当前位置:文档之家› 尿素蒸发器蒸换热计算(更新版)

尿素蒸发器蒸换热计算(更新版)

尿素蒸发器蒸换热计算(更新版)
尿素蒸发器蒸换热计算(更新版)

尿素蒸发器换热计算分析

尿素蒸发系统流程图

问题提出:1.在现有的工艺条件下,如何将蒸发器物料出口尿液温度由120℃提高至124-126℃,需要增加换热面积是多少?

已知,进蒸发器尿液浓度x0=70%,流量F为44m3/h,温度88℃,蒸发真空度控制在500~650mmHg,蒸发后尿液浓度x1=95%,温度120℃,蒸发器加热蒸汽压力为0.25Mpa(表压)温度T=138℃,现有蒸发加热器的换热面积S0=294.4m2

RE----解答过程

在整个蒸发过程中,先考虑理想状况下忽略热损失,忽略溶液的稀释热,不考虑蒸发出去的水分(甲胺液)带走的热量,即蒸发器外供蒸汽全部用于尿液提浓所需的能量,其能量衡算关系如下:

F c P0(t1-t0)= S0 K0(T- t)(*)

其中F进口尿液流量,c P0尿液的比热容,S0为蒸发加热器的换热面积;K0为基于外面积的总传热系数;T为加热蒸汽的温度,t为操作条件下溶液的沸点。

在现有的工艺与外供蒸汽条件一定的前提情况下,F、c P0、T、t可视为定值。在出口尿液温度120℃时,能量衡算关系式:

F c P0(120-88)=294.4·K0(T- t0)(1)

提高出口尿液温度125℃时,能量衡算关系式:

F c P0(125-88)=S0′·K0(T- t0)(2)

由(1)(2)可知:

S0′=322m2

修正:考虑整个蒸发过程中热损失,溶液的稀释热,考虑蒸发出去的水分(甲胺液)带走的热量,全部热量不超过尿液提浓所需能量的20%,假定修正系数为1.2

∴△S=1.2·S0′-S0=92m2

故在现有的工艺条件下,如何将蒸发器物料出口尿液温度由120℃提高至125℃,需要增加换热面积92m2

RE-----蒸发器换热分析过程: (1) 首先进行物料衡算(溶质不变)

Fx 0=(F-W) ·x 1

水分蒸发量:)1(1

x x F W -?= (1)

(2)其次进行能量衡算

蒸发器加热蒸汽压力为0.35Mpa (绝对压力) 温度T=138℃条件下可视为饱和蒸汽,其汽化焓为r=2152.3KJ/kg ,尿液的比热容c P0未知,进蒸发器尿液温度t 0=88℃,出蒸发器尿液温度t 1=120℃, 在加热蒸汽的冷凝液在饱和温度下排除,且忽略热损失,忽略溶液的稀释热

D ·r =W · r ’+F c P0(t 1-t 0) (2)

其中D 为加热蒸汽消耗量,r 为加热蒸汽的汽化热, r ’为二次蒸汽的汽化热

(3)蒸汽器的热负荷

CO2气提法中使用的升膜式列管蒸发器,由于膜式蒸发器的尿液应在沸点工况下进料,则操作条件下溶液的沸点近似为t 0=88℃,蒸发器的负荷

Q=S 0K 0△t m = S 0K (T- t 0) (3)

其中S 0为蒸发器的传热外面积;K 0为基于外面积的总传热系数;t m 为平均温度差

在加热蒸汽的冷凝液在饱和温度下排除,且忽略热损失,忽略溶液的稀释热,蒸发器的热负荷

Q=D ·r (4)

(4)蒸发温度t 1与水分蒸发量W 的关系 由(2)(3)(4)等式可得

∴ W · r ’+F c P0(t 1-t 0)= S 0 K 0(T- t 0) (5)

在现有装置、工艺条件下, r ’、 F 、c P0、t 0、 S 0 、K 0、T 值为定量,则

t 1=a-b ·W (a 、b 为定值) (6)

由上式我们可以看出出蒸发器的尿液温度(蒸发温度)t 1与水分蒸发量W 成一次线性关系,所以欲提高蒸发温度可通过调节蒸发量来实现。选取岗位上大颗粒蒸发量与造粒量跟踪表数据,浓度为72%,真空度为540-549mmHg ,拟和数学模型和分析结果保持一致。

蒸发温度

蒸发量

Error

2.768580.06247

(5)蒸发器出液浓度x 1(造粒量n )与蒸发温度t 1的关系 由(1)(5)等式可得

F (1-x 0/x 1)· r ’+F c P0(t 1-t 0)= S 0 K 0(T- t 0) (7) 在现有装置、工艺条件下, r ’、 F 、c P0、t 0、 S 0 、K 0、T 值为定量,则蒸发器出口尿液浓度

1

1t d c x x ?+=

(c 、d 为定值) (8)

在进口尿液浓度一定情况下,出口尿液浓度与蒸发温度成反比例

关系。

即 x1∝1/t1

而出口尿液浓度直接反映下一工序造粒量n ,出口尿液浓度大,相应造粒量可增大,则降低蒸发温度,相应造粒量可增大。

即 n ∝x 1∝1/t1

由示意图可知,在这个过程存在一个最优的过程。

(6)真空度P 与蒸发量W 的关系

蒸发速率与真空度有关,在相同的供热速度下,提高真空度就会降低汽化温度,蒸发速度加快(在相同的真空度下,提高加热速率可以提高蒸发速率,但能耗增加)。所以提高真空度,对应的蒸发量(蒸发速率)就增加。

