当前位置:文档之家› 近红外漫反射用于检测苹果糖度及有效酸度的研究

近红外漫反射用于检测苹果糖度及有效酸度的研究

近红外漫反射用于检测苹果糖度及有效酸度的研究
近红外漫反射用于检测苹果糖度及有效酸度的研究

红外线遥控测试电路

· 郑州科技学院 《模拟电子技术》课程设计 题目_红外线遥控测试电路_ 学生姓名叶鹏成 专业班级自动化一班 学号201042025 院(系)电气工程学院 指导教师赵剑锷 完成时间 2012年10 月27日

目录 前言...................................... 错误!未定义书签。 1 课程设计的目的...................... 错误!未定义书签。 2 课程设计的任务与要求.............. 错误!未定义书签。 3.1 红外线光敏遥控电路的设计方案错误!未定义书签。 3.2 设计方案的论证................. 错误!未定义书签。 4 设计原理及功能说明................. 错误!未定义书签。 5 单元电路的设计...................... 错误!未定义书签。 5.1 光电二极管的原理与选用...... 错误!未定义书签。 5.2 三极管的放大作用与选用...... 错误!未定义书签。 5.3 发光二级管的原理与判别...... 错误!未定义书签。 5.4 整流滤波电路的工作原理...... 错误!未定义书签。 6 硬件的制作与调试 ................... 错误!未定义书签。 6.1 硬件的制作过程................. 错误!未定义书签。 6.2 硬件的调试过程................. 错误!未定义书签。 7 总结................................... 错误!未定义书签。

参考文献.................................. 错误!未定义书签。附录1:总体电路原理图................ 错误!未定义书签。附录2:元器件清单 ..................... 错误!未定义书签。

葡萄酒中苹果酸的测定(doc 16页)

葡萄酒中苹果酸的测定 原理: 利用MegaQuant TM (专利技术)测定L-苹果酸需要进行三步酶解反应,第一步:在L-苹果酸脱氢酶(L-MDH)的催化作用下,L-苹果酸被烟酰胺腺嘌呤二核苷酸(NAD+)氧化生成草酰乙酸: (1) L-苹果酸+ NAD+(L-MDH)oxaloacetate + NADH + H+ 第二步:加入过剩的L-谷氨酸,在谷草转氨酶的作用下,生成L-天门冬氨酸和2–酮戊二酸 (2) Oxaloacetate + L-glutamate (GOT)L-aspartate + 2-oxoglutarate 第三步:在心肌黄酶的催化作用下,NADH还原碘硝基氯化四氮唑(INT),生成甲基- INT (3) NADH + INT + H+(diaphorase)NAD+ +甲基-INT 生成的甲基- INT的量取决于L-苹果酸的量,甲基- INT的吸光度值可在505nm下测量。 特异性, 灵敏度, 测量范围和精确度: 该实验方法是专门用于测定L-苹果酸含量的。 最小可调吸光光度为0.01个吸光单位,样品体积为20uL,此时的L-苹果

酸浓度为7.7 mg/L。如果最小可调吸光光度为0.02吸光光度,样品体积为20uL,此时的L-苹果酸检测线为15.4 mg/L。 该实验的测量范围为0.15-15ug L-苹果酸(对于20uL样品液中的浓度为0.007-0.75 g/L),同一样品分别进行两次测定,其吸光度值会有0.01-0.02吸光单位的变化,对于样品体积为20uL,此时的L-苹果酸浓度大约在7.7-15.4 mg/L之间,如果样品是经过稀释的,在计算结果时候需要乘以相应的稀释系数(F),如果在样品制备阶段,样品的重量是被称量的,如:10g/L,0.02-0.05g/100g的细微差别能够被分辨。 干扰: 红酒中的酚醛树脂会对本试验造成干扰,引起INT的“缓慢反应”(图2),因此在对未稀释的红酒进行测定时,必须首先用聚乙烯聚吡咯烷酮(PVPP)净化样品。“缓慢反应”同样也发生在未稀释的白葡萄酒中,按照提供的方法进行测定,其缓慢反应速率非常的慢。 在用MegaQuant TM测定L-苹果酸的时候,对于存在的两种潜在的次要误差原因的认可是非常有必要的: 1.使用PVPP去除了红酒中的大部分酚醛树脂,但是还是存在着“缓慢 反应”,由于用PVPP处理过的葡萄酒(导致潜在的高估白葡萄酒中的L-苹果酸0.00-0.01g/L,或红葡萄酒中的浓度0.00-0.03g/L)其中存在的“缓慢反应”非常的慢,因此可以忽略不计(实验方法A),然而,如果想得到精确的结果,可以通过实验方法B精确计算得到。

