当前位置:文档之家› 张量分析总结

张量分析总结

张量分析总结
张量分析总结

一、知识总结

1 张量概念

1.1 指标记法

哑标和自由指标的定义及性质

自由指标:在每一项中只出现一次,一个公式中必须相同。 性质:在表达式或方程中自由指标可以出现多次,但不得在同项内重复出现两次。

哑标:一个单项式内,在上标(向量指标)和下标(余向量指标)中各出现且仅出现一次的指标。

性质:哑标可以把多项式缩写成一项;自由指标可以把多个方程缩写成一个方程。 例:

3

33323213123232221211

313212111B x A x A x A B x A x A x A B x A x A x A =++=++=++ (1.1)

式(1.1)可简单的表示为下式:

i j ij B x A =

(1.2)

其中:i 为自由指标,j 为哑标。特别区分,自由指标在同一项中最多出现一次,表示许多方程写成一个方程;而哑标j 则在同项中可出现两次,表示遍历求和。在表达式或者方程中自由指标可以出现多次,但不得在同项中出现两次。 1.2 Kronecker 符号

定义ij δ为:

?

?

?≠==j i j

i ij ,0,1δ

(1.3)

ij δ的矩阵形式为:

????

?

?????=100010001ij δ

(1.4)

可知3ij ij ii jj δδδδ===。δ符号的两指标中有一个与同项中其它因子的指标相同时,可把该因子的重指标换成δ的另一个指标,而δ符号消失。如:

ij jk ik

ij jk kl il

δδδδδδδ==

(1.5)

ij δ的作用:更换指标、选择求和。

1.3 Ricci 符号

为了运算的方便,定义Ricci 符号或称置换符号:

??

?

??-=其余情况为奇排列为偶排列,0,,,1,,,1k j i k j i l ijk

(1.6)

图1.1 i,j,k 排列图

ijk l 的值中,有3个为1,3个为-1,其余为0。Ricci 符号(置换符号)是与任何坐标系都无关的一个符号,它不是张量。

1.4 坐标转换

图1.2 坐标转换

如上图所示,设旧坐标系的基矢为i e ,新坐标系的基矢为'i e 。有错误!未指定书签。

'i e 在i e 下进行分解:''11'22'33'i i i i i j j e e e e e ββββ=++= 错误!未指定书签。

错误!未指定书签。j e 在'i e 下进行分解:'''

'1'12'23'3'j j j j i j i e e e e e ββββ=++= 错

误!未指定书签。

其中,''''cos(,)i j i j i j j i e e e e e e β==?=? 错误!未指定书签。为新旧坐标轴间的夹角余弦,称为坐标转换系数。空间点P 在新老坐标系矢径:

??

?

??'

+='?='?'='0r r r e x r e x r j j i i (1.7)

其中'

0r 为上图中坐标原点的位移矢量。

将'r 向新坐标轴错误!未指定书签。投影的矢量的分量:

''''''''

'

''''''''0000()()()()i k k i k ki i i k k i j j i k ki j i j i j i j

r e x e e x x r r e x e e x e e x x x x δδββ?=?==+?=?+?=+=+即

由此得新坐标用老坐标表示的公式:

ij j i i x x x β+'='0)(

(1.8)

错误!未指定书签。

类似地,将i 向老坐标上投影,可以推导出老坐标用新坐标表示的公式:

''0()j j i ij x x x β=+(1.9)错误!未指定书签。错误!未指定书签。

特别的,当新旧坐标原点重合时,也即坐标轴仅发生旋转,此时'

0()0i x =,

错误!未指定书签。上两式的矩阵形式为:

错误!未指定书签。 {}[]{}

{}[]{}[]{}'1''

T x x x x x βββ-===(1.10)错误!未指定书签。错误!未指定书签由上可知,[][][]T

I ββ=错误!未指定书签。 ,[]β是正交矩阵,则'1i j β=。

综合以上可知:

''''''''''''

''''

i j l k lk i l j k i l j k i k j k i k j k i j i j i j e e e e e e ββββδββββδδ??=?==?

?=??=??

(1.11)错误!未指定书签。 同理,可推出:''ij k i k j ββδ=

将老坐标到新坐标的坐标转换称为正转换,错误!未指定书签。; 将新坐

标到老坐标的坐标转换称为正转换,'

()j j i x x x =

'

'

i i

j j

x dx dx x ?=?错误!未指定书签。,其中'i j x x ??错误!未指定书签。错误!未

指定书签。为常数,错误!未指定书签。称'

i j

x J x ?=?为雅克比行列式。若J 处处

不为0,则说明存在相应的逆变化,即:'''

j

i i j j i x x x x β??==??错误!未指定书签。

1.5 张量的分量坐标转换规律

1.5.1 一阶张量

一阶张量在新老坐标系中的分解为:

j j i i e a e a a =''=

(1.12)

其中:

i j i j e e '='β

(1.13)

则:

i j i j i i e a e a a '=''='β

(1.14)

得到:

j i j i a a '='β

(1.15)

同理:

j j i i e e '='β

(1.16)

得:

i j i j a a '='β

(1.17)

矢量是与一阶基矢相关联的不变量,可表示为一阶基矢的线性组合,此组合与坐标系的选择无关,故为一阶张量,标量为零阶张量。 1.5.2 二阶张量

定义j i e e 为二阶基矢,写在一起,不作任何运算。由下式:

???'=='''i j i j

j

j i i e e e e ββ (1.18)

可得坐标变换时二阶基矢的转换规律为:

???''==''''''j i n j m i n

m n

m n j m i j i e e e e e e e e ββββ (1.19)错误!未指定书签。

又:

j j i i j j i i e b e a e b e a ab ''''==

(1.20)错误!未指定书签。

记:

错误!未指定书签。j i ij b a B =错误!未指定书签。,j i ij

b a B ''=' (1.21)

则:

j i ij

j i ij e e B e e B ab '''== (1.22)错误!未指定书签。

该式表示 a 与 b 并乘为一个坐标不变量,称为二阶张量。记为:

j i ij

j i ij e e B e e B B '''== (1.23)错误!未指定书签。

将式(1.13)错误!未指定书签。代入错误!未指定书签。上式可得:

???'='='''''ij n j m i mn

mn n j m i ij

B B B B ββββ (1.24)

此分量转换可进一步推广到高阶张量。

张量与坐标轴选择无关,故可独立于坐标系来表述。

2 张量的代数运算

2.1 张量的加减

假如A 、B 为同阶张量,将它们在同一坐标系下的同类型分量一一相加(减),得到的结果即为它们的和(差),记为)(B A B A -+,例如:

ij ij B A B A ±=±

(2.1)

显然,同阶张量进行加减运算后仍为同阶张量。 2.2 标量与张量的积

张量A ,标量λ,若A B λ=,则:

ij ij A B λ=

(2.2)

2.3 张量的并积

两个同维不同阶(同阶)张量A 、B 的并积C 是一个阶数为A 、B 阶数之和的高阶张量。 k j i ijk e e e A A = (2.3) m l lm e e B B =

(2.4)

m l k j i ijklm e e e e e C B A C ==

(2.5)

式(1.10)中:

lm ijk ijklm B A C =

(2.6)

