当前位置:文档之家› 初中数学竞赛常用解题方法(代数)[1]

初中数学竞赛常用解题方法(代数)[1]

初中数学竞赛常用解题方法(代数)[1]
初中数学竞赛常用解题方法(代数)[1]

初中数学竞赛常用解题方法(代数)

一、 配方法

例1练习:若2()4()()0x z x y y z ----=,试求x+z 与y 的关系。

二、 非负数法

例21()2

x y z +

=

++.

三、 构造法

(1)构造多项式

例3、三个整数a 、b 、c 的和是6 的倍数.,那么它们的立方和被6除,得到的余数是( ) (A) 0 (B) 2 (C) 3 (D) 不确定的

(2)构造有理化因式

例4、 已知(2002x y +

+

=.

则22346658x xy y x y ----+=___ ___。 (3)构造对偶式

例5、 已知αβ、是方程210x x --= 的两根,则43αβ+的值是___ ___。 (4)构造递推式

例6、 实数a 、b 、x 、y 满足3ax by +=,2

2

7ax by +=,3

3

16ax by +=,4

4

42ax by +=.求5

5

ax by +的值___ ___。 (5)构造几何图形

例7、(构造对称图形)已知a 、b 是正数,且a + b = 2. 求u =+

___ ___。

练习:(构造矩形)若a ,b 均为正数,且是一个三角

形的三条边的长,那么这个三角形的面积等于___________。

四、 合成法

例8、若12345,,,x x x x x 和满足方程组

123451234512345123451234520212

224248296

x x x x x x x x x x x x x x x x x x x x x x x x x ++++=++++=++++=++++=++++= 确定4532x x +的值。

五、 比较法(差值比较法、比值比较法、恒等比较法)

例9、71427和19的积被7除,余数是几?

练习:设0a b c >>>,求证:222a b c b c c a a b a b c a b c +++>.

六、 因式分解法(提取公因式法、公式法、十字相乘法)

1

2

2

1

()(...)n

n

n n n n a b a b a a b ab b -----=-++++ 1221

()(...)n

n

n n n n a b a b a

a

b ab

b

----+=+-+-+

例10、设n 是整数,证明数3

2

312

2

M n n n =+

+

为整数,且它是3的倍数。

练习:证明993991993991+能被1984整除。

七、 换元法(用新的变量代换原来的变量)

例11、解方程2

9(87)(43)(1)2

x x x +++=

练习:解方程 11 (1)

11 (1x)

x

=.

八、 过度参数法(常用于列方程解应用题)

例12、一商人进货价便宜8%,售价保持不变,那么他的利润(按进货价而定)可由目前的

%x 增加到(10)%x +,x 等于多少?

九、 判别式法(24b ac ?=-判定一元二次方程20ax bx c ++=的根的性质)

例13、求使2

2

2433

x x A x x -+=-+为整数的一切实数x.

练习:已知,,x y z 是实数,且

222

212

x y z a

x y z a

++=++=

求证:2220,0,03

3

3

x a y a z a ≤≤

≤≤

≤≤

. 十、 韦达法(韦达定理:1

212,b c x

x x x a

a

+=-

?=

例14:25y y +=

十一、 共轭根式法(设A 使含有根式的表达式,若存在另一个不恒等于零的表达

式B ,使乘积AB 不含根式,则称B 为A 的共轭根式)

例11、设a,b 分别表示

求2(1a ab ++的值为___ ___。

练习:求不超过6

的值的最大整数为___ ___。

十二、 反证法

例12、已知a ,b ,c 为实数,设2

2

2

2,2,22

3

6

A a b

B b c

C c a π

π

π

=-+=-+

=-+

证明:A ,B ,C 中至少有一个大于零。

练习:命题“如果a ,b 都是无理数,那么b a 也是无理数”是否正确,如果正确,试给予证明;如果不正确,试说明理由.

代数常用的四种解题方法

数学离不开思维。学习效果的大小,取决于思维活动的发展与思维能力的发挥。而思维方法是思维的钥匙,有了科学的思维就能从总体上把握事物的本质联系。从而,有效地提高发现问题和解决问题的能力。很多学生天天做练习,但成绩就是不理想。为什么呢?主要原因就是没有吃透教材的基本原理,就是没有掌握解题的科学方法。掌握方法,是攻克难题的有力武器,只有掌握方法,才能触类旁通,举一反三。不管遇到什么难题,都能得心应手,迎刃而解。那么在初中代数中有那些常用的解题思维方法呢?

一、 待定系数法

用一个或多个字母来表示与解答有关的未知数,这些字母就叫待定系数法。待定系数法是一种最基本的数学方法,这个方法多用于多项式运算、方程和函数方面较多。例如: 例1 试用关于(x-1)的各次幂表示多项式32

2435x x x -+-。

解:设3

2

3

2

24352(1)(1)(1)x x x x a x b x c -+-=-+-+-+。因为上式是恒等式,所以不

论x 取什么数,两边都应相等,据此可设

1x =,代入上式得 4c =-,

0x =,代入上式得 522a b -=-+-+ 2x =,代入上式得 1616

652a b c -+-=+++

联立上面三个式子解得 2,1,4

a b c ===- ∴323224352(1)2(1)(1)4x x x x x x -+-=-+-+--。

这道例题在求待定系数时运用了特殊值法。要尽量减少待定系数的个数,比如可以断定3(1)x -的系数是2,就没有必要再将3

(1)x -项的系数设为待定系数了。

例2 根据二次函数的图象上(-1,0)、(3,0)、(1,-5)三点的坐标,写出函数的解析式。 解:由题设知,当1x =-和3x =时,函数y 的值都等于0.故设二次函数的解析式为

(1)(3)y a x x =+-,

把(1,-5)代入上式,得54a =,

故所求的解析式为

2

55515(1)(3).4

42

4

y x x x x =

+-=

-

-

这道例题告诉我们用待定系数法确定函数式时要讲究一些解题技巧.此题若设所求二次函数的解析式为2y ax bx c =++,用待定系数法,把已知的三点代入,得到一个三元一次方程组,进而求出三个待定系数,,a b c ,这种解法运算量较大.