钯碳含量检测方法

钯炭的含量检测方法 稀王水溶液:盐酸∶硝酸∶水= 3∶1∶1 取供试品约5g置于250ml烧杯中,加入50ml盐酸溶液(1∶1)煮沸10分钟清洗其表面。再用水煮沸洗涤三次。将表面处理好的供试品转移到称量瓶内,放入干燥箱,110℃干燥1小时,取出放入干燥器中,放冷至室温。精密称取处理好的供试品1.0g,置于250ml烧杯中,加入20ml稀王水,置于带调压器的电炉上加热至近沸,直至供试品全部溶解,再继续加热,使溶液体积浓缩至约5ml,然后分三次加入浓盐酸(每次4ml),分别蒸至近干,加入14ml 10%氯化钠溶液,蒸至近干,加入200ml 7%(V/V)盐酸溶液,在搅拌下缓慢加入20ml 1%丁二酮肟乙醇溶液。待沉淀完全后,用已在110℃干燥至恒重的四号石英砂芯漏斗抽滤,用7%(V/V)盐酸溶液洗涤至滤液无色,再用水洗涤至滤液呈中性。将石英砂芯漏斗抽干后,置干燥箱内110℃干燥1小时。取出放入干燥器冷却0.5小时称 重,直至恒重。 Pd含量按下式计算: Pd% = [(W1-W0)×0.3161/W]×100% W1为沉淀与四号石英砂芯漏斗恒重的重量,g; W0为四号石英砂芯漏斗恒重的重量,g; W为供试品重,g; 0.3161为丁二酮肟钯对钯的换算系数。 允许差:两次平行测定结果之差应不大于0.1%,取其算术平均值为测定 结果。

仅供个人用于学习、研究;不得用于商业用途。 For personal use only in study and research; not for commercial use. Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwe ndet werden. Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales. толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях. 以下无正文

GB1903.18-2016食品营养强化剂 柠檬酸苹果酸钙

中华人民共和国国家标准 G B1903.18 2016 食品安全国家标准 食品营养强化剂柠檬酸苹果酸钙 2016-12-23发布2017-06-23实施中华人民共和国国家卫生和计划生育委员会

食品安全国家标准 食品营养强化剂柠檬酸苹果酸钙 1范围 本标准适用于以碳酸钙等钙源二柠檬酸二苹果酸为原料,按一定比例混合反应后经中和二沉淀二分离二过滤和干燥等工艺而制得的食品营养强化剂柠檬酸苹果酸钙三 2化学名称二分子式二结构式 2.1化学名称 柠檬酸苹果酸钙 2.2分子式 C a x(C6H5O7)y(C4H4O5)z四n H2O 2.3结构式 以C a6(C6H5O7)2(C4H4O5)3四5H2O为例,结构式如下: C a6(C6H5O7)2(C4H4O5)3四5H2O 3技术要求 3.1感官要求 感官要求应符合表1的规定三

表1感官要求 项目要求检验方法 色泽白色 状态粉末结晶取适量试样置于清洁二干燥的白瓷盘中,在自然光线下,观察其色泽和状态 3.2理化指标 理化指标应符合表2的规定三 表2理化指标 项目指标检验方法柠檬酸苹果酸钙含量(C a,干基计),w/%20~26附录A中A.4 p H(100g/L)5~8附录A中A.5干燥失重,w/%?10附录A中A.6盐酸不溶物,w/%?0.2附录A中A.7溶解度,w/%?80附录A中A.8氟化物(以F计)/(m g/k g)?50G B/T5009.18重金属(以P b计)/(m g/k g)?10G B5009.74铅(P b)/(m g/k g)?2.0G B5009.12总砷(以A s计)/(m g/k g)?2.0G B5009.11

红外线遥控测距电路设计 (2)