2.4 张量的缩并

若对某张量中任意两个基矢量求点积,则张量将缩并为低二阶的新张量。错误!未指定书签。,有iji j A B =错误!未指定书签。。取不同基矢量点积,缩并结果不同。 2.5 张量的点积

两个张量先并乘后缩并的运算称为点积。如下:

k j i ijk e e e A A = (2.7) j l lj e e B B = (2.8)

错误!未指定书签。

(2.9)

其中,

ijk lj ikl A B C =

(2.10)

2.6 指标的转换

对于张量k j i ijk e e e A A =,若对该张量的分量中任意两个指标交换次序,得到一个与原张量同阶的新张量。如下式所示:

k j i ijk k j i jik e e e B e e e A =

(2.11)

指标转换也可以通过交换相应的基矢量位置来得到,如下式所示:

k j i ijk k j i jik k i j ijk e e e B e e e A e e e A ==

(2.12)

错误!未指定书签。2.7 张量的商法则

张量T ,如果它满足对于任意一个q 阶张量S 的内积均为一个p 阶张量U ,即在任意坐标系内以下等式U S T =成立错误!未指定书签。,则T 必定是一个p+q 阶的张量。以上规则称为张量的商法则。

3 二阶张量

二阶张量是连续介质力学中最常遇到的一类张量,例如应力张量、应变张量、变形梯度张量和正交张量等。 3.1 二阶张量的矩阵

(1) 任何一二阶张量T 总可以按其分量写成矩阵形式:

111213212223313233ij T T T T T T T T T T T ??

????==??

??????

(3.1)

二阶张量与矩阵虽然有上述对应关系,但它们并非全能一一对应。首先,矩阵并非只包括方阵,而二阶张量只能对应方阵;其次,在一般坐标系中,转置张

量与转置矩阵、对称(或反对称)张量与对称(或反对称)矩阵不能一一对应;第三,二阶张量的某些运算不完全能用矩阵的运算与之互相对应。

(2) 二阶张量T 的转置张量T T 为:

()T T ij i j ji i j T T g g T g g ==

(3.2)

(3) 二阶张量的行列式

二阶张量对应的矩阵具有行列式值:det det ij T T ??=??

由于两个互为转置的矩阵的行列式值相等,故两个互为转置的张量的行列式相等det det T T T =

(4) 二阶张量的代数运算与矩阵的代数运算

张量的相等、相加、标量与张量相乘等代数运算均与矩阵运算一一对应;二阶张量与矢量的点积;二阶张量与二阶张量的点积。以上运算都可以表示成对应的矩阵运算,但二阶张量的有些运算没有相应的矩阵运算,例如并乘运算。 3.2 几种特殊的张量 3.2.1零二阶张量

零二阶张量将任意矢量映射为零矢量,它是一种特殊的退化的二阶张量。 零二阶张量对应的矩阵为:

[]000000000O ??

??=??

???? (3.3)

0O u ?=

(3.4)

式中,左端的O 是零二阶张量,右端的0为零矢量。

3.2.2 度量(单位)张量G 错误!未指定书签。

(3.5) 度量张量将任意矢量映射为原矢量,即: G u u ?=

(3.6) 度量张量与任意二阶张量的点积仍为该张量本身,即:

T G T T G ?==?

(3.7)

因此,有些书中将度量张量记作I 或1。 3.2.3球形张量

主对角分量为α,其余分量为零的二阶张量称为球形张量。它是数α与单位张量的数积,即:

错误!未指定书签。 ij ij S G α=?

(3.8)

3.2.4转置张量

二阶张量错误!未指定书签。由对换分量指标而基矢量顺序保持不变所得的新张量ji i j B B e e *=称为张量B 的转置张量。若同时转换二阶张量B 的分量指标和基矢顺序,结果仍为B 。三阶张量错误!未指定书签。有三种不同的转置张量,任意对换i ,j ,k 得到:

123ijk i j k

ikj i j k

kji i j k

B B e e e B B e e e B B e e e ***===

(3.9)

3.2.5对称张量与反对称张量

对称张量,转置张量等于其自身的张量:,ij ji B B B B *==。反对称张量,转置张量与其相反的张量:,ij ji

B B B B *=-=-。

错误!未指定书签。三维二阶对称

张量的独立分量有6个,n 维有错误!未指定书签。个。反对称张量的主对角分量为0。三维二阶反对称张量的独立分量有3个,n 维有错误!未指定书签。个。

任意二阶张量B 可以分解称为对称张量S 和反对称张量A 之和,即B=S+A 再有错误!未指定书签。,得:

1

()

2

1

()

2

S B B A B B **=+=-

(3.10)

(完整版)《张量分析》报告

一 爱因斯坦求和约定 1.1指标 变量的集合: n n y y y x x x ,...,,,...,,2121 表示为: n j y n i x j i ...,3,2,1,,...,3,2,1,== 写在字符右下角的 指标,例如xi 中的i 称为下标。写在字符右上角的指标,例如yj 中的j 称为上标;使用上标或下标的涵义是不同的。 用作下标或上标的拉丁字母或希腊字母,除非作了说明,一般取从1到n 的所有整数,其中n 称为指标的范围。 1.2求和约定 若在一项中,同一个指标字母在上标和下标中重复出现,则表示要对这个指标遍历其范围1,2,3,…n 求和。这是一个约定,称为求和约定。 例如: 3 3 33 2 32 1 31 2 3 23 2 22 1 21 1 3 13 2 12 1 11 b x A x A x A b x A x A x A b x A x A x A =++=++=++

筒写为: i j ij b x A = j——哑指标 i——自由指标,在每一项中只出现一次,一个公式中必须相同 遍历指标的范围求和的重复指标称为“哑标”或“伪标”。不求和的指标称为自由指标。 1.3 Kronecker-δ符号(克罗内克符号)和置换符号 Kronecker-δ符号定义 j i j i ij ji ≠=???==当当0 1δδ 置换符号 ijk ijk e e =定义为: ?? ? ??-==的任意二个指标任意k j,i,当021) (213,132,3的奇置换3,2,1是k j,i,当112)(123,231,3的偶置换3,2, 1是k j,i,当1ijk ijk e e i,j,k 的这些排列分别叫做循环排列、逆循环排列和非循环排列。 置换符号主要可用来展开三阶行列式: 23123133122123321123123113322133221133 323 123222 113121 1a a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++==

张量的基本概念(我觉得说的比较好-关键是通俗)

