纪60年代国外就开始试验限动芯棒轧制,70年代获得成功,在意大利的达尔明厂投入工业生产。

限动芯棒连轧管机的基本特点就是控制芯棒的运行速度,使芯棒在整个扎着过程中均以低于第一机架金属轧出速度的恒定速度前进,这是相当重要的工艺改进,使限动芯棒轧机具有浮动芯棒轧机不可比拟的优越性。近年来的实践表明,芯棒的速度应高于第一机架的咬入速度而低于第一机架的轧出速度。这样,在整个扎着过程中芯棒的移动速度均以低于所有机架的轧制速度,避免了不规律的金属流动和轧制条件的变化。由于芯棒速度受到控制,每一机架的轧制压力都较小,金属流动有规律,延伸系数可达一些,这就可以获得非常好的壁厚偏差。

由于芯棒速度限动,可大大缩短芯棒的长度,轧制32m的钢管,芯棒的工

作长度只有15m。钢管从芯棒上轧出后用脱管机将其从芯棒前端抽出,芯棒快速返回,不像在浮动芯棒轧机上受脱棒条件的限制,因此可以生产中型和大型规格的无缝钢管。

限动芯棒连轧管机是在浮动芯棒连轧管机的基础上发展起来的。与浮动芯棒连轧管机相比,限动芯棒连轧管机有如下优点:

1)降低了工具消耗。由于限动芯棒连轧管机的芯棒较之浮动芯棒连轧管机的芯棒要短,钢管与芯棒的接触时间短,从而提高了芯棒的使用寿命,一般使芯棒消耗降至每吨钢管1公斤左右。

2)改善了钢管的质量。由于限动芯棒连轧管机具有搓轧(芯棒与钢管内表面相对运动)性质,有利于金属的延伸,加之带有微张力轧制状态,从而减小了横向变形,根本不存在浮动芯棒连轧所产生的“竹节”现象,使钢管内外表面和尺寸精度有了很大提高。

3)取消了脱棒机,缩短了工艺流程,提高了钢管的终轧温度。部分品种可省去定径前的再加热工序,从而节省了能源。

4)扩大了产品规格。由于采用了限动芯棒轧制,可以减小芯棒的长度,减轻了芯棒的重量,允许加大芯棒的直径,使钢管的最大外径由177.8mm扩大到426mm 甚至更大.另外,限动芯棒连轧管机还可轧制径壁比更大(D/S>40)的钢管。

限动芯棒连轧管机代表着现代无缝钢管生产的先进技术,它集中体现了无缝钢管生产的连续性、高效率、机械化及工业自动化的发展趋势。80年代以后已经在无缝钢管生产领域占了主导的地位。

少机架限动芯棒连轧管机(MINI-MPM)是在上世纪90年代意大利因西公司推出的工艺,它的实质与MPM一样;当时主要是针对南非托沙厂的技术改造,

设计为四个机架,基本保留了MPM机组的优点,与MPM相比它的最大特点是实现了用更短的芯棒轧制长钢管,芯棒的工作段长度比MPM少2~3米;芯棒总长度可缩短5米左右。芯棒可以制造成整体,两端都加工有限动头可以调头使用,降低芯棒的消耗。随着锥形辊穿孔机的普及应用,使热轧无缝钢管的变形量前移成为可能,连轧工序的延伸可适当减小,连轧管机不用再设置7~8架就可实现所要求的热轧变形了,所以在而后兴建的限动芯棒连轧管机组大多采用5个机架的MINI-MPM。代表机组有包头钢铁公司的180机组;鞍山钢铁公司的

2.2.1.4 PQF((Premium Quality Finishing)也是限动芯棒连轧管机,只不过每个机架由三个轧辊组成孔型;采用三辊设计的孔型比传统的两辊设计的孔型圆度好,且孔型的半径差小,有利于轧件的均匀变形和轧辊的均匀磨损。轧槽底部和轧槽顶部之间的圆周速度差较小,从而能在稳定的条件下使轧制时的金属变形更加均匀。凸缘面积(不与轧辊或芯棒接触的管子面积。也就是辊缝处壁厚/外经的凸起面积)有所减小,即流向凸缘的金属量减少了。这一优点在轧制不受外端

及其它机架约束的钢管尾端时尤为重要。事实上钢管尾端在三辊式轧管机上轧制时受控是由于凸缘面积较小(比二辊式的小30%左右)以及轧槽底部与轧槽顶部间的圆周速度差较小的缘故。因此,能避免或大大减少管端折叠和飞翅的形成。因圆周压应力较高,从而能在轧制时使辊缝处产生的纵向拉应力的危险性大大降低。孔型中芯棒的稳定性较高。PQF机组可以生产高强度(P110以上)特殊钢级油井用管、高压锅炉管及13Cr、304L等不锈钢管。PQF最大的优势是:由于三辊孔型的半径差小于两辊,轧件变形更加均匀、平稳,使产品的壁厚精度和表面质量高于MPM。φ168mmPQF机组由于采用了独特的芯棒运行方式,使其轧制节奏达到24秒/支。代表性机组为我国天津钢管公司的φ168 mm机组。

限动芯棒连轧管机芯棒运行有两种方式:一是轧制结束时,芯棒停止运动,待荒管从芯棒中脱出后,芯棒快速返回,拨出轧制线,冷却、润滑后循环使用,传统的MPM均采用此中运行方式;另一种运行方式为:轧制结束时,芯棒停止运动,待荒管由脱管机从芯棒中脱出后,芯棒不是回送,而是向前快速运行跟随荒管之后依次通过脱管机,芯棒穿过脱管机后,拨出轧线再回送、冷却、润滑循环使用,该方法减少了芯棒的在线待轧(非轧钢)时间。从而有效地缩短了轧制周期,加快了轧制节奏。PQF采用此中运行方式;两种运行方式的主要区别是脱管完成后,芯棒是与荒管反向运行回退离开轧机后拨出轧制线冷却、润滑、循环使用;还是同向运行芯棒前行离开轧机后、穿过脱管机后拨出轧制线冷却、润滑、循环使用。第二种方法因芯棒要通过脱管机,在轧制薄壁管(脱管机的减径量大于等于2倍的荒管壁厚)时要求脱管机轧辊必须具备快开快合功能,以免芯棒撞损脱管机轧辊。

1-芯棒;2-荒管

图3 浮动芯棒轧制后芯棒/荒管示意图

图4 半浮动芯棒轧制后芯棒/荒管示意图

2.2.1.5 关于脱管机和脱棒机

为了完成将连轧管机轧出的荒管与芯棒脱开分离的工艺目的,便于荒管在后道工序进一步加工成品钢管,一般采用两种方法:

2.2.1.5.1一是轧制结束后荒管/芯棒被一起移出轧制线,荒管受轴向约束不动,用装置将芯棒从荒管中抽出;我们将这种荒管不动,芯棒动的设备称为脱棒机。

1-芯棒;2-荒管 1 2

2

1

当带芯棒的荒管进入脱棒位置后,脱棒链上的脱棒卡紧装置就勾住芯棒的尾柄,而液压开闭的卡板挡住荒管,脱棒链从荒管中抽出芯棒。脱棒链转过半圈完成一次脱棒动作,链所走过的距离约为芯棒长度的1.1倍.脱棒机的最大速度大于4.5m/s。到达终位的误差为±50mm。脱出的芯棒经输送辊道送到芯棒定位升降挡板前,然后由芯棒移送装置把芯棒送入芯棒冷却槽,循环使用。脱棒机安装位置与连轧管机平行。脱棒机有两列脱棒链。这两列脱棒链用横梁连接起来。两列脱棒链间共有两个脱棒横梁及多个承载横梁。脱棒横梁用来从荒管中抽出芯棒,而承载横梁用来在脱棒过程中支承芯棒。在脱棒横梁上用螺栓紧固与轧件尺寸相关的脱棒卡紧装置。当更换轧制芯棒时,需要更换脱棒卡紧装置。

2..2.1.5.2另一种是轧制结束后,芯棒停止运动,荒管在线被装置将其从芯棒中脱出;我们将这种芯棒不动,荒管动的设备称为脱管机。脱管机既有两辊式的,也有三辊式的。脱管机的设置有两个重要的工艺目的:一是将荒管从芯棒上抽出,完成脱管目的。在轧制线上脱管,省去了脱棒机,缩短了工艺流程,提高了终轧温度;二是起校正(定径)作用,也就是说在每一支钢管生产中,该机也有延伸和定径作用。为生产薄壁管和中厚壁管,每架脱管机的孔型名义直径必须小于轧管机芯棒直径。在生产薄壁管时,脱管机的减径量要相应加大,否则薄壁管不易被脱出。每架脱管机上都装有安全臼,以防止芯棒进入脱管机时损伤轧辊及相关的机械部分。在事故情况下,假如当带芯棒的荒管进入脱管机孔型时,若脱管机轧辊承受的径向载荷大于预设值,则轧辊孔型会相应张开,防止芯棒顶坏轧辊及设备。

2.2.1.6 连轧管机按芯棒运行方式进行分类的方法/原则?