即W ∝P

而出蒸发器的尿液温度(蒸发温度)t1与水分蒸发量W成一次线性关系,t1=a-b·W

则t1∝-P

即提高真空度会增加蒸发量,出口尿液浓度t1(造粒量n)会减少。

附:关于蒸发器的总传热系数,它只与列管的材质、物料特性、结垢情况等有关,设备一定其传热系数就已经确定,只不过随时间的增加,结垢的程度会影响传热效率。

蒸发器的总传热系数K 值

蒸发器的选择计算

. 新乡双赢蒸发器选择计算的任务是选择合适的蒸发器类型和计算蒸发器的传热面积,确定定型产品的型号与规格。蒸发器的传热面积计算公式为 Qe=kA△tm 式中Qe----蒸发器的制冷量,W; K-----蒸发器的传热系数,W/(M2.℃); A-----蒸发器的传热面积,M2; Tm----蒸发器的平均传热温差,℃。 对于冷却液体或空气的蒸发器,蒸发器的制冷量应为 Qe=Mc(T1-T2) Qe=M(H1-H2) 式中M---被冷却液体(水、乙二醇)或空气的质量流量,kg/s; C--------被冷却液体的比热,J/(kg.℃); T1、T2----被冷却液体进、出蒸发器的温度,℃; H1、H2----被冷却空气进、出蒸发器的比焓,J/kg。 对于制冷系统,M、c、T1、T2,通常是已知的。例如,为空调系统制备冷冻水,其流量、要求供出的冷冻水温度(T2)及回蒸发器的冷冻水温度(T1)都是已知的。因此,蒸发器的热负荷Qe是已知的。对于热泵系统,进蒸发器的温度T1与热泵的低位热源有关。例如,水作低位热源时,T1决定于水位(河水、湖水、地下水、海水等)的温度。而T2、M的确定需综合考虑热泵的COPh、经济性等因素确定。 蒸发器内制冷剂出口可能有一定的过热度,但过热所吸收的热量比例很小,因此在计算传热温差时,制冷剂的温度就认为是蒸发温度Te,平均传热温差应为 T1--T2 △tm=----------------- T1--Te LN--------- T2--Te △tm和Te的确定影响到系统的运行能耗、设备费用、运行费用等。如果Te取得低,则△tm增大,传热面积减少,降低了蒸发器设备费用;而系统的制冷量、性能系数减小,压缩机的功耗增加,运行费用增大。如果取得高,则与之相反。用于制取冷水的满液式蒸发器Te一般不低于2℃。关于△tm或(T2-Te)的推荐值列于表中。蒸发器的传热系数K与管内、外的放热系数、污垢热阻等因素有关,详细计算请参阅文献。表中还列出了常用蒸发器传热系数K的推荐值。 '.

蒸发器的设计计算

蒸发器设计计算 已知条件:工质为R22,制冷量kW 3,蒸发温度C t ?=70,进口空气的干球温度为C t a ?=211,湿球温度为C t b ?=5.151,相对湿度为34.56=φ%;出口空气的干球温度为C t a ?=132,湿球温度为C t b ?=1.112,相对湿度为80=φ%;当地大气压力Pa P b 101325=。 (1)蒸发器结构参数选择 选用mm mm 7.010?φ紫铜管,翅片厚度mm f 2.0=δ的铝套片,肋片间距mm s f 5.2=,管排方式采用正三角排列,垂直于气流方向管间距mm s 251=,沿气流方向的管排数4=L n ,迎面风速取s m w f /3=。 (2)计算几何参数 翅片为平直套片,考虑套片后的管外径为 沿气流方向的管间距为 沿气流方向套片的长度为 设计结果为 mm s L 95.892565.2132532=+?=+= 每米管长翅片表面积: 每米管长翅片间管子表面积: 每米管长总外表面积: 每米管长管内面积: 每米管长的外表面积: 肋化系数: 每米管长平均直径的表面积: (3)计算空气侧的干表面传热系数 ①空气的物性 空气的平均温度为 空气在下C ?17的物性参数 ②最窄截面处空气流速

③干表面传热系数 干表面传热系数用小型制冷装置设计指导式(4-8)计算 (4)确定空气在蒸发器内的变化过程 根据给定的进出口温度由湿空气的焓湿图可得kg g d kg g d kg kJ h kg kJ h 443.7,723.8,924.31,364.432121====。在空气的焓湿图上连接空气的进出口状态点1和点2,并延长与饱和气线()0.1=?相交于点w ,该点的参数是C t kg g d kg kJ h w w w ?===8,6.6,25。 在蒸发器中空气的平均比焓值 由焓湿图查得kg g d C t m m 8,2.16=?= 析湿系数 (5)循环空气量的计算 进口状态下干空气的比体积 循环空气的体积流量 (6)空气侧当量表面传热系数的计算 对于正三角形排列的平直套片管束,翅片效率f η小型制冷装置设计指导式(4-13)计算,叉排时翅片可视为六角形,且此时翅片的长对边距离和短对边距离之比4.24 .1025d B ,1b m ===ρ且B A 肋折合高度为 凝露工况下翅片效率为 当量表面传热系数 (7)管内R22蒸发时的表面传热系数 R22在C t ?=70时的物性参数为: 饱和液体密度 33.1257m kg l =ρ 饱和蒸气密度 343.26m kg g =ρ 液体粘度 s Pa l ??=-6102.202μ

蒸发器换热系数的理论数值

6.3.2 蒸发过程的传热系数 蒸发中的传热系数K是影响蒸发设计计算的重要因素之一。根据传热学知识知 (6-6) 上式忽略了管壁厚度的影响。式中蒸汽冷凝传热系数αo可按膜式冷凝的公式计算;管壁热阻R W往往可以忽略;污垢热阻Rs 可按经验值估计,确定蒸发总传热系数K的关键是确定溶液在管内沸腾的传热膜系数a i。研究表明影响a i的因素较多,如溶液的性质、浓度、沸腾方式、蒸发器结构型式及操作条件等,具体计算可参阅有关文献 [1,6]。 一、总传热系数的经验值 目前,虽然已有较多的管内沸腾传热研究,但因各种蒸发器内的流动情况难以准确预料,使用一般的经验公式有时并不可靠;加之管内污垢热阻会有较大变化,蒸发的总传热系数往往主要靠现场实测。表6-1给出了常用蒸发器的传热系数范围,可供参考。 表6-1 常用蒸发器传热系数K的经验值 蒸发器的型式总传热系数K, W / (m2K) 标准式(自然循环)600~3000 标准式(强制循环)1200~6000 悬筐式600~3000 升膜式1200~6000

