当前位置:文档之家› 大肠杆菌高密度发酵研究

大肠杆菌高密度发酵研究

大肠杆菌高密度发酵研究
大肠杆菌高密度发酵研究

 万方数据

 万方数据

发酵工程论文

发酵工程的研究进展 【前言】发酵工程是泛指利用微生物制造或生产某些产品的过程。它包括厌氧发酵的生产过程(如酒精、乳酸、丙酮丁醇等)和有氧发酵的生产过程(如氨基酸、柠檬酸、抗生素等)。广义的概念:生物学(微生物学、生物化学)和工程学(化学工程)结合。狭义的发酵概念:微生物培养和代谢过程。 发酵技术是人类最早通过实践掌握的生产技术之一,产品也很多,以传统食品来说,东方有酱、酱油、醋、白酒、黄酒等,西方有啤酒、葡萄酒、奶酪等。这些发酵食品都是数千年来凭借人类的智慧和经验,在没有亲眼看到微生物的情况下,巧妙地利用微生物生产的产品。 【关键词】发酵发展应用 1、发酵工程的内容 1.1 定义 发酵工程是指采用工程技术手段,利用生物(主要是微生物)和有活性的离体酶的某些功能,为人类生产有用的生物产品,或直接用微生物参与控制某些工业生产过程的一种技术。 1.2现代发酵工程 人们熟知的利用酵母菌发酵制造啤酒、果酒、工业酒精,乳酸菌发酵制造奶酪和酸牛奶,利用真菌大规模生产青霉素等都是这方面的例子。随着科学技术的进步,发酵技术也有了很大的发展,并且已经进入能够人为控制和改造微生物,使这些微生物为人类生产产品的现代发酵工程阶段。 现代发酵工程作为现代生物技术的一个重要组成部分,具有广阔的应用前景。例如,用基因工程的方法有目的地改造原有的菌种并且提高其产量;利用微生物发酵生产药品,如人的胰岛素、干扰素和生长激素等。已经从过去简单的生产酒精类饮料、生产醋酸和发酵面包发展到今天成为生物工程的一个极其重要的分支,成为一个包括了微生物学、化学工程、基因工程、细胞工程、机械工程和计算机软硬件工程的一个多学科工程。 现代发酵工程不但生产酒精类饮料、醋酸和面包,而且生产胰岛素、干扰素、生长激素、抗生素和疫苗等多种医疗保健药物,生产天然杀虫剂、细菌肥料和微生物除草剂等农用生产资料,在化学工业上生产氨基酸、香料、生物高分子、酶、维生素和单细胞蛋白等。 1.3组成 从广义上讲,发酵工程由三部分组成:是上游工程,中游工程和下游工程。 1.3.1 上游工程:包括优良种株的选育,最适发酵条件(pH、温度、溶氧和营养组成)的确定,营养物的准备等。 1.3.2 中游工程:主要指在最适发酵条件下,发酵罐中大量培养细胞和生产代谢产物的工艺技术。这里要有严格的无菌生长环境,包括发酵开始前采用高温高压对发酵原料和发酵罐以及各种连接管道进行灭菌的技术;在发酵过程中不断向发酵罐中通入干燥无菌空气的空气过滤技术;在发酵过程中根据细胞生长要求控制加料速度的计算机控制技术;还有种子培养和生产培养的不同的工艺技术。

最新大肠杆菌发酵经验总结

大肠杆菌发酵经验总结 首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。 其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。 第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在0.2之内,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。 第四,补料过程中的碳氮比也很重要。若氮源过高,会使菌体生长过于旺盛,pH偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。 根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。可以适当调整碳氮比。 大家讨论得较多的是关于代谢副产物乙酸对大肠杆菌发酵的影响,针对我们论坛所发的帖,我先总结以下几点,并作出相应解决措施。 一、代谢副产物-乙酸 乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。当乙酸浓度大于10或20g/L 时,细胞将会停止生长,当培养液中乙酸浓度大于12g/L 后外源蛋白的表达完全被抑制。 预防乙酸产生的措施: 1、通过控制比生长速率来减少乙酸的产生: 比生长速率越高,乙酸产生越多,当比生长速率超过某个值时,乙酸开始产生。可以通过降低温度,调节酸碱度,控制补料等方法来降低比生长速率。 2、透析培养: 在大肠杆菌的培养过程中可以用透析技术除去发酵液中的有害物质,降低乙酸含量从而实现重组菌的高密度发酵和产物的表达。 3、控制葡萄糖的浓度: 葡萄糖是大肠杆菌发酵过程中重要的碳源之一,用其作碳源是要将其控制在一个较低的水平上,以减少乙酸的产生。 常用的控制方法主要有: 恒pH法:大肠杆菌会代谢葡萄等产生乙酸,使pH 值下降。因此可通过pH值的高低作为控制葡萄糖的指标,该法的缺点是pH 的变化不完全是由葡萄糖代谢的结果,容易造成补料体系出错。恒溶氧法:菌体代谢时会消耗氧,使溶氧下降,当葡萄糖浓度低到一定程度时菌体代谢下降,消耗氧能力下降,溶氧上升。因此,根据溶氧曲线补加葡萄糖,保持溶氧恒定,可以控制葡萄糖在一定的水平。 二、温度 大肠杆菌发酵最适温度是37 C,当温度最适菌体生长时,比增长速率将会增大。随温度上升细