二、 配方法

配方,一般是指在一个代数式中通过加减相同的项,把其中若干项变形为n 次幂形式的项.这是恒等变形的重要方法之一.因为它有广泛的迁移意义。举例如下: 例3 分解因式 (1)4

64x +

(2)22

2341b ab a a ---- 解:(1)4

64x +

=4

2

2

2

2

2

2

2

(1664)16(8)(4)(48)(48)x x x x x x x x x ++-=+-=++-+ (2)2

2

2341b ab a a ----

222

2

2

(2)(441)()(21)

(21)(21)(1)(31)

b ab a a a b a a b a a b a a b a b a =-+-++=--+=-++---=++--

例4 已知n 为正整数,且71998444n ++是一个完全平方数,则n 的一个值是_____。(第九界“希望杯”赛试题)

解:设719981423996444222n n ++=++

14

23996

72

2

2

2

(22)n

x ++=+ ①

将72(22)x +展开后得

7

2

14

72(22)2

2222

x

x x

+=+??+ ②

由①、②得14239961482222222n x x +++=++ 比较两边的指数,得

8+x=2n,23996.{x =或者 8+x =3996

22.

{x n =

解之得1003n = 或者3988n =。

此题有两解,所以任意填其中的一个都行。 三、 换元法

把一个简单的含变元的式子替换一个较为复杂的含变元的式子,从而使问题得以简化。这样的方法就叫做换元法。换元法是数学中重要的解题方法,根据问题的特点,进行巧妙的换元,往往可以化繁为简,化难为易,收到事半功倍的功效,现举例说明。 例5 化简

3

232

1996199719951997199619961995199719951996

+?-?-?-?。(第七界“希望杯”赛培训试题)

解:设1996为a ,则1997=(1)a +,1995=(1)a -, 所以,原式

3

232

3

2

3

23

2

3

2

(1)(1)(1)(1)(1)(1)1111

1

a a a a a a a a a a a a a a a a a a ++--+=

--+--+---=-+-+-=

=-

例6 解方程组2236,

330.

{x xy y x xy y -+=-+=

解:令,

.{x y u xy v +== ⑴

代入方程组中,得2336,

30.

{u v u v -=-=

解得12,36.

{

u v ==和3,

9.{u v =-=-

代入⑴式中,得

12,3,

36.9.

{{x y x y xy xy +=+=-==- 分别解之,得

6,6.{{x x y y == 显然,这些例题运用了换元法就变的简捷了。 四、 同一法

同一法属于间接证法,它的理论依据分别是逻辑学中的同一律与矛盾律和排中律。同一法就是应用“同一法则”进行证明的方法。同一法则是如果两个互逆的命题的条件和结论所关联的事物是唯一存在的,那么两个命题同时为真,或同时为假。例如: 例7 设a b g ,,都是锐角,它们的正切依次是

11

1,,258。 求证:a +b +g =o 45。

证明:+a +b a +b =

=

=

-a b

-

Q 11tg tg 725tg ()111tg tg 9

125,以及a b ,都是锐角。

a +

b Q ()是小于o

45的锐角 。

现在取锐角d ,使a +b +d =o

45,于是

-轾d =-a +b ==

=g 犏臌

+

o

7119tg tg 45()tg 78

19

\d =g

\

a +

b +g =o

45

当然,以上的四种方法只是我们初中阶段较常见较重要解题的方法,愿同学们能从中得到启发。重视中学数学中的解题基本方法,它对同学们扩大知识领域,提高综合解题能力将带来很多方便。

初中数学竞赛常用解题方法(代数)

初中数学竞赛常用解题方法(代数) 一、 配方法 例1练习:若2 ()4()()0x z x y y z ----=,试求x+z 与y 的关系。 二、 非负数法 例21 ()2 x y z =++. 三、 构造法 (1)构造多项式 例3、三个整数a 、b 、c 的和是6 的倍数.,那么它们的立方和被6除,得到的余数是( ) (A) 0 (B) 2 (C) 3 (D) 不确定的 (2)构造有理化因式 例4、 已知(2002x y =. 则2 2 346658x xy y x y ----+=___ ___。 (3)构造对偶式 例5、 已知αβ、是方程2 10x x --= 的两根,则4 3αβ+的值是___ ___。 (4)构造递推式 例6、 实数a 、b 、x 、y 满足3ax by +=,2 2 7ax by +=,3 3 16ax by +=,4 4 42ax by +=.求5 5 ax by +的值___ ___。 (5)构造几何图形 例7、(构造对称图形)已知a 、b 是正数,且a + b = 2. 求u =___ ___。 练习:(构造矩形)若a ,b 形的三条边的长,那么这个三角形的面积等于___________。 四、 合成法 例8、若12345,,,x x x x x 和满足方程组