向量是在一个线性空间中定义的量,当这个线性空间的基变换时,向量的分量也跟着变换。而一个线性空间有一个伴随的对偶空间。 张量是一个同时定义在几个线性空间的量,这几个线性空间的基可同时变换,或者只是只变换几个,此时,张量的分量也跟着变换。我们一般见到的张量是同时定义在几个线性空间及其对偶空间里的量,在实际的符号表达中,就表现为同时有几个上指标和下指标,也即线性空间及其对偶空间。 张量其实是一种线性代数,即多重线性代数,从字面上理解,也正好是上面提到的“定义在多个线性空间的量”。 在流形中,一点的切空间正好同构于一个欧氏空间,也即,与一个欧氏空间的性质一样。而这个欧氏空间有一个伴随的对偶空间,所以可以定义张量。 要对流形上张量作微分运算,必须比较流形上相距很近两点的张量的差,这就引出了联络的概念,而联络的概念的引出,需要这两个不同的点的欧氏空间是同构的。进而发展了张量分析。 现代数学是建立在代数与拓扑基础上的,很多概念如果代数水平不行,是很难理解的。比如泛函分析、纤维从理论等。代数方面的知识,最好能掌握抽象代数的概念,进而掌握交换代数的知识。 其实,线性代数是很多现代数学概念的基础,而线性代数的核心就是空间的概念。而现在,我们国内工科学的线性代数只是讲一讲矩阵、矩阵运算、特征值、特征向量、二次形等等。线性代数的精髓概念根本涉及不到。这也就造成了很多同学理解现代数学中很多概念的困难。 现代数学的一个非常重要的方法论就是公理化的方法。这是希尔伯特在其《几何基础》中最先明确提出的,这本书当初得到了彭加莱的很高的评价。 公理化思想的威力我当初是在学习《实变函数论》这门课时深刻体会到的。武熙鸿老师的《黎曼几何初步》中,则是处处渗透着公理化的思想,读来颇有味道。 应该这样说,是低阶张量被我们找到了可以比拟的物理意义,但张量本身并不需要具有几何比拟 其实,张量是有很强的几何背景的,不管是低阶的,还是高阶的。这主要是因为现代张量的定义是建立在线性空间概念的基础上的。而线性空间正是从一、二、三维空间中抽现出来的。只要把握住“多个线性空间及其对偶空间”这个关键就行了。 而物理学家对于张量的定义是从坐标变换的角度定义的,这正是当初Ricci定义的方式。这种定义在现代数学中推广起来比较困难。所以把它定义成了多重线性映射。 我的朋友有的是搞弹性理论和流体的,但他们对张量的理解也很混乱,所以有时也向他们解释这个东西。但好像解释来解释去,他们还是不太明白。可能与他们是搞计算的有关,对这些纯理论的东东没有一个很系统的学习与理解,而且理解那么深也没用。不过,他们搞得计算的东东倒是一门很深的东东,我理解起来挺困难的。有时与他们神侃,很是佩服他们的计算机水平,不只对数值计算有极深的造诣,对一个程序如何编译成汇编代码,如何在CPU 中执行,操作系统如何对内存处理,那些程序又如何在内存中调度,反正听得多了,我也能

张量分析习题答案

第一章 习题7: 若c a m b =+,则 2322(12)(2)(32)a c m b i j k i j k i j k m m m m m m =-=++--+=-+-+- 注意 0a b ?=,则 2(12)(2)2(32)0m m m -+--+= 29 m =- 132023999a i j k = + + 习题10: (1.2.17)式为: )1 23g g g = ? )2 31g g g = ? )3 12g g g = ? ()123g g g g =??()()2i j k i j =+-?+= 2 = ()12011101i j k g g i j k ?= =+- 则 ()1 12 g i j k =+- ()231011 10i j k g g i j k ?= =-++ ()2 12 g i j k = -++ ()311 100 11 i j k g g i j k ?==-+ ()312 g i j k =-+ 11112g g g =?= 222g = 332g =

()()12211j k i k g g = ++== ()( )1331 1j k i j g g =++ == ()()32231g i k i j g =++== 习题24: T =N N T =ΩΩ T ?=?=?u N N u N u T ?=?=-?u u u ΩΩΩ 习题34: :()():ij ji ij i j i j j i T a b T a b T a b ====N ab ba N :()():ij ji ij i j i j j i a b a b a b =Ω=-Ω=-Ω=-ab ba ΩΩ 习题36: ??=??a T b a S b 推出 ()0?-?= a T S b 对a ,b 为任意张量都成立,,则0-=T S ,即=T S 习题48: 设 s r s r u u ==u g g ()pq r pq p q r q p u u ?=Ω ?=Ωu g g g g Ω 1 :2?? ?- ? ?? ? u =u ∈Ωω ()()11:221122 11 22 12 i j k pq s pq j k i s ijk p q s ijk p q s jk i s jk ist ijk s ijk s t ist jk s s t s t jk ijk s j k k j s t st ts st pq s t s t u u u u u u u u δδδδδδδ??-∈Ω?=-∈Ω? ? ?? =-∈Ω ?= ∈Ω ∈ =-Ω=- -Ω= Ω-Ω =Ω=Ω =g g g g g g g g g g g g g g g q p u g

张量分析总结讲课稿

张量分析总结

一、知识总结 1 张量概念 1.1 指标记法 哑标和自由指标的定义及性质 自由指标:在每一项中只出现一次,一个公式中必须相同。 性质:在表达式或方程中自由指标可以出现多次,但不得在同项内重复出现两次。 哑标:一个单项式内,在上标(向量指标)和下标(余向量指标)中各出现且仅出现一次的指标。 性质:哑标可以把多项式缩写成一项;自由指标可以把多个方程缩写成一个方程。 例: 3 33323213123232221211 313212111B x A x A x A B x A x A x A B x A x A x A =++=++=++ (1.1) 式(1.1)可简单的表示为下式: i j ij B x A = (1.2) 其中:i 为自由指标,j 为哑标。特别区分,自由指标在同一项中最多出现一次,表示许多方程写成一个方程;而哑标j 则在同项中可出现两次,表示遍历求和。在表达式或者方程中自由指标可以出现多次,但不得在同项中出现两次。 1.2 Kronecker 符号 定义ij δ为: ? ? ?≠==j i j i ij ,0,1δ (1.3)

ij δ的矩阵形式为: ? ? ? ? ? ? ? ? ? ? = 1 1 1 ij δ(1.4) 可知3 ij ij ii jj δδδδ ===。δ符号的两指标中有一个与同项中其它因子的指标相同时,可把该因子的重指标换成δ的另一个指标,而δ符号消失。如: ij jk ik ij jk kl il δδδ δδδδ = = (1.5) ij δ的作用:更换指标、选择求和。 1.3 Ricci符号 为了运算的方便,定义Ricci符号或称置换符号: ? ? ? ? ? - = 其余情况 为奇排列 为偶排列 ,0 , , ,1 , , ,1 k j i k j i l ijk (1.6) 图1.1 i,j,k排列图 ijk l的值中,有3个为1,3个为-1,其余为0。Ricci符号(置换符号)是与任何坐标系都无关的一个符号,它不是张量。 1.4 坐标转换

张量的基本概念(我觉得说的比较好,关键是通俗)