(完整版)大肠杆菌培养基配制及培养方法

大肠杆菌培养 一、菌种冻存液的制备 含有足量细菌的液体培养基离心后在沉淀中加入等量40%甘油,-80o C冻存。 二、培养基制备 LB培养基配方(胰化蛋白胨(Trypton):10 g/L;酵母提取物(Yeast Extract):5 g/L;NaCl:10 g/L;pH 7.4) 液体培养基 胰化蛋白胨 10.0g 酵母粉 5.0g 氯化钠 10.0g 水 1000ml pH 7.4 固体培养基在液体培养基的基础上再加入1.5%-2.0%的琼脂 三、平板的制备 1)称取胰化蛋白胨10.0g,酵母粉5.0g,NaCl 10.0g,加入800mL二次水溶解,并用玻璃棒搅拌均匀,用1mol/L的NaOH调pH至7.4左右,定容至1L,调pH 7.4(若溶液pH大于7.4,用1mol/L HCl回调)。 2)分装在锥形瓶中,每瓶量不宜太多,没过瓶底一指左右。如需固体培养基在分装后的液体培养基内加入约2%的琼脂(150mL液体培养基加入2.5g琼脂)。3)在锥形瓶口依次覆盖带滤纸通气小孔的塑料膜和硬质纸,用皮筋捆好。所有锥形瓶如上述操作。用记号笔注明培养基名称、配制日期。 4)高压蒸汽灭菌锅121 oC灭菌15min。 5)灭菌后的培养基取出置电热鼓风干燥器内60oC烘干,待锥形瓶的封口纸干燥后取出。液体培养基可直接保存或使用,此时加有琼脂的培养基不会凝固,可在预先紫外杀菌30min以上的无菌操作台上,将培养基倒入培养皿内,每个培养皿培养基约10-15mL(直径90mm),在培养皿中厚度大约4mm左右。将平皿叠放在无菌操作台上,放置10min左右,待琼脂基本凝固可涂平板。6)若平板不直接使用,灭菌后将培养基在锥形瓶中保存,待需制备平板时,微波炉中火加热约3min,使琼脂熔化,室温冷却20min至不烫手可制备平板。 四、接种大肠杆菌 1)取实验室储备的大肠杆菌BL21冻存液,管口用酒精灯灼烧,打开离心管。2)接种方法一:用灭菌枪头蘸取冻存液在平板边缘上划横条,每三道为一组,旋转平皿一圈,最后中间划之字;接种方法二:用移液枪吸取100uL溶液于平板上,用酒精灯灭菌厚的涂抹棒划十字,涂布平板。 3)因实验一般都要求挑取单菌落,故涂平板适应考虑冻存液内细菌数量,若菌量过大应适当稀释。一般方法一获得单菌落的可能性比较大。涂平板应在酒

基因工程菌的大规模培养及高密度发酵技术

生物工程下游技术实验模块实验一:基因工程菌的大规模培养及高密度发酵技术 创建人:时间:2013-04-17 【点击数: 482】 实验一:基因工程菌的大规模培养及高密度发酵技术 1.实验目的 (1)掌握工程菌大规模培养及高密度发酵技术的原理。 (2)学习工程菌高密度发酵的技术方法。 2.实验原理 重组大肠杆菌的高密度培养是增加重组蛋白产率的最有效的方法,高密度发酵在增加菌密度的同时提高蛋白的表达量,从而有利于简化下游的纯化操作。重组大肠杆菌高密度培养受表达系统、培养基、培养方式、发酵条件控制等多种因素的影响,在实际操作中需要对各种因素进行优化,建立最佳的发酵工艺。发酵工艺优化的研究可通过每次改变一个因素或同时改变几个参数来进行,然后运用统计学分析寻找它们之间的相互作用。 工程菌提高分裂速度的基本条件是必须满足其生长所需的营养物质,因此,培养基成分和浓度的选择就成为首要解决的问题,在成分选择上,要尽量选取容易被工程菌利用的营养物质,例如,普通培养基中一般是以葡萄糖为碳源,而葡萄糖需经过氧化和磷酸化作用,生成1,3-二磷酸甘油醛,才能被微生物利用,即用甘油作为培养基的碳源可缩短工程菌的利用时间,增加分裂增殖的速度。目前,普遍采用6g/L的甘油作为高密度发酵培养基的碳源。另外,高密度发酵培养基中各组分的浓度也要比普通培养基高2~3倍,才能满足高密度发酵中工程菌对营养物质的需求。当然,培养基浓度也不可过高,因为过高会使渗透压增高,反而不利于工程菌的生长。 补料的流加方式直接影响着发酵的效果。分批补料培养的特点是,在培养过程中不断补充培养基,使菌体在较长时间里保持稳定的生长速率,从而达到高密度生长。但是在补料流加过程中既不能加入得过快,也不能加入得过慢。过慢则无法满足逐渐增加的菌体生长需要,同时也使培养过程中产生的抑制性副产物大量积累;而过快则使携带目的蛋白的质粒没有充裕的时间复制,降低目的蛋白的表达量;而且快速的细菌生长还易引发质粒的不稳定性。 高密度发酵是工程菌剧烈生长繁殖的过程,这期间对氧气的需求量也大大提高,这就需要及时调整通风量和搅拌速度,一般的高密度发酵通风速度达18L/min(20L发酵罐),搅拌速度达500r/min以上,需保持60%以上的溶氧饱和度。此外,还需要考虑通风速度和搅

