当前位置:文档之家› 材料力学教学实验中的不确定度分析

材料力学教学实验中的不确定度分析

材料力学教学实验中的不确定度分析
材料力学教学实验中的不确定度分析

材料力学教学实验中的不确定度分析

关键词材料力学实验,不确定度

1 引言

目前越来越多的高等院校工程力学实验室引进微机控制电子式万能试验机,用于材料力学性能教学试验,如测定金属材料的上下屈服强度、抗拉强度、规定非比例延伸强度、弹性模量等。我校工程力学实验室2003年购进10台微机控制电子式万能试验机,用于本科生材料力学教学实验。但如何评定材料力学性能测定中的不确定度,对材料力学教学实验有重要意义。

作为材料的拉伸、压缩和弯曲等力学性能测定,其测量不确定度受诸多因素的影响:如材料的均匀性;试样的形状和制备方法;试样的夹持方式;试样的加载同轴度;试样尺寸的测量、引伸计标距、力和变形测定的误差;试验机的数据采集速率及试验软件;试验温度、加载速率等等。

上述影响测量不确定度的诸多因素可分为两类:一类是与材料无关的参数,如力、变形(位移)、试样标距和横截面积的测量误差,采样速率和试验软件的影响;一类是与材料有关的参数,如材料的均匀性、试验速率(应变速率或应力速率)带来的影响。本测量不确定度分析主要针对与材料无关的参数。

弹性模量是材料最稳定的常数,但影响其测量不确定度的误差因素也最多。下面以测定拉伸弹性模量E为例给出测量不确定度评定与表示(即误差分析),其它力学性能的测量不确定度也可按类似方法进行评定与表示。

2 测量方法和数学模型

2.1 测量方法

在材料力学实验的拉伸试验中,一般采用圆形截面试样,利用微机控制电子式万能试验机以受控的速率对试样施加拉力,用引伸计测量试样标距内的伸长,绘制(测量)试样拉伸过程中力和变形曲线,以测定有关力学性能。如上屈服强度ReH、下屈服强度ReL和抗拉强度R m仅取决于力和试样横截面积的测量误差,而规定非比例延伸强度Rp和弹性模量E的测定却取决于力、变形、标距和试样横截面积的测量误差。表1给出GB/T 228-2002《金属材料室温拉伸试验方法》和GB/T 8653-1988《金属杨氏模量、弦线模量、切线模量和泊松比试验方法(静态法)》规定的测定拉伸试验数据的最大允许测量误差。

表1 GB/T 228和GB/T 8653规定的拉伸试验数据的最大允许测量误差

参数拉伸性能,误差(%)

ReH ReL Rm Rp E

力 F 1 1 1 1 1

变形△L --- 1 1

标距Le --- 1 1

横截面积S0 1 1 1 1 1

2.2 数学模型

材料的拉伸弹性模量E是材料在弹性范围内应力与应变之比。在力-变形曲线的弹性直线段内,取试验力F,测量出引伸计标距Le的相应伸长?L,即可求得弹性模量E:…………………………… ⑴

式中:E表示材料的拉伸弹性模量,GPa;

F表示拉伸试验力,N;

Le表示引伸计标距,mm;

S平均为试样标距部分的原始横截面积,mm2;

?L为试样标距部分的伸长,mm;

T为试验温度;

为应变速率。

在试验过程中,温度和应变(或应力)速率必须保持在一定限度内。式⑴就是在GB/T 228和GB/T 8653允许的温度和应变(或应力)速率下,拉伸弹性模量E测量过程的数学模型。

2.3 不确定度计算

由于试验一般都是在同一试验室同一时间或较短时间内完成的,室温的变化较小,温度效应修正及其所引入的标准不确定度uT可以忽略不计。至于应变(应力)速率效应,其敏感性与被测材料相关,又由于试验时控制在同一速率范围,故应变速率效应修正的不确定度分量,暂未列入测量不确定度分析范围。

在式⑴中,因各输入量彼此独立,根据JJF 1059-1999《测量不确定度评定与表示》不确定度传播率,E 的不确定度按式⑵计算:

……⑵

则相对标准不确定度:

则相对合成标准不确定度为:

3 标准不确定度分量

影响弹性模量E测量不确定度的分量包括:力测量不确定度分量uF;引伸计标距测量不确定度分量uLe;横截面积测量不确定分量;变形测量不确定度分量u?L。

在JJF1059中测量不确定度评定分为两类:A和B类。A类标准不确定度分量的估计方差,是由一系列重复观测值计算得到的,即为统计方差估计值。B类标准不确定度分量的估计方差,则是根据有关信息(包括以前的测量数据和经验、检定证书提供的数据和准确度等级、有关国家标准给出的测量误差等)来评定的,即基于事件发生的可信程度(主观概率或先验概率)通过一个假定的概率密度函数得到的。

a) 力标准不确定度

微机控制电子式万能试验机的力值准确度为1级(即1级试验机),力示值误差为±1.0 %,可认为示值出现在±1.0 %范围内的任何处都是等概率的,而落在该范围外的概率基本为零,假设为矩形(均匀)分布。由JJF 1059表3可知,所以试验机的B类相对标准不确定度为:

1级试验机又是借助于0.3级标准测力仪进行校准的,该校准源的不确定度为0.3 %,其置信因子为2,故由此引入的B类相对标准不确定度为:

计算机数据采集系统采集力值时引入的不确定度,与采样速率及系统分辨力有关。在满足最小数据采样速率条件下,根据实验可得到由计算机数据采集系统所引入的B类相对标准不确定度为:

鉴于试验机、标准测力仪和计算机数据采集系统采集力值影响FeL这三个不确定度分量彼此无关,所以力测量相对标准不确定度uFr可合成为:

b) 引伸计标距测量不确定度

微机控制电子式万能试验机配置的引伸计为1级准确度。按GB/T 12160-2002《单轴试验用引伸计的标定》规定,1级准确度的引伸计其标距相对误差为1%,这同样是矩形(均匀)分布。由JJF 1059表3可知,所以引伸计标距测量B类相对标准不确定度为:

c) 横截面积标准不确定度

根据GB/T228规定,测量每个尺寸应精确到±0.5%,横截面积测量误差为±1.0%,这同样是矩形(均匀)分布。由JJF 1059表3可知,所以横截面积测量B类相对标准不确定度为:

d) 变形测量不确定度

按GB/T 12160规定,1级准确度的引伸计系统相对误差为1%,这同样是矩形(均匀)分布。由JJF 1059表3可知,所以变形测量B类相对标准不确定度为:

4 合成标准不确定度

考虑到力测量不确定度、引伸计标距测量不确定度、截面积测量不确定度和变形测量不确定度这四个分量之间彼此独立,由此可得E的相对合成标准不确定度uEr为:

所以,E的合成标准不确定度uE为:

5 扩展不确定度

在相对合成标准不确定度确定后,乘以一个包含因子k,即可得到扩展不确定度。根据JJF 1059第7章“扩展不确定度的评定”可知,在大多数情况下(置信概率为95%)取k = 2,因此E的相对扩展不确定度Ur为:

而E的扩展不确定度U为:

表2给出了ReH、ReL、Rm、Rp、E的相对标准不确定度一览表。

表2 ReH、ReL、Rm、Rp、E的相对标准不确定度一览表

项目ReH ReL Rm Rp E

试验机力示值的相对标准不确定度,0.58% 0.58% 0.58% 0.58% 0.58%

0.3级标准测力仪引入的相对标准不确定度,0.15% 0.15% 0.15% 0.15% 0.15%

引伸计误差引入的Fp判读不确定度,---0.6% -

计算机数据采集系统引入的不确定度,0.2% 0.2% 0.2% 0.2% 0.2%

引伸计标距引入的不确定度,----0.58%

横截面积测量引入的相对标准不确定度,0.58% 0.58% 0.58% 0.58% 0.58%

引伸计变形测量引入的相对不确定度,----0.58%

相对合成标准不确定度,uRr 0.86% 0.86% 0.86% 1.1% 1.2%

置信度95%的包含因子,k 2 2 2 2 2

相对扩展不确定度,Ur=k·uRr 1.7%. 1.7% 1.7% 2.1% 2.4%

6 表示形式

作者用2004年春季学期学生测试的实验数据进行测量不确定度分析。试验是在10台微机控制电子式万能试验机进行,引伸计为YUU5010,试验速度为2 mm/min。试验时间2004年2月~6月,一共做了171根低碳钢和171根硬铝试样的。低碳钢试样的拉伸弹性模量E平均值为208 GPa;硬铝试样的拉伸弹性模量E平均值为71.0 GPa,规定非比例延伸强度Rp0.2平均值为339 MPa。表3是低碳钢和硬铝的E、Rp0.2测量不确定度表示形式。

表3 测量不确定度表示形式

材料合成标准不确定度u 扩展不确定度U 测量不确定度表示形式

低碳钢 E 2.5 GPa 5 GPa

硬铝E 0.84 GPa 1.7 GPa

Rp0.2 3.6 MPa 7 MPa

结论:落在测量不确定度范围内的试样,低碳钢E有127根,占试样总数的74.3 %,硬铝E有133根,占试样总数的77.8 %,Rp0.2有65根,占试样总数的38.0 %。弹性模量E是材料最稳定的常数,而强度与材料品质有关,上述数据说明本不确定度分析是正确的。

水泥胶砂强度试验的不确定度评定.

1. 检验过程概述 1.1环境条件 试验室温度:20℃±2℃,相对湿度≥50% 1.2检验所用的仪器设备 JJ-5型行星式水泥胶砂搅拌机、ZS-15型水泥胶砂振实台、ZBY-Ⅱ型水泥养护箱、NYL-300型抗压强度试验机。 1.3被测对象 普通硅酸盐水泥胶砂28d 抗压强度,本例评定点约在30.00MPa 处。 2. 数学模型的建立 测量结果的不确定度来源于试验机的误差(不可修正的部分)及测量的重复性,而测量 的重复性其影响因素较多,可建立如下的数学模型: y --强度值 F --试验机读数 R --测量重复性的影响 n x x x .....21、、--各影响量 1x --水泥、标准砂、水的不均匀性 2x --配合比的偏差 3x --搅拌的不均匀性 4x --成型的不均匀性 5x --养护的不均匀性 6x --加荷偏心 7x --加荷速度不均匀性 8x --试验机本身的重复性 9x --分辩力的影响 )......(21n x x x R F y 、+=

10x —人的操作不一致性 11x --抗折试验时试体破损影响 12x --其它未知因素的影响 3. 不确定度传播律 ()()()R u F u y u 222+= 4. 标准不确定度的评定 4.1 )(R u R 的各影响量的大小很难用物理/数学方法分析,相互间关系也很复杂,只能用A 类评定,让12个因素同时起作用,通过试验来评定它的综合影响。做重复性试验,搅拌10锅砂,每锅产生6个试体,得到m=10组,每组n=6个试验结果。共m×n=60个试验数据(具体数值略) 合并样本标准偏差 ())1()(2 --=∑∑n m F F R u j ji )(6.....3,2,1n i = )(10.......3,2,1m j = 代入试验数据,得到52.0)(=R u MPa,由于实际检测时只做一组6个试件取平均值,故21.0/)()(==n R u R u MPa , 8.30=F 0MPa 。 4.2 )(F u 由检定证书得到F F ?=?%1,80.30=F MPa 31.0=?∴F MPa 取正态分布k=3 10.03 31.0)(==?=k F F u MPa 5. 合成标准不确定度的评定 由于各量之间相互独立,合成标准不确定度为

综合不确定度分析

电子天平测量结果不确定度评定报告 1 概述 1.1 测量依据:JJG 1036-2008《电子天平检定规程》(电子天平部分); 1.2 测量标准:E2级标准砝码装置,出厂编号968,根据JJG 99-2006《砝码检定规程》中给出100g砝码的扩展不确定度不大于0.053mg,包含因子k=2; 1.3 环境条件:温度23℃,相对湿度31 %; 1.4 测量对象:电子天平100g/0.1mg,型号AB104-S,出厂编号1128422995; 1.5 测量过程:检定方法属直接测量法,标准砝码与电子天平示值之差为电子天平示值误差。 2 不确定度来源分析 2.1 输入量m的标准不确定度u(m),包括: 2.1.1 被检天平测量重复性的标准不确定度u1(m); 2.1.2 电子天平的分辨力引入的标准不确定度u2(m); 2.1.3 由温度不稳定及振动等引入的标准不确定度u3(m); 2.2 由标准砝码本身的误差引入的标准不确定度u(m B)。 3 数学模型 Δm = m —m B 式中: Δm——电子天平示值误差; m——电子天平示值; m B——标准砝码值。 但实际上考虑电子天平的示值与上述不确定度来源中的被检天平的测量重复性、电子天平的分辨力及环境温度的不稳定和振动等影响因素有关,故在测量不确定度评定中必须考虑这三个附加因素的影响,考虑到上述不确定度来源,于是数学模型成为: Δm = m ×f重复性×f分辨力×f温度、振动—m B