123451234512345123451234520212 224248296 x x x x x x x x x x x x x x x x x x x x x x x x x ++++=++++=++++=++++=++++= 确定4532x x +的值。 五、 比较法(差值比较法、比值比较法、恒等比较法) 例9、71427和19的积被7除,余数是几? 练习:设0a b c >>>,求证:222a b c b c c a a b a b c a b c +++>. 六、 因式分解法(提取公因式法、公式法、十字相乘法) 1221()(...)n n n n n n a b a b a a b ab b -----=-++++ 1221()(...)n n n n n n a b a b a a b ab b ----+=+-+-+ 例10、设n 是整数,证明数3 231 22 M n n n =++为整数,且它是3的倍数。 练习:证明993 991993 991+能被1984整除。 七、 换元法(用新的变量代换原来的变量) 例11、解方程2 9(87)(43)(1)2 x x x +++= 练习:解方程 11 (1) 11 (1x) x =. 八、 过度参数法(常用于列方程解应用题) 例12、一商人进货价便宜8%,售价保持不变,那么他的利润(按进货价而定)可由目前的 %x 增加到(10)%x +,x 等于多少? 九、 判别式法(24b ac ?=-判定一元二次方程20ax bx c ++=的根的性质) 例13、求使2224 33 x x A x x -+=-+为整数的一切实数x. 练习:已知,,x y z 是实数,且 2 2 2 212 x y z a x y z a ++=++=

初中数学竞赛教程

七年级 第一讲 有理数(一) 一、【能力训练点】 1、正负数,数轴,相反数,有理数等概念。 2、有理数的两种分类: 3、有理数的本质定义,能表成 m n (0,,n m n ≠互质)。 4、性质:① 顺序性(可比较大小); ② 四则运算的封闭性(0不作除数); ③ 稠密性:任意两个有理数间都存在无数个有理数。 5、绝对值的意义与性质: ① (0)||(0) a a a a a ≥?=? -≤? ② 非负性 2 (||0,0)a a ≥≥ ③ 非负数的性质: i )非负数的和仍为非负数。ii )几个非负数的和为0,则他们都为0。 二、【典型例题解析】: 1. 如果m 是大于1的有理数,那么m 一定小于它的( ) A.相反数 B.倒数 C.绝对值 D.平方 2.已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求 22006 ()( )()x a b c d x a b c d -+++++-的值。 3.如果在数轴上表示a 、b 两上实数点的位置,如下图所示,那么||||a b a b -++化简的结果等于( ) A.2a B.2a - C.0 D.2b 4.有3个有理数a,b,c ,两两不等,那么,, a b b c c a b c c a a b ------中有几个负数? 5.设三个互不相等的有理数,既可表示为1,,a b a +的形式式,又可表示为0, b a ,b 的形式,求20062007a b +。

6.三个有理数,,a b c 的积为负数,和为正数,且||||||||||||a b c ab bc ac X a b c ab bc ac = +++++则321ax bx cx +++的值是多少? 7.若,,a b c 为整数,且2007 2007||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。 第二讲 有理数(二) 一、【能力训练点】: 1、绝对值的几何意义 ① |||0|a a =-表示数a 对应的点到原点的距离。② ||a b -表示数a 、b 对应的两点间的距离。 2、利用绝对值的代数、几何意义化简绝对值。 二、【典型例题解析】: 1.若20a -≤≤,化简|2||2|a a ++- 2.试化简|1||2|x x +-- 3.若|5||2|7x x ++-=,求x 的取值范围。 4.已知()|1||2||3||2002|f x x x x x =-+-+-++-求()f x 的最小值。 5.若|1|a b ++与2 (1)a b -+互为相反数,求321a b +-的值。

2018全国初中数学竞赛试题及参考答案

中国教育学会中学数学教学专业委员会 “《数学周报》杯”2018年全国初中数学竞赛试题 答题时注意: 1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交. 一、选择题<共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1.设1a ,则代数式32312612a a a +--的值为( >. .,0y >,且满足3y y x xy x x y ==,,则x y +的值为( >. .

高中数学竞赛解题方法篇(不等式)

高中数学竞赛中不等式的解法 摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。 希望对广大喜爱竞赛数学的师生有所帮助。 不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个著名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用. 1.排序不等式 定理1 设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有 1211...n n n a b a b a b -+++ (倒序积和) 1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和) 其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或 12...n b b b ===时成立.

(说明: 本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.) 证明:考察右边不等式,并记1 2 12...n r r n r S a b a b a b =+++。 不等式 1 2 12...n r r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n ===时,S 达到 最大值1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有 .n n k n n r k r n n a b a b a b a b +≤+ (1-1) 事实上, ()()()0n n n n n k r k n n r n r n k a b a b a b a b b b a a +-+=--≥ 不等式(1-1)告诉我们当n r n <时,调换n b 和n r b 的位置(其余n-2项不 变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了 1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++. 再证不等式左端, 由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端, 得 1211(...)n n n a b a b a b --+++1212(...)n r r n r a b a b a b ≥-+++