大肠杆菌发酵经验总结

大肠杆菌发酵经验总结-CAL-FENGHAI.-(YICAI)-Company One1

大肠杆菌发酵经验总结 大肠杆菌发酵经验总结 首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。 其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。 第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在之内,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。 第四,补料过程中的碳氮比也很重要。若氮源过高,会使菌体生长过于旺盛,p H偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。 根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。可以适当调整碳氮比。 大家讨论得较多的是关于代谢副产物乙酸对大肠杆菌发酵的影响,现总结以下几点,并作出相应解决措施。 一、代谢副产物-乙酸 乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。当

大肠杆菌在发酵乳中生长繁殖浅谈+-+LQ

大肠杆菌在发酵型酸牛奶生长繁殖浅谈 摘要:本文以发酵乳作为基础,其中添加一定浓度的以大肠杆菌为典型菌的大肠菌群,用以研究大肠杆菌在发酵乳中的生长情况。 关键词:大肠杆菌发酵型酸牛奶生长情况 一引言: 发酵型酸牛奶大致可以分为三个品类:第一类是满足营养需求的基础酸奶;第二类是满足美味休闲的大果粒、谷物酸奶;第三类是健康功能酸奶,如通畅、免疫、儿童成长等。其中基础酸奶的市场规模占60%以上,果粒(谷物)酸奶和功能性酸奶的市场规模相对较低。 因大肠杆菌对产品存在着污染隐患,现阶段没有相关文献说明大肠杆菌在发酵型酸牛奶中生长繁殖情况,为此,本文就大肠杆菌在发酵型酸牛奶生长情况进行了评述。 二术语和定义: 1.大肠菌群:在一定培养条件下能发酵乳糖、产酸产气的需氧和兼性厌氧革兰氏阴性无芽胞杆菌。 2.发酵乳fermented milk:以生牛(羊)乳或乳粉为原料,经杀菌、发酵后制成的pH 值降低的产品。 3.大肠杆菌:广泛存在于人和温血动物的肠道中,能够在4 4.5℃发酵乳糖产酸产气,IMViC(靛基质、甲基红、VP实验、柠檬酸盐)生化实验为++--或-+--的革兰氏阴性杆菌。以此作为粪便污染指标来评价食品的卫生状况,推断食品中肠道致病菌污染的可能性。 三设备及试剂: 1.温箱:36±1度 2.冰箱:2-5度 3.恒温水浴:46±1℃ 4.天平:感量0.01g 5.均质器 6.振荡器 7.无菌培养皿:直径为90mm 8.无菌吸管:1ml(具0.01ml刻度) 9.无菌锥形瓶:容量为500ml 10.移液器:20-200ul 培养基和试剂: 1.结晶紫中性红胆盐琼脂 2.煌绿乳糖胆盐肉汤 3.无菌生理盐水 4.无菌1mol/lNaOH和1mol/lHCL 四实验方法 1 收集发酵型酸牛奶,以大肠杆菌作为大肠菌群的典型菌落,其中添加10ml的复溶大肠杆菌(菌种编号为CCTCC AB91112)于样品中;

发酵工程发展现状及趋势

发酵工程发展现状及趋势 引言 发酵工程是生物技术的重要组成部分,是生物技术产业化的重要环节。发酵技术有着悠久的历史,早在几千年前,人们就开始从事酿酒、制酱、制奶酪等生产。作为现代科学概念的微生物发酵工业,是在20世纪40年代随着抗生素工业的兴起而得到迅速发展的,而现代发酵技术又是在传统发酵技术的基础上,结合了现代的基因工程、细胞工程、分子修饰和改造等新技术。由于微生物发酵工业具有投资少、见效快、污染小、外源目的基因易在微生物菌体中高效表达等特点,日益成为全球经济的重要组成部分。 摘要 当前,发酵工程的应用是十分广泛的,在不同的工业领域中都有重要应用,例如医药工业、食品工业、能源工业、化学工业、农业、环境保护等,且随着生物技术的发展,发酵工程的应用领域也在不断扩大。 一、发酵工程在各领域的发展现状 1、医药行业 微生物发酵是生物转化法之一,在中药中早有应用。真菌是发酵中药的主要功能菌。发酵时大都采用单一菌种纯种发酵法。现代中药发酵技术分为液体发酵和固体发酵。中药发酵技术按应用方式可分为无渣式和去渣式,前者可直接用药,后者要提取和制剂用药。发展发酵中药可进一步推进中药现代化和国际化进程,提高中药行业的竞争力,为中药走向世界、造福人类作出新的贡献。 2、食品工业 现代化生物技术的突飞猛进,改写了食品发酵工艺的历史。据报道,由发酵工程贡献的产品可占食品工业总销售额的15%以上。目前利用微生物发酵法可以生产近20种氨基酸。该法较蛋白质水解和化学合成法生产成本低,工艺简单,且全部具有光学活性。 3、能源工业 乙醇作为一种生产工艺成熟,生产原料来源广泛的替代能源越来越受到人们的关注。燃料酒精不仅可以缓解能源短缺的问题,从长远的利益和能源的可再生性来看,燃料酒精又是一种潜力巨大的物能源。酒精发酵的方式有间歇式发酵、半连续式发酵和连续发酵。