4 输入量的标准不确定度评定 4.1 输入量m的标准不确定度分量u(m)的评定 4.1.1 重复性测量 被检天平测量重复性的标准不确定度u1(m),可以通过连续测量得到测量列,采用A类方法评定: 以100g为天平最大称量点,进行n=10次重复测量,测得结果如表1所示。 表1 测量数列 次数12345 实测值(g)100.0004100.0004100.0003100.0004100.0003次数678910 实测值(g)100.0004100.0002100.0003100.0004100.0004 其平均值为:100.0004 g 可用贝塞尔公式计算得:u1(m) = s(x i)= 0. 071mg 自由度:υ(m1) =(n-1)= 9 4.1.2 分辨力 电子天平的分辨力引入的不确定度u2(m) ,我们采用标准不确定度的B类评定方法,我们所采用的天平的分辨力为0.1mg,根据经验,数字式测量仪器的分辨力导致的不确定度一般可以近似地估计为矩形分布(均匀分布),矩形分布k取3, 所以有u2(m)=a/k= 0.05÷3= 0.03 mg 自由度为υ(m 2) = ∞ 4.1.3温度不稳定及振动等引起示值不确定度u3 (m),由于实验室在采用砝码校准的过程中完全采用计量标准规定的方法要求,环境温度的控制、周围振动等影响在此予以忽略。 电子天平示值合成标准不确定度u c(m) 由于没有任何输入量具有值得考虑的相关性,因此 u2 (m) = u12(m)+u22(m) +u32(m) u (m)= √u12 (m)+u22 (m) +u32 (m) = 0.078 mg 4.2 标准砝码误差引入的不确定度量分量u(m B)的评定 该不确定度分量主要由检定装置的误差引起,采用B类评定方法: 由JJG 99-2006《砝码检定规程》可知100g砝码的扩展不确定度不大于 0.053mg,包含因子k = 2 则:标准不确定度u(m B) = 0.053mg ÷2 = 0.027mg/3=0.016mg 5 合成标准不确定度的评定 5.1数学模型Δm = m×f重复性×f分辨力×f温度、振动—m B 灵敏系数为:

桥梁事故案例与分析 桥梁事故案例分析

阳明滩大桥案例事故分析 2012年8月24日清晨,通车不到1年的哈尔滨阳明滩大桥引桥发生断裂垮塌,4辆大货车坠落,造成3人死亡5人受伤的惨烈悲剧。 本来哈尔滨的建筑质量很好,只听说南边嚷嚷这个楼塌那个项目是豆腐碴啦,而这些跟哈尔滨却不沾边,这点还真让龙江人感到放心的哈尔滨。可是不实夸呀,近来哈尔滨多灾多难,而路和桥却是首当其中的先锋,先是城里路塌陷,后是阳明滩大桥裂垮,让人心的冷凉降到冰点。不是邪乎,这样人们还那敢出门走道了,怕桥和路伤着自己的胳膊腿。当你行驶在桥上和路上时,就感觉似站在火山口上一样,随时都有搭上生命危险。 哈尔滨阳明滩大桥桥,全长133公里,加上桥南29公里阳明滩大桥疏解工程(三环高架路),全桥总长度达142公里,是我国长江以北地区最长的超大型跨江桥。该桥宽45米,双向8车道,设计时速80公里/小时,最大可满足高峰每小时9800辆机动车通行。该桥是黑龙江省第一座自锚式悬索双塔跨江桥,主塔高80.5米,主跨跨度248米,主梁采用钢混凝土叠合梁,其跨度为全国同类桥梁之首。大桥的建设,融入了北方地域文化元素,突出了哈尔滨欧式风格城市特色,使充满异域风格的桥体与松花江两岸湿地自然风光及沿江建筑群有机融合,它将成为哈尔滨标志性新景观。尤其是阳明滩大桥南北引桥与松花江两堤交汇处,欧洲新艺术运动风格的桥头堡也显得格外的大气、洋气。

一个通车不到一年的重点工程,一个提前完工交付使用的样板工程,一个申报鲁班奖的优质工程,为什么如此之快就断裂垮塌?如果说其是豆腐渣工程,其实也是见怪不怪。豆腐渣工程,这是当今建设项目中的一种普遍的社会现象。通过对哈尔滨阳明滩大桥引桥发生断裂垮塌的案例分析,归纳出以下几个方面相关联的问题,但定性还得靠专家的权威性定论。 1桥梁的结构设计是否有问题?计算失误、安全系数不满足、忽略地质条件等,这方面的问题可能性小。【在设计上允许向一侧偏,但是偏载有一定的限度,按现在交通部的相关标准,单侧大概能承受150吨左右的重量,而事故中车辆总重量已经超过此限度两倍多。塌桥长度一共120多米,桥面整体侧翻。这120米,分成3块,事故发生点集中分布在前两块,大概为前80米。专家王宗林说,桥的主要结构是钢梁加混凝土,桥体侧翻后,钢梁一点没变形,混凝土也没有大的损害,二者间连接也较好,整体没有任何地方断裂。所以说,桥的质量还是过硬的。但作为设计者,是否可以适当在一些关键路段多考虑超载路段因素,加大安全系数还是必要的。】 2施工质量是否有问题?不规范施工、野蛮作业等,这方面的问题可能存在一部分。【从现场看,虽然该段引桥发生整体倾覆,但从现场情况看,桥面并未出现裂纹,这说明整个桥梁的质量是合格的。倾覆的桥板上部、下部、周围的桥体都没有问题,且桥板是整块倾覆,下坠后也没有发生断裂,说明质量还是可以的。】 3工程监理的职能工作是否不到位?不负责任、人情节点、专业水平低等,

水泥抗压强度不确定度的评定

水泥的抗压强度不确定度的评定 1. 测量原理 水泥的抗压强度以试验过程中最大荷载除以试件截面积表示。最大荷载由试验机的负荷传感器自动采集,试件截面积为设定公称面积。 2. 数学模型 忽略外界其他因素的影响,水泥抗压强度的计算公式为: A F Rc C = 式中: R C —抗压强度,MPa ; F C —破坏时的最大荷载,N : A —受压面积,mm 2(40mm ×40mm=1600mm 2) 但在实际检测工作中,水泥抗压强度受很多方面因素的影响,造成测量结果的不确定性。考虑到人为、机器、环境、试验方法、所用的物质等因素的影响,水泥的抗压强度的数学模型为: A F f f f f f f f f f f f f f Rc C 13 121110987654321= 式中: f 1—取样过程对强度的影响 f 2—所需水泥、标准砂和水泥称量的准确性对强度的影响 f 3—搅拌机搅拌的均匀性对强度的影响 f 4—振动台的振动频率和振幅对强度的影响 f 5—养护时环境的温湿度对强度的影响 f 6—养护时间对强度的影响 f 7—试件尺寸对强度的影响 f 8—试件的不垂直度对强度的影响 f 9—试件的不平整度对强度的影响 f 10—抗压夹具对强度的影响 f 11—加荷速度引起的相对不确定度分量 f 12—试验机示值误差对强度的影响 f 13—人为操作对强度的影响