降膜式1200~3500 二、提高总传热系数的方法 管外蒸汽冷凝的传热膜系数αo通常较大,但加热室内不凝性气体的不断积累将使管外传热膜系数αo减小,故须注意及时排除其中的不凝性气体以降低热阻。管内沸腾传热膜系数αi涉及到管内液体自下而上经过管子的两相流动。在管子底部,液体接受热量但尚未沸腾,液体与管壁之间传热属单相对流传热,传热系数较小;沿管子向上,液体逐渐沸腾汽泡渐多,起初的传热方式与大容积沸腾相近。由于密度差引起的自然对流会造成虹吸作用,管中心的汽泡快速带动液体在管壁四周形成液膜向上流动,流动液膜与管壁之间的传热膜系数逐渐增加并达最大值。但如果管子长度足够,沿管子再向上液膜会被蒸干,汽流夹带着雾滴一起流动,传热系数又趋下降。因此,为提高全管长内的平均传热系数,应尽可能扩大膜状流动的区域。 管内壁液体一侧的污垢热阻Rs与溶液的性质、管内液体的运动状况有关。由于溶液中常含有少量的杂质盐类如CaSO4、CaCO3、Mg(OH)2等,溶液在加热表面汽化会使这些盐的局部浓度达到过饱和状态,从而在加热面上析出,形成污垢层。尤其是CaSO4等,其溶解度随温度升高而下降,更易在传热面上结垢,且质地较硬,难以清除;以CaCO3为主的垢层质地虽软利于清除,但导热系数较小;此外,垢层的多孔性也使其导热系数较低。所以即使厚度为1~2mm的垢层也具有较大的热阻。为降低Rs,工程上可采取定期清理、提高循环速度、加阻垢剂,或添加少量晶种使易结晶的物料在溶液中而不是在加热面上析出等方法。 返回目录 6.5.2 多效蒸发的优缺点

冷凝器换热面积计算方法

冷凝器換熱面積計算方法 (製冷量+壓縮機功率)/200~250=冷凝器換熱面 例如:(3SS1-1500壓縮機)CT=40℃:CE=-25℃ 製冷量12527W+壓縮機功率11250W 23777/230=氣冷凝器換熱面積103m2 水冷凝器換熱面積與氣冷凝器比例=概算1比18;(103/18)= 6m2 蒸發器的面積根據製冷量(蒸發溫度℃×Δt進氣溫度) 製冷量=溫差×重量/時間×比熱×安全係數 例如:有一個速凍庫1庫溫-35℃,2冷凍量1ton/H、3時間2/H內,4冷凍物品(鮮魚);5環境溫度27℃; 6安全係數1.23 計算:62℃×1000/2/H×0.82×1.23=31266kcal/n 可以查壓縮機蒸發溫度CT=40;CE-40℃;製冷量=31266kcal/h NFB與MC選用 無熔絲開關之選用 考慮:框架容量AF(A)、額定跳脫電流AT(A)、額定電壓(V), 低電壓配線建議選用標準 (單一壓縮機) AF 取大於AT 一等級之值.(為接點耐電流的程度若開關會熱表示AF選太小了) AT(A ) = 電動機額定電流×1 .5 ~2 .5(如保險絲的IC值) (多台壓縮機) AT(A )=(最大電動機額定電流×1 .5 ~2 .5)+ 其餘電動機額定電流總和 IC啟斷容量,能容許故障時的最大短路電流,如果使用IC:5kA的斷路器,而遇到10kA的短路電流,就無法承受,IC值愈大則斷路器內部的消弧室愈大、體積愈大,愈能承受大一點的故障電流,擔保用電安全。要搭配電壓來表示220V 5KA 電壓380V時IC值是2.5KA。

電磁接觸器之選用 考慮使用電壓、控制電壓,連續電流I t h 之大小(亦即接點承受之電流大小),連續電流I th 的估算方式建議為I t h=馬達額定電流×1.25/√ 3。 直接啟動時,電磁接觸器之主接點應選用能啟閉其額定電流之10倍。 額定值通常以電流A、馬力HP或千瓦KW標示,一般皆以三相220V電壓之額定值為準。 電磁接觸器依啟閉電流為額定電流倍數分為: (1).AC1級:1.5倍以上,電熱器或電阻性負載用。 (2).AC2B級:4倍以上,繞線式感應電動機起動用。 (3).AC2級:4倍以上,繞線式感應電動機起動、逆相制動、寸動控制用。 (4).AC3級:閉合10倍以上,啟斷8倍以上,感應電動機起動用。 (5).AC4級:閉合12倍以上,啟斷10倍以上,感應電動機起動、逆相制動、寸動控制用。 如士林sp21規格 ◎額定容量CNS AC3級 3相 220~240V→kW/HP/A:5.5/7.5/24 380~440V→kW/HP/A:11/15/21 壓縮功率計算 一. 有關壓縮機之效率介紹: 1.體積效率(EFF V) :用以表示該壓縮機洩漏或閥門間隙所造成排出的氣體流量 減少與進入壓縮機冷媒因溫度升高造成比體積增加之比值 體積效率(EFF V)=壓縮機實際流量/壓縮機理論流量 體積效率細分可分為二部分 (1)間隙體積效率 ηvc=V′ / V V′:實際之進排氣量 V :理論之排氣量 間隙體積效率一般由廠商提供,當壓縮機之壓縮比(PH / PL)增大,即高壓愈高或低壓愈低,則膨脹行程會增長,ηvc減少。 (2)過熱體積效率 ηvs=v / v′

如何根据压缩机的制冷量计算冷凝器及蒸发器的面积

如何根据压缩机的制冷量配冷凝器散热面积? 帖子创建时间: 2013年03月04日08:34评论:1浏览:2520投稿 1)风冷凝器换热面积计算方法 制冷量+压缩机电机功率/200~250=冷凝器换热面例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2 2)水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2 蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 3)制冷量的计算方法:=温差×重量/时间×比热×设备维护机构 例如:有一个速冻库 1)库温-35℃ 2)速冻量1T/H 3)时间2/H内 4)速冻物质(鲜鱼) 5)环境温度27℃ 6)设备维护机构保温板计算:62℃×1000/2/H×0.82×1.23=31266 kcal/n 可以查压缩机蒸发温度CT =40 CE-40℃制冷量=31266 kcal/n 冷凝器换热面积大于蒸发器换热面积有什么缺点 如果通过加大冷凝风扇的风量可以吗 rainbowyincai |浏览1306 次 发布于2015-06-07 10:19 最佳答案 冷凝器换热面积大于蒸发器换热面积的缺点: 1、高压压力过低;

2、压机走湿行程,易液击,通过加大蒸发器风扇的风量。风冷

冷凝器和蒸发器换热面积计算方法: 1、风冷凝器换热面积计算方法:制冷量+压缩机电机功率/200~250=冷凝器换热面积 例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527 W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2。 2、水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2,蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