红外线遥控测距电路设计 (2) 1 综述 光是一种电磁波,它的波长区间从几个纳米到 1 毫米左右。人眼可见的只是其中一部分,我们称其为可见光,可见光的波长范围为 380nm ~ 780nm ,可见光波长长到短分为红、橙、黄、绿、青、兰、紫光,其中波长比红光长的称为红外光。红外测距原理和雷达测距原理相似,是发射红外线然后测量回波时间,光速乘以时间再除以2就得到距离。于光速很快,而红外测距仪一般测量距离比较短,用常规的脉冲法常常因为时间过短而无法测量,所以一般是将红外线发射功率调制上一个较低的频率,然后测量回波与发射波的相位差,根据相位差可以计算出回波时间。因其快速高效日益引起人们的重视。 1 2 红外线测距原理 本章重点在于对红外线的基本特征进行分析,研究其特点及发生条件并按不同分类方法对其进行分类,进一步研究红外线的机理,进一步说明红外线在生产生活中的应用。 红外线简介 红外线的定义 在红光以外的光波叫做红外线,波长为微米,在红外线

中又分为远红外线(又叫长波红外线)、中波红外线、短波红外线。其中波长8—14微米的远红外线对人极具保健功能,又被誉为育成光线,也叫生命光线。在红光以外的光波叫做红外线,波长为微米,在红外线中又分为远红外线(又叫长波红外线)、中波红外线、短波红外线。其中波长8—14微米的远红外线对人极具保健功能,又被誉为育成光线,也叫生命光线。 红外线的特点 1)波长较大,容易发生衍射现象,可以穿过云雾和烟尘; 2)红外线有较强的热效应,可以用来红外加热; 3)任何物体都在不停的发射红外线,可应有到夜视仪技术;最后,红外线发 射的强度与物体的温度有关,在医学上红外成像仪用来检查病人的身体发病部位就是应用了这个特点。 2 3 红外测距的基本原理 本章重点在于对红外线测距的基本特征进行分析,研究其特点及发生条件并按不同分类方法对其进行分类,进一步研究红外线测距的机理,进一步说明红外线测距的方法,最后分析红外线测距电路的实现。 红外线的产生 自然界中的一切物体,只要它的温度高于绝对温度

食品中总酸的测定(滴定法)

学号姓名 实验三食品中总酸的测定(滴定法) 一、实验原理 果汁具有酸性反应,这些反应取决于游离态的酸以及酸式盐存在的数量。总酸度包括未解离酸的浓度和已解离酸的浓度。酸的浓度以摩尔浓度表示时,称为总酸度。含量用滴定法测定。果蔬中含有各种有机酸,主要有苹果酸、柠檬酸、酒石酸、草酸……。果蔬种类不同,含有机酸的种类和数量也不同,食品中酸的测定是根据酸碱中和的原理,即用标定的氢氧化钠溶液进行滴定。 二、材料、仪器与试剂 (一)材料:西红柿、苹果、果汁等 (二)仪器:碱式滴定管(20mL)、容量瓶(100mL)、移液管(10mL)、烧杯(100mL)、研钵或组织捣碎机、100ml量筒(量酒精)、1%酚酞指示剂、胶头滴管/滴瓶、容量瓶(1000mL)、布氏漏斗+滤纸、天平、三角烧瓶、洗瓶、活性炭(脱色)、和板、蒸馏水。 (三)试剂 1).0.1mol/L氢氧化钠:称4.0g氢氧化钠定容至1000mL,然后用0.1mol/L邻苯二甲酸氢钾标定,若浓度太高可酌情稀释。 2).1%酚酞指示剂:称1.0g酚酞,加入100mL50%的乙醇溶解。 三、操作步骤 1)0.1mol/L NaOH标准溶液的标定:将基准邻苯二甲酸氢钾加入干燥的称量瓶内,于105-110℃烘至恒重,用减量法准确称取邻苯二甲酸氢钾约0.6000克,置于250 mL锥形瓶中,加50 mL无CO2蒸馏水,温热使之溶解,冷却,加酚酞指示剂2-3滴,用欲标定的0.1mol/L NaOH溶液滴定,直到溶液呈粉红色,半分钟不褪色。同时做空白试验。 2)样品的处理与测定:准确称取混合均匀磨碎的样品10.0g(或吸10.0mL样品液),转移到100mL容量瓶中,加蒸馏水至刻度、摇匀。用滤纸过滤,准确吸取滤液20mL放入100mL 三角瓶中,加入1%酚酞2滴,用标定的氢氧化钠滴定至初显粉色在0.5min内不褪色为终点,记下氢氧化钠用量,重复三次,取平均值。 四、实验结果 式中:V——样品稀释总体积(mL)V1——滴定时取样液体积V2——消耗氢氧化