大肠杆菌高密度发酵

课程设计说明书 课程名称:发酵工程 设计题目:大肠杆菌的高密度发酵 院系:生物与食品工程学院 学生姓名:****** 学号:201006030051 专业班级:10生物工程(2)班 指导教师:*****

课程设计任务书设计题目大肠杆菌的高密度发酵 学生姓名所在院系生物与食品工 程学院 专业、年级、班10生物工程 设计要求: 1、树立正确的设计指导思想,严谨负责、实事求是、刻苦钻研、勇于探索的作风和学风。 2、根据所给资料,按照任务书中提出的范围和要求按时独立完成,不得延误,不得抄袭他人成果。 3、说明书应字迹清楚文字通顺,并附有各项设计成果表,摘引其他书籍或杂志的材料必须注明出处。 4、设计标准要求规范、实用、切合实际。 5、设计应严格按有关设计规范进行。 6、设计结束后,以个人为单位提交设计说明书一份(后附流程图)。 学生应完成的工作: 1、明确设计标准适用的范围,给出产品以清晰明确的定义。 2、确定引用标准和技术要求,确定特定的理化指标及标准。 3、确定理化指标所采用的测定方法,一般首选国标或公认经典方法。新方法需经多试验或单一实 验法验证。 4、给出检验规则。 5、对产品的外观、流通保藏过程中操作给出规范。 参考文献阅读:[1] Fuchs C, Koste D, Wiebusch S, et al. Scale-up of dialysis fermentation for high cell densityCultivation of Escherichian coji[J]。Biotechnol, 2002, 93: B. 2002, 93: 243~251 [2] 刘子宇,李平兰,郑海涛等.微生物高密度培养的研究进展[J].中国乳业,2005,12:47~51 [3] Riesenberg D. High cell-density cultivation of Escherichian coli. Curr. Opin. Biotechnol.1991,2: 380~384 工作计划: 2013.5.27----2013.5.30 接受设计任务,查阅相关文献。 2013.5.30----2013.6.3 整理文献资料,进行产品标准的应用设计。 2013.6.3— 2013.6.9 整理设计内容,完成课程设计报告。 任务下达日期:2013年5月27日 任务完成日期:2013年6月9日 指导教师(签名):学生(签名):

我国发酵工业的现状和发展趋势

生物技术121班刘倩芸 0116 我国发酵工程的发展现状和发展趋势 引言 发酵工程是生物技术的重要组成部分,是生物技术产业化的重要环节。发酵技术有着悠久的历史,作为现代科学概念的微生物发酵工业是在传统发酵技术的基础上,结合了现代的基因工程、细胞工程等的新技术。由于发酵工业具有投资少、见效快、污染小等特点,日益成为全球经济的重要组成部分。 摘要:发酵工业是指人们利用微生物的发酵作用大规模生产发酵产品的一门传统工业。至今,我国已形成了一个品种繁多,门类较齐全,具有相当规模的独立工业体系,在不同的工业领域中都有重要应用,例如医药工业、食品工业、农业、环境保护等,且随着生物技术的发展,发酵工程的应用领域也在不断扩大。【1】 关键词:我国发酵工业现状趋势问题意见 很早以前,人们就利用发酵技术来生产产品,直到近代才发现发酵是由微生物引起的。发酵工业自20世纪60年代以来迅猛发展,所涵盖的产品也从原来的抗生素、食品等几个方面渗透到人民生活的各方面如医药、保健、农业、环境、能源、材料等。发酵工业是一种以高科技含量为特征的新型工业。发酵工业的迅速发展不仅带动了相关行业的发展,而且对提高产品质量及改善环境等,发挥了重要作用。【2】 一、我国发酵发展的历史 我国传统发酵历史悠久,在《黄帝内经素向》、《汤液醪醴论》里,

已有酿酒的记载。在汉武帝时代开始有了葡萄酒,距今已有两千多年的历史。改革开放促进了社会经济和科学技术的迅速发展,发展了一批具有现代生物技术特征的新产品,使发酵工业进入了一个新的发展阶段。【3】二、我国发酵工业的现状 我国生物化工行业经过长期发展,已有一定基础。特别是改革开放以后,生物化工的发展进入了一个崭新的阶段。目前生物化工产品也涉及医药、保健、农药、食品与饲料、有机酸等各个方面。 随着科技创新和技术进步的推进,科技推广应用和产业化步伐的加快,发酵产业产品空间进一步拓展、产业链不断延伸,发展前景更加广阔。【4】 我国发酵工业的巨大发展不仅在于产量的巨大提升,更在于发酵技术和发酵工艺的巨大进步。当前发酵技术进步主要表现为1.技术经济指标有明显提高;2.工艺技术有重大改进;3.装备水平大大改善。【5】 三、发酵工程在各领域的发展现状 医药行业 微生物发酵是生物转化法之一,在中药中早有应用。真菌是发酵中药的主要功能菌。发酵时大都采用单一菌种纯种发酵法。现代中药发酵技术分为液体发酵和固体发酵。中药发酵技术按应用方式可分为无渣式和去渣式,前者可直接用药,后者要提取和制剂用药。 食品工业 现代化生物技术的突飞猛进,改写了食品发酵工艺的历史。据报道,由发酵工程贡献的产品可占食品工业总销售额的15%以上。目前利用微生