2.6.1连轧管机限动芯棒与半浮动芯棒工艺主要区别在于以下两点:一是轧制过

程中芯棒速度是否恒定不变;二是使用脱管机还是脱棒机。限动芯棒工艺应该同时满足轧制过程中芯棒速度恒定不变和使用脱管机这两个条件。因此,将目前建成投产的这套PQF机组称为三辊限动芯棒连轧管机较为恰当,而称之为半浮动芯棒显然是欠准确的。

2.2.1.6.2曾有学者提出用半限动替代半浮动这一名称,意在强调对芯棒的限动功能;但从已发表的许多文章来看,绝大多使用都半浮动这一名称。还有人认为法国式的机组因其轧制过程中芯棒速度是受控的,应该属于限动芯棒类型。由于机组配备的是脱棒机,轧管机孔型设计是要考虑脱棒间隙,孔型的侧壁开口角度要比MPM的大,故将法国人设计的连轧管机组归为半浮动类型。

2.2.1.6.3采用脱出荒管之后,芯棒向前行进通过脱管机、绕轧机出口侧进行循环这一独特的运行方式,与传统的限动芯棒机组相比:明显地减少了芯棒的运行时间、加快了限动芯棒连轧管机组的轧制节奏、提高生产效率, 实现了人们的对限动芯棒连轧管机既要钢管壁厚精度高、又要轧制节奏快这一美好愿望,但对脱管机的要求较高,需具备辊缝快开快合功能;这并不能说明为提高轧制节奏,在其它中、大型限动芯棒连轧管机组也适用这种芯棒运行方式,因为随着芯棒规格、重量的增加,芯棒在向前输送通过脱管机的过程中可能要遇到一些困难。2.2.1.7空减机(空心坯减径机的简称)的配置

一套连轧管机为使其产品外径范围尽可能地宽,设计时一般选用2~5个孔型,轧管机后配备张减机的选择孔型数较少;轧管机后配备定径机的选择孔型数较多。由于孔型尺寸的变化相应地轧管机入口的毛管外径也要随着发生变化;为适应轧管机入口毛管外径变化,通常有两种方法:一是选用几种外径的管坯,针对不同的孔型选用不同规格的管坯,每次更换孔型时需对穿孔机的受料槽、导卫

装置(导板或导盘)进行更换,这样做有两点不足,一方面占用较多工作时间;另一方面管坯料场、穿孔机工具需要场地较大。第二种方法是在穿孔机与轧管机之间布置一台空减机,通过空减机可使用一种外径尺寸的管坯满足轧管机不同孔型成为可能。

2.2.1.7.1浮动芯棒连轧管机组采用穿孔机与轧管机之间布置空减机的方法比较经济,这样既可仅用一个规格的管坯组织生产,减少了管坯库的面积和穿孔机相关的轧制工具数量,又可以减少换孔型的时间,提高了机组的作业率。经空减机后的毛管在运往连轧管机入口台架前,先通过一个吹灰装置用压缩空气吹去毛管内的细小氧化铁皮,以减少对芯棒的磨损和管子内表面缺陷。同时空减机亦消除了导盘式穿孔机所造成的毛管头尾外径差,使轧制过程稳定。这种单独布置的空减机一般使用三辊式、3~6个机架。

2.2.1.7.2半浮动芯棒连轧管机组将空减机布置在连轧管机的入口侧,即与连轧管机串列布置,一般为两辊式、2~4架;在保持了原有空减机优点的同时,可缩短工艺流程,减少占地面积。这种变化一方面是因为锥形辊穿孔机的应用使变形前移,轧管机的机架数相应减少(减少2~3架),串列布置因芯棒的长度增加而引起的轧制节奏变化不是很多(因轧制终了芯棒向前运动);另一方面串列布置可减少毛管在纵向移动过程中内表面的氧化和温降,能更有效地确保钢管质量。

2.2.1.7.3限动芯棒连轧管机组在最初时没有空减机,采用的是一种规格的管坯对应一个孔型,这主要是因为轧制时芯棒与轧件内表面的相对运动比浮动时的大,芯棒的工作条件更为恶劣,芯棒更容易磨损和划伤。限动芯棒工艺上不允许毛管在进入轧管机前做纵向运动。必须有效的防止毛管内表面的二次氧化,才能

确保钢管的质量,因此不可能像浮动芯棒那样在穿孔机与轧管机之间布置空减机。如采用半浮动芯棒的串列布置,因芯棒长度的增加使轧制节奏更加变慢,(因轧制终了芯棒向后运动),将影响机组的产能的发挥,也是不经济的。近十年来,限动芯棒机组也在不断吸收其他机组的长处,在轧管机入口侧串列布置1架空减机(二辊、三辊、四辊形式均有),目的在于消除毛管内表面与芯棒之间的间隙和毛管外径的头尾直径偏差,使轧制更加平稳,从而提高轧辊的使用寿命,确保钢管的几何尺寸精度和内外表面质量。

2.2.1.8吹硼砂的工艺目的

限动芯棒连轧管机组比浮动、半浮动机组多了一个工序是在轧管机入口前向毛管内用氮气喷抗氧化剂,其工艺目的是去除内表面的氧化铁皮并防止二次氧化。抗氧化剂在高温时下呈熔融状态可起到很好的润滑作用。对抗氧化剂的成分、颗粒尺寸、化学稳定性、物理稳定性及吹撒的数量、喷吹的压力、时间都有严格的要求,主要是解决轧管机的延伸大,轧制时芯棒与轧件间相对运动较大,芯棒的工作条件更为恶劣,芯棒更容易磨损和划伤,润滑条件不好时容易发生轧卡事故或轧制终了时脱管机不能将荒管从芯棒中顺利的抽出。

2.2.1.9芯棒的选材的原则

连轧管机的芯棒选材时根据其工作环境而定的,浮动芯棒在轧制时芯棒只受径向的压、拉应力,轴向除经轧件的张力传递外,基本不受力,只是在脱棒时有很小的轴向力;限动芯棒、半浮动芯棒在轧制时芯棒既受径向的压拉应力,也要承受很大的轴向拉应力,工作条件更为恶劣。一般浮动芯棒选用H11材料,限动芯棒选用H13材料,半浮动芯棒两者均可。