淀粉含量检测方法

谷物中淀粉含量的测定 本方法参考GB/T5009.9-2008《食品中淀粉的测定》的第二法酸水解法。 适用范围:本方法适用于谷物原料中淀粉含量的测定。 原理:试样经除去脂肪及可溶性糖类后,其中淀粉用酸水解成具有还原性的糖,然后按还原糖测定,并折算成淀粉。 方法一 1 试剂和材料 1.1 酒石酸铜甲液:34.639g CuSO4溶于水,加入0.5mL浓H2SO4,稀释到 500mL; 酒石酸铜乙液:173g酒石酸钾钠,加50g NaOH,稀释到500mL; 1.2 氢氧化钠溶液:c(NaOH)=1mol/L; 1.3 硫酸铁溶液:50g/L(称取50g硫酸铁,加入200mL水后,慢慢加入100mL 硫酸,冷后加入稀释至1000mL); 1.4 高锰酸钾标准滴定溶液:c(1/5KMnO4)=0.1mol/L; 1.5 乙醇溶液:85% v/v; 1.6 HCL:1+1和1+3; 1.7 NaOH溶液:40%; 1.8 乙酸铅溶液:20%; 1.9 硫酸钠:10%。 2 仪器设备 2.1粉碎磨:粉碎样品,使其完全通过孔径0.45mm(40目)筛。 2.2锥形瓶:250mL。

2.3回流冷凝装置:能与250mL锥形瓶瓶口相匹配。 3操作步骤 称取样品(粉碎过40目筛)2.0g~5.0g,准确至0.0002g,置于放有慢速滤纸 的漏斗中,用50mL石油醚分5次洗去样品中脂肪,再用150mL85%乙醇溶液 分数次洗涤残渣,以除去可溶性糖类物质,滤干乙醇溶液,将滤纸连同残渣一 并转移至250mL锥形瓶中。 加100mL水、30mL(1+1)HCl,在沸水浴上回流2h,回流完毕后,立即在 流水中冷却,待样品水解液冷却完全后,加2滴甲基红指示剂,先用NaOH溶 液(400g/L)调至黄色,再用(1+1)的HCl调至水解液刚变红色。若水解液颜色 较深,可用pH试纸测试,使试样水解液的pH值约为7,然后加20mL的乙酸 铅溶液(200g/L),摇匀,放置10min,再加20mL的硫酸钠溶液(100g/L),以 除去过多的铅。摇匀后,将全部溶液及滤渣转入500mL容量瓶中,用水洗涤锥 形瓶,洗液合并于容量瓶中,定容,摇匀,过滤,弃去初滤液20mL,滤液供 测定用。 吸取25.00mL滤液于三角瓶中,加25mL酒石酸铜甲液,再加25mL酒石 酸铜乙液,在电炉上加热(在3min内煮沸)并煮沸2min,取下过滤,并用60℃ 水洗涤烧杯和沉淀至洗液不呈碱性为止,将漏斗连同滤纸一同放至前面使用过 的烧杯上,向滤纸内加入硫酸铁(50g/L)40mL,使氧化亚铜完全溶解,摇匀溶液,再加25mL水,用玻璃棒搅拌到看不见Cu2O,以0.1mol/l高锰酸钾标准滴定溶 液滴定至呈微红色,10s不褪色为终点。同样条件做空白。 方法二 1 试剂 1.1 碱性酒石酸铜甲液:称取15g硫酸铜(CuS04·5H2O)及0.050g亚甲蓝,加适量 水溶解,再加水稀释至1000mL。