大肠杆菌发酵经验总结

大肠杆菌发酵经验总结 大肠杆菌发酵经验总结 首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。 其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。 第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在0.2之,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。 第四,补料过程中的碳氮比也很重要。若氮源过高,会使菌体生长过于旺盛,pH偏高,不利于代产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。 根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。可以适当调整碳氮比。 大家讨论得较多的是关于代副产物乙酸对大肠杆菌发酵的影响,现总结以下几点,并作出相应解决措施。 一、代副产物-乙酸 乙酸是大肠杆菌发酵过程中的代副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。当乙酸浓度大于10或20g/L 时,细胞将会停止生长,当培养液中乙酸浓度大于12g/L 后外源蛋白的表达完全被抑制。 预防乙酸产生的措施:

乳酸菌发酵剂高密度培养的研究

文章编号:1000-9973(2004)05-0017-05 乳酸菌发酵剂高密度培养的研究 熊晓辉,于修 ,熊强,陆利霞 (南京工业大学制药与生命科学学院,江苏南京 210009) 摘要:研究了乳酸菌生长繁殖的环境条件(温度、接种量、起始pH 等)和培养基组成(氮源、碳源、缓冲盐等),优化确定了乳酸菌发酵剂的适宜培养条件为:起始pH 值为6.5,培养温度为37 ,培养基配比为麦芽糖 乳糖(1 1)2%、牛肉膏1.0%、缓冲盐A0.5%、NaCl0.25%、M gSO 40.1%,接种量4%,进一步探索了半连续法进行高密度培养,结合优化的培养条件,可使乳酸菌的液体发酵活菌密度至1.1 1012CFU/mL 。 关键词:乳酸菌;发酵剂;高密度培养中图分类号:TS201.5 文献标识码:A High cell density culture of lactic acid bacteria starter XIONG Xiao hui,Y U Xiu jian,XIO NG Qiang,LU Li Xia (College of Life Science and Pharmaceutical Engineering,Nanjing University of Technology,Nanjing 210009,China) Abstract:This paper studied on the high cell density culture of L actobacillus sp p .,and discussed the effects of cultural condition (temperature,inoculation capacity and initial pH)and media composition.The optimal culturing conditions were developed ,follow ing:1%maltose,1%lactose,1.0%beef ex tract,0.5%buffer salt A,0.25%sodium chloride,0.1%m agnesium sulfate,pH6.5,4%inoculation capacity.T hen high cell density culture w as explored w ith one semi-continuous w ay and obtained the cells population over 1.1 1012CFU/mL for 16hours based on the optimal condition.Key words:Lactic acid bacteria;starter;hig h cell density culture 乳酸菌是生产发酵乳制品、泡菜、干酪、发酵香肠等传统发酵食品,赋予其特殊质地、风味和口感的重要微生物菌群,而这些传统食品的专用发酵剂的生产和研制将对实现其工业化生产、缩短产品成熟期、使产品特征标准化和安全化起重要作用,也是传统食品的发展方向[1,2]。浓缩发酵剂[1,3,4](特别是冻 干发酵剂)具有活力高、体积小、携带使用方便的特点,可直接用于发酵制品生产,省去扩大培养的复杂操作过程,从而简化产品生产工艺,有利于保持产品质量的稳定,防止菌种的退化和污染。 乳酸菌浓缩发酵剂制备的关键是要实现对其进行高活性、高密度的培养[1,4]。高密 收稿日期:2004-02-25 基金项目:国家862自然科学基金资助项目(2002AA8041) 第5期2004年5月 中国调味品 CHINA CONDIMENT No.5M ay.2004

中药发酵技术研究进展精品

【关键字】化学、生物、设计、指南、建议、方法、条件、进展、空间、效益、质量、增长、传统、问题、矛盾、系统、机制、有效、大力、深入、继续、现代、合理、优良、公开、健康、持续、合作、保持、发展、建立、提出、发现、研究、突出、关键、热点、成果、根本、基础、需要、素质、环境、工程、途径、资源、能力、需求、方式、作用、规模、结构、水平、形势、速度、增强、检验、分析、借鉴、调控、形成、拓展、丰富、保护、推广、满足、服务 中药发酵技术研究进展 摘要:现代生物技术与中药传统发酵制药技术的有机结合为中药发酵技术的迅速发展提供了广阔的空间,与传统发酵工艺技术相比,现代中药发酵技术有了长足的进步。对现代中药发酵技术进行初步概述、总结,着重介绍当前发酵技术中的热点——药用真菌双向性固体发酵技术,而后对现代中药发酵技术的优势及前景进行探讨,为进一步的探索研究奠定基础。 关键词:中药;发酵;双向性发酵 Research survey on fermentation of Chinese materia medica Abstract: The combination of the modern biotechnology and traditional fermentation technology of Chinese materia medica (CMM) provides a broad space for the rapid development of fermentation technology of CMM. Compared with the traditional fermentation technology, the modern fermentation technology has made considerable progress, this paper attempts to preliminarily summarize the modern medicine fermentation technology for CMM, and emphasizes the hotspot in the current fermentation technology―medicinal fungi bidirectional solid-state fermentation technology, then discusses the advantages and prospect of fermentation technology in order to lay the foundation for the further study. Key words: Chinese materia medica; fermentation; bidirectional fermentation 中医中药作为中华民族的瑰宝,在预防和治疗 疾病方面做出了突出贡献。近年来,随着人们对健 康的日益关注,国际市场对天然药物以及传统药物 的需求正迅速上升 [1-2] 。我国拥有极为丰富的中药资 源,但是中药成分结构复杂,有效成分的量低,且 人工不易合成,而中药的人工培植又面临成本高、 周期长的问题,因而难以达到工业化生产的要求, 无法满足日益增长的市场需求 [3] 。究其根本原因, 在于我国中药现代化技术水平较低,无法满足中药 现代化发展的需要。而随着现代生物技术的日益发 展,其与中药发酵技术的有机结合为解决这一矛盾 提供了广阔的空间