简单的说:张量概念是矢量概念和矩阵概念的推广,标量是零阶张量,矢量是一阶张量,矩阵(方阵)是二阶张量,而三阶张量则好比立体矩阵,更高阶的张量用图形无法表达。 向量是在一个线性空间中定义的量,当这个线性空间的基变换时,向量的分量也跟着变换。而一个线性空间有一个伴随的对偶空间。 张量是一个同时定义在几个线性空间的量,这几个线性空间的基可同时变换,或者只是只变换几个,此时,张量的分量也跟着变换。我们一般见到的张量是同时定义在几个线性空间及其对偶空间里的量,在实际的符号表达中,就表现为同时有几个上指标和下指标,也即线性空间及其对偶空间。 张量其实是一种线性代数,即多重线性代数,从字面上理解,也正好是上面提到的“定义在多个线性空间的量”。 在流形中,一点的切空间正好同构于一个欧氏空间,也即,与一个欧氏空间的性质一样。而这个欧氏空间有一个伴随的对偶空间,所以可以定义张量。 要对流形上张量作微分运算,必须比较流形上相距很近两点的张量的差,这就引出了联络的概念,而联络的概念的引出,需要这两个不同的点的欧氏空间是同构的。进而发展了张量分析。 现代数学是建立在代数与拓扑基础上的,很多概念如果代数水平不行,是很难理解的。比如泛函分析、纤维从理论等。代数方面的知识,最好能掌握抽象代数的概念,进而掌握交换代数的知识。 其实,线性代数是很多现代数学概念的基础,而线性代数的核心就是空间的概念。而现在,我们国内工科学的线性代数只是讲一讲矩阵、矩阵运算、特征值、特征向量、二次形等等。线性代数的精髓概念根本涉及不到。这也就造成了很多同学理解现代数学中很多概念的困难。 现代数学的一个非常重要的方法论就是公理化的方法。这是希尔伯特在其《几何基础》中最先明确提出的,这本书当初得到了彭加莱的很高的评价。 公理化思想的威力我当初是在学习《实变函数论》这门课时深刻体会到的。武熙鸿老师的《黎曼几何初步》中,则是处处渗透着公理化的思想,读来颇有味道。 应该这样说,是低阶张量被我们找到了可以比拟的物理意义,但张量本身并不需要具有几何比拟 其实,张量是有很强的几何背景的,不管是低阶的,还是高阶的。这主要是因为现代张量的定义是建立在线性空间概念的基础上的。而线性空间正是从一、二、三维空间中抽现出来的。只要把握住“多个线性空间及其对偶空间”这个关键就行了。 而物理学家对于张量的定义是从坐标变换的角度定义的,这正是当初Ricci定义的方式。这种定义在现代数学中推广起来比较困难。所以把它定义成了多重线性映射。 我的朋友有的是搞弹性理论和流体的,但他们对张量的理解也很混乱,所以有时也向他们解释这个东西。但好像解释来解释去,他们还是不太明白。可能与他们是搞计算的有关,对这些纯理论的东东没有一个很系统的学习与理解,而且理解那么深也没用。不过,他们搞得计算的东东倒是一门很深的东东,我理解起来挺困难的。有时与他们神侃,很是佩服他们的计

张量分析论文

1 知识总结 1.1 指标符号 例如, 三维空间任意一点p 在笛卡儿坐标系(321,,x x x ),若是再推广到比三维更高的空间时不好描述了。因此,发展了另一种记法指标记法。在三维空间力里, 矢量有三个分量,采用一般的指标将它们用一个简单的分量进行缩写。因此在指标记法里边用指标符号表示为(i x ,i=1,2,3)。一个 n 维空间的矢量(n x x x x ,,,,321???)也可用分量表示为(n i x i ,,2,1,???=)。 其中i —指标(取值范围为小于或等于n 的所有正整数) n —维数 1.1.1 求和约定和哑指标 求和约定是指标记法的补充。若在一项中,只要一个下标在同一式子中重复 出现,则表示要对这个指标从1,2,3......n 求和。 要表示求和n n x a x a x a S ???++=2211,可表示为∑∑====n j j j n i i i x a x a S 1 1 , 约定:j j i i x a x a S ==,(用拉丁字母表示3维,希腊字母表2维)。其中求和指标与所用的字母无关指标重复只能一次。 对于双重求和,∑∑==3 13 1i j j i ij y x A , 其中, 3 33323321331322322221221311321121111y x A y x A y x A y x A y x A y x A y x A y x A y x A y x A j i ij ++++++++= 可表示为k j i ijk z y x A ,代表27项的和式。 1.1.2 自由指标 333323213123232221211313212111b x A x A x A b x A x A x A b x A x A x A =++=++=++ 可以简写为i j ij b x A =, 其中 j ——哑指标 i ——自由指标,在每一项中只出现一次,一个公式中必须相同 1.1.3 Kronecker-δ符号和置换符号(Ricci 符号) (1)Kronecker-δ符号定义

(完整版)张量分析中文翻译

张量 张量是用来描述矢量、标量和其他张量之间线性 关系的几何对象。这种关系最基本的例子就是点积、 叉积和线性映射。矢量和标量本身也是张量。张量可 以用多维数值阵列来表示。张量的阶(也称度或秩) 表示阵列的维度,也表示标记阵列元素的指标值。例 如,线性映射可以用二位阵列--矩阵来表示,因此该 阵列是一个二阶张量。矢量可以通过一维阵列表示, 所以其是一阶张量。标量是单一数值,它是0阶张量。 张量可以描述几何向量集合之间的对应关系。例 如,柯西应力张量T 以v 方向为起点,在垂直于v 终点方向产生应力张量T(v),因此,张量表示了这两个 向量之间的关系,如右图所示。 因为张量表示了矢量之间的关系,所以张量必 须避免坐标系出现特殊情况这一问题。取一组坐标 系的基向量或者是参考系,这种情况下的张量就可 以用一系列有序的多维阵列来表示。张量的坐标以 “协变”(变化规律)的形式独立,“协变”把一种 坐标下的阵列和另一种坐标下的阵列联系起来。这 种变化规律演化成为几何或物理中的张量概念,其 精确形式决定了张量的类型或者是值。 张量在物理学中十分重要,因为在弹性力学、流体力学、广义相对论等领域中,张量提供了一种简洁的数学模型来建立或是解决物理问题。张量的概念首先由列维-奇维塔和格莱格里奥-库尔巴斯特罗提出,他们延续了黎曼、布鲁诺、克里斯托费尔等人关于绝对微分学的部分工作。张量的概念使得黎曼曲率张量形式的流形微分几何出现了替换形式。 历史 现今张量分析的概念源于卡尔?弗里德里希?高斯在微分几何的工作,概念的 制定更受到19世纪中叶代数形式和不变量理论的发展[2]。“tensor ”这个单词在 1846年被威廉·罗恩·哈密顿[3]提及,这并不等同于今天我们所说的张量的意思。 [注1]当代的用法是在1898年沃尔德马尔·福格特提出的[4]。 “张量计算”这一概念由格雷戈里奥·里奇·库尔巴斯特罗在1890年《绝对微分几何》中发展而来,最初由里奇在1892年提出[5]。随着里奇和列维-奇维塔1900年的经典著作《Méthodes de calcul différentiel absolu et leurs applications 》(绝对微分学的方法及其应用)出版而为许多数学家所知[6]。 在20世纪,这个学科演变为了广为人知的张量分析,1915年左右,爱因斯坦的广义相对论理论中广泛应用了这一理论。广义相对论完全由张量语言表述。爱因斯坦曾向几何学家马塞尔·格罗斯曼学习过张量方法,并学得很艰苦。[7]1915 年到1917年之间,列维·奇维塔 在与爱因斯坦互相尊重互相学习的氛围下,对爱因斯坦的张量表述给与了一些指正。 “我很佩服你的计算方法的风采,它必将使你在数学大道上策马奔腾,然而我们却只能步履蹒跚。”阿尔伯特·爱因斯坦,意大利相对论数学家[8]。 柯西应力张量是一个二阶张量。该张量的元素在三维笛卡尔坐标系下组成如下矩 阵: 312()()()111213212223313233 T T T =e e e σσσσσσσσσσ??=???????????? 该矩阵的各列表示作用在 e 1,e 2,e 3方向正方体表面上的应力(单位面积上的力)。