全国初中数学竞赛试题及解答

A B C D 全国初中数学竞赛试卷及解析 一、选择题(本题共6小题,每小题5分,满分30分.每小题均给出了代号为A ,B ,C ,D 的四个结论,其中只有一个是正确的。请将正确答案的代号填在题后的括号里) 1、设a ,b ,c 的平均数为M ,a ,b 的平均数为N ,N ,c 的平均数为P ,若c b a ,则M 与P 的大小关系是( ) A 、P M B 、P M C 、P M D 、不确定 答案:B 解析:∵3c b a M ,2b a N ,222c b a c N P ,12 2c b a P M ∵ c b a ∴012 2122 c c c c b a P M ,即0 P M ,即P M 2、某人骑车沿直线旅行,先前进了a 千米,休息了一段时间,又原路返回b 千米(a b ),再前进c 千米,则此人离起点的距离S 与时间t 的关系示意图是( ) 答案:C 解析:因为图(A )中没有反映休息所消耗的时间;图(B )虽表明折返后S 的变化,但没有表示消耗的时间;图(D )中没有反映沿原始返回的一段路程,唯图(C )正确地表述了题意。 3、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么( ) A 、甲比乙大5岁 B 、甲比乙大10岁 C 、乙比甲大10岁 D 、乙比甲大5岁 答案:A 解析:由题意知3×(甲-乙)151025 ∴甲-乙=5。 4、一个一次函数图象与直线4 95 45 x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有( ) A 、4个 B 、5个 C 、6个 D 、7个 答案:B 解析:在直线AB 上,横、纵坐标都是整数的点的坐标是N x 41 ,N y 525 ,(N 是整数).在线段AB 上这样的点应满足041 N ,且0525 N ,∴54 1 N ,即1 N ,2,3,4,5 5、设a ,b ,c 分别是ABC 的三边的长,且 c b a b a b a ,则它的内角A 、B 的关系是

初中数学竞赛题中方程解的讨论问题解题策略(一)

- 1 - 初中数学竞赛题中方程解的讨论问题解题策略(一) 安徽省巢湖市教学研究室 张永超 (本讲适合初中) 方程是一种重要的数学模型,也是重要的数学思想之一。有关方程的解的讨论问题一直是初中数学竞赛试题的热点与难点。解决有关方程的解的讨论问题往往涉及到分类讨论、数形结合等数学思想。 一、知识要点 1.形如 方程的解的讨论: ⑴若=0,①当=0时,方程有无数个解; ②当≠0时,方程无解; ⑵若≠0,方程的解为=。 2.关于一元二次方程(≠0)根的讨论,一般需应用到根的判别式、根与系数的关系等相关 知识。 ⑴若 ,则它有一个实数根=1;若 ,则它有一个实数根=-1。 ⑵运用数形结合思想将方程(≠0)根的讨论与二次函数 (≠0)的图象结合 起来考虑是常用方法。 3.涉及分式方程根的讨论,一般考虑使公分母为零的整式方程的根(即原分式方程的增根)。 4.关于含绝对值的方程解的讨论,一般使用分类讨论的方法去掉绝对值符号,有时也应用到数形结合思想与绝对值的几何意义。 5.解决有关方程整数根的问题时,一般要应用到整数的知识,要理解整除、质数等相关概念。 二、例题选讲 1.方程整数根的讨论 例1.已知 ,且方程 的两个实数根都是整数,则其最大的根是 。 解:设方程的两个实数根 为 、 , 则 ,所 以 。因为 、都是整数,且97是质数,若设 < ,则 , ,或 , ,因此最大的根是98。 评注:此题解答应用了一元二次方程根与系数的关系,分解质因数的知识等方法与技能。这种方法在有关一元二次方程整数根的讨论问题中经常用到,如:

- 2 - 类题.(2004年四川)已知,为整数,关于的方程有两个相同的实数 根,则-等于( ) A.1; B.2; C.±1; D.±2. 分析:依题意得⊿=,所以 ,由,为整 数得 ,或 ,或 ,或 , 所以-=± 1。 例2.(2000年全国竞赛)已知关于的方程的根都是整数,那么符合条件的整数 有______个。 解:上述方程没有说明是一次方程还是二次方程,因此需要分类讨论。 ①当时, ,符合题意; ②当 时,原方程是一元二次方程,易知 是方程的一个整数根。设是方程的另一个整数根, 由一元二次方程根与系数的关系得。因为 是整数,所以 ±1,或±2,∴ =-1,0,2, 3。 结合①、②得,本题符合条件的整数有5个。 评注:本例首先对项的系数是否为零进行了分类讨论。对于 时方程解的讨论方法具有一般性, 即由 是整数判断得 ±1,或±2。 延伸拓展:例2关于一元二次方程整数解的讨论方法应用到整除知识与分解变形技巧,是初中数学竞赛常考的内容,如: (2004年信利杯)已知、是实数,关于、的方程组有整数解(,),求、满 足的关系式。 解:原方程组可化 为 ,所 以 ,显然方程中≠-1,因 此 。因为、是整数,所以 ,即=0,或-2。 当=0时,=0,此时、满足的关系式是=0(为任意实数); 当=-2时,=8,此时、满足的关系式。 例3.(2004年全国联赛)已知方程 的根都是整数,求整数的值。

初中数学竞赛重要定理公式(代数篇)