冷凝器换热面积计算方法

冷凝器换热面积计算方法 (制冷量+压缩机功率)/200~250=冷凝器换热面 例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃ 制冷量12527W+压缩机功率11250W 23777/230=气冷凝器换热面积103m2 水冷凝器换热面积与气冷凝器比例=概算1比18;(103/18)= 6m2 蒸发器的面积根据制冷量(蒸发温度℃×Δt进气温度) 制冷量=温差×重量/时间×比热×安全系数 例如:有一个速冻库1库温-35℃,2冷冻量1ton/H、3时间2/H内,4冷冻物品(鲜鱼);5环境温度27℃; 6安全系数1.23 计算:62℃×1000/2/H×0.82×1.23=31266kcal/n 可以查压缩机蒸发温度CT=40;CE-40℃;制冷量=31266kcal/h NFB与MC选用 无熔丝开关之选用 考虑:框架容量AF(A)、额定跳脱电流AT(A)、额定电压(V), 低电压配线建议选用标准 (单一压缩机) AF 取大于AT 一等级之值.(为接点耐电流的程度若开关会热表示AF选太小了) AT(A ) = 电动机额定电流×1 .5 ~2 .5(如保险丝的IC值) (多台压缩机) AT(A )=(最大电动机额定电流×1 .5 ~2 .5)+ 其余电动机额定电流总和 IC启断容量,能容许故障时的最大短路电流,如果使用IC:5kA的断路器,而遇到10kA的短路电流,就无法承受,IC值愈大则断路器内部的消弧室愈大、体积愈大,愈能承受大一点的故障电流,担保用电安全。要搭配电压来表示220V 5KA 电压380V时IC值是2.5KA。

电磁接触器之选用 考虑使用电压、控制电压,連续电流I t h 之大小(亦即接点承受之电流大小),連续电流I th 的估算方式建议为I t h=马达额定电流×1.25/√ 3。 直接启动时,电磁接触器之主接点应选用能启闭其额定电流之10倍。 额定值通常以电流A、马力HP或千瓦KW标示,一般皆以三相220V电压之额定值为准。 电磁接触器依启闭电流为额定电流倍数分为: (1).AC1级:1.5倍以上,电热器或电阻性负载用。 (2).AC2B级:4倍以上,绕线式感应电动机起动用。 (3).AC2级:4倍以上,绕线式感应电动机起动、逆相制动、寸动控制用。 (4).AC3级:闭合10倍以上,启断8倍以上,感应电动机起动用。 (5).AC4级:闭合12倍以上,启断10倍以上,感应电动机起动、逆相制动、寸动控制用。 如士林sp21规格 ◎额定容量CNS AC3级 3相 220~240V→kW/HP/A:5.5/7.5/24 380~440V→kW/HP/A:11/15/21 压缩功率计算 一. 有关压缩机之效率介绍: 1.体积效率(EFF V) :用以表示该压缩机泄漏或阀门间隙所造成排出的气体流量 减少与进入压缩机冷媒因温度升高造成比体积增加之比值 体积效率(EFF V)=压缩机实际流量/压缩机理论流量 体积效率细分可分为二部分 (1)间隙体积效率 ηvc=V′ / V V′:实际之进排气量 V :理论之排气量 间隙体积效率一般由厂商提供,当压缩机之压缩比(PH / PL)增大,即高压愈高或低压愈低,则膨胀行程会增长,ηvc减少。 (2)过热体积效率 ηvs=v / v′

换热面积计算

换热面积计算 800KW蒸发器、冷凝器换热面积计算一、800KW蒸发器换热面积: A=Q/(K*?t), ?t=,t-t,/ln(t-t/ t-t) 21c1c2 2A:换热面积m(基于工作介质:水、R22); Q:压缩机制冷量KW,为800KW; K:传热系数,采用波纹状螺纹管取3.4 t为进水温度,为12?; 1 t为出水温度,为7? 2 t为蒸发温度= t-(2-4)?,取t=4? c2c 22经计算A=46.23 m,实际A=A*(1.1-1.15)=51.78 m(取1.12) 计计 二、800KW冷凝器换热面积: A=Q*1.2/(K*?t), ?t=(t-t)/ln(t-t/ t-t) 21c1c2 2A:换热面积m(基于工作介质:水、R22); Q:压缩机制冷量KW,为800KW; K:传热系数,采用波纹状螺纹管取3.14 t为进水温度,为30?; 1 t为出水温度,为35? 2 t为冷凝温度= t+5?,取t=40? c2c 22经计算A=42.46 m,实际A=A*(1.1-1.15)=47.5 m(取1.12) 计计 三、无锡约克公司蒸发器换热面积: 无锡约克公司提供给我司一款直径为650mm,制冷量为967KW, 蒸发温度为5.2?干式蒸发器(基于工作介质:水、R134a)的设计参 数为:采用直径为9.52 mm,壁厚0.8 mm波纹状螺纹管,铜管长度为2446mm,数量为1400根。 采用上述计算公式: 22换热面积A=55.88 m,实际A=A(1.1-1.15)=62.59 m(取1.12) 计计

根据GB151-1999管壳式换热器中3.7.1有关换热面积的解释及计算方法,1400根铜管的外表面积就为换热面积A。 2 A=3.14DL*1400=3.14*0.00952*(2.446-0.05*2)*1400=98.18 m 2(大于62.59 m,满足设计要求) 四、铜管数量的计算: 按江苏萃隆铜业有限公司推荐的行业用铜管材料,蒸发器用 ,12.7*0.85(名义壁厚)波纹状螺纹管;冷凝器用,15.88*0.64(名义壁厚)波纹状螺纹管。 经初步设计二容器均采用3米长铜管,根据GB151-1999管壳式换热器每根铜管的换热面积: 2A=3.14*(12.7/1000)*(3-0.5*2)=0.1156 m 蒸发器 2 A=3.14*(15.88/1000)*(3-0.5*2)=0.1446 m冷凝器 (其中0.5为铜管伸入管板内的长度)。 蒸发器所用铜管数量n=A/ A=51.78/0.1156=448根蒸发器 冷凝器所用铜管数量n=A/ A=47.5/0.1446=329根冷凝器 考虑到铜管在折流板中尚有部分换热面积的损失,同时根据GB151-1999管壳式换热器5.6.3中布管要求,方便布管取蒸发器所用铜管数量为454根,冷凝器所用铜管数量为338根。 ---------------------------------------------------------------精品范文 ------------------------------------------------------------- 精品范文 3 / 4 ---------------------------------------------------------------精品范文 ------------------------------------------------------------- 精品范文