3. 影响因素 3.1取样过程中对强度的影响 在水泥取样过程中,取样的代表性不够。由取样过程引起的不确定度分量大概为' 1u =0.5% ,估计'1 ' 1u u ?为 0.05,按公式计算自由度为: 200) 05.0(121)(212 2'1'11=?=?=-u u ν 3.2所需水泥、标准砂和水泥称量的准确性对强度的影响 在水泥胶砂试件成型时用电子天平称取水泥和标准砂,用量筒量取水,这些物质的称量受所用仪器的称量准确性的限制和人为读数的局限,所得的结果与标准要求存在着一定的偏差。由于称量的不准确性而引起的不确定度分量大概为' 2u =0.5%,估计 '2 '2 u u ?为0.05.按公式计算自由度为: 200) 05.0(121)(212 2'2' 22=?=?=-u u ν 3.3搅拌机搅拌的均匀性对强度的影响 由于搅拌机经过一段时间的使用,搅拌叶片受到一定程度的磨损,叶片与钢壁的间距渐渐增大,叶片的转动轨迹和转动的频率都存在一定的变化,这些因素无疑对胶砂搅拌的均匀性产生一定的影响,这种不均匀程度最终影响着水泥的抗压强度。其引起的不确定度分量大概为' 3u =0.5%,估计 '3 '3 u u ?为0.1,按公式计算自由度为: 50) 1.0(121)(212 2'3' 33=?=?=-u u ν 3.4振动台的振动频率和振幅对强度的影响 振动台的振动频率和振幅直接影响着水泥抗压试件成型的密实程度。试件不密实,其抗压强度偏低。其引起的不确定度分量大概为' 4u =0.5%,估计 '4 '4 u u ?为0.1,按公式计算自由度为: 50)1.0(121)(212 2'4' 44=?=?=-u u ν 3.5养护时环境的温湿度对强度的影响 水泥的养护对环境的温湿度要求较高,其养护过程中温湿度稍有变化就会对水泥的胶砂强度产生较大的影响。水泥的标准养护箱和标准养护室都由较为精良的设备控制其温湿度,但也不排除人打开养护箱和养护室的

桥梁施工典型事故案例分析

标题:桥梁施工典型事故案例分析 关键词:桥梁、事故、施工 描述:改革开放以来,中国在桥梁建设上取得了非常辉煌的成就。同时,也有很多值得我们深思的桥梁事故教训。 正文: 一、桥梁事故的特点: 1、桥梁原来是点跨越比较容易增加桥的处理费用,而高架桥很长,难以增加相 应费用。 2、桥梁的桥型变化很大,每一种桥型都有差别,有各自的力学规律。 3、桥梁工程是荷载比较大的工程,除去大的水坝,码头,在建筑里,桥梁荷载 最大。桥梁的水文、地质条件变化很大。 4、桥梁有一些专业知识,有些工程技术人员不是学桥梁的,对桥的临界状态, 对桥的力学不是很了解,需要补充相应知识。 5、超载问题确实存在,不管超载对不对。 二、在这里,我把桥梁事故划分为:桥梁施工阶段的事故,桥梁使用阶段的事故,桥梁设计缺陷或者说设计薄弱环节的事故,桥梁临近使用寿命的事故,以及因特殊外力比如地震而造成的事故。 1.、工期要求造成事故:前期拆迁、管线改移影响;施工工期问题,很多桥梁都存在抢工期的问题。 2、桥梁施工的分散性:地域辽阔,差异化严重;桥梁是分散的,分散在各地,不像工业企业在固定场所制作,容易控制。桥梁的设计分散,材料分散,地质情况不一样。 3、专业技术人员的经验与责任心:专业水平和同类型工程经验,责任心与法律惩罚;在专业技术人员方面,学习课程过多,造成某些课程没有学明白,还有就是年轻人胆大,比较依赖于软件计算,事故经验不足。 4、房建等其他领域施工人力进入桥梁领域:对桥梁特点不熟悉;很多桥梁施工队伍之前主要从事房建或水力工程等领域,对桥梁工程的施工特点不够熟悉,这在城市高架桥施工中较为普遍。 5、职工素质的下降:对民工的管理和教育;民工的质量在下降,有责任感的工人很难找。

TEMUNGB化学分析中不确定度评定与表示方法规程

一、应用范围和领域 本规程给出了定量化学分析中评估和表述不确定度的详细指导。也适应于仪器校准中不确定度的评定,它是基于“ISO测量不确定度表述指南”〔〕中所采用的方法,适用于各种准确度和所有领域—从日常分析到基础研究、经验方法和合理方法。需要化学测量和仪器校准并可以使用本规程原理的一些常见领域有: (1)制造业中的质量控制和质量保证; (2)判定是否符合法定要求的测试; (3)使用公认方法的测试; (4)标准和设备的校准; (5)与标准物质研制和认证有关的测量活动; (6)研究和开发活动。 本规程未包括化学分析样品的取样和制样操作中不确定度评估。 本规程说明了应该如何使用从下列过程获得的数据进行测量不确定度评估: (1)实验室作为规定测量程序〔〕使用某种方法,对该方法所得分析结果的已识别来源的不确定度影响的评价; (2)实验室中规定的内部质量控制程序的结果; (3)为了确认分析方法而在一些有能力的实验室间进行的协同试验的结果; (4)用于评价实验室分析能力的水平测试项目的结果; (5)本系统内部比对样品的定值; (6)标准和设备的校准结果。 二、引用标准 2.1JJF 1059-1999《测量不确定度评定与表示》 2.2《化学分析中不确定度的评估指南》――中国实验室国家认可委员会 三、术语和定义 3.1不确定度(uncertainty) [测量]不确定度定义 表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。 注: 1此参数可以是诸如标准差或其倍数,或说明了置信水准的区间的半宽度。 2测量不确定度由多个分量组成。其中一些分量可用测量列结果的统计分布估算,也可用标准差表征。称为A类评定。另一些分量,则可用基于经验或其他信息的假定概率分布计算。也可用标准差表征,称为B类评定。 3测量结果应理解为被测量之值的最佳估计,全部不确定度分量均贡献给了分散性,包括那些由系统效应引起的(如,与修正值和参考测量标准有关的)分量。 4不确定度恒为正值。当由方差得出时,取其正平方根。

混凝土抗压强度检测结果的不确定度评定.