初中数学竞赛重要定理、公式及结论 代数篇 【乘法公式】 完全平方公式:(a±b)2=a2±2ab+b2, 平方差公式:(a+b)(a-b)=a2-b2, 立方和(差)公式:(a±b)(a2 ?ab+b2)=a3±b3 多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd 二项式定理:(a±b)3=a3±3a2b+3ab2±b3 (a±b)4=a4±4a3b+6a2b2±4ab3+b4) (a±b)5=a5±5a4b+10a3b2±10a2b3+5ab4±b5) ………… 在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1- a2n-2b+a2n-3b2- … +ab2n-2- b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2n-…-ab2n-1+b2n)=a2n+1+b2n+1 类似地:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n 公式的变形及其逆运算 由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab 由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得a3+b3=(a+b)3-3ab(a+b) 由公式的推广③可知:当n为正整数时 a n- b n能被a-b 整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b 及a-b整除。重要公式(欧拉公式) (a+b+c)(a2+b2+c2+ab+ac+bc)=a3+b3+c3-3abc 【综合除法】一个一元多项式除以另一个一元多项式,并不是总能整除。当被 除式f(x)除以除式g(x),(g(x)≠0) 得商式q(x)及余式r(x)时,就有下列等式: f(x)=g(x)q(x)-r(x) 其中r(x)的次数小于g(x)的次数,或者r(x)=0。当r(x)=0时,就是f(x)能被g(x)整除。 【余式定理】多项式f(x)除以x-a所得的余数等于f(a)。 【因式分解方法】拆项、添项、配方、待定系数法、求根法、对称式和轮换对称式等。 【部分分式】把一个分式写成几个简单分式的代数和,称为将分式化为部分分式,它是分式运算的常用技巧。分式运算的技巧还有:换元法、整体法、逐项求和、拆项求和等。 【素数和合数】2是最小的素数,也是唯一的一个既是偶数又是素数的数.

全国初中数学竞赛试题及答案79416

中国教育学会中学数学教学专业委员会 全国初中数学竞赛试题 一、选择题(共5小题,每小题6分,共30分.) 1(甲).如果实数a,b,c在数轴上的位置如图所示,那 22 ||()|| a a b c a b c ++-++可以化简为(). (A)2c a-(B)22 a b -(C)a-(D)a 1(乙).如果22 a=- 1 1 1 2 3a + + + 的值为(). (A)2 -(B)2(C)2 (D) 22 2(甲).如果正比例函数y = ax(a ≠ 0)与反比例函数 y = x b(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为(). (A)(2,3)(B)(3,-2)(C)(-2,3) (D)(3,2) 2(乙).在平面直角坐标系xOy中,满足不等式x2+y2≤2x +2y的整数点坐标(x,y)的个数为(). (A)10 (B)9 (C)7 (D)5 3(甲).如果a b,为给定的实数,且1a b <<,那么

1121 a a b a b ++++,, ,这四个数据的平均数与中位数之差的 绝对值是( ). (A )1 (B ) 214a - (C )12 (D )1 4 3(乙).如图,四边形ABCD 中,AC ,BD 是对角线, △ABC 是等边三角形.30ADC ∠=?,AD = 3,BD = 5, 则CD 的长为( ). (A )23 (B )4 (C )52 (D )4.5 4(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ). (A )1 (B )2 (C )3 (D )4 4(乙).如果关于x 的方程 2 0x px q p q --=(,是正整数)的正根小于3, 那么这样的方程的 个数是( ). (A ) 5 (B ) 6 (C ) 7 (D ) 8 5(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则 0123p p p p ,,,中最大的是( ). (A )0p (B )1p (C )2p (D )3p 5(乙).黑板上写有1 11123100 , , ,, 共100个数字.每次操作先从黑板上的数中选取2个数 a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数 是( ). (A )2012 (B )101 (C )100 (D )99 二、填空题(共5小题,每小题6分,共30分) 6(甲).按如图的程序进行操作,规定:程序运行 从“输入一个值x ”到“结果是否>487?”为一次

小学数学竞赛一几种解题方法

一几种解题方法 1.28分。提示:按从多到少顺序枚举。如果小军是两个1角硬币,那么小红的三枚硬币不可能是18分;当小军是一个1角一个5分时,小红是一个1角,一个2分,一个1分。 2.5种。 3.495。解:因为93>700,所以只有下面三种可能: 13+33+53=153 13+33+73=371, 33+53+73=495,其中只有495是11的倍数。 4.286。解:此数是13的偶数倍,必能被26整除。由260依次往小试验,260-26=234,234-26=208,都不符合题意。再由260往大试验,260+26=286符合题意。 5.15。解:1与不小于4的任何自然数都不满足题意,所以四个数中没有1。取2,3,4,a,前三个数满足条件,a=5不满足条件,a=6满足条件。所求数为2+3+4+6=15。 6.8种。解:将四个瓶子依次记为A,B,C,D,将四张标签依次记为a,b,c,d。假设A贴对了,其余的都贴错了,有两种情况: ①Aa,Bc,Cd,Db;②Aa,Bd,Cb,Dc。 同理B,C,D贴对了,其余的都贴错了,也各有两种情况。共8种。 7.10种。提示:有0,0,3;0,1,2;0,2,1;0,3,0;1,0,2;1,1,1;1,2,0;2,0,1;2,1,0;3,0,0十种方法。 8.7。解:不拆盒可买的节数有3,5,8,9,10,…因为超过10的数都可以由8,9,10中的某个数加3的倍数形成,而8,9,10都可以不拆盒,所以买7节以上(不含7)都不必拆盒。 9.11。提示:与第8题类似。 10.18支、10支、6支、4支。提示:因为总的铅笔数不多,故可依次假设丁有2支、3支、4支……铅笔。 11.21个。 提示:乙的红球、白球都是偶数。因为甲的红球数是乙的白球数的2倍,并且不超过10,所以乙的白球数只能是2或4。