蒸发器尺寸设计

蒸发器工艺尺寸计算 加热管的选择和管数的初步估计 1加热管的选择和管数的初步估计 蒸发器的加热管通常选用38*2.5mm无缝钢管。 加热管的长度一般为0.6—2m,但也有选用2m以上的管子。管子长度的选择应根据溶液结垢后的难以程度、溶液的起泡性和厂房的高度等因素来考虑,易结垢和易起泡沫溶液的蒸发易选用短管。根据我们的设计任务和溶液性质,我们选用以下的管子。 可根据经验我们选取:L=2M,38*2.5mm 可以根据加热管的规格与长度初步估计所需的管子数n’, =124(根) 式中S=----蒸发器的传热面积,m2,由前面的工艺计算决定(优化后的面积); d0----加热管外径,m;L---加热管长度,m;因加热管固定在管板上,考虑管板厚度所占据的传热面积,则计算n’时的管长应用(L—0.1)m. 2循环管的选择 循环管的截面积是根据使循环阻力尽量减小的原则考虑的。我们选用的中央循环管式蒸发器的循环管截面积可取加热管总截面积的40%--100%。加热管的总截面积可按n’计算。循环管内径以D1表示,则 所以mm 对于加热面积较小的蒸发器,应去较大的百分数。选取管子的直径为:循环管管长与加热管管长相同为2m。 按上式计算出的D1后应从管规格表中选取的管径相近的标准管,只要n和n’相差不大。循环管的规格一次确定。循环管的管长与加热管相等,循环管的表面积不计入传热面积中。 3加热室直径及加热管数目的确定 加热室的内径取决于加热管和循环管的规格、数目及在管板撒谎能够的排列方式。 加热管在管板上的排列方式有三角形排列、正方形排列、同心圆排列。根据我们的数据表加以比较我们选用三角形排列式。

蒸发器的设计计算

蒸发器的设计计算

蒸发器设计计算 已知条件:工质为R22,制冷量kW 3,蒸发温度C t ?=70,进口空气的干球温度为C t a ?=211,湿球温度为C t b ?=5.151,相对湿度为34.56=φ%;出口空气的干球温度为C t a ?=132,湿球温度为C t b ?=1.112,相对湿度为80=φ%;当地大气压力Pa P b 101325=。 (1)蒸发器结构参数选择 选用mm mm 7.010?φ紫铜管,翅片厚度mm f 2.0=δ的铝套片,肋片间距 mm s f 5.2=,管排方式采用正三角排列,垂直于气流方向管间距mm s 251=,沿 气流方向的管排数4=L n ,迎面风速取s m w f /3=。 (2)计算几何参数 翅片为平直套片,考虑套片后的管外径为 mm d d f o b 4.102.02102=?+=+=δ 沿气流方向的管间距为 mm s s 65.21866.02530cos 12=?=?= 沿气流方向套片的长度为 mm s L 6.8665.21442=?== 设计结果为 mm s L 95.892565.2132532=+?=+= 每米管长翅片表面积: f b f s d s s a 100042221? ??? ? ? -?=π ()5.21000 4.10414.36 5.212522??? ? ???-??= m m 23651.0= 每米管长翅片间管子表面积:

f f f b b s s d a ) (δπ-= ()5 .210002.05.24.1014.3? -??= m m 203.0= 每米管长总外表面积: m m a a a b f of 23951.003.03651.0=+=+= 每米管长管内面积: m m d a i i 2027.0)20007.001.0(14.3=?-?==π 每米管长的外表面积: m m d a b b 2003267.00104.014.3=?==π 肋化系数: 63.14027 .03951 .0== = i of a a β 每米管长平均直径的表面积: m m d a m m 2 02983.020086.00104.014.3=?? ? ??+?==π (3)计算空气侧的干表面传热系数 ①空气的物性 空气的平均温度为 C t t t a a f ?=+=+= 172 1321221 空气在下C ?17的物性参数 3215.1m kg f =ρ ()K kg kJ c pf ?=1005 704.0=rf P s m v f 61048.14-?=

导热油蒸发器换热面积计算

用户提供的条件 1、均为蒸发器,流量108m3/h,进油温度:260,温差30度,给水温度:20度,产气量3t/h,工作压力:0.7Mpa (100平方) 2、流量72m3/h,进油温度:260,温差30度,给水温度:20度,产气量3t/h,工作压力:0.7Mpa (70平方) 3、流量460立方/小时,进油温度260度,温差30度,蒸汽压力:1.6Mpa,导热油压力:0.7Mpa ,产气量:12T/H (300平方) 4、流量:600立方/小时,进油温度260度,温差25度,蒸汽压力:1.6Mpa,导热油压力:0.7Mpa ,产气量:15T/H (380平方) 5、流量460立方/小时,进油温度260度,温差30度,蒸汽压力:1.6Mpa,导热油压力:0.7Mpa ,产气量:12T/H(正方形布管,换热管中心距为37mm,300平方) 以上换热面积仅供参考 现选择2计算 1.已知: 热载体油:进油温度260℃,出油温度230℃,流量72m3/h,取重度0.86t/m3 冷载体水:给水温度20℃,出气压力0.8MPa,则对应温度175℃,产气量3t/h 2.水从20℃升至175℃所需的传热量计算 Q2=1.05m s2C p2(t2-t1) m s2-----产气量3000kg/h C p2-----水的比热 4.386kJ/kg. ℃ Q2=1.05X3000X4.386X(175-20)=2.1414645kJ/h=5.95X105w(J/s) 3.平均温差计算 260℃→230℃ 20℃→175℃ 240℃--55℃ △ t m=(240-55)/ln(240/55)=125.56℃ R=(T1-T2)/(t2-t1)=30/155=0.193548 P=(t2-t1)/(T1-T2)=155/240=0.6458 查得△t m=0.95X125.56=119.28℃ 4.导热油与水之间的传热系数K=150~200w/㎡. ℃,现取110 5.所需换热面积的计算值A A=Q/K△t m=5.95X105/(110X119.28)=28㎡ 考虑裕量28㎡X1.15=32㎡