混凝土抗压强度检测结果的不确定度评定 一、概述: 混凝土的抗压强度是在规定加荷速率下,测试混凝土抵抗压力破坏的极限应力。 检测用混凝土试块的尺寸为150×150×150mm з, 混凝土设计强度等级为C30。混凝土抗压强度的检验依据GB/T50080-2002《普通混凝土力学性能试验方法》进行。试验选用1500kN 材料试验机,混凝土试块强度等级

平度和不垂直度引起的不确定度分量。由于试验在规定速率范围内进行,且对不平度和不垂直度有严格要求,混凝土试块成型前对每个试模都进行了测量,不符合要求的试模已经予以剔除。因此由加荷速率、不平度、不垂直度引起的不确定度分量可以忽略不计。 三、不确定度分量的计算 1.样品的不均匀性引起的不确定度 18块混凝土抗压强度的测量值分别为:42.2,44.1,40.2,42.6,41.6,44.3,42.4,44.2,45.8,41.8,46.0,45.6,40.7,43.8,40.4,44.5,44.6,39.7。 取18个测量值的平均值作为测量结果,则对不确定度采用A 类评定,则: f =43.03 ()()47.012 )(=--=∑n n f f u i f ()%1.1,==f u u f r f 2.面积引起的不确定度分量 混凝土的受压面积为正方体,实际测量时是测量试块的边长,两个边长的乘积即为受压面的面积。评定边长测量的不确定度如下所示: 2.1测量边长所用钢板尺的最大示值误差为±0.10mm ,按B 类评定,包含因子按均匀分布来取值,k=3,因此由钢板尺的最大允差带来标准不确定度为:

二组分纤维混纺产品定量化学分析的不确定度评定_以涤棉混纺产品为例_金红芳

2011年12月 第4期第6页 doi :10.3969/j.issn.1674-2346.2011.04.002 二组分纤维混纺产品定量化学分析的不确定度评定 ——以涤棉混纺产品为例 金红芳 陈伟峰吴玲飞 摘 要:依据测量不确定度评定与表示的相关要求,本实验室对二组分纤维混纺产品定量测试进行不确定度评定。 检测和评定以涤棉混纺产品为典型代表,按照GB/T 2910.1-2009和GB/T 2910.11-2009进行定量成分测试,并参照CNAS CL01:2006、CNAS GL05:2006和JJF1059-1999等标准规范要求评定检测结果的测量不确定度。经分析,测试结果的不确定度主要来源于测试操作过程中的随机效应和卤素水分测定仪分辨率及校准产生的系统效应。 关键词:二组分纤维混纺产品;涤棉混纺产品;定量分析;测量不确定度中图分类号:TS101.3 文献标志码:C 文章编号:1674-2346(2011)04-0006-05 ————————————收稿日期:2011-09-14 第一作者简介:金红芳,女,奉化出入境检验检疫局,助理工程师(浙江宁波315500) 浙江纺织服装职业技术学院学报测量不确定度对检测实验室测试结果的可信度、可比性和可接受性具有重要影响。因此中国合格评定国家认可委员会(CNAS )要求检测实验室给予测量不确定度评估以足够的重视,满足客户、消费者和其他各方的需求。二组分纤维产品含量分析是本实验室的主要纺织品检测项目之一,对该项目进行测量不确定度评估有助于深入了解该项目的精确度、主要偏差来源等情况,以便有针对性地实施检测质量控制措施。我们选取该类项目中最典型、样品量最大的涤棉混纺产品,按照GB/T 2910.1-2009《纺织品定量化学分析第1部分:试验通则》和GB/T 2910.11-2009《纺织品定量化学分析第11部分:纤维素纤维和聚酯纤维的混合物(硫酸法)》实施检测,同时参照CNAS CL01:2006《检测与校准实验室认可准则》、CNAS GL05:2006《测量不确定度要求的实施指南》和JJF1059-1999《测量不确定度的评定与表示》等标准和规范的要求评定测量不确定度。1测试原理、设备和方法1.1化学测试原理 用硫酸把纤维素纤维从已知干燥质量的混合物中溶解去除,收集残留物,清洗、烘干和称重,用修正后的质量计算其占混合物干燥质量的百分率。由差值得出纤维素纤维的百分含量。其测试程序为:定性分析—定重—化学溶解—剩余纤维洗涤烘干冷却—剩余纤维称重—计算—结果。1.2主要测试设备 卤素水分测定仪:梅特勒-托利多HG-63P ,称量最小分度值0.001g ;电子分析天平:赛多利斯CPA224s ,最小分度值0.1mg ;水浴锅:上海一恒DK-8AB ;烘箱:上海一恒DHG-9240A 。1.3定量测试主要步骤1.3.1取样

11、桥梁事故案例

【案例1】××大桥坍塌 ●工程背景及事故经过 某大桥是一座净跨l00m,箱肋单波混凝土型拱桥,由××设计院设计,××桥梁公司负责施工,于×年×月开始建设。×年×月×日箱肋合拢。17日l0时43分突然坍塌,造成死亡19人,10人重伤。 ●事故原因分析 大桥箱肋坍塌,其主要原因是拱肋纵向失稳。影响失稳的因素是多方面的。 1.施工方面,在拼装过程中,未能严格按照设计要求和施工规范,未能加强观测,出现了拱轴线偏离。特别是9月15日拆除拉杆后,再次发现西岸比东岸高26.6cm,下游高14.2cm,下游东岸较设计标高低17.5cm,上游低20.8cm。4号接头上游西岸较设计标高高12.4cm,下游离14.6cm。在实测拱轴线明显偏离设计拱轴线情况下,既不报告请示,也未停工采取措施,相反在未浇筑接头混凝土之前,于16、17日先后两次在东岸下游1、3段箱底处浇筑混凝土11t,这种单边非对称加载,使拱轴线的偏离加大,终于使箱肋纵向失稳、坍塌。 2.设计方面。此桥原设计方案是参照×省公路设计院箱肋单波双曲线拱桥图纸,按荷载汽-15,挂-80设计为5段拼装方案。在施工中,施工单位考虑5段单块构件过重,吊装困难,于6月10日作向监理和业主提出将5段改为9段方案,并得到设计批复。大桥坍塌后,经技术人员对设计方案进行比较和验算的结果表明:9段拼装设计方案基本正确,但比较粗糙。如在9段设计中,对贝雷架在箱肋端部悬挂问题,对悬浇的工作拱度,对加载程序都没有向施工提出具体交待数据和规定,对作为支撑作用的斜拉杆的拆除时间,标明在拱圈合拢后即可进行,实践证明是不妥的。同时,对重点拱肋的受力情况,施工和加载程序均未进行计算和规定。 3.管理方面,业主单位未对变更设计组织有关专家进行严格审查,是极不严肃的科学态度,是十分错误的。在施工管理上,明知施工单位现场技术力量不足,对建造、工艺复杂、吊装要求高的大跨度拱桥有困难,也未能派出得力干部和有经验的工程师予以加强。这些也是酿成大桥坍塌事故的原因之一。 ●经验教训 某大桥拱肋坍塌事故发生的原因,虽是多方面的,但施工方面的问题是主要的。大桥坍塌的内在因素是拱轴线偏离、失去纵向稳定。这是一起典型的责任事故。 ●预防对策 1.在设计上,要精益求精,设计方案要合理,计算要准确,设计技术交底要到位。 2.施工方面,要严格按照设计与施工技术规范进行施工,要加强现场施工技术力量。尤其是当出现质量问题时,要及时报告,及时组织有关专家进行处理,不得盲目蛮干。 3.管理方面,要作到严格按照程序进行管理,真正作到横向到边,纵向到底,消除安全隐患。 【案例2】某大桥支架垮塌事故