2018年全国初中数学竞赛试题及解答

2018年全国初中数学竞赛试题及解答 一、选择题(只有一个结论正确) 1、设a,b,c 的平均数为M ,a,b 的平均数为N ,N ,c 的平均数为P ,若a>b>c ,则M 与P 的大小关系是( ) (A )M =P ;(B )M >P ;(C )M <P ;(D )不确定。 2、某人骑车沿直线旅行,先前进了a 千米,休息了一段时间,又原路返回b 千米(ba 1,b>b 1, c>c 1,,则S 与S 1的大小关系一定是( )。 (A )S >S 1;(B )S <S 1;(C )S =S 1;(D )不确定。 二、填空题 7、已知: a 23 331a a a ++=________。 8、如图,在梯形ABCD 中,AB∥DC,AB =8,BC = ∠BCD=45°,∠BAD=120°,则梯形ABCD 的面积等于________。 9、已知关于的方程 (a-1)x 2 +2x-a-1=0的根都是整数,那么符合条件的整数有_______个。 10、如图,工地上竖立着两根电线杆AB 、CD ,它们相距15米,分别自两杆上高出地面4米、6米的A 、C 处,向两侧地面上的E 、D ;B 、F 点处,用钢丝绳拉紧,以固定电线杆。那么钢丝绳AD 与BC 的交点P 离地面的高度为________米。

初中数学竞赛专题辅导-代数式的求值

初中数学竞赛专题辅导代数式的求值 代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍. 1.利用因式分解方法求值 因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用. 分析x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件. 解已知条件可变形为3x2+3x-1=0,所以 6x4+15x3+10x2 =(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1 =(3x2+3x-1)(2z2+3x+1)+1 =0+1=1. 说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答. 例2 已知a,b,c为实数,且满足下式: a2+b2+c2=1,①

求a+b+c的值. 解将②式因式分解变形如下 即 所以 a+b+c=0或bc+ac+ab=0. 若bc+ac+ab=0,则 (a+b+c)2=a2+b2+c2+2(bc+ac+ab) =a2+b2+c2=1, 所以a+b+c=±1.所以a+b+c的值为0,1,-1.说明本题也可以用如下方法对②式变形:

即 前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式. 2.利用乘法公式求值 例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值. 解因为x+y=m,所以 m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy, 所以 求x2+6xy+y2的值.

最新全国初中数学竞赛试题及答案

全国初中数学竞赛试 题及答案

仅供学习与交流,如有侵权请联系网站删除 谢谢3 1997年全国初中数学联赛试题 第一试 一.选择题 本题共有6小题,每一个小题都给出了以(A), (B), (C), (D)为代号的四个答案,其中只有一个答案是正确的.请将正确的答案用代号填在各小题的括号内. 1.下述四个命题 (1)一个数的倒数等于自身,那么这个数是1; (2)对角线互相垂直且相等的四边形是正方形; (3)2a 的平方根是a ±; (4)大于直角的角一定是钝角. (A)1个 (B)2个; (C)3个; (D)4个. 答( ) 2.已知354 234 -<<+x ,那么满足上述不等式的整数x 的个数是 答( ) (A)4; (B)5; (C)6; (D)7. 答( ) 3.若实数c b a ,,满足9222=++c b a ,代数式222)()()(a c c b b a -+-+-的最大值是 (A)27 (B)18; (C)15; (D)12. 答( )

仅供学习与交流,如有侵权请联系网站删除 谢谢3 4.给定平面上n 个点,已知1,2,4,8,16,32都是其中两点之间的距离,那么点数n 的最小可能值是 (A)4; (B)5; (C)6; (D)7. 答( ) 5.在梯形ABCD 中,DC AD =,030=∠B ,060=∠C ,E,M,F,N 分别为 AB,BC,CD,DA 的中点,已知BC =7,MN =3,则EF 之值为 (A)4 (B)2 14 (C)5; (D)6. 答( ) 6.如图,已知B A ∠=∠,1AA ,1PP ,1BB 均垂直于 11B A ,171=AA ,161=PP ,201=BB ,1211=B A ,则AP+PB 等于 (A )12; (B )13; (C )14; (D )15. 答( ) 二、填空题 1.从等边三角形内一点向三边作垂线,已积压这三条垂线的长分别为1,3,5,则这个等边三角形的面积是 . 2.当a 取遍0到5的所有实数值时,满足)83(3-=a a b 的整数b 的个数是 .

初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用

第一讲 走进追问求根公式 形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法. 而公式法是解一元二次方程的最普遍、最具有一般性的方法. 求根公式a ac b b x 2422 ,1-±-= 内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美. 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决. 解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法. 【例题求解】 【例1】满足1)1(22=--+n n n 的整数n 有 个. 思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程. 【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=. 【例3】 解关于x 的方程02)1(2=+--a ax x a . 思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论. 【例4】 设方程04122=---x x ,求满足该方程的所有根之和. 思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解. 【例5】 已知实数a 、b 、c 、d 互不相等,且x a d d c c b b a =+=+=+=+ 1 111, 试求x 的值. 思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值. 注:一元二次方程常见的变形形式有: (1)把方程02=++c bx ax (0≠a )直接作零值多项式代换; (2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次; (3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x . 解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222 x x x ==.