广义相对论的学习总结

广义相对论的学习总结 1.引言 1.1前言 经过过去一年对广义相对论的学习,基本对广义相对论的基本原理和运用有了比较完整的认识。这篇文章是为了总结自己学习的体会,尽量用自己的语言谈谈对广义相对论的理解。由于作者水平有限,也为了文章的简洁,所以省去数学推导,仅保留基本的数学公式和方法说明。 广义相对论是爱因斯坦一大理论成果,可以解释宏观世界一切物体的运动,可以在一切坐标系下运用,本身又保持了相当完美的对称性和简洁性。随着空间探测技术的发展,广义相对论的许多结论都得到了证明,而广义相对论和量子力学构成了现代物理的两大支柱。 1.2导语 在具体介绍广义相对论的内容之前,我想用自己的语言,对广义相对论的思想和研究问题步骤做一个小的总结和介绍。总的来说,广义相对论是建立在四个假设之上,通过这四个假设,爱因斯坦认为惯性场和引力场等效,以及所有参考系的平权性。然后爱因斯坦把引力场认为是一种几何效应。是由于质量在空间上的分布不均匀,导致空间的空间扭曲。 在数学上,用张量来代表物理量,以满足物理规律在所有参考系下都成立。用黎曼几何来刻画弯曲空间,联络来描述引力强度,曲率

张量来描述空间弯曲,度规张量来描述引力势。 接下来便是构建场运动方程。我们可以用惠曼的名言总结道:“物质告诉时空如何弯曲,时空告诉物质如何运动。”按照爱因斯坦的想法,引力是由于质量空间分布不均匀造成的几何效应。所以爱因斯坦场方程左边应该是反映时空的几何性质的张量,右边是能动张量。再继续利用能量守恒定律,便可以推出爱因斯坦场方程。 应用爱因斯坦的场方程,得到了很多新奇的结论和实验预言,并且以“水星进动”和“引力红移”为代表的实验验证了广义相对论的正确性。 广义相对论还预言了引力弯曲效应极大情况下黑洞的存在。 而广义相对论作为宇宙学的理论基础,特别是近几十年观测技术的进步,使得宇宙学建立起了相对完整的理论系统。 2.基本假设 广义相对论建立在以下假设下。 2.1等效原理 广义相对论用的是强等效原理。 引力场与惯性场的的一切物理效应都是局域不可分辨的。 2.2马赫原理 惯性力起源于物质间的相互作用,起源于受力物体相对于遥远星系的加速运动,而且与引力有着相同或相近的物理根源。

张量分析1

第一章 张量的概念 § 1.1 引言 什么是张量?这是读者在开始学习本课程时会提出的问题,现从读者已有的力学知识出发,举例对这个问题作一些初步的阐述,使读者对张量这个新的概念,有个初步的理解。 有三维空间,一个矢量(例如力矢量、速度矢量等)在某些参考坐标系中,有三个分量,这三个分量的集合,规定了这个矢量。当坐标变化换时 ,这些分量按一定的变换法则变换。 在力学中还有一些更复杂的量。例如受力物体内一点的应力状态,有9个应力分量,如以直角坐标表示,用矩阵形式列出,则有 ()???? ? ??σσσσσσσσσ=σzz zy zx yz yy yx xz xy xx ij 这9个分量的集合,规定了一点的应力状态,称为应力张量。当坐标变换时, 应力张量的分量按一定的变换法则变换,再如,一点的应力状态,具有和应力张量相似的性质,称为应变张量。 把上述的力矢量、速度矢量、应力张量、应变张量等量的性质抽象化,撇开它们所表示的量的物理性质,抽出其数学上的共性,便得出抽象的张量概念。所谓张量是一个物理量或几何量,它由在某参考坐标系中一定数目的分量的集合所规定,当坐标变换时,这些分量按一定的变换法则变换。张量有不同的“阶”和“结构”,这由它们所遵循的不同的变换法则来区分。矢量是一阶张量;应力张量、应变张量是二阶张量;还有三阶、四阶、......等高阶张量。可以看出,张量是矢量概念的推广。关于张量的严密的解析定义,将在 § 1.8中讨论。 由张量的特性可以看出,它是一种不依赖于特定坐标系的表达物理定律的方式。采用张量记法表示的方程,在某一坐标系中成立,则在容许变换的其它坐标系中也成立,即张量方程具有不变性。这使它特别适合于表达物理定律,因为物理定律与人们为了描述它所采用的坐标系无关。因此,张量分析为人们提供了推导基本方程的有力工具。此外,张量记法简洁,是一种非常精炼的数学语言。 张量这个名词是沃伊特(V oigt )首先提出的,用来表示晶体的应力(张力)状态,可见张量分析与弹性力学关系的密切。张量分析在力学领域中有广泛的应用,是力学工作者的重要数学工具。 § 1.2 符号与求和约定 一、指标 在张量分析中广泛运用指标。几个变量的集合 n 21x ,...,x ,x 可表示为

张量定义

§1 张量的定义 张量: 在三维笛卡儿(Descartes)坐标系中,一个含有三个与坐标相关的独立变量集合,通常可以用一个下标表示。 例如,对于位移分量u,v,w可以表示为u 1,u2,u3,缩写记为u i,i=1, 2, 3。对 于坐标x,y, z可以表示为x i。 对于一个含有九个独立变量的集合,可以用两个下标来表示。 例如九个应力分量或应变分量(由于对称,实际独立的仅有六个)可以分别表 示为σij和εij,其中σ11, σ22分别表示σx, σxy(就是τxy);ε11 , ε22分别表示εx, εxy()等。 同样,一个含有27个独立变量的集合可以用三个下标表示;而含有81个独立变量的集合可以用四个下标表示,依次可以类推。 为了给张量一个确切的定义,首先讨论矢量定义。在坐标系Ox 1x2x3中。矢量 OP的三个分量ζ 1, ζ 2,ζ3可以缩写作ζi,同一矢量OP在新坐标系Ox'1x'2x'3中,写作ζ '1,ζ '2,ζ '3,缩写为ζ'i。 设坐标系Ox 1x2 x3与Ox'1x'2x'3的夹角方向余弦如下表所示 方向余弦n i'j的第一下标对应于新坐标轴,而第二下标对应于原坐标轴。则矢量在新老坐标系中的关系为 或者 上式可以缩写为

或者。 a2, a3)和OP(ζ1, ζ2, ζ3),作它们的标量积,则 考察矢量A(a 1, 显然,此标量积与坐标轴的选取无关,如果上述矢量作坐标变换,则 反之,如ζ ' 为已知矢量,而a i为与坐标有关的三个标量,使一次形式在坐标变换时保持不变。根据矢量定义,则a i也是矢量。 推广上述的命题,可以给张量一个解析的定义。设(ζ 1, ζ 2, ζ3)和(η 1, η 2, η3)是矢量,a ij是与坐标有关的九个量,若当坐标变换时,双一次形式 保持不变,则称由两个下标i,j确定的九个量的集合a ij为二阶张量。a ij中的每一个分量被称作张量(对于指定的坐标系)的分量。 根据上述定义,可以推导出坐标变换时张量分量的变换规律。由题设条件,当坐标变换时,有 代入坐标变换关系,则 注意到