化学分析中测量不确定度的评定方法概述

化学分析中测量不确定度的评定方法概述

化学分析中测量不确定度的评定方法概述化学分析是检验检疫工作中使用频率最高的实验方法之一。对化学分析中测量不确定度的评定已进行过广泛的论述。这里,用较为系统的观点对化学分析中测量不确定度评定的一般方法进行讨论,以便为实际工作提供参考。 在总的范围内,化学分析是相对于物理测量等其他测量方法而言的。而在测量的化学方法中,化学分析是相对于仪器分析而言的,这里所涉及的化学分析是指后一种情况。它包括了很多经典的分析方法,如重量法、容量法。同时,为了扩展化学分析方法的分析范围和提高分析水平,可能还包括了某些复杂的样品处理过程等方面。 在不确定度的评定中,化学分析中许多通用的要素的处理方法可以是一致的,本文大体归纳了这些要素,并将它们作为测量不确定度的分量分别考察,探讨各分量不确定度的评定方法及这些分量之间的相互关系。 1.化学分析中的通用分量及其不确定度的评定方法1.1 化学分析中的测量方法和被测量 重量法和容量法是化学分析中的两类基本方法,根据被测量的不同,会采用不同的分析原理或条件,如容量法中有滴定分析、气体容量分析等方法。 但是,化学分析方法具有共同的特点,其被测量都是样品中某特

定元素的含量或纯度。对于含量分析来说,其最终目的是得到该元素的含量值,一般采用直接测量和计算的结果;而纯度是将相关或规定的元素含量扣除后的结果。无论最终结果使用那种单位或形式表示,都可以表示为式1的形式: ()n 21X ,X ,X f Y Λ=, (1) 其中,X i 为对被测量Y 有影响的输入量。这些输入量可以是直接 测量得到的,也可以是从其他测量结果导入的。 1.2 化学分析中涉及的通用分量及其与被测量的关系 大多数情况下,化学分析方法中采用手工方法,对化学分析结果的不确定度产生影响的因素很多,大体可以分为质量、体积、样品因素和非样品因素等。质量因素和样品因素存在于所有化学分析中,而容量分析中必然涉及体积因素。由于测量原理的不完善及测量过程的不同,在化学分析中还可能存在非样品因素。 只要能够明确地给出被测量与对其不确定度有贡献的分量之间的关系(如式1),则这些分量怎样分组以及这些分量如何进一步分解为下一级分量并不影响不确定度的评定。因此,可以将这些通用分量与被测量的关系采用图1所示的因果图表示。

化学光谱分析测量不确定度评估报告(c元素)

德韧干巷汽车系统(上海)有限公司 DURA Ganxiang Automotive Systems(Shanghai)Co.,Ltd 测量不确定度评估报告 HHSB-TR- -2010 A/0 Evaluation of Uncertainty in Measurement Report No. 样品名称Specimen 20# 钢 样品编号 Specimen No 20120313 检测方法 Test method GB/T 4336-2002 检测设备 Test Equipment 全谱直读光谱仪 评估过程 Evaluation Process 1.数学模型的建立 SPECTRO TESTCCD 型直读光谱仪自动化程度高,数据采集和处理能力完善,屏幕直接显示待测数据,故其数学模型为: y=x y —测量值 x —仪器显示值 (对于直接测量c =x y ??/=x x / =1可以不计算灵敏系数,故在下列不确定度分量评定时未提及。 ) 2.不确定度来源的识别 本方法测定化学元素含量的不确定度主要来源于以下分量: a. 测量结果的重复性; b. 标准物质校准仪器的变动性; c. 标准物质标准值的不确定度; d. 仪器变动性、显示分辨力的不确定度分量。 3.碳含量不确定度分量的评定 3.1测量重复性不确定度分量的评定(A 类评定) 重复测量一份样品10次,并计算其重复性标准不确定度u(s)和相对标准不确定度u rel (s),运用实例见表1: 表1 样品碳含量测量重复性的A 类不确定度 测量项目 C 1 0.177% 2 0.176% 3 0.173% 4 0.189% 5 0.173% 6 0.191% 7 0.172% 8 0.195% 9 0.175% 10 0.178% 平均值 0.180% 标准偏差 0.00267% 标准不确定度u(s) 0.00267% 相对标准不确定度u rel (s) 0.0148 3.2 标准物质校准仪器的变动性 根据标准物质证书的信息,碳认定值w (C)=0.217%,并校准该标准物质5次,校准实验数据见表2. 测量项目 C

测量不确定度评定和分析

测量不确定度评定和分析 【摘要】测量不确定度是评定测量水平的指标,是判断测量结果的重要依据,特别是在中国已加入WTO的宏观经济背景下,开展测量不确定度的评定,对测量领域与国际接轨具有十分重要的现实意义。本文对测量不确定度的评定方法进行了探讨,并结合电力计量实际工作,以典型的电能计量标准装置为实例进行了测量不确定度的评定和分析。 【关键词】测量;不确定度;评定 1 表示测量不确定度的意义 测量是科学技术、国内外贸易及日常生活各个领域中不可缺少的一项工作。测量的目的是确定被测量的值或测量结果。测量结果的质量,往往会直接影响国家和企业的经济利益。此外,测量结果的质量还是科学实验成败的重要因素之一。测量结果有时还会影响到人身安全,测量结果和由测量结果得出的结论,还可能成为决策的重要依据。因此,当报告测量结果时,必须对其质量作出定量的说明,以确定测量结果的可信程度。测量不确定度就是对测量结果质量的定量表示,测量结果的可用性在很大程度上取决于其不确定度的大小。所以,测量结果必须附有不确定度的说明才有完整意义。 2 测量不确定度评定与表示的应用范围 我国国家计量技术规范《测量不确定度评定与表示》,规定的是测量中评定与表示不确定度的一种通用规则,它适用于各种准确度等级的测量,而不仅限于计量检定、校准和检测。其主要应用在以下领域: (1)建立国家计量基准、计量标准及其国际比对; (2)标准物质、标准参考数据; (3)测量方法、检定规程、校准规范等; (4)科学研究及工程领域的测量; (5)计量认证、计量确认、质量认证及实验室认可; (6)测量仪器的校准和检定; (7)生产过程的质量保证及产品的检验和测试; (8)贸易结算、医疗卫生、安全防护、环境监测及资源测量