发酵工程综述

发酵工程综述 娄宏跃 (12级生物工程专业(1)班) 摘要:抗体酶是具有催化活性的免疫球蛋白,又被称为催化抗体。[1]由于它兼具抗体的高度选择性和酶的高效催化性,因而催化抗体制备技术的开发预示着可以人为生产适应各种用途的,特别是自然界不存在的高效催化剂,对生物学、化学和医学等多种学科有重要的理论意义和实用价值。本文主要对抗体酶的生产工艺及其应用进行综述。 关键词:抗体酶;发酵;微生物;酶工程 前言: 自从1986年Schultz和Lerner首次证实由过渡态类似物为半抗原,通过杂交瘤技术产生的抗体具有类似酶的催化活性以来,抗体酶一直是科学界的“宠儿”。[2]短短十几年,抗体酶已显示出在许多领域的潜在应用价值,包括许多困难和能量不利的有机合成反应,前药设计,临床治疗,材料科学等多个方面。抗体酶和天然酶在功能上有许多相似之处,如催化效率高,具有专一性、区域和立体选择性,可进行化学修饰和具有辅助因子等,并且在饱和动力学与竞争性抑制方面也极其相似。 一、抗体酶的发现 1946年,Pauling用过渡态理论阐明了酶催化的实质,即酶之所以具有催化活力是因为它能特异性结合并稳定化学反应的过渡态(底物激态),从而降低反应能级。他指出,酶通过某种方式与高能、短寿命的过渡态结合而起催化作用。这个过渡态构型中某些键在形成,另一些键在断裂,存在时间极短,半衰期约为10 ~10 s,实际中极难捕获。[3]同时,Pauling又指出酶和抗体的根本不同在于前者选择性的结合一个化学反应的过渡态,而抗体则是结合一个基态分子。 既然过渡态分子难以捕获,而过渡态类似物是能够模拟一个酶催化反应过渡态的结构的稳定物质,于是人们就设想,只要寻找到与反应中决定性步骤的相应酶紧密结合的酶竞争性抑制剂,就等于发现了过渡态类似物;还有一种思路,就是这种类似物也能根据化学反应机制推测设计出来。然后,以过渡态类似物为半抗原,利用哺乳动物的免疫系统,诱导与其互补构象的抗体产生,这种抗体即具有催化活性——这就是1969年

大肠杆菌总结

大肠杆菌发酵经验总结 首先, 补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响)所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果 。 其次,必须要保证充足的溶氧,并严格控制p H值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。 第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在0.2之内,选在此时诱导, 1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达; 2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。 第四,补料过程中的碳氮比也很重要。若氮源过高,会使菌体生长过于旺盛,p H偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易形成较低的p H,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。 根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。可以适当调整碳氮比. 温度对大肠杆菌的影响:大肠杆菌发酵最适温度是37 C,当温度最适菌体生长时,比增长速率将会增大。随温度上升细菌代谢加快,其产生代谢副产物也会增加。这些副产物会对菌体的生长产生一定的抑制作用。菌体生长过快也会影响质粒的稳定性。降低培养温度,菌体对营养物质的摄取和生长速率都会下降。同时也减少了有毒代谢

发酵工程韩北忠教案

中国农业大学 食品学院教案 课程名称:发酵工程学 教材名称:俞俊棠,唐效宣主编的《生物工艺学》 授课对象:食品学院生物工程专业本科生05 级(共30 人)开课时间:2007 年春学期1-14 周 开课地点:东校区 讲课学时:40学时 主讲教师:刘萍,韩北忠,陈晶瑜 工作单位:食品学院 编写时间:2006-2007 年