张量分析中文翻译(最新整理)

柯西应力张量是一个二阶张量。该张量的元素在三维笛

,其中新的基矢量按照如下公式由旧的基矢量变换得到,

指数之间的变换规律如下: 11111111,,,,11,,,,=n n n m n n m n n m n m i i i j j j j i i i j j i i j j T R R R R T ++++???∧???--????????????()()这样的张量称为阶或类型为(n,m-n )型的张量[4].这样的讨论产生了张量的一般定义。 定义:(n,m-n )型的张量是多线性映射的分配,即: 对于基f=(e 1,...,e N ) 是如此,如果应用如下基变换 多维阵列变成“协变”规律形式 11111111,,,,11,,,,[f,]=[f ] n n n m n n m n n m n m i i i j j j j i i i j j i i j j T R R R R R T ++++??????--????????????()()多维阵列定义张量满足“协变”规律,这个可以追溯到里奇的早期工作。如今,这种定义在一些物理和工程书籍中仍然经常使用。 张量场 在许多实际应用当中,特别是微分几何和物理领域,通常把张量的元素考虑成为函数形式。事实上,这只是Ricci 早期的工作。在当今的数学术语里面,这样的对象称为张量场,但是它们通常仅仅指的的张量本身。 本文当中的“协变”规律的定义采用一种不同的形式,张量场的基底由基础空间的坐标所决定,而且,“协变”规律的定义通过坐标函数的偏导数来表示, ,定义如下坐标变换 多线性映射 有一种定义张量的方法是站在多维阵列的角度的,从被定义对象基独立性和几何对象的本质来看,这种定义方法并不明显。尽管这种方法也可以说明变化规律对基独立性的觉得作用,但有时还是首选张量更本质的定义。一种方法是张量定义成多线性映射。这种方法中(n,m )类型的张量被定义成一种映射。 copies copies :, n m T V V V V R **???????????→ 式中V 表示向量空间,V *表示该向量空间对应的共轭向量空间,其中的变元是线性的。 通过把多线性映射(n,m )型的张量T 应用到V 的基{e 1}和V *的基共轭基{ε1}中,即: 1111(,,,,)i in i in j jm j jm T T e e εε??????≡??????

张量分析3

第三章 张量分析 将偏导数的概念推广,建立协变导数的概念,使得一个张量的协变导数是另一个张量,这是张量分析发展中最重要的里程碑碑。张量的协变导数是本章讨论的重点。 §3.1 基矢量的偏导数与克里斯托费尔符号 求一个矢量的导数,必须对它的各个分量与基矢量乗积之和求导: j ,i i i i j ,j ,i i j ,j g V g V )g V (V x V +===?? (3.1-1a) i j ,i i j ,i j ,i i g V g V )g V (+== (3.1-1b) 上式中的“,”号表示偏导数,本书以后均采用此记法。 (3.1-1a )、(3.1-1b )式中有基矢量i g 和对偶基矢量i g 对于曲线坐标j x 的偏导数j ,i g 和i j ,g 。下面分别进行讨论。 一、基矢量i g 的偏导数j ,i g 由基矢量的定义[(1.4-4)式]可以写出 s j i s 2s i s j j ,i i x x z )i x z (x g ???=????= 这表示基矢量i g 对于坐标j x 的偏导数也是矢量,它也可以分解成沿对偶基矢量i g 或基矢量i g 方向的分量: k k ij k ijk j ,i g g g Γ=Γ= (3.1-2) 式中ijk Γ是j ,i g 沿k g 方向的分量;k ij Γ是j ,i g 沿k g 方向的分量。 从它们的意义可以理解,为什么ijk Γ和k ij Γ中包含I,j,k 三个指标。若用另一基矢量点乘(3.1-2)式,就得到 i j k l k i j l k l i j l k j ,i g g g g Γ=δΓ=?Γ=? (3.1-3a) k ij k l l ij k l l ij k j ,i g g g g Γ=δΓ=?Γ=? (3.1-3b) ijk Γ称为第一类克里斯托费尔 (Christoffel )符号;k ij Γ称为第二克里斯托费尔符号。(3.1-2)式或(3.1-3)式都可以作为克里斯托费尓符号的定义。

张量分析各章要点

各章要点 第一章:矢量和张量 指标记法: 哑指标求和约定 :同一项中出现一对相同的协、逆变指标则对该指标求和 自由指标规则:同一项中只能出现一次,不同项中保持在同一水平线上 协变基底和逆变基底: k i k i i x ??==?ξ?ξr g e j j i i ?=δg g i i k k x ?ξ=?g e 123 = ==g g g 张量概念 i i'i'i =βg g i'i'i i =βg g i k i k j j ''''ββ=δ i'i'i i v v =β i i 'i 'i v v =β i 'j'i 'j'k l ij ..k 'l'i j k 'l'..kl T T =ββββ i i i i v v ==v g g ..kl i j ij k l T =???T g g g g 度量张量 ij i i i j i i g =?=?=?G g g g g g g ?=?=?=?=v G G v v T G G T T .j kj i ik T T g = 张量的商法则 lm ijk T(i,j,k,l,m)S U = ijk ...lm T(i,j,k,l,m)T = 置换符号 312n 1n 123n i i i i i 123n 1n i i i ...i A a a a ......a a e -- i j k Lmn ijk .L .m .n a a a e e A = i j k .L .m .n ijk Lmn a a a e e A = 置换张量

i j k ijk ijk i j k =ε??=ε??εg g g g g g ijk i j k ()e ε=??=g g g ijk ijk i j k ()ε=??=g g g i j k ijk ijk i j k a b a b ()::()?=ε=ε=?=?a b g g a b εεa b 广义δ符号 i i i r s t j j j ijk ijk ijk r s t rst rst rst k k k r s t e e δδδδδδ==εε=δδδδ ijk j k j k jk ist s t t s st δ=δδ-δδδ ijk k ijt t 2δ=δ ijk ijk 6δ= 性质:是张量 重要矢量等式:()()()??=?-?a b c a c b a b c 第二章: 二阶张量 重要性质:T =T.u u.T 主不变量 i 1.i Tr()T ζ==T i j l m 2l m .i .j 1T T 2 ζ=δ 3det()ζ=T 1()()(())(())()?????????=ζ??T u v w +u T v w +u v T w u v w 2)[)][()(]()[()]()????????????=ξ??T u (T v w +u T v T w)+T u (v T w u v w ( ()[()()]det()()?????=??T u T v T w T u v w 标准形 1. 特征值、特征向量 ?=λT v v ()-λ?=T G v 0 321230λ-ζλ+ζλ-ζ= 2. 实对称二阶张量标准形 i 12 3 i 1122 33=??=λ?+λ?+λ? N N g g g g g g g g 3. 正交张量(了解方法) 12112233(cos()sin())(sin()cos())=?+??+-?+??+?R e e e e e e e e