水泥抗压强度不确定度的评定

水泥的抗压强度不确定度的评定 1. 测量原理 水泥的抗压强度以试验过程中最大荷载除以试件截面积表示。最大荷载由试验机的负荷传感器自动采集,试件截面积为设定公称面积。 2. 数学模型 忽略外界其他因素的影响,水泥抗压强度的计算公式为: A F Rc C = 式中: R C —抗压强度,MPa ; F C —破坏时的最大荷载,N : A —受压面积,mm 2 (40mm ×40mm=1600mm 2 ) 但在实际检测工作中,水泥抗压强度受很多方面因素的影响,造成测量结果的不确定性。考虑到人为、机器、环境、试验方法、所用的物质等因素的影响,水泥的抗压强度的数学模型为: A F f f f f f f f f f f f f f Rc C 13 121110987654321= 式中: f 1—取样过程对强度的影响 f 2—所需水泥、标准砂和水泥称量的准确性对强度的影响 f 3—搅拌机搅拌的均匀性对强度的影响 f 4—振动台的振动频率和振幅对强度的影响 f 5—养护时环境的温湿度对强度的影响 f 6—养护时间对强度的影响 f 7—试件尺寸对强度的影响 f 8—试件的不垂直度对强度的影响 f 9—试件的不平整度对强度的影响 f 10—抗压夹具对强度的影响 f 11—加荷速度引起的相对不确定度分量 f 12—试验机示值误差对强度的影响 f 13—人为操作对强度的影响 3. 影响因素

取样过程中对强度的影响 在水泥取样过程中,取样的代表性不够。由取样过程引起的不确定度分量大概为' 1u =% ,估计 '1 ' 1u u ?为,按公式计算自由度为: 200) 05.0(121)(212 2'1'11=?=?=-u u ν 所需水泥、标准砂和水泥称量的准确性对强度的影响 在水泥胶砂试件成型时用电子天平称取水泥和标准砂,用量筒量取水,这些物质的称量受所用仪器的称量准确性的限制和人为读数的局限,所得的结果与标准要求存在着一定的偏差。由于称量的不准确性而引起的不确定度分量大概为' 2u =%,估计 '2 '2 u u ?为.按公式计算自由度为: 200) 05.0(121)(212 2'2' 22=?=?=-u u ν 搅拌机搅拌的均匀性对强度的影响 由于搅拌机经过一段时间的使用,搅拌叶片受到一定程度的磨损,叶片与钢壁的间距渐渐增大,叶片的转动轨迹和转动的频率都存在一定的变化,这些因素无疑对胶砂搅拌的均匀性产生一定的影响,这种不均匀程度最终影响着水泥的抗压强度。其引起的不确定度分量大概为' 3u =%,估计 '3 '3 u u ?为,按公式计算自由度为: 50) 1.0(121)(212 2'3' 33=?=?=-u u ν 振动台的振动频率和振幅对强度的影响 振动台的振动频率和振幅直接影响着水泥抗压试件成型的密实程度。试件不密实,其抗压强度偏低。其引起的不确定度分量大概为' 4u =%,估计 '4 '4 u u ?为,按公式计算自由度为: 50) 1.0(121)(212 2'4' 44=?=?=-u u ν 养护时环境的温湿度对强度的影响 水泥的养护对环境的温湿度要求较高,其养护过程中温湿度稍有变化就会对水泥的胶砂强度产生较大的影响。水泥的标准养护箱和标准养护室都由较为精良的设备控制其温湿度,但也不排除人打开养护箱和养护室的门的影响以及电源的不稳定对养护箱(室)内温度的影响。相对来说水泥成型间的温湿度较难控制,实际情况是刚开始试验时,成型间很难达到标准温湿度的要求,所以考虑到这些因素的影响,由温湿度引起的不确定度分量为:

分析测试中测量不确定度及评定

不确定专题 文章编号:1000-7571(2006)04-0089-06 分析测试中测量不确定度及评定 第五部分 测量不确定度评定中 要注意的一些问题 曹宏燕 (武汉钢铁集团公司技术中心,湖北武汉 430080) 摘 要:对A 类和B 类不确定度评定的概念、合成标准不确定度的评定方法、温度对溶液体积 的影响等几个容易混淆和在评定中要注意的问题进一步讨论,提出一些新的认识,有助于对测量不确定度评定概念的理解,并对评定中的具体问题作出正确、合理的判断。关键词:测量不确定度;A 类不确定度;B 类不确定度;合成标准不确定度;评定 中图分类号:O651 文献标识码:A 收稿日期:2004-06-08 作者简介:曹宏燕(1941-),男,教授,从事钢铁材料化学分析,Tel :023*********,E 2mail :caohy 2yh @https://www.doczj.com/doc/ff13832171.html, 。 作者在本专题(第一至第三部分)对分析测试中测量不确定度的概念、评定的基本方法、主要不确定度分量的评定作了较为系统的介绍[1-3],并随后发表在本刊6个不确定度评定实例中剖析了不同类型分析方法评定的要点。但是,在不确定度评定实践中,还可能遇到一些具体问题,这些问题在不同的著作和论文中亦有不同的认识。以下就对标准不确定度A 类评定和B 类评定的认识、合成不确定度的评定方法、温度对溶液体积的影响及不确定度评定中的误区等几个容易混淆和要注意的问题作进一步讨论。 1 标准不确定度的A 类评定和B 类 评定 标准不确定度的A 类评定和B 类评定并无本质差别,只是评定方式不同而已。它们都基于概率分布,并都用标准差或方差表示,只是方便起见而称为不确定度的A 类评定和B 类评定。因此,指出某个分量是用统计方法得出的,某个分量是用非统计方法得出的,在不确定度评定中并不重要,重要的是评定的可靠性。 有些不确定度分量的评定可以认为是A 类不确定度评定,在另一情况下又可认为是B 类不确定度评定。不确定度的B 类评定中大量用到 技术说明书、技术资料和以往经验所提供的数据 和参数,这些数据和参数都是建立大量重复测量和对数据统计的基础上,即亦是通过统计方法得出来的(即A 类不确定度评定)。例如,不少分析方法标准列出的方法重复性限(r )和再现性限(R )的函数关系式,是由多个实验室对多个水平的样品进行实验室间共同试验,通过对大量实验数据统计而得来的;又如,容量器皿给出的体积允许差,亦是通过大量实验统计而得到的。这些数据和参数在共同试验数据进行统计时是A 类评定,而在随后引用时是B 类评定。理论上讲,每个实验室都可以对这些B 类不确定分量进行实地试验,用统计方法计算其标准不确定度(属于A 类评定)。但是,这需要对实验方法有充分的了解并花费大量的时间、精力和物力,而且不是每个实验室都能做到的,也没有必要这样做。 2 不确定度评定的可靠性 不确定度的评定中要充分利用仪器设备的校准证书、检定证书、准确度等级、极限误差或有关 技术说明书、技术资料、分析方法标准和手册所提供的数据及不确定度,这些数据和参数不少都是以技术标准或规范的形式规定下来,具有较高的可靠性和实用性,可直接引用进行不确定度分量 — 98—