第一章:绪论 学时:2 主要内容:发酵工程 教学目标:掌握发酵工程的基本知识;了解发酵工程的一般工艺过程和工艺发展趋势。 教学重点为: 1.发酵工程的概念和研究内容 2.发酵工程的发展历史和研究方法 3.发酵工程的主要学习方法 教学难点是: 1.发酵工程的一般工艺过程和 2.发酵工程发展趋势需要在学习中时刻做到理论联系实际 主要教学方法:讲解,看投影片,举例说明,问题讨论 课程进展流程: 1、课程导入(时间:5分钟) 介绍本节课程讲授内容的总体框架,以对比发酵与发酵工程的区别导入本节课程的第一个内容:发酵工程定义。 出示图片:微生物与发酵工程设备图 引导学生观察发酵工程在工厂中的发酵工程操作。 2、课程讲授 (1)发酵工程定义(5分钟) 提问并讨论同学们自己眼中的发酵工程,引入生化角度、传统角度及现代工为上发酵工程的定义。 (2)发酵工程组成(10分) 引入发酵工程主要图片,并分别讲授什么是发酵工程上游、代谢控制和及下游工程。对发酵工程上每一步骤进行详细解释,使同学们从整体上了解通过发酵工程生产出产品的全过程。 (2)发酵工程研究内容(10分) 从整体上介绍发酵工程研究的内容,并对每一个知识点进行讲解,结合图作分析说明。 (3)发酵工程工艺流程(15分)

发酵工程论文 -

发酵工程论文 - 发酵工程的研究进展 【前言】发酵工程是泛指利用微生物制造或生产某些产品的过程。它包括厌氧发酵的生产过程(如酒精、乳酸、丙酮丁醇等)和有氧发酵的生产过程(如氨基酸、柠檬酸、抗生素等)。广义的概念:生物学(微生物学、生物化学)和工程学(化学工程)结合。狭义的发酵概念:微生物培养和代谢过程。 发酵技术是人类最早通过实践掌握的生产技术之一,产品也很多,以传统食品来说,东方有酱、酱油、醋、白酒、黄酒等,西方有啤酒、葡萄酒、奶酪等。这些发酵食品都是数千年来凭借人类的智慧和经验,在没有亲眼看到微生物的情况下,巧妙地利用微生物生产的产品。 【关键词】发酵发展应用 1、发酵工程的内容 1.1 定义 发酵工程是指采用工程技术手段,利用生物(主要是微生物)和有活性的离体酶的某些功能,为人类生产有用的生物产品,或直接用微生物参与控制某些工业生产过程的一种技术。 1.2现代发酵工程 人们熟知的利用酵母菌发酵制造啤酒、果酒、工业酒精,乳酸菌发酵制造奶酪和酸牛奶,利用真菌大规模生产青霉素等都是这方面的例子。随着科学技术的进步,发酵技术也有了很大的发展,并且已经进入能够人为控制和改造微生物,使这些微生物为人类生产产品的现代发酵工程阶段。 现代发酵工程作为现代生物技术的一个重要组成部分,具有广阔的应用前景。例如,用基因工程的方法有目的地改造原有的菌种并且提高其产量;利用微生物发

酵生产药品,如人的胰岛素、干扰素和生长激素等。已经从过去简单的生产酒精类饮料、生产醋酸和发酵面包发展到今天成为生物工程的一个极其重要的分支,成为一个包括了微生物学、化学工程、基因工程、细胞工程、机械工程和计算机软硬件工程的一个多学科工程。 现代发酵工程不但生产酒精类饮料、醋酸和面包,而且生产胰岛素、干扰素、生长激素、抗生素和疫苗等多种医疗保健药物,生产天然杀虫剂、细菌肥料和微生物除草剂等农用生产资料,在化学工业上生产氨基酸、香料、生物高分子、酶、维生素和单细胞蛋白等。 1.3组成 从广义上讲,发酵工程由三部分组成:是上游工程,中游工程和下游工程。 1.3.1 上游工程:包括优良种株的选育,最适发酵条件(pH、温度、溶氧和营养组成)的确定,营养物的准备等。 1.3.2 中游工程:主要指在最适发酵条件下,发酵罐中大量培养细胞和生产代谢产物的工艺技术。这里要有严格的无菌生长环境,包括发酵开始前采用高温高压对发酵原料和发酵罐以及各种连接管道进行灭菌的技术;在发酵过程中不断向发酵罐中通入干燥无菌空气的空气过滤技术;在发酵过程中根据细胞生长要求控制加料速度的计算机控制技术;还有种子培养和生产培养的不同的工艺技术。 此外,根据不同的需要,发酵工艺上还分类批量发酵:即一次投料发酵;流加批量发酵:即在一次投料发酵的基础上,流加一定量的营养,使细胞进一步的生长,或得到更多的代谢产物; 连续发酵:不断地流加营养,并不断地取出发酵液。在进行任何大规模工业发酵前,必须在实验室规模的小发酵罐进行大量的实验,得到产物形成的动力学模型,并根据这个模型设计中试的发酵要求,最后从中试数据再设计更大规模生产的动力学模型。由于生物反应的复杂性,在从实验室到中试,从中试到大规模生产过程中会出现许多问题,这就是发酵工程工艺放大问题。