电力系统分块计算的意义和策略

电力系统分块计算的意义和策略何小庆11031009 摘要:本文阐述了电力系统分块可行性和电力系统分块意义,介绍了了两种重要的分块方法:节点撕裂法和支路切割法。通过这几种方法做了比较,最后对电力系统分块做了展望。 关键字:电力系统分块,节点撕裂法,支路切割法 Abstract:This paper presents a reliability of a section algorithm of power system and the importance of this algorithm,and introduces two vital methods of a section algorithm of power system,node tearing and branch cutting .Through comparing those methods,we can conclude the future of a section algorithm of power system. Key word: a section algorithm of power system,node tearing,branch cutting 0 前言 网络分块计算最早有Kron[1]于20世纪50年代初提出,他利用张量分析的概念发展了网络分裂算法(piecewise diakoptics),其基本思想是吧电网分解成若干规模较小的子网,对每一个子网在分割的边界处分别进行等值计算,然后再求出分割边界处的协调变量,最后求出各个子网的内部电量,得到却系统的解。 1 电力系统分块可行性分析 电力系统能够分块计算具有以下几个原因: 一,现代电力系统规模庞大,节点众多,分块处理可将大系统拆分为大量小系统,最终简化分析计算过程。 二,目前的计算工具无法满足计算速度的要求。分块处理应用于某一台计算机上,通过串行处理而有效地求解交大系统的分析结果,虽然对于缩短计算时间成效不大,但对于减少内存占用意义明显。分块处理应用于多台计算机上,通过并行处理可提供比单台计算机更快的计算速度,从而缩短计算时间。 三,电力系统本身所具有的分层分区结构特别适合分块计算的应用。就信息的传送而言,每一个地区电网只能收集到本地区系统内的信息,其中重要的信息将被传送到更高一级的调度中心。调度中心根据各地区传送来德尔信息进行加工处理,将协调信息传送给各地区电力系统的调度中心。分块计算正好可以适应这一分层调度的要求。近年来,随着计算机的发展,各种并行计算机和多处理机组成的列阵机相继出现。这样的应用背景促进了人们对并行计算的兴趣,并开展了大量的研究工作,提出了各种基于网络分块的并行计算。 根据协调变量的不同,网络分块计算主要分为两类:一类是支路切割法(branch cutting),通过切割原网络中的某些支路把原网络分解;另一类是节点撕裂法(node tearing),即将原网络的部分节点“撕裂”开,把网络分解。前者的协调变量是切割电流,后者的协调变量是分裂点点位。两种方法有各自的特点,将两种方法统一起来,就产生了统一的网络分裂算法。 2 电力系统分块意义 现代电力系统规模庞大,使进行各种分析的计算量很大,以致现有计算工具无法满足计算速度的要求。分块处理可以达到利用现有计算工具,大大缩短计算时间的要求。 对于电力系统,通常情况下,是在各电力公司的边界线对系统进行分割。分割理论的应用至少有二:第一种应用是,把分割法应用于某一台计算机上,通过串行处理而有效地求解较大系统的分析结果,这中方法的

浅议张量分析的形成及其应用

浅议张量分析的形成及其应用 摘要:张量分析是现代数学物理学的基础工具。从广义相对论开始,到规范场论,以至后来的弦理论的建立都得力于张量分析。张量分析所提供的对曲线坐标系的微分方法,真正实现了非欧几何从概念到演算的革命,而所有这一切都是以张量概念的产生为基础的。同时叙述了张量分析在相对论以及连续介质力学方便的应用。 关键词:张量分析;线性变换;相对论;连续介质力学 1引言 张量是向量(矢量)的自然推广。简单说,三维向量是有三个分量的矩阵函数,三维张量(也叫二阶张量)是有九个分量的矩阵函数。但是并不是只要把九个数写成矩阵形式就可以成为张量,还要必须满足线性变换形式不变这个条件。向量是一种平移不变量,在坐标系变换的时候,向量保持长度和方向不变。建立在向量基础上的微积分运算,也就是向量分析,为麦克斯韦的电磁理论提供了数学工具。不过,向量分析是笛卡儿空间中的分析,即三维直角坐标系中的向量微积分运算,它的局限性是很明显的,物理量中很多都有超过三个的分量,如果把分量理解为维数,那就需要处理高维空间中的分析的数学方法,张量分析因此有存在和发展的必要。 2张量概念的起源 2.119世纪初的非欧几何学 1826年,喀山大学的罗巴切夫斯基(H. N. Lobachevsky,1792-1856)演讲了他的关于非欧几何的论文《几何学原理及平行线定理严格证明的摘要》,被视为非欧几何诞生的标志。罗巴切夫斯基在证明第五公设的过程中,提出一个和欧氏平行公理相矛盾的命题,假如用它与欧氏几何的前四个公设结合成一个公理系统,然后展开一系列的推理,那么在此过程中,将得出一个个在直觉上很难理解,但在逻辑上毫无矛盾的命题。罗巴切夫斯基由此提出了新的几何理论,后来被称为罗巴切夫斯基几何,这是第一个被提出的改变空间观念的非欧几何学。 从罗巴切夫斯基创立的非欧几何学中,可以得出一个极为重要的、具有普遍意义的结论:逻辑上互不矛盾的一组假设都有可能提供一种几何学。几乎在罗巴切夫斯基创立非欧几何学的同时,1832年,匈牙利数学家波尔约(Janos Bolyai,1802-1860)从第五公设证明了

张量分析与材料应力张量习题解答

练习题Ⅱ(金属所) 1. 用下标符号证明:C B A B C A C B A )()()(?-?=??。 2. 证明 nk nj ni mk mj mi lk lj li lmn ijk δδδδδδδδδ=∈∈ 3. 证明ijk klm =(δil δjm -δim δjl ) 4. 证明ijk ikj =-6。 5. 证明 ijk mik =-2δjm 。 6. 证明具有中心对称的晶体不具有由奇阶张量描述的物理性质,但由偶阶张量描述的物理性质也具有中心对称的特性。 7. B 为矢量,M 为二阶张量,证明: (div M )?B =div(M ?B )-{ (B ?)∶M } 8. 设在P 点的应力张量 σ如下:求法线方向为]221[的面上的正应力。 ???? ? ??----=211121112)(ij σ 9. 设在P 点的应力张量 σ如下:求该处的主应力及主方向。并验证主方向是相互正交 的。 ???? ? ??=740473037)(ij σ 10. 位移场u 在给定坐标系下的分量分别是:u 1= ax 2+bx 3,u 2=ax 1 cx 3,u 3= bx 2+cx 3; 其中a 、b 、c 皆为常数。求这个位移场的应变张量Γ。 11. 弹性体的的应变张量场如下所示,这个应变张量场合理吗? ???? ??????++--=3222 2111 216112226226)(x x x x x x x ij ε 12. 在立方晶体中承受一均匀应力场,以]101[、]211[和[111]为x 1、x 2和x 3坐标轴的应力分量只有σ13和σ23两项,求以三个晶轴作坐标系的各应力分量σ’ij 。