浮动的芯棒一般是一段式的;限动的芯棒一般采用三段式,由工作段、延

无缝钢管的热轧工艺

无缝钢管 1.无缝钢管的制造加工方法: (1)热轧(挤压无缝钢管):圆管坯→加热→穿孔→三辊斜轧、连轧或挤压→脱管→定径(或减径)→冷却→矫直→水压试验(或探伤)→标记→入库 (2)冷拔(轧)无缝钢管:圆管坯→加热→穿孔→打头→退火→酸洗→涂油(镀铜)→多道次冷拔(冷轧)→坯管→热处理→矫直→水压试验(探伤)→标记→入库 2.热轧 (1)热轧的概念: 热轧(hot rolling)是相对于冷轧而言的,冷轧是在再结晶温度以下进行的轧制,而热轧就是在再结晶温度以上进行的轧制。 (2)热轧的优缺点 优点: a.热轧能显著降低能耗,降低成本。热轧时金属塑性高,变形抗力低,大大减少了金属变形的能量消耗。

b.热轧能改善金属及合金的加工工艺性能,即将铸造状态的粗大晶粒破碎,显著裂纹愈合,减少或消除铸造缺陷,将铸态组织转变为变形组织,提高合金的加工性能。 c.热轧通常采用大铸锭,大压下量轧制,不仅提高了生产效率,而且为提高轧制速度、实现轧制过程的连续化和自动化创造了条件。 缺点: a.经过热轧之后,钢材内部的非金属夹杂物(主要是硫化物和氧化物,还有硅酸盐)被压成薄片,出现分层(夹层)现象。分层使钢材沿厚度方向受拉的性能大大恶化,并且有可能在焊缝收缩时出现层间撕裂。焊缝收缩诱发的局部应变时常达到屈服点应变的数倍,比荷载引起的应变大得多。 b.不均匀冷却造成的残余应力。残余应力是在没有外力作用下内部自相平衡的应力,各种截面的热轧型钢都有这类残余应力,一般型钢截面尺寸越大,残余应力也越大。残余应力虽然是自相平衡的,但对钢构件在外力作用下的性能还是有一定影响。如对变形、稳定性、抗疲劳等方面都可能产生不利的作用。 c.热轧不能非常精确地控制产品所需的力学性能,热轧制品的组织和性能不能够均匀。其强度指标低于冷作硬化制品,而高于完全退火制品;塑性指标高于冷作硬化制品,而低于完全退火制品。 d.热轧产品厚度尺寸较难控制,控制精度相对较差;热轧制品的表面较冷轧制品粗糙Ra值一般在0.5~1.5μm。因此,热轧产品一般多作为冷轧加工的坯料。

热轧带钢缺陷图谱

热轧带钢外观缺陷 Visual Defects in Hot Rolled Strip 不规则表面夹杂(夹层)(Irregular Shells) 【定义与特征】 板带钢表面的薄层折叠,缺陷常呈灰白色,其大小、形状不一,不规则分布于板带钢表面。【产生原因】 板坯表面或皮下有非金属夹杂,这些夹杂在轧制过程中被破碎或暴露而形成夹层状折叠。 【预防与纠正】 优化炼钢、精炼工艺,提高钢质纯净度。 【鉴别与判定】 肉眼检查,钢板和钢带不得有夹层。 带状表面夹杂(夹层)(Seams) 【定义与特征】 板带钢表面的夹杂呈线状或带状不规则地沿轧向分布,有时以点状或舌状逐渐消失。 【产生原因】 板坯皮下的夹杂在轧制出现剧烈延伸、破裂而造成。 【预防与纠正】 优化炼钢、精炼工艺,提高钢质纯净度。 【鉴别与判定】 肉眼检查,钢板和钢带不得有夹层。 气泡(Blisters) 【定义与特征】 板带钢表面凸起内有气体,分布无规律,有闭口气泡和开口气泡之分。 【产生原因】 板坯由于大量气体在凝固过程中不能逸出,被封闭在内部而形成气体夹杂。在热轧时,空洞与孔穴被拉长,并随着轧材厚度减薄,被带至产品的表面或边部。最终,高的气体压力使产品表面或边部出现圆顶状的凸起物或挤出物。 【预防与纠正】 优化精炼工艺,保证吹氩时间,使钢水搅拌均匀,避免气体残留;保证中间包烘烤时间;保护

渣要符合工艺要求,避免受潮。 【鉴别与判定】 肉眼检查,钢板和钢带不得有气泡。 结疤(重皮)(Scabs) 【定义与特征】 以不规则的舌状、鱼鳞状、条状或M状的金属薄片分布于带钢表面。一种与带钢基体相连;另一种与带钢基体不相连,但粘合到表面上,易于脱落,脱落后形成较光滑的凹坑。 【产生原因】 由于板坯表面有结疤、毛刺,轧后残留在带钢表面。或板坯经火焰清理后留有残渣,在轧制中压入表面。 【预防与纠正】 加强板坯切口熔渣的清理,合理调整中间坯的切头、切尾量,避免毛刺残留。 【鉴别与判定】 肉眼检查,钢板和钢带不得有结疤。 分层(Split layer) 【定义与特征】 带钢断面上呈现未焊合的缝隙,有时在离层的缝隙中有肉眼可见的夹杂物,严重的分层使钢板局部劈裂,分层产生的部位无规律。 【产生原因】 板坯内局部聚集过多气体或非金属夹杂物,在轧制过程中不能焊合;化学成分偏析严重,也能形成分层。 【预防与纠正】 优化炼钢工艺,提高钢质纯净度;保证吹氩时间,钢水搅拌均匀,避免气体残留;。 【鉴别与判定】 肉眼检查,钢板和钢带不得有分层。 翘皮(Spills) 【定义与特征】 翘皮常呈舌状、线状、层状或M状折叠(不连续,薄材常出现翘起),常出现在带钢上表面边部。【产生原因】 铸坯内部近上表面的针孔、气泡、夹杂,在轧制过程中易在带钢上表面边部(薄弱处)暴露,在往返轧制过程中或卷取过程中部分表皮分层剥离翘起造成翘皮缺陷。 【预防与纠正】

年产10万吨热轧无缝钢管车间设计

年产10万吨热轧无缝钢管车间设计 摘要本设计以包头地区为依据,设计年产量为10万吨的小无缝钢管生产车间,其产品种类包括:油井管、套管、液压支柱用管、锅炉管、结构管等种类。产品直径范围为Φ60.3mm~Φ159mm,以规格60.3*6.45*11500、139.7*7.72*11500,钢种N80为设计典型产品。整个设计的重要内容有:原料的选择及产品大纲的制定;轧钢设备的选择及工艺流程的制定;计算部分有轧制表的计算、车间年产量的计算、轧辊力能参数的计算及其校核;车间平面布置与各设备间距的确定;最后根据设计参数绘制了车间平面布置图。 关键词无缝钢管;车间设计;生产工艺 Abstract A seamless steel pipe production workshop with annual output 100,000 tons was designed based on Baotou areas.The kinds of profucts include: Oil pipe, casing, hydraulic prop pipe, boiler pipe, structural pipe and so on in this workshop.The diameter of the products range from Φ60.3mm~Φ159mm, and the typical product is N80 steel with the specification of 60.3*6.45*11500 and139.7*7.72*11500. The important content of the design involves: choosing stuff and making The plans of the products; Choosing Rolling mill equipment and making the process of formulation; The aspects of Calculation includes working out rolling Table、production workshop、Rolling force and intension verifying of the roll; planning dispose of the workshop, fixing the space between flown line and the equipment areas; At last, the layout of workshop was drawed according to designing parameters. Key words Seamless steel pipe; Workshop designing; Production technics 前言 本设计以包头地区为依据,设计年产量10万吨的热轧无缝钢管车间。内容包括建厂所需要的各类资料及设计参数。设计过程结合理论与实际,即设计过程既参考课本又参考我国以建厂数据,这样确保设计的合理性和实用性。 1 可行性研究报告 本设计的可研部分通过对国内外钢管生产及销售市场调查,结合我国对钢铁行业的优惠政策,通过对包头资源交通的分析,依靠包钢资源及多年生产经验,完全有能力新建一条小型无缝钢管热轧生产线,这可以增加包钢无缝厂产品规格,扩大包钢钢管在市场的占有率,使包钢在钢管市场上更具竞争力。 2 产品方案编制 根据市场需求及建厂成本投资的分析,新建厂应以石油用油井管和套管为主,钢种为大众需求的J55、K55、N80,执行标准为美国石油协会制定的API5CT,规格范围及不同规格的年产量以市场需求为准。表2.1为本车间产品大纲。