苹果酸

苹果酸有L一苹果酸、D-苹果酸和DL-苹果酸3种异构体。天然存在的苹果酸都是L型的,几乎存在于一切果实中,以仁果类中最多。苹果酸为无色针状结晶,或白色晶体粉末,无臭,带有刺激性爽快酸味,熔点127-130℃,易溶于水,55.59/100mL(20℃),溶于乙醇,不溶于乙醚。有吸湿性,1%(质量)水溶液的pH值2.4。[1] (1)D-苹果酸: 密度1.595,熔点101℃,分解点140℃,比旋光度+2.92°(甲醇),溶于水、 甲醇、乙醇、丙酮。 (2)L-苹果酸: 密度1.595,熔点100℃,分解点140℃,比旋光度-2.3°(8.5克/100毫升水),易溶于水、甲醇、丙酮、二恶烷,不溶于苯。等量的左旋体和右旋体混合得外消旋体。密度1.601;熔点131-132℃,分解点150℃;溶于水、甲醇、乙醇、二恶烷、丙酮,不溶于苯。 最常见的是左旋体,L-苹果酸,存在于不成熟的的山楂、苹果和葡萄果实的浆汁中。也可由延胡索酸经生物发酵制得。它是人体内部循环的重要中间产物,易被人体吸收,因此作为性能优异的食品添加剂和功能性食品广泛应用于食品、化妆品、医疗和保健品等领域。外消旋体可由延胡索酸或马来酸在催化剂作用下于高温高压条件和水蒸气作用制得。 编辑本段 安全性 安全性兔经口LDao 5.09/kg。狗经口LD501.Og/kg。ADI不作规定。大鼠[1%(质量)水溶液]LD501.6~3.29/kg。 苹果酸是苹果的一种成分,人每日由蔬菜、水果摄取的苹果酸为1.5~3.0g左右,从未发现不良反应,毒性极低。[1] 编辑本段 质量指标 按日本食品添加剂标准,苹果酸应符合下列质量指标:含量≥99.0%(质量),溶状、水溶液澄清,熔点127~130℃,重金属≤0.002%(质量),氯化物≤0.0035%(质量),铁≤0.004%(质量),灼烧残留物≤o.05%(质量)。[1] 按美国食用化学品法典(1983)规定,苹果酸应符合下列质量指标:含量≥99.5%(质量)。熔点130~132℃,灰分≤0.1%(质量),重金属(以Pb计)≤0.002%(质量),砷(以As计)≤0.0003%(质量),铅≤0.001%(质量),富马酸≤0.5%(质量),顺丁烯二酸≤0.05%(质量),水不溶≤o.1‰(质量)。[1] 编辑本段 生产现状 由于L-苹果酸属于发酵生产的产品,安全性能有保障,因此,国际市场上需求量快速增加,近年来需求量保持在年均10%左右的高速度。目前世界苹果酸主要生产国有美国、加拿大、日本等,世界总产量每年约为10万吨,其中L-苹果酸产量每年约为4万吨,而世界市场潜在需求量达到每年6万吨,可见市场发展空间之大。其中日本是世界主要的L-苹果酸生产国与出口国 编辑本段 制备 (1)萃取法将未成熟的苹果、葡萄、桃等的果汁煮沸,加入石灰水,生成钙盐沉淀,然后再

红外线遥控测试电路设计方案

红外线遥控测试电路设计方案 1 课程设计的目的 1了解光电二极管的工作原理和使用方法 2 利用模电知识熟练掌握光电二极管的使用方法 3 理论联系实际提高独立解决问题的能力 2 课程设计的任务与要求 熟悉硅光电二极管的工作原理,设计出合理的电路图,根据电路图准备所需的元器件,然后连接电路进行测试,当有红外光照射二极管时小灯泡发光,且小灯泡的亮度随着光照强度的增强而增强,随着光照强度的减弱而变暗。 1 巩固和加强模拟电子技术课程的理论知识 2掌握电子电路的一般设计方法,了解电子产品研制开发过程 3 提高电子电路实验技能及仪器的使用方法 4 掌握电子电路安装调试和故障排除方法 5学会撰写课程设计总结报告 6 学会查阅文献资料,培养自身独立分析问题和解决问题的能力 7培养创新能力和创新思维 3 设计方案与论证 3.1 红外线光敏遥控电路的设计方案 本设计方案由红外发射电路和接收发光两大电路组成,其中红外发射电路包含有红外硅光二极管LED2;接收发光电路使用的