实用类文本阅读试题及答案

实用类文本阅读 一、阅读下面的文字,完成1--3小题。 不平凡的求学生涯 1931年9月,清华大学招入了一批新学生,其中有一个瘦小的戴眼镜的无锡人。这位新生作文和历史拿了满分,理科却几乎是零分,他就是后来成为中国近代力学之父的钱伟长。清华当年招生的作文题目是《梦游清华园》,钱伟长写了一篇四百五十字的赋,出题目的老师想改改不了,只能给了满分。历史考题更奇怪,要求写出二十四史的作者、注者和卷数,许多考生望“题”兴叹,而钱伟长却答得分毫不差。钱伟长的文科好,一点也不奇怪。他的父亲和祖父都是教书先生,四叔是著名的文科学者钱穆。他中学的文史老师,则是语文学家吕叔湘。钱伟长自小看古书长大,十岁的时候就可以把《三国演义》倒背如流。可是,19岁的钱伟长在数理上一塌糊涂,物理只考了5分,数学、化学共考了20分,英文因没学过是0分。 但正是这样一个在文史上极具天赋、数理上极度“瘸腿”的学生,却在一夜之间做出了一个大胆的决定——弃文从理。这个决定缘于1931年9月18日,日本发动了震惊中外的“九·一八事变”。听到了这个消息后,钱伟长拍案而起,他说:我不读历史系了,我要学造飞机大炮。他决定转学物理以振兴中国的军力。于是钱伟长几次跑去找物理系主任吴有训,吴先生被这位青年的爱国热情打动了,答应他试读一年。为了能尽早赶上课程,钱伟长来往于宿舍、教室和图书馆之间,早起晚归,极度用功。他克服了用英语听课和阅读的困难,一年后数理课程超过了70分,四年后,成了一名出类拔萃的优秀生。正如他后来常说的:“我从来不相信有什么‘天才’,而只是相信人的才能是用艰苦的劳动培植出来的。奋发才有为,勤学才有识。” 1940年1月钱伟长考取中英庚款会的公费留学生,赴加拿大多伦多大学学习。钱伟长与自己的导师辛吉教授第一次面谈时,发现两人都在研究板壳理论,于是师生俩开始共同啃这块硬骨头。的确,板壳内禀理论是一大难题,但是很有实用价值。在航空航海工程、武器装备、仪器仪表和各项工程设施中,到处可见到平板和壳体。多年来对于各种各样的板壳,各学派学者用不同的方程式来描述,钱伟长认为它们应该有内在的联系,有必要加以统一。于是他开始废寝忘食地寻求这种联系。经过半年多努力,用掉了几尺厚的草稿纸,他终于以严谨简约的张量分析为基本工具,建立了板壳的基本理论,对原有的各种论述进行分类,提炼出本质的核心内容,找到了一组统一的方程式。 与此同时,辛吉教授通过另一途径得到了类似的结果。1941年,他们合写成了一再为人们称道、引用的著名论文《弹性板壳的内禀理论》。这篇论文发表于世界导弹之父冯·卡门的60岁祝寿文集。该文集的作者多数是当时世界上第一流的科学家,28岁的钱伟长,是文集作者中最年轻的学者、唯一的中国人。爱因斯坦看后也由衷感叹,这位中国青年解决了困扰我多年的问题。此文奠定了钱伟长在美国科学界的地位。 1942年取得博士学位后,经过辛吉教授特地推荐,钱伟长到了冯·卡门所在的美国加州理工学院做博士后研究。由于反法西斯战争的需要,美国当时正在加紧研究火箭、导弹,精确地计算火箭导弹的弹道成了当务之急。钱伟长担起了这个重任,他经常到喷气推进研究所在地墨西哥州的白沙基地参加火箭试验,对各种型号的导弹的弹道及空气动力学性能进行了细致的分析,写出了许多保密的内部报告,并提出了有关火箭、导弹落点的理论。在第二次世界大战中,伦敦遭到德国导弹的袭击,英国首相邱吉尔很着急,向美国求援,问题转达到冯·卡门那里,钱伟长提出了一个对运行的导弹加以干扰迫使其射程减小的方案,立即得到采纳。因此战争中尽管伦敦东码头区遭到德国导弹破坏,市中心却安然无恙。邱吉尔在回忆录中提起此事,说美国青年人很厉害,但实际上应该说:中国青年人很厉害! (摘编自戴世强《钱伟长小传》) 1.下列对传记有关内容的分析和概括,最恰当的两项是(5分) A.钱伟长在清华大学入学考试中,文史成绩优异,作文和历史都拿了满分,是因为钱伟长受到良好的家庭环境的熏陶和影响,自小是看古书长大的。 B.钱伟长基于爱国的崇高理想,弃文从理,转系后读书极为用功,最终成为一名优秀的理科毕业生,这充分说明了奋发才能有为、勤学才能有识的道理。 C.多年来各学派学者对平板和壳体进行了广泛研究,但没有找到内在联系,钱伟长在前人研究的基础上建立起板壳的基本理论,与导师辛吉的研究结果相似。 D.由于反法西斯战争的需要,钱伟长在美国加州理工学院时主要从事有关火箭、导弹的研究,他提出的方案曾帮助伦敦在二战中免遭德国导弹的破坏。 E.本文用形象生动的语言,记叙了钱伟长青年时期刻苦求学的过程,展现了一代科学大师的成长历程,塑造了一个成就卓著、令人尊敬的科学家的形象。 2.本文反映了钱伟长哪些优秀的品格?请简要概括。(6分) 3.文史上极具天赋的钱伟长上大学时却弃文从理,最终在科学领域还取得了杰出的成就;而人们平时却常说扬长避短更容易取得成功。对此,你有何看法?请结合选文探究。(8分)二、阅读下面的文字,完成4--6小题 寂静钱钟书 周劼人 12月19日,寂寥的寒夜,清华园日晷旁,烛光隐隐。小提琴哀婉的曲调飘散在清冷的夜空,人们伫立无语,鞠躬,献上白菊。 偶有路人好奇:“这是在祭奠谁?” 有人低声答语:“今天是钱钟书先生辞世10周年。” 10年前,钱钟书先生安详离世。遵钱先生遗嘱,“一切从简”,连在八宝山的告别仪式也只有短短的20分钟。“如此寂静。”钱先生的一位生前好友说。那日,清华的南北主干道上飘起了一千只纸鹤,学生们用这种方式,静静地送别他们的老学长。 他的人生,本不寂静。 无论是人们熟稔的《围城》,还是近乎天书的《管锥编》,都惊讶了世人,折服了学界。《管锥编》单是书证就数万条,引述涉及四千位作家上万种著作。世人惊叹“大师风华绝代,天才卓尔不群”。 然而他却又静静地坐在书斋里,照例埋头读他的书,做他的学问。图书馆内很多冷僻线装书的借书单上,只有他一人的名字。即使是身处困境,他也只是默默地埋头书本。“文革”时他被送去干校劳动改造,能看的只有寥寥几本书,但只要抱起书本来,就能兴致盎然。第一批“大赦”回京的名单中,没有钱钟书,也没有杨绛。他们夫妻二人平静地走回窝棚,杨先生说:“给咱们这样一个棚,咱们就住下,行吗?”钱先生歪着脑袋认真的想了一下,说:“没有书。” “文革”后,对钱钟书先生的称颂日渐声高,然而钱家的书斋内一如既往地平静。他谢绝了一切记者和学者的拜访,有人将此误读为“清高孤傲,自以为是”。 他人的不解,钱先生并未在意过。杨绛先生说:“他从不侧身大师之列……他只想安安心心做学问。” “钱先生做学问是‘心在焉’,”清华大学一位老师说:“而我们今天这个社会上,今天这个校园里,有多少人则是‘心不在焉’。” 清华大学一位博士生说,他多次读《围城》,读第三遍时忽然明白,“围城不是别人给的,

相关主题
文本预览
相关文档 最新文档