冷拔管常见缺陷产生原因及预防和消除方法

[选取日期] 冷拔无缝钢管常见的缺陷特征产生的原因 及预防和消除方法 2010年10月08日 孟相欣

冷拔无缝钢管常见的缺陷特征 产生的原因及预防和消除方法 一、折迭 拔制后,钢管内外表面呈现直线或螺旋方向的折迭,局部或通长的出现在钢管上。 产生的原因:管料表面有折迭或夹杂物,有严重擦伤和裂纹,管料磨修处有棱角或深宽比(H/b)不够。 预防和消除方法:严格把好穿孔热轧质量关。 二、尺寸超差(包括壁厚超差,壁厚不均,直径超差,椭圆偏心) 直径超过了标准的偏差,在同一截面上管壁一边薄,一边厚,直径不等,长短轴之差超出标准规定。 产生的原因:1、拔制模具选择不当,或芯棒(内模)调整不当。2、内外模设计制造不合理或磨损严重,或硬度不够造成变形磨损。3、热处理时间长,温度高,或热处理性能不均匀。4、增减壁的规律控制不当。5、拔制表编制不合格。6、钢管矫直时被压扁,造成误差较大。 预防和消除方法:1、正确设计和选配拔管模具。2、正确执行热处理制度,均匀加热。3、正确调制矫直机,经常校对拔管机各部件和量具。 4、掌握不同钢种、不同规格钢管的增减壁规律。 5、正确合理编制拔制表。 6、椭圆度出格可重新矫直,局部椭圆度出格可切除。 三、划道 钢管表面上呈现纵向直线的划痕称为划道,划道长短不一,宽窄不等,多为沟状,可见沟底。

产生的原因:1、拔模表面不光滑,有裂纹或粘结金属。2、锤头过度部分有棱角,工具磨损。3、欠酸洗或毛管上残存氧化铁皮。4、磷化、皂化工序操作不当。5、内外模以损坏或磨损严重。6、中间退火不均,变形量不足。 预防和消除方法:1、提高拔管模具的表面质量。2、钢管酸洗后,氧化铁皮要冲洗干净。3、锤头过度部分要圆滑无棱角。4勤检查模具和钢管的表面,发现问题及时处理。 四、斗纹 钢管表面沿长度方向呈高低不平的环形波浪或波浪逐个相同排列,局部或通长出现在钢管内外表面上。 产生的原因:1、热处理后的性能不均,热轧时低温钢造成性能不均。2、酸洗后冲洗不干净,磷化不良导致皂化不均。3、芯杆细,拔制时芯杆产生弹性变形引起抖动。4、拔模形状不合理,入口锥角太大,使钢管与模孔的接触面积过小,使拔制拔制变形不稳定而抖动。 预防和消除方法:1、按操作规程要求进行热处理,达到软化性能均匀。 2、要把好酸洗、磷化、皂化的质量关。 3、按规定的变形量拔制。 4、正确选用芯杆尺寸。 五、拔凹 在钢管纵向上,管壁向内呈条状凹陷,其长短无规则。 产生的原因:1、无芯棒拔制(空拔)薄壁钢管时,减径量过大。2、钢管锤头端部有棱角或过度部分有皱折且变形量过大。3、管料局部璧薄(如修磨点)。 预防和消除方法:1、空拔薄壁管时,要合理分配减径量。2、锤头端部应无棱角和皱折。3、对管料表面的局部缺陷进行清理。

无缝钢管的分类 执行标准 制作工艺

无缝钢管的分类执行标准制作工艺 冷拔或冷轧精密无缝钢管(GB3639-2000)是用于机械结构、液压设备的尺寸精度高和表面光洁度好的冷拔或冷轧精密无缝钢管。 高精度冷拔精密钢管是一种新型高技术节能产品。,高精度冷拔精密钢管的推广应用对节约钢材,提高加工工效,节约能源所谓高精度冷拔无缝钢管是指内、外径尺寸精度(公差范围)严格,内外表面光洁度、圆度、直度良好,壁厚均匀的精该技术所生产的高精度冷拔无缝钢管的主要技术指标已达到或部分超过国家标准GB8713--88和国际标准ISO4394/I-1980(E) 的要求。详见下表: 主要技术指标与标准对照表选用精密无缝钢管制造机械结构或液压设备等,可以大大节约机械加工工时,提高材料利用率,同时有利于提高产品质量 无缝钢管的分类:无缝钢管分热轧和冷轧、冷拔无缝钢管三类。热轧无缝钢管分一般钢管,低、中压锅炉钢管,高压锅炉钢管、合金钢管、不锈钢管、石油裂化管、地质钢管和其它钢管等。 冷轧无缝钢管除分一般钢管、低中压锅炉钢管、高压锅炉钢管、合金钢管、不锈钢管、石油裂化管、其它钢管外,还包括碳素薄壁钢管、合金薄壁钢管、不锈薄壁钢管、异型钢管。热轧无缝管外径一般大于32mm,壁厚2.5-75mm,冷轧无缝钢管处径可以到6mm,壁厚可到0.25mm,薄壁管外径可到5mm,壁厚小于0.25mm,冷轧比热轧尺寸精度高,而冷拔无缝钢管 一般用无缝钢管:是用10#、20#、30#、35#、45#等优质碳结钢16Mn、5MnV等低合金结构钢或40Cr、30CrMnSi、45Mn2、40MnB等合金钢热轧或冷轧制成的。10、20等低碳钢制造的无缝管主要用于流体输送管道。45#、40Cr等中碳钢制成的无缝管用来制造机械零件,如汽车、拖拉机的受力零件。一般用无缝钢管要保证强度和压扁试验。热轧钢管以热轧状态或热处理状态交货;冷轧以热处理状态交货。 低中压锅炉用无缝钢管:用于制造各种低中压锅炉、过热蒸汽管、沸水管、水冷壁管及机车锅炉用过热蒸汽管、大烟管、小烟管和拱砖管等。用优质碳素结构钢热轧或冷轧(拨)无缝钢管。主要用10、20号优质碳素结构钢制造,除保证化学成分和机械性能外要做水压试验,卷边、扩口、压扁等试验。热轧以热轧状态交货、冷轧(拨)以热处理状态交货。 高压锅炉无缝钢管:主要用来制造高压及其以上压力的蒸汽锅炉管道等用的优质碳素结构钢、合金结构钢和不锈耐热钢无缝钢管、这些锅炉管经常处于高温和高压下工作、管子在高温烟气和水蒸汽的作用下还会发生氧化和腐蚀,因此要求钢管有高的持久强度、高的抗氧化性能,并具有良好的组织稳定性,采用钢号有:优质碳素结构钢钢号有20G、20MnG、25MnG;合金结构钢钢号15MoG、20MoG、12CrMoG、15CrMoG、12Cr2MoG、12CrMoVG、12Cr3MoVSiTiB等;有锈耐热钢常用1Cr18Ni9、1Cr18Ni11Nb高压锅炉管除保证化学成分和机械性能外,要逐根做水压试验,要作扩口、压扁试验。钢管以热处理状态交货。此外,对成品钢管显微组织、晶粒度、脱碳层也有一定要求。 地质钻探及石油钻探用无缝钢管:为探明地下岩层结构、地下水、石油、天然气及矿产资源情况,利用钻机打井。石油、天然气开采更离不开打井,地质钻探用石油钻探用无缝钢管是钻井的主要器材,主要包括岩芯外管、岩芯内管、套管、钻杆等。由于钻探用管要深入到几千米地层深度工作,工作条件极为复杂,钻杆承受拉、压、弯曲、扭转和不均衡冲击载荷等应力作用,还要受到泥浆、岩石磨损,因此,要求管材必须具有足够的强度、硬度、耐磨性和冲击韧性,钢管用钢用“DZ”(地质的汉语拼音字头)加数字一代表

热轧带钢缺陷图谱

热轧带钢缺陷图谱

————————————————————————————————作者: ————————————————————————————————日期: ?