初中数学竞赛题汇编(代数部分1)

初中数学竞赛题汇编 (代数部分1) 江苏省泗阳县李口中学沈正中精编、解答 例1若m2=m+1,n2=n+1,且m≠n,求m5+n5的值。 解:由已知条件可知,m、n是方程x2-x-1=0两个不相等的根。∴m+n=1,mn=-1 ∴m2+n2=(m+n)2-2mn=3或m2+n2=m+n+2=3 又∵m3+n3=(m+n) (m2-mn+n2)=4 ∴m5+n5=(m3+n3) (m2+n2)-(mn)2(m+n)=11 例2已知 解:设,则 u+v+w=1……①……② 由②得即 uv+vw+wu=0 将①两边平方得 u2+v2+w2+2(uv+vw+wu)=1 所以u2+v2+w2=1 即 例3已知x4+x3+x2+x+1=0,那么1+x+x2+x3+x4+……x2014=。解:1+x+x2+x3+x4+…x2014=(1+x+x2+x3+x4)+(x5+x6+x7+x8+x9)+…+(x2010+x2011+x2012+x2013+x2014)=(1+x+x2+x3+x4)+x5(1+x+x2+x3+x4)+… + x2010(1+x+x2+x3+x4)=0 例4:证明循环小数为有理数。 证明:设=x…① 将①两边同乘以100,得 …② ②-①,得99x=261.54-2.61 即x=。

例5:证明是无理数。 证明(反证法):假设不是无理数,则必为有理数,设 =(p、q是互质的自然数),两边平方有p2=2q2…①, 所以p一定是偶数,设p=2m(m为自然数),代入①整理得q=2m2,所以q也是偶数。p、q均为偶数与p、q是互质矛盾,所以不是有理数,即为有理数。 例6:;;。 解: 例7:化简(1);(2) (3);(4); (5); (6)。 解:(1)方法1

2018年全国初中数学竞赛试题及答案

1 2018年全国初中数学竞赛试题及答案 考试时间:2018年4月1日上午9:30—11:30 一、选择题:(共5小题,每小题6分,满分30分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后括号里.不填、多填或错填都得0分) 1.方程组?????=+=+6 12y x y x 的实数解的个数为( ) (A )1 (B )2 (C )3 (D )4 解:选(A )。当x ≥0时,则有y -|y|=6,无解;当x<0时,则y +|y|=18,解得:y=9,此时x=-3. 2.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ) (A )14 (B )16 (C )18 (D )20 解:选(B )。只用考虑红球与黑球各有4种选择:红球(2,3,4,5),黑球(0,1,2,3)共4×4=16种 3.已知a 、b 、c 是三个互不相等的实数,且三个关于x 的一元二次方程02 =++c bx ax , 02 =++a cx bx ,02 =++b ax cx 恰有一个公共实数根,则 ab c ca b bc a 2 22++的值为( ) (A )0 (B )1 (C )2 (D )3 解:选(D )。设这三条方程唯一公共实数根为t ,则20a t b t c ++ =,20bt ct a ++=,2 0ct at b ++= 三式相加得:2 ()(1)0a b c t t ++++=,因为210t t ++≠,所以有a+b+c=0,从而有333 3a b c abc ++=, 所以 ab c ca b bc a 222++=333 a b c abc ++=33abc abc = 4.已知△ABC 为锐角三角形,⊙O 经过点B ,C ,且与边AB ,AC 分别相 交于点D ,E .若⊙O 的半径与△ADE 的外接圆的半径相等,则⊙O 一定经 过△ABC 的( ) (A )内心 (B )外心 (C )重心 (D )垂心 解:选(B )。如图△ADE 外接圆的圆心为点F ,由题意知:⊙O 与⊙F 且弧DmE =弧DnE ,所以∠EAB =∠ABE ,∠DAC =∠ACD , 即△ABE 与△ACD 都是等腰三角形。分别过点E ,F 作AB ,AC 相交于点H ,则点H 是△ABC 的外心。又因为∠KHD =∠ACD , 所以∠DHE+∠ACD =∠DHE+∠KHD =180°,即点H ,D ,C ,E 在同一个圆上, 也即点H 在⊙O 上,因而⊙O 经过△ABC 的外心。 5.方程2563 2 3 +-=++y y x x x 的整数解x (,)y 的个数是( ) (A )0 (B )1 (C )3 (D )无穷多 解:选(A )。原方程可变形为:x(x+1)(x+2)+3x(x+1)=y(y-1)(y+1)+2,左边是6的倍数,而右边不是6的倍数。

初中数学奥林匹克竞赛解题方法大全(配PDF版)-第06章-几何基础知识

第六章几何基础知识 第一节线段与角的推理计算 【知识点拨】 掌握七条等量公理: 1、同时等于第三个量的两个量相等。 2、等量加等量,和相等。 3、等量减等量,差相等。 4、等量乘等量,积相等。 5、等量除以等量(0除外),商相等。 6、全量等于它的各部分量的和。 7、在等式中,一个量可以用它的等量来代替(等量代换)。 【赛题精选】 例1、如图,∠AOB=∠COD,求证:∠AOC=∠BOD。 例2、C、D为线段AB上的两点,AD=CB,求证:AC=DB。 例3、AOB是一条直线,∠AOC=600,OD、OE分别是∠ AOC和∠BOC的平分线。问图中互为补角关系的角共有多少对? 例4、已知B、C是线段AD上的任意两点,M是AB的中 点,N是CD的中点,若MN=a,BC=b,求CD的长。

例5、已知OM是∠AOB的平分线,射线OC在∠BOM内部,ON是∠BOC的平分线,且∠AOC=800。求∠MON的度数。 例6、已知A、O、B是一条直线上的三个点,∠BOC比∠AOC 大240,求∠BOC、∠AOC的度数。 例7、如图,AE=8.9CM,BD=3CM。求以A、B、C、D、 E这5个点为端点的所有线段长度的和是多少? 例8、线段AB上的P、Q两点,已知AB=26CM,AP=14CM, PQ=11CM。求线段BQ的长。 例9、已知∠AOC=∠BOD=1500,∠AOD=3∠BOC。

求∠BOC的度数。 例10、已知C是AB上的一点,D是CB的中点。若图中线段的长度之和为23CM,线段AC的长度与线段CB 的长度都是正整数。求线段AC的长度是多少厘米?