翅片式换热器的设计及计算

制冷剂系统翅片式换热器设计及计算 制冷剂系统的换热器的传热系数可以通过一系列实验关联式计算而得,这是因为在这类换热器中存在气液两相共存的换热过程,所以比较复杂,现在多用实验关联式进行计算。之前的传热研究多对于之前常用的制冷剂,如R12,R22,R717,R134a等,而对于R404A和R410A的,现在还比较少。按照传热过程,换热器传热量的计算公式为: Q=KoFΔtm (W) Q—单位传热量,W Ko—传热系数,W/(m2.C) F—传热面积,m2 Δtm—对数平均温差,C Δtmax—冷热流体间温差最大值,对于蒸发器,是入口空气温度—蒸发温度,对于冷凝器,是冷凝温度—入口空气温度。 Δtmin—冷热流体间温差最小值,对于蒸发器,是出口空气温度—蒸发温度,对于冷凝器,是冷凝温度—出口空气温度。 传热系数K值的计算公式为: K=1/(1/α1+δ/λ+1/α2) 但换热器中用的都是圆管,而且现在都会带有肋片(无论是翅片式还是壳管式),换热器表面会有污垢,引入污垢系数,对于蒸发器还有析湿系数,在设计计算时,一般以换热器外表面为基准计算传热,所以对于翅片式蒸发器表述为: Kof--以外表面为计算基准的传热系数,W/(m2.C) αi—管内侧换热系数,W/(m2.C) γi—管内侧污垢系数,m2.C/kW δ,δu—管壁厚度,霜层或水膜厚度,m λ,λu—铜管,霜或水导热率,W/m.C ξ,ξτ—析湿系数,考虑霜或水膜使空气阻力增加系数,0.8-0.9(空调用亲水铝泊时可取1)αof—管外侧换热系数,W/(m2.C) Fof—外表面积,m2 Fi—内表面积,m2 Fr—铜管外表面积,m2 Ff—肋片表面积,m2 ηf—肋片效率, 公式分析: 从收集的数据(见后表)及计算的结果来看,空调工况的光滑铜管内侧换热系数在2000-4000 W/(m2.C)(R22取前段,R134a取后段,实验结果表明,R134a的换热性能比R22高)之间。因为现在蒸发器多使用内螺纹管,因此还需乘以一个增强因子1.6-1.9。 下面这个计算公式来自《制冷原理及设备》(第二版,1996,吴业正主编):

风冷凝器换热面积计算

1)风冷凝器换热面积计算方法 制冷量+压缩机电机功率/200~250=冷凝器换热面例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527W+压缩机电机功率 11250W=23777/230=风冷凝器换热面积103m2 2)水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2 蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。冷库蒸发器匹配计算 一、冷藏库冷风机的匹配: 冷藏库每立方米负荷按W0=75W/m3计算。 1 若V(冷库容积)<30m3,开门次数较频繁的冷库,如鲜肉库,则乘系数A=1.2; 2 若30m3≤V<100m3,开门次数较频繁的冷库,如鲜肉库,则乘系数A=1.1; 3 若V≥100m3,开门次数较频繁的冷库,如鲜肉库,则乘系数A=1.0; 4 若为单个冷藏库时,则乘系数B=1.1 最终冷库冷风机选配按W=A*B*W0(W 为冷风机负荷); 5 冷库制冷机组及冷风机匹配按-10oC蒸发温度计算。 二、冷冻库冷风机的匹配: 每立方米负荷按W0=70W/m3计算。 1 若V(冷库容积)<30m3,开门次数较频繁的冷库,如鲜肉库,则乘系数A=1.2; 2 若30m3≤V<100m3,开门次数较频繁的冷库,如鲜肉库,则乘系数A=1.1; 3 若V≥100m3,开门次数较频繁的冷库,如鲜肉库,则乘系数A=1.0; 4 若为单个冷冻库时,则乘系数B=1.1 最终冷库冷风机选配按W=A*B*W0(W 为冷风机负荷) 5 当冷库与低温柜共用制冷机组时,机组及冷风机匹配按-35oC蒸发温度计算。当冷库与低温柜分开时,冷库制冷机组及冷风机匹配按-30oC蒸发温度计算。三、冷库加工间冷风机的匹配: 每立方米负荷按W0=110W/m3计算。 1 若V(加工间容积)<50m3,则乘系数A=1.1; 2 若V≥50m3,则乘系数A=1.0 最终冷库冷风机选配按W=A*W0(W为冷风机负荷); 3 当加工间与中温柜共用制冷机组时,机组及冷风机匹配按-10oC蒸发温度计算。 当加工间与中温柜分开时,冷库机组及冷风机匹配按0oC蒸发温度计算。以上计算为参考值,精确计算按冷库负荷计算表。

冷凝器换热面积计算方法

冷凝器换热面积计算方法 制冷量+压缩机电机功率/200~250=冷凝器换热面 例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2 水冷凝器换热面积与风冷凝器比例=概算1比18(103/18)=6m2 蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 制冷量的计算方法 制冷量=温差×重量/时间×比热×设备维护机构 例如:有一个速冻库 1库温-35℃ 2速冻量1T/H 3时间2/H内 4速冻物质(鲜鱼) 5环境温度27℃ 6设备维护机构保温板 计算:62℃×1000/2/H×0.82×1.23=31266kcal/n 可以查压缩机蒸发温度CT=40CE-40℃制冷量=31266kcal/n 关于R410A和R22翅片管换热器回路数比的探讨晨怡热管(特灵亚洲研发中心上海200001)申广玉2008-6-15 20:10:07 摘要:通过理论计算得出了相同换热量和相同工况下,采用5/16″管径R410A蒸发器(或冷凝器)与采用3/8″管径R22蒸发器(或冷凝器)时回路数的比值,并指出比值是两工质物性差异和盘管的内径及当量摩擦阻力系数差异共同作用的结果。 关键词:R410A;回路数;蒸发器;冷凝器 中图分类号:TQ051 文献标识码: B