热轧带钢外观缺陷 Visual Defects inHot Rolled Strip 2.1 不规则表面夹杂(夹层)(IrregularShells) 【定义与特征】 板带钢表面的薄层折叠,缺陷常呈灰白色,其大小、形状不一,不规则分布于板带钢表面。【产生原因】 板坯表面或皮下有非金属夹杂,这些夹杂在轧制过程中被破碎或暴露而形成夹层状折叠。【预防与纠正】 优化炼钢、精炼工艺,提高钢质纯净度。 【鉴别与判定】 肉眼检查,钢板和钢带不得有夹层。 2.2 带状表面夹杂(夹层)(Seams)

【定义与特征】 板带钢表面的夹杂呈线状或带状不规则地沿轧向分布,有时以点状或舌状逐渐消失。【产生原因】 板坯皮下的夹杂在轧制出现剧烈延伸、破裂而造成。 【预防与纠正】 优化炼钢、精炼工艺,提高钢质纯净度。 【鉴别与判定】 肉眼检查,钢板和钢带不得有夹层。 2.3 气泡(Blisters)

【定义与特征】 板带钢表面凸起内有气体,分布无规律,有闭口气泡和开口气泡之分。 【产生原因】 板坯由于大量气体在凝固过程中不能逸出,被封闭在内部而形成气体夹杂。在热轧时,空洞与孔穴被拉长,并随着轧材厚度减薄,被带至产品的表面或边部。最终,高的气体压力使产品表面或边部出现圆顶状的凸起物或挤出物。 【预防与纠正】 优化精炼工艺,保证吹氩时间,使钢水搅拌均匀,避免气体残留;保证中间包烘烤时间;保护渣要符合工艺要求,避免受潮。 【鉴别与判定】 肉眼检查,钢板和钢带不得有气泡。 2.4 结疤(重皮)(Scabs)

钢热轧无缝钢管技术标准

45钢热轧无缝钢管技术标准 1 范围 本技术协议规定了45钢热轧无缝钢管的尺寸、外形、重量及允许偏差、技术要求、试验方法、检验规定、包装、标志和质量证明书等。 2 规范性引用文件 下列文件中的条款通过本协议的引用而成为本协议的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本协议。凡是不注日期的引用文件,其最新版本适用于本协议。 GB/T 222 钢的化学成份允许偏差 GB/T 223 钢的化学分析方法 GB/T 228.1 金属拉伸试验第1部分:试验拉伸试验 GB/T 10561 钢中非金属夹杂物含量的测定 GB/T 8162 碳素结构钢 GB/T 2102 钢管的验收、包装、标志和质量证明书 3 尺寸、外形、重量及允许偏差 3.1 外径和壁厚 钢管的外径、壁厚尺寸允许偏差应符合表1和表2的规定。 3.2 外形 钢管两端断面应与钢管轴线垂直,切口毛刺应去除。 钢管的不圆度应不超过0.5mm 3.3 长度 钢管交货长度在合同中注明,若以定尺长度交货,长度允许偏差为0~+50mm。 3.4 弯曲度 钢管的每米弯曲度不超过1.5mm/m,钢管全长弯曲度应不大于钢管总长度的0.15%。 3.5 重量 钢管按实际重量交货。 4 技术要求(化学成份应符合GB/T 699-1999) 4.1 钢的牌号及化学成分 钢的牌号及化学成分(熔炼分析)应符合表3 的规定。 4.2 冶炼方法 电炉/转炉+炉外精炼+真空脱气。 4.3 交货状态 钢管以热轧状态交货。 4.4 加工用途 切削加工用钢。 4.5 力学性能

钢管交货状态下的纵向力学性能应符合表4 的规定。 4.6 非金属夹杂物 钢管应按GB/T 10561中A法检验非金属夹杂物,其合格级别应符合表5的规定 表5 夹杂物级别要求(级) 4.7 表面质量 钢管内外表面不得有目视可见的裂纹、折叠、轧折、孔洞、离层,钢管外表不得有严重碰伤。这些缺陷应完全清除,清理处的实际壁厚应不小于壁厚所允许的最小值。 5 试验方法 钢材检验项目的取样数量、取样部位及试验方法应符合表6 的规定。 表6 钢管的取样和试验方法 6 钢管验收、包装、标志和质量证明书 6.1 钢管每捆重量不超过3.5吨。 6.2 钢管其他验收、包装、标志和质量证明书按GB/T 2102执行。 6.3 不同炉号、牌号、规格的钢管不得放在同一捆中。 6.4 本协议其它未提及项目应符合GB/T 8162-2008标准。 6.5 批号标识要求 1)原则上每批货应源自钢管生产厂同一制造批号/炉号。 2)当同一批货包含钢管生产厂两个制造批号时,供方必须对每一捆包标识其制造批/炉号。 3)同一捆包只能是同一批号的钢管,同一规格的钢管在同一机组生产。 4)钢管质保书应随货到厂,质保书必须清晰和真实。 5)圆钢钢坯质保书应随货到厂,质保书必须清晰真实,检验项目必须含以上所涉及的所有内容,特别是非金属杂物检验。 6)钢管厂的标识小卡除标明其生产批号外,应该同时写明圆钢钢坯炉号或者每捆有一张标识卡,写明圆钢炉号。

无缝钢管的工艺流程

无缝钢管的工艺流程 一般的无缝钢管的生产工艺可以分为冷拔与热轧两种,冷轧无缝钢管的生产流程一般要比热轧要复杂,管坯首先要进行三辊连轧,挤压后要进行定径测试,如果表面没有响应裂纹后圆管要经过割机进行切割,切割成长度约一米的坯料。然后进入退火流程,退火要用酸性液体进行酸洗,酸洗时要注意表面是否有大量的起泡产生,如果有大量的起泡产生说明钢管的质量达不到相应的标准。外观上冷轧无缝钢管要短于热轧无缝钢管,冷轧无缝钢管的壁厚一般比热轧无缝钢管要小,但是表面看起来比厚壁无缝钢管更加明亮,表面没有太多的粗糙,口径也没有太多的毛刺。热轧无缝钢管的交货状态一般是热轧状态经过热处理后进行交货。热轧无缝钢管在经过质检后要经过工作人员的严格的手工挑选,在质检后要进行表面涂油,然后紧接着是多次的冷拔实验,热轧处理后要进行穿孔的实验,如果穿孔扩径过大就要进行矫直矫正。在矫直后再由传送装置传送到探伤机进行探伤实验,最后贴上标签、进行规格编排后放置到仓库当中。 热轧 圆管坯→加热→穿孔→三辊斜轧、连轧或挤压→脱管→定径(或减径)→冷却→矫直→水压试验(或探伤)→标记→入库无缝钢管是用钢锭或实心管坯经穿孔制成毛管,然后经热轧、冷轧或冷拨制成。无缝钢管的规格用外径*壁厚毫米数表示。无缝钢管分热轧和冷轧(拨)

无缝钢管两类。热轧无缝钢管分一般钢管,低、中压锅炉钢管,高压锅炉钢管、合金钢管、不锈钢管、石油裂化管、地质钢管和其它钢管等。冷轧(拨)无缝钢管除分一般钢管、低中压锅炉钢管、高压锅炉钢管、合金钢管、不锈钢管、石油裂化管、其它钢管外,还包括碳素薄壁钢管、合金薄壁钢管、不锈薄壁钢管、异型钢管。热轧无缝管外径一般大于32mm,壁厚 2.5-200mm,冷轧无缝钢管外径可以到6mm,壁厚可到0.25mm,薄壁管外径可到5mm壁厚小于0.25mm,冷轧比热轧尺寸精度高。 一般用无缝钢管是用10、20、30、35、45等优质碳结钢16Mn、5MnV等低合金结构钢或40Cr、30CrMnSi、45Mn2、40MnB等合结钢热轧或冷轧制成的。10、20等低碳钢制造的无缝管主要用于流体输送管道。45、40Cr等中碳钢制成的无缝管用来制造机械零件,如汽车、拖拉机的受力零件。一般用无缝钢管要保证强度和压扁试验。热轧钢管以热轧状态或热处理状态交货;冷轧以热以热处理状态交货。 热轧,顾名思义,轧件的温度高,因此变形抗力小,可以实现大的变形量。以钢板的轧制为例,一般连铸坯厚度在230mm左右,而经过粗轧和精轧,最终厚度为1~20mm。同时,由于钢板的宽厚比小,尺寸精度要求相对低,不容易出现板形问题,以控制凸度为主。对于组织有要求的,一般通过控轧控冷来实现,即控制精轧的开轧温度、终轧温度.圆管坯→加热→穿孔→打头→退火→酸洗→涂油(镀铜)→多道次冷拔(冷轧)→坯管→热处理→矫直→水压试验(探伤)→标记→入库