有光电二极管LED1。在本电路的设计中,共使用了三个三极管,分别为VT1、VT2、VT3,选用的型号均为NPN型BC548型三极管,在本次实验的实现中,分别作为一级、二级和三级放大电路。当LED2接收到红外光信号后,则红外光信号将经过C4电容进行耦合,然后加到由VT3与VT2组成的两级交流放大器进行放大,而放大后的信号将从VT2管集电极输出,而放大后的信号将再次经过C2电容进行耦合,然后加到由VD1、VD2和C1组成的整流滤波电路以后,用得到的直流电压来控制电子开关VT1的状态。 3.2 设计方案的论证 按照原理图连接好电路以后进行试验:用红外光照射LED2,当硅光电二极管LED2接收到红外线信号时,VD1与VD2整流后的电压就会使VT1导通,进而使LED1发光二极管导通发光。若LED1的亮度随着红外光照强度的增强而增强,随着光照强度的减弱而减弱,那么电路连接正确,实验成功;若当红外线信号的探测时间很短时,由于此时的电容C1也可产生一个恒定的基极偏置电压。VT2、VT3及其外围元器件共同构成了两级交流放大器,两级放大器的增益已足够级间采用RC耦合方式。LED2与R6电阻反相串联。LED2的反向电流值会随红外光波变化而改变大小,进而将变化的信号进行放大和整流,若此时的LED1发生闪亮,则实验成功。 4 设计原理及功能说明 工作原理:

检验方法验证方案(含量测定)

检验方法验证方案 目的:证明所采用的检验方法适于相应的检测要求,具有可靠的准确度、精密度。范围:含量的检定方法的前验证 编定依据:《药品生产质量管理规范》1998年修订版及验证管理办法 职责:验证小组人员 目录 1.概述 2.验证目的 3.职责 3.1验证小组 3.2品质部 3.3化验室 4.验证内容 4.1验证的准备工作 4.2适用性验证 4.2.1准确度试验 4.2.2精密度试验 4.3拟订验证周期 4.4验证结果评定与结论 5.附件

1. 概述 对小容量注射剂的含量测定,本公司采用福林酚测定法,该检验方法具有测量准确、精密度高、专属性强、定量准确可靠、方法简便易行的特点,可满足小容量注射剂含量测定的要求。检验方法标准操作规程。用本方法进行转移因子注射液、胸腺肽注射液的含量测定。 2. 验证目的 为确认对转移因子注射液、胸腺肽注射的含量测定的紫外分光光度法,适合相应的检测要求,特制订本验证方案,进行验证。 验证过程应严格按照本方案规定的内容进行,若因特殊原因确需变更时,应填写验证方案变更申请及批准书,报验证工作小组批准。 验证前,应首先对验证所需的仪器、设备进行验证,对所需仪器、仪表、量具等进行校正。 3. 职责 3.1 验证工作小组 负责验证方案的审批。 负责验证的协调工作,以保证本验证方案规定项目的顺利实施。 负责验证数据及结果的审核。 负责验证报告的审批。 负责发放验证合格证书。 负责再验证周期的确认。 3.2 品质部 负责验证所需仪器、设备的安装、调试,并做好相应的记录。 负责组织验证所需仪器、设备的验证。 负责仪器、仪表、量具等的校正。 负责拟订检验方法的再验证周期 3.3 化验室 负责验证所需的标准品、样品、试剂、试液等的准备。 负责验证方案指定的试验的实施。 负责收集各项验证、试验记录,并对试验结果进行分析后,报验证工作小组。 4. 验证内容 4.1 验证的准备工作 4.1.1 验证所需文件资料 品质部负责提供验证所需的文件资料,包括该检验方法的标准操作规程。以及负责提供验证所需仪器、设备的验证报告以及仪器、仪表、量具等的校正报告。 检查人:日期:

L-苹果酸的功能与应用

L-苹果酸的功能及应用 摘要:L-苹果酸是一种天然有机酸,具有重要的生理功能,广泛应用于食品工业、医药工业以及其他行业中,本文着重介绍了L-苹果酸的作用,以及其在各行业中应用情况。 关键词:L-苹果酸,功能,应用 1.前言 L-苹果酸(L-羟基丁二酸)是一种重要的天然有机酸,广泛分布于植物、动物、微生物细胞中。L - 苹果酸是一种四碳酸,因为具有手性结构,因此一般有以下三种形式存在,即D- 苹果酸、DL- 苹果酸和L- 苹果酸,自然界存在的苹果酸都是L- 苹果酸[2]。L-苹果酸所具备的抗氧化作用、抗疲劳作用、增强改的吸收的功能让其成为广受欢迎的产品,并应用与食品、医药的多种领域。本文主要对L-苹果酸的作用与应用进行了概述,让读者更直接,容易的了解L-苹果酸。 2. 苹果酸的功能 2.1 苹果酸的抗氧化作用 L-苹果酸可以促进细胞内ATP生成,强化机体的能量代谢,在苹果酸脱氢酶的作用下L-苹果酸生成NAD(P)H,NAD(P)H作为生物体重要的电子载体和供氢体,参与多种抗氧化物质的还原再生,维持机体的抗氧化能力,而且可以直接清除自由基,发挥抗氧化作用。研究表明,L-苹果酸在苹果酸脱氢酶和苹果酸酶的作用下,能够大量生成NAD(P)H,外源性补充苹果酸,影响机体氧化还原状态,从而提高机体的抗氧化能力[3]。 2.2 苹果酸的抗疲劳作用 苹果酸对正常体力劳动及紧张劳动后体力的恢复有显著影响。研究发现,瓜氨酸- 苹果酸盐能促进肝脏的氨代谢,增强了肝脏功能,同时促进肾脏重碳酸盐的再吸收,缓解代谢性酸中毒,表明瓜氨酸- 苹果酸盐能促进疲劳的消除,在人体中具有抗疲劳的作用。苹果酸和氢氧化镁混合物还用于治疗肌纤维疼痛综合症(fibromyalgia syndrom) ,该病症的主要症状是长期肌肉酸痛且无力,混合物中的苹果酸能在低氧情况下产生ATP。Bendahan 等的研究发现,摄入瓜氨酸- 苹

基于单片机红外线遥控控制 LED灯显示系统设计与制作课程设计

单片机与接口技术课程设计 题目: 基于单片机红外线遥控控制 LED灯显示系统设计与制作班级:电子科学与技术1101 姓名:李婷 学号: 110803025 2013年12月11日

目录 第一章设计要求 (3) 第二章硬件系统设计 (3) 2.1基于单片机红外线遥控控制LED灯显示系统框架图 (3) 2.2单片机控制系统及其基本电路 (4) 2. 2.1 单片机最小系统 (4) 2.2.2时钟电路 (5) 2.2.3复位电路 (5) 2.3基于单片机红外遥控控制LED系统的设计原理 (6) 2.3.1单片机红外遥控控制LED显示系统原理 (6) 2.3.2单片机红外遥控控制LED系统码分制原理 (7) 2.4红外遥控发射系统电路设计 (8) 2.4.1指令按键电路 (8) 2.4.2 发射电路 (9) 2.4.3 显示模块 (9) 2.5红外遥控接收系统电路设计 (11) 2.5.1接收电路 (11) 2.5.2 LED灯显示电路 (11) 2.6硬件原理图 (12) 第三章软件系统设计 (12) 3.1 红外线发射电路程序流程图设计 (12) 3.2 红外线接收电路程序流程图设计 (13) 第四章系统测试与分析 (14) 4.1 利用Proteus和keil进行仿真调试 (14) 4.2 仿真图 (15) 第五章总结 (17) 附录1 (18) 附录2 (22) 参考文献 (25)

赣南师范学院 2013 — 2014 学年第_1_学期课程论文行政班级:电子科学与技术1101 学号:110803025 姓名:李婷

2.2单片机控制系统及其基本电路 2.2.1单片机最小系统 单片机晶振电路:对于MSC-51一般的晶振频率可以在1.2MHz—12MHz 之间选择,这是电容C可以对应的选择10pF—30pF。当使用89C55时晶振频率可以提高到24MHZ。对于本设计的电容C用30pF,晶振选用11.0592MHz。晶振电路如下图3-1所示,一条引脚接在XTAL1,另一条接在XTAL2。单片机的复位电路:为了防止程序执行过程中失步或运行紊乱,此处采用了上电复位及手动复位电路,电路图如下图2-1所示: 图2-2-1 单片机最小系统图