1前言 随着人类环保意识的提高,新冷媒技术的发展和应用已成为空调器发展的方向和关注的焦点。目前,国际上一致看好的R22替代物是混合工质R407C和R410A。其中R410A是HFC 32和HFC 125按照50%:50%的质量百分比组成的二元近共沸混合制冷剂,它的温度滑移不超过0.2℃(R407C温度滑移约7℃左右),这给制冷剂的充灌、设备的更换提供了很多方便。另外,由于R410A系统运行的蒸发压力和冷凝压力比R22高60%,所以系统性能对压力损失不敏感,每个回路工质循环流速可以加大,有利于换热器的强化换热,这为提高R410A系统的整体能效创造了有力条件。 正是由于R410A具有上述优点,在R22用量最大的单元式空调和热泵产品中,R410A是其首要的替代品。美国有望在2007年底将R410A产品在单元式空调的应用比例提高到80%,并在2009年底接近100%[1]。 但是R410A和R22物性存在着上述明显差异而不能在原R22系统中直接充注替代使用,应该对新的R410A 系统中的压缩机、蒸发器、冷凝器、节流机构和系统管路等部件重新设计才能达到系统的最佳匹配。本文仅以R410A和R22翅片管蒸发器和冷凝器的回路数相对比进行说明。 2R410A和R22翅片管蒸发器回路数比计算 目前常用的R22换热器一般采用的是3/8″内螺纹管,R410A换热器一般采用的是5/16″内螺纹。无特殊说明,所述的R410A和R22换热器即分别指这两种结构的换热器。 无论采用何种工质,在设计蒸发器时,一般均要保证工质在蒸发器中的饱和温度降ΔT相同,即:

管壳式换热器的设计及计算

第一章换热器简介及发展趋势 概述 在化工生产中,为了工艺流程的需要,常常把低温流体加热或把高温流体冷却,把液态汽化或把蒸汽冷凝程液体,这些工艺过程都是通过热量传递来实现的。进行热量传递的设备称为换热设备或换热器。换热器是通用的一种工艺设备,他不仅可以单独使用,同时又是很多化工装置的组成部分。 在化工厂中,换热器的投资约占总投资的10%——20%,质量约为设备总质量的40%左右,检修工作量可达总检修工作量的60%以上。由此可见,换热器在化工生产中的应用是十分广泛的,任何化工生产工艺几乎都离不开它。在其他方面如动力、原子能、冶金、轻工、制造、食品、交通、家电等行业也有着广泛的应用。 70年代的世界能源危机,有力地促进了传热强化技术的发展,为了节能降耗,提高工业生产经济效益,要求开发适用于不同工业过程要求的高效能换热设备[1]。这是因为,随着能源的短缺(从长远来看,这是世界的总趋势),可利用热源的温度越来越低,换热允许温差将变得更小,当然,对换热技术的发展和换热器性能的要求也就更高[2]。所以,这些年来,换热器的开发与研究成为人们关注的课题,最近,随着工艺装置的大型化和高效率化,换热器也趋于大型化,向低温差设计和低压力损失设计的方向发展。同时,对其一方面要求成本适宜,另一方面要求高精度的设计技术。当今换热器技术的发展以CFD(Computational Fluid Dynamics)、模型化技术、强化传热技术及新型换热器开发等形成了一个高技术体系[3]。 当前换热器发展的基本趋势是:继续提高设备的传热效率,促进设备结构的紧凑性,加强生产制造的标准化系列化和专业化,并在广泛的范围内继续向大型化的方向发展。各种新型高效紧凑式换热器的应用范围将得到进一步扩大。在压力、温度和流量的许可范围内,尤其是处理强腐蚀性介质而需要使用贵重金属材料的场合下,新型紧凑式换热器将进一步取代管壳式换热器。 总之,为了适应工艺发展的需要,今后在强化传热过程和换热设备方面,还将继续探索新的途径。 强化传热技术 所谓提高换热器性能,就是提高其传热性能。狭义的强化传热系指提高流体和传热面

换热器的换热面积计算

换热器热量及面积计算 一、热量计算 1、 一般式 Q=Wh(Hh,1- Hh,2)= Wc(Hc,2- Hc,1) 式中: Q为换热器的热负荷,kj/h或kw; W为流体的质量流量,kg/h; H为单位质量流体的焓,kj/kg; 下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。 2、无相变化 Q=Whcp,h(T1-T2)=Wccp,c(t2-t1) 式中 cp为流体平均定压比热容,kj/(kg.℃); T为热流体的温度,℃; T为冷流体的温度,℃ 二、面积计算 1、总传热系数K 管壳式换热器中的K值如下表 冷流体热流体总传热系数K,w/(m2.℃) 水水850-1700 水气体17-280 水有机溶剂280-850

水轻油340-910水重油60-280 有机溶剂有机溶剂115-340水水蒸气冷凝1420-4250气体水蒸气冷凝30-300 水低沸点烃类冷凝455-1140水沸腾水蒸气冷凝2000-4250轻油沸腾水蒸气冷凝455-1020 注: 1w=1J/s=3.6kj/h=0.86kcal/h 1kcal=4.18kj 2、 温差 (1)逆流 热流体温度T:T1→T2 冷流体温度t:t2←t1 温差△t:△t1→△t2 △tm=(△t2-△t1)/㏑(△t2/△t1) (2)并流 热流体温度T:T1→T2 冷流体温度t:t1→t2 温差△t:△t2→△t1 △tm=(△t2-△t1)/㏑(△t2/△t1) 3、面积计算 S=Q/(K.△tm) 三、管壳式换热器面积计算

S=3.14ndL 其中,S为传热面积m2、n为管束的管数、d为管径,m;L为管长,m。 四、注意事项 冷凝段:潜热(根据汽化热计算) 冷却段:显热(根据比热容计算 【本文档内容可以自由复制内容或自由编辑修改内容期待 你的好评和关注,我们将会做得更好】

如何根据压缩机的制冷量计算冷凝器及蒸发器的面积修订稿

如何根据压缩机的制冷量计算冷凝器及蒸发器 的面积 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

如何根据压缩机的制冷量配冷凝器散热面积? 帖子创建时间:2013年03月04日 08:34评论:浏览: 1)风冷凝器换热面积计算方法 制冷量+压缩机电机功率/200~250=冷凝器换热面例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2 2)水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2 ? 蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 3)制冷量的计算方法:=温差×重量/时间×比热×设备维护机构 例如:有一个速冻库 1)库温-35℃ 2)速冻量1T/H 3)时间2/H内 4)速冻物质(鲜鱼) 5)环境温度27℃ 6)设备维护机构保温板计算:62℃×1000/2/H××=31266 kcal/n 可以查压缩机蒸发温度CT=40 CE-4 0℃制冷量=31266 kcal/n 冷凝器换热面积大于蒸发器换热面积有什么缺点 如果通过加大冷凝风扇的风量可以吗 |浏览 1306 次 发布于2015-06-07 10:19 最佳答案 换热面积大于蒸发器换热面积的缺点: 1、高压压力过低; 2、压机走湿行程,易液击,通过加大蒸发器风扇的风量。 风冷和蒸发器换热面积计算方法:

1、风换热面积计算方法:+压缩机电机功率/200~250=冷凝器换热面积 例如:(3SS1-1500压缩机)CT=40℃:=-25℃压缩机=12527W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2。 2、水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2,蒸发器的面积根据压缩机(℃×Δt的休正系数查表)。

3蒸发器的传热面积计算

3.蒸发器的传热面积计算 根据传热基本方程 均 t K Q A ?= 式中 A ——换热器的传热面积,m 2;Q ——蒸发器的热负荷,W ; 均 t ?——传热平均温差,℃;K ——换热器的总传热系数,W/( m 2 ·℃)。 根据热量衡算,蒸发器的热负荷Dr Q =;蒸发过程为加热蒸汽冷凝和溶液沸腾 之间的恒温传热, 1t T t -=?均;K 值可按传热章提供的公式计算. 1t T t -=?——有效温度差(蒸发的推动力) 课堂练习:习题6-2 习题6-3 补充习题: (1)已知单效常压蒸发器每小时处理2t Na OH水溶液,溶液浓度由15%(质量)浓缩到25%(质量)。加热蒸汽压强为400kPa(绝压),冷凝后在饱和温度下排出。假设蒸发器的热损失忽略不计。溶液的沸点为113℃,分别按20℃加料和沸点加料,求此两种情况下的加热蒸汽消耗量和单位蒸汽消耗量。 [答:D=1.15×103 kg/h D/W =1.44(20℃加料) D=845kg/h D/W =1.06(沸点加料)] (2)传热面积为52m 2 的蒸发器,在常压下每小时蒸发2500kg 浓度为7%(质量)的某水溶液。原料液的温度为95℃,常压下的沸点为103℃,完成液的浓度为45% (质量)。加热蒸汽的绝压为300kPa 。热损失为110000W。试估算蒸发器的总传热系数。 [答:K=924W/(m 2 ·℃)] 三、溶液的沸点和温度差损失 1.溶液的沸点

溶液中溶质不挥发,在相同的条件下溶液的沸点总是比纯溶剂的沸点升高。 实际操作中,已知加热蒸汽压力和二次蒸汽压力(冷凝器的压力),既可直接查得T (加热蒸汽温度)和' T (二次蒸汽温度) 'T T t T -=?——视温度差 ()()''T t t T T T t t 11T -=---=?-?=?——温度差损失 所以溶液的沸点 ?+=' T t 1 2.温度差损失 产生温度差损失的原因主要有:①因溶液沸点升高引起的温度差损失' ?;②因加 热管内液柱静压力而引起的温度差损失' '?;③由于管路流动阻力而引起的温度差 损失' ''?。 总温度差损失为:'''''' ?+?+? =? 若二次蒸汽的温度' T 根据蒸发器分离室的压力(即不是冷凝器的压力)确定时,则 ''' ?+? =? (1)因溶液沸点升高引起的温度差损失' ? '?值主要和溶液的种类、浓度以及蒸发压力有关,其值由实验测定。 '?=常压下溶液的沸点-常压下饱和水蒸汽的温度 (a )常压下,某些无机盐水溶液的沸点与浓度的关系见附录。 (b )非常压下可用近似式计算。 ''0f ?=?

空调冷凝器热力计算

冷凝器换热计算 第一部分:设计计算一、设计计算流程图

二、 设计计算(以HLR45S 为例) 1、已知参数 换热参数: 冷凝负荷:Q k =61000W 冷凝温度:t k =50℃ 环境风温度:t a1=35℃ 冷凝器结构参数: 铜管排列方式:正三角形叉排 翅片型式:开窗片,亲水膜 铜管型式:光管 铜管水平间距:S 1=25.4mm 铜管竖直方向间距:S 2=22mm 紫铜光管外径:d 0=9.52mm 铜管厚度:δt =0.35mm 翅片厚度:δf =0.115mm 翅片间距:S f =1.8mm 冷凝器尺寸参数 排数:N C =3排 每排管数:N B =52排 2、计算过程 1)冷凝器的几何参数计算 翅片管外径:f b d d δ20+== 9.75 mm 铜管径:t i d d δ-=0=8.82 mm 当量直径:) ()(2))((4411f f b f f b eq S d S S d S U A d δδ-+---= ==3.04 mm 单位长度翅片面积:32 2110/)4 (2-?- =f b f S d S S f π=0.537 m 2/m 单位长度翅片间管外表面积:310/)(-?-=f f f b b s S d f δπ=0.0286 m 2/m

单位长度翅片管总面积:b f t f f f +==0.56666 m 2 /m 翅片管肋化系数:i t i t d f f f πβ===20.46 2)空气侧换热系数 迎面风速假定:f w =2.6 m/s 最窄截面处风速:))(/(11max b f f f f d S S w S S w --=δ=4.5 m/s 冷凝器空气入口温度为:t a1=35℃ 取出冷凝器时的温度为:t a2=43℃ 确定空气物性的温度为:2/)(21a a m t t t +==39℃ 在tm =39℃下,空气热物性: v f =17.5×10-6m 2/s ,λf =0.0264W/mK ,ρf =1.0955kg/m 3,C Pa =1.103kJ/(kg*℃) 空气侧的雷诺数:f eq f v d w /Re max = =783.7 由《制冷原理与设备》中公式(7-36),空气侧换热系数 m eq eq n f f O d d C ??? ? ??= γλαRe '=50.3 W/m 2K 其中: 362)( 103)( 000425.0)( 02315.0518.0eq eq eq d d d A γ γ γ -?-+-==0.1852 ?? ? ??? ?- =1000Re 24.036.1f A C =0.217 eq d n γ 0066 .045.0+==0.5931 1000 Re 08 .028.0f m +-==-0.217 铜管差排的修正系数为1.1,开窗片的修正系数为1.2,则空气侧换热系数为:(开窗片、波纹片的修正系数有待实验验证) ' o o αα=×1.1×1.2=66.41 W/m 2K

相关主题
文本预览
相关文档 最新文档