水泥抗压强度不确定度的评定

1. 测量原理 水泥的抗压强度以试验过程中最大荷载除以试件截面积表示。最大荷载由试验机的负荷传感器自动采集,试件截面积为设定公称面积。 2. 数学模型 忽略外界其他因素的影响,水泥抗压强度的计算公式为: A F Rc C = 式中: R C —抗压强度,MPa ; F C —破坏时的最大荷载,N : A —受压面积,mm 2 (40mm ×40mm=1600mm 2 ) 但在实际检测工作中,水泥抗压强度受很多方面因素的影响,造成测量结果的不确定性。考虑到人为、机器、环境、试验方法、所用的物质等因素的影响,水泥的抗压强度的数学模型为: A F f f f f f f f f f f f f f Rc C 13 121110987654321= 式中: f 1—取样过程对强度的影响 f 2—所需水泥、标准砂和水泥称量的准确性对强度的影响 f 3—搅拌机搅拌的均匀性对强度的影响 f 4—振动台的振动频率和振幅对强度的影响 f 5—养护时环境的温湿度对强度的影响 f 6—养护时间对强度的影响 f 7—试件尺寸对强度的影响 f 8—试件的不垂直度对强度的影响 f 9—试件的不平整度对强度的影响 f 10—抗压夹具对强度的影响 f 11—加荷速度引起的相对不确定度分量 f 12—试验机示值误差对强度的影响 f 13—人为操作对强度的影响 3. 影响因素

取样过程中对强度的影响 在水泥取样过程中,取样的代表性不够。由取样过程引起的不确定度分量大概为' 1u =% ,估计 ' 1' 1u u ?为,按公式计算自由度为: 200) 05.0(121)(212 2'1'11=?=?=-u u ν 所需水泥、标准砂和水泥称量的准确性对强度的影响 在水泥胶砂试件成型时用电子天平称取水泥和标准砂,用量筒量取水,这些物质的称量受所用仪器的称量准确性的限制和人为读数的局限,所得的结果与标准要求存在着一定的偏差。由于称量的不准确性而引起的不确定度分量大概为' 2u =%,估计 '2 '2 u u ?为.按公式计算自由度为: 200) 05.0(121)(212 2'2' 22=?=?=-u u ν 搅拌机搅拌的均匀性对强度的影响 由于搅拌机经过一段时间的使用,搅拌叶片受到一定程度的磨损,叶片与钢壁的间距渐渐增大,叶片的转动轨迹和转动的频率都存在一定的变化,这些因素无疑对胶砂搅拌的均匀性产生一定的影响,这种不均匀程度最终影响着水泥的抗压强度。其引起的不确定度分量大概为' 3u =%,估计 '3 '3 u u ?为,按公式计算自由度为: 50)1.0(121)(212 2'3' 33=?=?=-u u ν 振动台的振动频率和振幅对强度的影响 振动台的振动频率和振幅直接影响着水泥抗压试件成型的密实程度。试件不密实,其抗压强度偏低。其引起的不确定度分量大概为' 4u =%,估计 '4 '4 u u ?为,按公式计算自由度为: 50)1.0(121)(212 2'4' 44=?=?=-u u ν 养护时环境的温湿度对强度的影响 水泥的养护对环境的温湿度要求较高,其养护过程中温湿度稍有变化就会对水泥的胶砂强度产生较大的影响。水泥的标准养护箱和标准养护室都由较为精良的设备控制其温湿度,但也不排除人打开养护箱和养护室的门的影响以及电源的不稳定对养护箱(室)内温度的影响。相对来说水泥成型间的温湿度较难控制,实际情况是刚开始试验时,成型间很难达到标准温湿度的要求,所以考虑到这些因素的影响,由温湿度引起的不确定度

频谱分析仪测量不确定度评估

五十九、频谱分析仪不确定度评估 1 仪器设备说明 被测对象:频谱分析仪,频率:(0.1~1300)MHz ,电平:(+10~-127)dBm 2 中心频率测量不确定度评定 2.2.1校准方法 将待校频谱分析仪与高频信号发生器对接,由高频信号发生器输出信号输入到待校频 谱分析仪进行测量,在待校频谱分析仪上读得相应的示值. 4.2.2校准系统示意图 2.2.3数学模型 设待校频谱分析仪中心频率示值为Y , 信号发生器输出信号频率为X ,则两者比较得偏移量D,待校频谱分析仪中心频率示值误差可表示为: D =Y -X 2.2.4 不确定度来源分析及不确定度评定 在实验室环境下,Y 不确定度主要来源于待校频谱分析仪频率的示值测量重复性,分 辨力;X 不确定度主要来源于高稳频率标准的日频率稳定度、信号发生器的调节细度引入的不确定度等. 2.2.4.1 由待校件的重复性给出的标准不确定度分量u (Y 1) [A 类不确定度] 将被校频谱分析仪扫频宽度置100kHz ,信号发生器输出频率为1000MHz 的正弦波信号给待校频谱分析仪,并读取其示值,进行10次等精度测量,所得资料如下表所示.

由计算公式: ()() 9 )(10 1 2 1∑=-==i x x x u Y u ,计算各测量值的重复性引入的标准不 确定度如下表所示: 2.2.4.2 由待校件的分辨力给出的标准不确定度分量u (Y 2) [B 类不确定度] 待校件测量1000MHz 频率时的分辨力为0.001MHz ,其区间半宽度值为:0.0005MHz ,假设其在区间内属均匀分布,故:3/0005.0)(2=Y u MHz=0.00029MHz, 则待校件分辨力引入的标准不确定度评定如下表所示: 2.2.4.3由信号发生器的调细度给出的不确定度分量u )(4X [B 类不确定度] 信号发生器输出频率为1000MHz 时的输出值为1000.0000MHz ,调细度为0.0001MHz ,在区间的半宽度值为:0.00005,假设其在区间内为均匀分布, 故:u )(4X =0.00005/3=0.000029MHz,则由高频信号发生器的调节细度给出的标准不确定度如下表所示: 2.2.5 合成标准不确定度 2.2.5.1 灵敏系数 由数学模型: Δ=Y-X ;则灵敏系数c i 为: 1=???= Y c Y ; 1-=?? ?=X c X 则待校频谱分析仪与高稳频率标准各分量的灵敏系数可表示为: 121=???= =Y c c Y Y ; 1321-=?? ?===X c c c X X X 2.2.6 合成标准不确定度的评定: 根据方差公式: ∑ =????= n i i i c V u V u 1 2 22 )()( 则)()()()()(322222122222212212 X u c X u c X u c Y u c Y u c u X X X Y Y c ?+?+?+?+?= 代入各灵敏系数,可简化为: ) ()()()()(322212221 2X u X u X u Y u Y u u c ++++=≈1.04*10-3MHz 此,各评定点的合成标准不确定度如下表所示::

相关主题
文本预览
相关文档 最新文档