【针对训练】

初中数学竞赛专题选讲对称式(含答案)

初中数学竞赛专题选讲(初三.5) 对称式 一、内容提要 一.定义 1. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 任意交换两个后,代数式的值不变,则称这个代数式为绝对对称式,简称对称式. 例如: 代数式x+y , xy , x 3+y 3+z 3-3xyz, x 5+y 5+xy, y x 11+, xyz x z xyz z y xyz y x +++++. 都是对称式. 其中x+y 和xy 叫做含两个变量的基本对称式. 2. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 循环变换后代数式的值不变,则称这个代数式为轮换对称式,简称轮换式. 例如:代数式 a 2(b -c)+b 2(c -a)+c 2(a -b), 2x 2y+2y 2z+2z 2x, abc c b a 1111-++, (xy+yz+zx )( )111z y x ++, 2 22222222111b a c a c b c b a -++-++-+. 都是轮换式. 显然,对称式一定是轮换式,而轮换式不一定是对称式. 二.性质 1. 含两个变量x 和y 的对称式,一定可用相同变量的基本对称式来表示.这将在下一讲介绍. 2. 对称式中,如果含有某种形式的一式,则必含有,该式由两个变量交换后的一切同型式,且系数相等. 例如:在含x, y, z 的齐二次对称多项式中, 如果含有x 2项,则必同时有y 2, z 2两项;如含有xy 项,则必同时有yz, zx 两项,且它们的系数,都分别相等. 故可以表示为: m(x 2+y 2+z 2)+n(xy+yz+zx) 其中m, n 是常数. 3. 轮换式中,如果含有某种形式的一式,则一定含有,该式由变量字母循环变换后所得的一切同型式,且系数相等.

2020年全国初中数学竞赛试题及答案

初三数学竞赛试题 2009年全国初中数学竞赛试题参考答案 一、选择题(共5小题,每小题7分,共35分. 以下每道小题均给出了代号为A,B,C,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1.已知非零实数a,b 满足,则等于(). (A)-1 (B)0 (C)1 (D)2 【答】C.解:由题设知a≥3,所以,题设的等式为,于是,从而=1. 2.如图,菱形ABCD的边长为a,点O是对角线AC上的一点,且OA=a,OB=OC=OD=1,则a等于(). 【答】A.解:因为△BOC ∽△ABC,所以,即,所以,. 由,解得. 3.将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先 后投掷两次,记第一次掷出的点数为,第二次掷出的点数为,则使关于x,y的方程组只有正数解的概率为(). (A)(B)(C)(D) 【答】D.解:当时,方程组无解.当时,方程组的解为 由已知,得即或由,的实际意义为1,2,3,4,5,6,可得 共有 5×2=10种情况;或共3种情况. 又掷两次骰子出现的基本事件共6×6=36种情况,故所求的概率为. 4.如图1所示,在直角梯形ABCD中,AB∥DC,. 动点P从点 B出发,沿梯形的边由B→C→D→A运动. 设点P运动的路程为x,△ABP的面积为y. 把y 看作x的函数,函数的图像如图2所示,则△ABC的面积为(). (A)10 (B)16 (C)18 (D)32

【答】B. 解:根据图像可得BC=4,CD=5,DA=5,进而求得AB=8,故S△ABC=×8×4=16. 5.关于x,y的方程的整数解(x,y)的组数为(). (A)2组(B)3组(C)4组(D)无穷多组 【答】C.解:可将原方程视为关于的二次方程,将其变形为. 由于该方程有整数根,则判别式≥,且是完全平方数.由≥,解得≤.于是 1 4 9 16 116 109 88 53 4 显然,只有时,是完全平方数,符合要求. 当时,原方程为,此时; 当y=-4时,原方程为,此时.

初中数学竞赛——代数式的求值

初中数学竞赛代数式的求值 代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍. 1.利用因式分解方法求值 因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用. 说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答. 例2 已知a,b,c为实数,且满足下式: a2+b2+c2=1,① 求a+b+c的值. 解 2.利用乘法公式求值 例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值. 解 求x2+6xy+y2的值. 解 3.设参数法与换元法求值 如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.

4.利用非负数的性质求值 若几个非负数的和为零,则每个非负数都为零,这个性质在 代数式求值中经常被使用. 例8 若x 2 -4x+|3x -y|=-4,求y x 的值. 解 例9 未知数x ,y 满足 (x 2 +y 2 )m 2 -2y(x+n)m+y 2 +n 2 =0, 其中m ,n 表示非零已知数,求x ,y 的值. 解 5.利用分式、根式的性质求值 分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明. 例10 已知xyzt=1,求下面代数式的值: 解

相关主题
文本预览
相关文档 最新文档