热轧无缝钢管知识大全包括热轧无缝钢管缺陷

2、热轧钢管生产工艺流程 2.1一般工艺流程 热轧无缝钢管的生产工艺流程包括坯料轧前准备、管坯加热、穿孔、轧制、定减径和钢管冷却、精整等几个基本工序。 当今热轧无缝钢管生产的一般主要变形工序有三个:穿孔、轧管和定减径;其各自的工艺目的和要求为: 2.1.1穿孔:将实心的管坯变为空心的毛管;我们可以理解为定型,既将轧件断面定为圆环状;其设备被称为穿孔机。对穿孔工艺的要求是:首先要保证穿出的毛管壁厚均匀,椭圆度小,几何尺寸精度高;其次是毛管的内外表面要较光滑,不得有结疤、折叠、裂纹等缺陷;第三是要有相应的穿孔速度和轧制周期,以适应整个机组的生产节奏,使毛管的终轧温度能满足轧管机的要求。 2.1.2轧管:将厚壁的毛管变为薄壁(接近成品壁厚)的荒管;我们可以视其为定壁,即根据后续的工序减径量和经验公式确定本工序荒管的壁厚值;该设备被称为轧管机。对轧管工艺的要求是:第一是将厚壁毛管变成薄壁荒管(减壁延伸)时首先要保证荒管具有较高的壁厚均匀度;其次荒管具有良好的内外表面质量。 2.1.3定减径(包括张减):大圆变小圆,简称定径;相应的设备为定(减)径机,其主要作用是消除前道工序轧制过程中造成的荒管外径不一(同一支或同一批),以提高热轧成品管的外径精度和真圆度。对定减径工艺的要求是:首先在一定的总减径率和较小的单机架减径率条件下来达到定径目的,第二可实现使用一种规格管坯生产多种规格成品管的任务,第三还可进一步改善钢管的外表面质量。 20世纪80年代末,曾出现过试图取消轧管工序,仅使用穿孔加定减的方法

生产无缝钢管,简称CPS,即斜轧穿孔和张减的英文缩写),并在南非的Tosa厂进行了工业试验,用来生产外径:33.4~179.8mm,壁厚3.4~25mm的钢管,其中定径最小外径为101.6mm;张减最大外径我101.6mm。经过实践检验,该工艺在产生壁厚大于10mm的钢管时质量尚可,但在生产壁厚小于8mm的钢管时通过定径、张减不能完全消除穿孔毛管的螺旋线,影响了钢管的外观质量。在随后的改造中不得不在穿孔机于定减径机之间增设了一台MINI-MPM(4机架)来确保产品质量。 2.2各热轧机组生产工艺过程特点 我们通常将毛管的壁厚加工称之为轧管。轧管是钢管成型过程中最重要的一个工序环节。这个环节的主要任务是按照成品钢管的要求将厚壁的毛管减薄至与成品钢管相适应的程度,即它必须考虑到后继定、减径工序时壁厚的变化,这个环节还要提高毛管的内外表面质量和壁厚的均匀度。通过轧管减壁延伸工序后的管子一般称为荒管。轧管减壁方法的基本特点是在毛管内按上刚性芯棒,由外部工具(轧辊或模孔)对毛管壁厚进行压缩减壁。依据变形原理和设备特点的不同,它有许多种生产方法,如表1所示。一般习惯根据轧管机的形式来命名热轧机组。轧管机分单机架和多机架,单机架有自动轧管机、阿塞尔轧机、ACCU-ROLL等,斜轧管机都是单机架的;连轧管机都是多机架的,通常4~8个机架,如MPM、PQF等。目前主要使用连轧(属于纵轧)与斜轧两种轧管工艺。

无缝钢管有什么材质分析解析

1、汽车用管(别克轿车专用)小口径高压锅炉管 按国内外标准或行业标准生产210C、15CrMoG、12Cr1MoVG、T12~T91系列钢管 2、西气东输站场用管线管GB/T9711.2 L245NB Φ1146、Φ895等 3、海底输油管线管API5L X52 PSL2 Φ8910、Φ114.311.1 4、油田用管N80非调质管API 5CT Φ139.77.72 J55油管API 5CT Φ735.51 5、桁架臂专用管(整体调质管)协议标准,20Mn2B、20Mn2、Φ14615等,用于履带式塔吊用起重设备 6、专用缸筒和支架用管T91、钢102系列高压锅炉管GB5310-1995,用于热电站高温、高压环境 7、拖拉机后轴管35MnVN,履带式拖拉机的后轴 8、超高强度结构管35CrMnsi、30CrMnSiNi2A,用于军工、飞机起落架用管 9、车桥管20Mn2、Φ17812、Φ12719等 10、岩矸管协议标准J55、Φ266、Φ316等,用于高速公路、大型水电站大坝加固用 11、液压支柱管GB/T17396-1998、27SiMn,用于煤机井下作业支撑固定 按美标生产的锅炉和过热器用中碳钢无缝钢管ASTM A210、210C、Φ606 12、汽车半轴套管YB/T5035-1996、45Mn2\45 13、超长换热器管20,Φ19216000-21000,用于换热器 14、叉杆用无缝管CR-1、Φ485,用于火车提速用的CR转向架交叉杆 15、火箭炮用定向螺旋异型无缝管Φ1232.2、MP16Mn、GJB459-88 16、抗海水腐蚀管Q/CG41-1994、10CrMoA1、Φ1084、Φ252.5 17、潜油电机轴管协议标准Φ3111、Φ3613.5、40Cr、35CrMo、35CrMoV,用于抽油泵的电机轴 18、低温管道用管GB/T18984-2003、09DG、10MnDG、09Mn2VDG、B655,用于石化行业处于低温环境的流体输送管道、核电站用管 军工用纯铁管DT3 19、710超强炮身用管 20、直九机管15CDV6 21、锅炉、热交换器用不锈无缝管GB13296-1991、0Cr18Ni9Ti、0Cr18Ni11Ti、Φ1928900等 22、潜望镜管、汽车、摩托车减震器用精密无缝钢管10、20等. 23、曳光破甲弹压环用管SAE1035、Φ1009.5

1热轧无缝钢管(YB231-70)

1、热轧无缝钢管(YB231-70) 外径 (mm) 壁厚 (mm) 12 13 14 15 16 17 18 19 20 22 (24) 25 (26) 28 30 32 钢管理论重量 (kg/m) 32 38 42 45 50 54 57 13.32 14.11 60 14.21 15.07 15.88 63.5 15.24 16.19 17.09 68 16.57 17.63 18.64 19.61 20.52 70 17.16 18.27 19.33 20.35 21.31 73 18.05 19.24 20.37 21.46 22.49 23.48 24.41 25.30 76 18.94 20.20 21.41 22.57 23.68 24.74 25.75 26.71 83 21.01 22.44 23.82 25.15 26.44 27.67 28.85 29.99 89 22.79 24.37 25.89 27.37 28.80 30.19 31.52 32.80 34.03 36.35 38.47 95 24.56 26.29 27.97 29.59 31.17 32.70 34.18 35.61 36.99 39.61 42.02 102 26.63 28.53 30.38 32.18 33.93 35.64 37.29 38.89 40.44 43.40 46.17 108 28.41 30.46 32.45 34.40 36.30 38.15 39.95 41.70 43.40 46.66 49.72 51.17 52.58 55.24 114 30.19 32.38 34.53 36.62 38.67 40.67 42.62 44.51 46.36 49.91 53.27 54.87 56.43 59.38 121 32.19 34.62 36.94 39.21 41.43 43.60 45.72 47.79 49.82 53.71 57.41 59.19 60.91 64.22 127 34.03 36.55 39.01 41.43 43.80 46.12 48.39 50.61 52.78 56.97 60.96 62.89 64.76 68.36 71.76 133 35.81 38.47 41.09 43.65 46.17 48.63 51.05 53.42 55.73 60.22 64.51 66.59 68.61 72.50 76.20 79.71 140 37.88 40.72 43.50 46.24 48.93 51.57 54.16 56.70 59.19 64.02 68.66 70.91 73.10 77.34 81.38 85.23 146 39.66 42.64 45.57 48.46 51.30 54.08 56.82 59.51 62.15 67.27 72.21 74.60 76.94 81.48 85.82 89.97 152 41.43 44.56 47.65 50.68 53.66 56.60 59.48 62.32 65.11 70.59 75.76 78.30 80.79 85.62 90.26 94.70