发酵工程研究进展

发酵工程研究进展 姓名:黄永杰学号:201107002129 班级:生物工程1101班 1.发酵工程技术的发展趋势与方向 发酵工程是泛指利用微生物制造或生产某些产品的过程。它包括厌氧发酵的生产过程(如酒精、乳酸、丙酮丁醇等)和有氧发酵的生产过程(如氨基酸、柠檬酸、抗生素等)。 发酵技术是人类最早通过实践掌握的生产技术之一,产品也很多,以传统食品来说,东方有酱、酱油、醋、白酒、黄酒等,西方有啤酒、葡萄酒、奶酪等。这些发酵食品都是数千年来凭借人类的智慧和经验,在没有亲眼看到微生物的情况下,巧妙地利用微生物生产的产品。 1.1发酵工程技术的发展 发酵技术的发展经历了如下几个阶段: (1)自然发酵阶段:这个阶段为从史前到19世纪末,主要特征为人类利用自然接种的方法进行传统酿造食品的生产。 (2)纯培养厌氧发酵技术的建立:这个阶段始于19世纪末,20世纪初,主要特征为人类在显微镜的帮助下,把单一的微生物进行纯培养,在密闭容器中进行厌氧发酵生产酒精等工业产品。 (3)通气搅拌发酵技术的建立:这个阶段始于20世纪40年代,其技术特征为,成功地建立起深层通气进行微生物发酵的一整套技术,有效地控制了微生物有氧发酵的通气量、温度、pH和营养物质的供给,使得抗生素、柠檬酸、酶制剂等好氧发酵产品的生产成为可能,是现代发酵工业的开端。 (4)代谢调控发酵技术的建立:这个阶段始于20世纪60年代,其技术特征为,以生物化学和遗传学为基础,研究代谢产物的生物合成途径和代谢调节机制,选择巧妙的技术路线,人为地控制目的代谢产物的大量合成,从而得到所需产品。 (5)现代发酵工程技术的建立:这个阶段始于20世纪70年代,其主要技术特征表现在如下几个方面: ①原生质体融合技术、基因工程技术的发展和在微生物菌种选育方面的应用,为发酵工程技术带来了方法上、手段上的重大变化和革命。 ②计算机控制发酵技术,固定化细胞技术,发酵工程优化控制技术,先进的提取、分离、纯化技术以及现代化的发酵与提取设备的应用,使发酵工业得到了迅速的发展,并展现了广阔的前景。 1.2发酵工程的应用领域

水中大肠杆菌的检测方法(清晰整齐)

附件 水中大肠杆菌群检测方法-多管发酵法 NIEA E201.54B 一、方法概要 本方法系用以检测水中革兰氏染色阴性,不产生内生孢子之杆状好氧或兼性厌氧菌,且能在35 ± 1 ℃、 48 ± 3小时发酵乳糖并产生酸及气体之大肠杆菌群(Coliform group);在不同体积或不同稀释度之水样所 产生之结果,以「100 mL水中最大可能数(MPN/100 mL)」表示100 mL水中存在之大肠杆菌群数目。二、适用范围 本方法适用地面水体、地下水体、废水、污水及水源水质水样中大肠杆菌群之检验。 三、干扰 (一) 水样中含有抑制或促进大肠杆菌群细菌生长之物质。 (二) 检测使用的玻璃器皿及设备含有抑制或促进大肠杆菌群细菌生长的物质。 四、设备 (一) 量筒:100至1000 mL之量筒。 (二) 吸管:有0.1刻度之10 mL灭菌玻璃吸管或市售无菌塑料吸管,或无菌微量吸管(micropipet)。 (三) 试管:大小约150 × 15 mm之试管或有盖螺旋试管。 (四) 发酵管(fermentation tube):大小约22 × 9 mm之玻璃管。 (五) 稀释瓶:容量约100 mL可灭菌之硼硅玻璃制品。 (六) 锥形瓶:200至2000 mL之可灭菌硼硅玻璃制品。 (七) 采样容器:容量120 mL以上无菌之硼硅玻璃瓶或无菌塑料有盖容器,或市售无菌袋。 (八) 冰箱:温度能保持在4 ± 2℃者。 (九) 天平:待测物重量大于2 g时,须能精秤至0.01 g;待测物重量不大于2 g时,须能精秤至0.001 g。

(十) 培养箱:温度能保持在35 ± 1℃者。 (十一) 高压灭菌釜:温度能维持在121℃(压力约15 lb/in2或 1.1 Kg/cm2)灭菌15分钟以上者。 (十二) 高温干热烘箱:如用于玻璃器皿等用具之灭菌,温度须能保持在160℃达2小时或170℃达1小时以上者。(十三) 接种环:为白金或镍铬合金制,适用于细菌接种或移植,亦可使用无菌塑料制品。 (十四) pH计:精确度达0.1 pH单位。 五、试剂 (一) 试剂水:蒸馏水或去离子水,导电度在25 ℃时小于2 μ mho / cm(μS / cm)。 (二) 培养基,应使用市售商品化培养基。 1、硫酸月桂酸胰化蛋白胨培养基(Lauryl sulfate tryptose broth,简称LST) 1倍浓度LST培养基含有下列成份: 胰化蛋白胨(Tryptose)20.0g 乳糖(Lactose) 5.0g 氯化钠(NaCl) 5.0g 磷酸氢二钾(K2HPO4) 2.75g 磷酸二氢钾(KH2PO4) 2.75g 硫酸月桂酸钠(Sodium lauryl sulfate)0.1g 试剂水1L 配成2倍浓度(取71.2 g LST培养基粉末溶于1 L试剂水),完全溶解后,分取10 mL注入装有倒置发酵管之试管内,经121℃灭菌15分钟,冷却后备用,灭菌后培养基之pH值应在 6.8 ± 0.2。灭 菌后培养基若未当日使用,应保存在4 ± 2℃,保存期限为14天。可根据检验需求量,依配方配制培 养基。

相关主题
文本预览
相关文档 最新文档