带钢常见缺陷及其图谱

结疤(重皮) 图1 图2 1.缺陷特征 附着在钢带表面,形状不规则翘起的金属薄片称结疤。呈现叶状、羽状、条状、鱼鳞状、舌端状等。结疤分为两种,一种是与钢的本体相连结,并折合到板面上不易脱落;另一种是与钢的本体没有连结,但粘合到板面上,易于脱落,脱落后形成较光滑的凹坑。 2.产生原因及危害 产生原因: ①板坯表面原有的结疤、重皮等缺陷未清理干净,轧后残留在钢带表面上;

②板坯表面留有火焰清理后的残渣,经轧制压入钢带表面。 危害:导致后序加工使用过程中出现金属剥离或产生孔洞。 3.预防及消除方法 加强板坯质量验收,发现板坯表面存在结疤和火焰清理后残渣应清理干净。气泡 图1 开口气泡 图2 开口气泡 1.缺陷特征

钢带表面无规律分布的圆形或椭圆形凸包缺陷称气泡。其外缘较光滑,气泡轧破后,钢带表面出现破裂或起皮。某些气泡不凸起,经平整后,表面光亮,剪切断面呈分层状。 2.产生原因及危害 产生原因: ①因脱氧不良、吹氮不当等导致板坯内部聚集过多气体; ②板坯在炉时间长,皮下气泡暴露或聚集长大。 危害:可能导致后序加工使用过程中产生分层或焊接不良。 3.预防及消除方法 ①加强板坯质量验收,不使用气泡缺陷暴露的板坯; ②严格按规程加热板坯,避免板坯在炉时间过长。

压入氧化铁皮 图1 一次(炉生)氧化铁皮(压入) 图2 二次氧化铁皮(轧制过程产生)

图3 二次氧化铁皮(轧辊氧化膜脱落) 1.缺陷特征 热轧过程中氧化铁皮压入钢带表面形成的一种表面缺陷称压入氧化铁皮。按其产生原因不同可分为炉生(一次)氧化铁皮、轧制过程中产生的(二次)氧化铁皮或轧辊氧化膜脱落压入带钢表面形成的(二次)氧化铁皮。 2.产生原因及危害 产生原因: ①钢坯表面存在严重纵裂纹; ②钢坯加热工艺或加热操作不当,导致炉生铁皮难以除尽; ③高压除鳞水压力低、喷嘴堵塞等导致轧制过程中产生的氧化铁皮压入带钢表面; ④轧制节奏过快、轧辊冷却不良等导致轧辊表面氧化膜脱落压入带钢表面。 危害:影响钢带表面质量和涂装效果。 3.预防及消除方法 ①加强钢坯质量验收,表面存在严重纵裂纹的板坯应清理合格后使用; ②合理制订钢坯加热工艺,按规程要求加热板坯; ③定期检查高压除鳞水系统设备,保证除鳞水压力,避免喷嘴堵塞;

无缝钢管生产工艺流程

无缝钢管生产工艺流程 两种钢管工艺流程概述 冷拔(轧)无缝钢管:圆圆管坯→加热→穿孔→打头→退火→酸洗→涂油(镀铜)→多道次冷拔(冷轧)→坯管→热处理→矫直→水压试验(探伤)→标记→入库。 热轧(挤压无缝钢管):圆管坯→加热→穿孔→三辊斜轧、连轧或挤压→脱管→定径(或减径)→冷却→坯管→矫直→水压试验(或探伤)→标记→入库。 两种钢管工艺流程详解 冷拔钢管用热轧钢卷为原料,经酸洗去除氧化皮后进行冷连轧,其成品为轧硬卷,由于连续冷变形引起的冷作硬化使轧硬卷的强度、硬度上升、韧塑指标下降,因此冲压性能将恶化,只能用于简单变形的零件。轧硬卷可作为热镀锌厂的原料,因为热镀锌机组均设置有退火线。轧硬卷重一般在6~13.5吨,钢卷内径为610mm。 一般冷连轧板、卷均应经过连续退火(CAPL机组)或罩式炉退火消除冷作硬化及轧制应力,达到相应标准规定的力学性能指标。 冷轧钢板的表面质量、外观、尺寸精度均优于热轧板,且其产品厚度右轧薄至0.18mm左右,因此深受广大用户青睐。以冷轧钢卷为基板进行产品的深加工,成为高附加值产品。如电镀锌、热镀锌、耐指纹电镀锌、彩涂钢板卷及减振复合钢板、PVC 复膜钢板等,使这些产品具有美观、高抗腐蚀等优良品质,得到了广泛应用。冷轧钢卷经退火后必须进行精整,包括切头、尾、切边、矫平、平整、重卷、

或纵剪切板等。冷轧产品广泛应用于汽车制造、家电产品、仪表开关、建筑、办公家具等行业。钢板捆包后的每包重量为3~5吨。平整分卷重一般为3~10吨/卷。钢卷内径610mm。 热轧钢管用连铸板坯或初轧板坯作原料,经步进式加热炉加热,高压水除鳞后进入粗轧机,粗轧料经切头、尾、再进入精轧机,实施计算机控制轧制,终轧后即经过层流冷却和卷取机卷取、成为直发卷。直发卷的头、尾往往呈舌状及鱼尾状,厚度、宽度精度较差,边部常存在浪形、折边、塔形等缺陷。其卷重较重、钢卷内径为760mm。(一般制管行业喜欢使用。)将直发卷经切头、切尾、切边及多道次的矫直、平整等精整线处理后,再切板或重卷,即成为:热轧钢板、平整热轧钢卷、纵切带等产品。热轧精整卷若经酸洗去除氧化皮并涂油后即成热轧酸洗板卷。该产品有局部替代冷轧板的趋向,价格适中,深受广大用户喜爱

热轧卷缺陷图谱

热轧板卷缺陷图谱 缺陷名称辊印 1.缺陷特征: 是一组具有周期性(其周期长度即为产生辊印的辊子的周长及其后再加工的延伸量,大小形状基本一致的凸凹缺陷,并且外观形状不规则。 2.产生原因:一方面由于辊子疲劳或硬度不够,使辊面掉肉呈凹形,另一方面由于辊子表面粘有异物,经轧制或精整加工的钢材表面形成凸凹缺陷。 3.预防及消除方法: (1)正确选择轧辊材质及其热处理工艺,调整轧辊冷却水,使辊身冷却均匀,预防轧辊掉肉; (2)定期检查轧辊表面质量,禁止违章轧钢或异物进入轧辊,预防伤害轧辊表面; (3)定期更换疲劳的轧辊、夹送辊、助卷辊等; (4)如轧钢发现异常如冷卷、卡钢、甩尾等情况时,应及时检查轧辊表面是否损伤; (5)定期检查精整加工线平整辊、矫直辊等表面质量。

缺陷名称氧化铁皮 缺陷图片 1.缺陷特征: 氧化铁皮一般粘附在钢板表面上,分布于板面局部或全部,铁皮有的疏松易脱落;有的压入板面不易脱落。根据其外观形态不同可分为:红铁皮、线条状铁皮、木纹状铁皮、流线状铁皮、纺锤状铁皮、拖曳状铁皮或散沙状铁皮等。 2.产生原因: (1)板坯加热制度不合理或加热操作不当生成较厚且较致密的铁皮,除鳞时难以除尽,轧制时被压入钢板表面上; (2)由于高压除鳞水压力低、水咀堵塞、水咀角度安装不合理或操作不当等原因,使钢坯上的铁皮未除尽,轧制时被压入到钢板表面上。 (3)氧化铁皮在沸腾钢中发生较多,含硅较高的钢中易产生红铁皮。 (4)轧辊表面粗糙也是产生氧化铁皮的一个重要原因。

缺陷名称波浪 缺陷图片 1.缺陷特征: 沿钢板的轧制方向呈现高低起伏的波浪形的弯曲。根据分布的部位不同,分为中间浪、单边浪和双边浪。 2.产生原因: (1)辊形曲线不合理,轧辊磨损不均匀; (2)压下量分配不合理; (3)轧辊辊缝调整不良或轧件跑偏; (4)轧辊冷却不均; (5)轧件温度不均; (6)卷取机前的侧导板开口度过小等。

热轧无缝钢管缺陷及产生原因

热轧无缝钢管缺陷及产生原因 1. 离层 缺陷特征:位于钢管内表面呈纵向分布,呈凸起螺旋状,块状金属分离或破裂状夹层。 产生原因:材质不良造成有非金属夹杂物,残余缩孔或严重疏松。 2. 直道内折 缺陷特征:位于钢管内表面呈纵向分布,呈现对称或单条直线形的折迭有通长,也有局部。产生原因:芯棒润滑不良,芯棒表面有缺陷或表面附有氧化铁皮,铁屑等使钢管内表面划成沟道,荒管在轧制过程中,在连轧机孔型内过充满。 3. 内孔不规则 缺陷特征:位于钢管内表面呈纵向分布,①有一个或二个相差180°的管壁增厚现象,或在钢管内表面与芯棒分离点处有壁厚增厚状,也称内鼓包。②钢管内园呈六方形的壁厚不均状,也称内六方。 产生原因:内鼓色:连轧压下量分配或张力选择不当,使金属过充满芯棒选用不当。 内六方:张减孔型与张力参数选择不当,张减机单机架减经或总减径率较大。 4. 管壁收缩 缺陷特征:位于钢管内表面上,钢管横向断面最薄处钢管内表面凹陷,壁厚局部变薄,严重的收缩几乎撕破。 产生原因:连轧机延伸过大,钢管在孔型侧壁部分,局部被拉薄连轧机各机架压下调整不当和延伸系数分配不合理。 5. 内轧疤 缺陷特征:钢管内表面纵向呈指甲状结疤、凸起或块状折迭,钢管内表面压痕。 产生原因:芯棒润滑状态不良,造成芯棒局部磨损、损坏、粘金属,顶头严重磨损、粘金属、缺肉或大裂纹穿孔耳子被压在钢管的内壁上。 6. 内折迭

缺陷特征:位于钢管内表面的端部,局部或纵向呈螺旋状半螺旋状或无规律分布的片状折迭。产生原因:穿孔过程中轧机调整不当,顶头严重磨损,管坯材质不好,芯棒严重损坏。 7. 轧折 缺陷特征:位于钢管内表面纵向管壁局部或全长上呈外凹里凸的皱折或在钢管外表面纵向通长有两道对称明显沟痕,一般为直线形,个别为斜线形。 产生原因:连轧荒管外径过大或荒管橢圆度太大,竹节控制强度不够或润滑状态不好,横移装置将连轧荒管碰瘪,连轧机转速错误。 8. 撕破 缺陷特征:位于钢管表面纵向上管体呈现不同程度的横向破裂,菱状和椭圆状穿透管体的孔洞。 产生原因:连轧来料局部有“黑斑”,过连轧时极易撕破,缺陷形式一般为菱形状。连轧来料温度偏低,连轧张力过大,连轧机转速选择不当。 9. 双缝折迭 缺陷特征:位于钢管表面纵向上一对斜向伸入管壁纵向的裂缝,这种裂缝有时是零散地分布在管子园周上有时以对称出现。 产生原因:穿孔毛管外径过大或直径不规则引起的折迭。 10.外折迭 缺陷特征:①钢管外表上呈现规律性的折迭有三角状,双缝直线状,单缝直线状或无规律的片状折迭等。 ②钢管的纵向外表上呈现一条通常连续或间断缝纫机针脚状或错开60°、120°、180°缝纫针脚状的折迭。 ③钢管的纵向外表上呈现螺旋状折迭。 ④钢管表面纵向呈一条通长点状或短斜线的折迭,严重时错开120°的二条或三条。 产生原因:①管坯表面有纵向裂纹或存在严重的夹杂物,缩孔等产生螺旋状折迭。 ②管坯表面清理不良,有尖锐棱角或存在外翘皮。 ③穿孔机导盘结瘤或穿孔机出口嘴擦伤毛管。 ④连轧辊或张减辊有裂纹或碰伤。

热轧钢管生产工艺流程

热轧钢管生产工艺流程 2.1一般工艺流程 热轧无缝钢管的生产工艺流程包括坯料轧前准备、管坯加热、穿孔、轧制、定减径和钢管冷却、精整等几个基本工序。 当今热轧无缝钢管生产的一般主要变形工序有三个:穿孔、轧管和定减径;其各自的工艺目的和要求为: 2.1.1穿孔:将实心的管坯变为空心的毛管;我们可以理解为定型,既将轧件断面定为圆环状;其设备被称为穿孔机。对穿孔工艺的要求是:首先要保证穿出的毛管壁厚均匀,椭圆度小,几何尺寸精度高;其次是毛管的内外表面要较光滑,不得有结疤、折叠、裂纹等缺陷;第三是要有相应的穿孔速度和轧制周期,以适应整个机组的生产节奏,使毛管的终轧温度能满足轧管机的要求。 2.1.2轧管:将厚壁的毛管变为薄壁(接近成品壁厚)的荒管;我们可以视其为定壁,即根据后续的工序减径量和经验公式确定本工序荒管的壁厚值;该设备被称为轧管机。对轧管工艺的要求是:第一是将厚壁毛管变成薄壁荒管(减壁延伸)时首先要保证荒管具有较高的壁厚均匀度;其次荒管具有良好的内外表面质量。 2.1.3定减径(包括张减):大圆变小圆,简称定径;相应的设备为定(减)径机,其主要作用是消除前道工序轧制过程中造成的荒管外径不一(同一支或同一批),以提高热轧成品管的外径精度和真圆度。对定减径工艺的要求是:首先在一定的总减径率和较小的单机架减径率条件下来达到定径目的,第二可实现使用一种规格管坯生产多种规格成品管的任务,第三还可进一步改善钢管的外表面质量。 20世纪80年代末,曾出现过试图取消轧管工序,仅使用穿孔加定减的方法生产无缝钢管,简称CPS,即斜轧穿孔和张减的英文缩写),并在南非的Tosa厂进行了工业试验,用来生产外径:33.4~179.8mm,壁厚3.4~25mm的钢管,其中定径最小外径为101.6mm;张减最大外径我101.6mm。经过实践检验,该工艺在产生壁厚大于10mm的钢管时质量尚可,但在生产壁厚小于8mm的钢管时通过定径、张减不能完全消除穿孔毛管的螺旋线,影响了钢管的外观质量。在随后的改造中不得不在穿孔机于定减径机之间增设了一台MINI-MPM(4机架)来确保产品质量。 2.2各热轧机组生产工艺过程特点 我们通常将毛管的壁厚加工称之为轧管。轧管是钢管成型过程中最重要的一个工序环节。这个环节的主要任务是按照成品钢管的要求将厚壁的毛管减薄至与成品钢管相适应的程度,即它必须考虑到后继定、减径工序时壁厚的变化,这个环节还要提高毛管的内外表面质量和壁厚的均匀度。通过轧管减壁延伸工序后的管子一般称为荒管。轧管减壁方法的基本特点是在毛管内按上刚性芯棒,由外部工具(轧辊或模孔)对毛管壁厚进行压缩减壁。依据变形原理和设备特点的不同,它有许多种生产方法,如表1所示。一般习惯根据轧管机的形式来命名热轧机组。轧管机分单机架和多机架,单机架有自动轧管机、阿塞尔轧机、ACCU-ROLL 等,斜轧管机都是单机架的;连轧管机都是多机架的,通常4~8个机架,如MPM、PQF等。目前主要使用连轧(属于纵轧)与斜轧两种轧管工艺。

相关主题
文本预览
相关文档 最新文档