DL-苹果酸检测方法介绍—科标检测

DL -苹果酸检测方法介绍 ——科标检测 OH O OH HO O C 4H 6O 5 科标检测拥有全面的光谱、色谱、质谱、热学、生物培养实验室等国内外最先进的现代分析检测仪器设备,可以根据客户的需求,根据相关标准,制定专业的技术解决方法,提供一站式专业检测服务,以下是根据《中国药典》中苹果酸检测方法介绍: 【性状】本品为白色结晶性粉末;无臭,无 味。 本品在水和乙醇中易溶,在丙酮中微溶。 熔点 本品的熔点(中国药典2005年版二部附录VI C )为 128℃~132℃。 【鉴别】(1) 取本品约0.5g ,加水10ml 使溶解,用氨水调pH 值至中性,加1%对氨基苯磺酸溶液1ml ,在沸水浴中加热5分钟,加20%亚硝酸钠溶液5ml ,置水浴中加热3分钟,加4%氢氧化钠溶液5ml ,溶液应立即呈红色。 (2)本品的红外光吸收图谱应与DL -苹果酸对照品的图谱一致(中国药典2005年版二部附录Ⅳ C )。 【检查】 比旋度 取本品,精密称定,加水溶解并稀释制成每1ml 中含0.2g 的溶液,依法测定(中国药典2005年版二部附录VI E ),比旋度为-0.10?~+0.10?。 有关物质 照高效液相色谱法(中国药典2005年版二部附录V D )测定。 色谱条件与系统适用性试验 用磺酸基阳离子交换树脂为填充剂,以0.005mol/L 硫酸溶液为流动相;检测波长为210nm ;柱温为 37℃;取富马酸、马来酸、DL-苹果酸对照品适量,加流动相溶解并稀释制成每1ml 中约含富马酸10μg,马来酸4μg,DL -苹果酸1mg 的溶液,作为系统适用性溶液,精密量取20μl,注入液相色谱仪,理论板数按DL -苹果酸峰计算不低于2000,富马酸和马来酸

含量测定方法学考察

含量测定方法学验证内容及可接受标准 1.准确度 可接受的标准为:各浓度下的平均回收率均应在98.0%-102.0%之间,9个回收率数据的相对标准差(RSD)应不大于2.0%。 2.线性 其主峰的面积,计算相应的含量。以含量为横坐标(X),峰面积为纵坐标(Y),进行线性回归分析。 可接受的标准为:回归线的相关系数(R)不得小于0.998,Y轴截距应在100%响应值的2%以内,响应因子的相对标准差应不大于2.0%。 3.精密度 1)重复性 件下进行测试,所得6份供试液含量的相对标准差应不大于2.0%。 2)中间精密度 4.专属性 可接受的标准为:空白对照应无干扰,主成分与各有关物质应能完全分离,分离度不得小于2.0。以二极管阵列检测器进行纯度分析时,主峰的纯度因子应大于980。 5.检测限

主峰与噪音峰信号的强度比应不得小于3。 6.定量限 主峰与噪音峰信号的强度比应不得小于10。另外,配制6份最低定量限浓度的溶液,所测6份溶液主峰的保留时间的相对标准差应不大于2.0%。 7.耐用性 方法:分别考察流动相比例变化±5%、流动相pH值变化±0.2、柱温变化±5℃、 可接受的标准为:主峰的拖尾因子不得大于2.0,主峰与杂质峰必须达到基线分离;各条件下的含量数据(n=6)的相对标准差应不大于2.0%。 8、系统适应性 应不大于2.0%,主峰保留时间的相对标准差应不大于1.0%。另外,主峰的拖尾因子不得大于2.0,主峰与杂质峰必须达到基线分离,主峰的理论塔板数应符合质量标准的规定。 有关物质测定方法学验证内容及可接受标准: 1.准确度 该指标主要是通过回收率来反映。验证时一般要求根据有关物质的定量限与质量标准中该杂质的限度分别配制三个浓度的供试品溶液各三份(例如某杂质的限度为0.2%,则可分别配制该杂质浓度为0.1%、0.2%和0.3%的杂质溶液),分别测定其含量,将实测值与理论值比较,计算回收率,并计算9个回收率数据的相对标准差(RSD)。该项目的可接受的标准为:各浓度下的平均回收率均应在80%-120%之间,如杂质的浓度为定量限,则该浓度下的平均回收率可放宽至70%-130%,相对标准差应不大于10%。 2.线性 线性一般通过线性回归方程的形式来表示。具体的验证方法为:在定量限至

红外遥控一体化接收头原理及应用电路2

红外遥控一体化接收头原理及应用电路2 一.一体化红外线接收头的原理 二. 红外遥控一体化接收头型号:SH-0038应用电路集 三. 红外遥控一体化接收头型号:RPM-638应用电路集 四.一体化红外线接收头的管脚排列及检测 红外遥控一体化接收头原理图及应用 一体化红外接收头型号:SFH506-38、RPM-638 红外接收电路通常由红外接收二极管与放大电路组成,放大电路通常又由一个集成块及若干电阻电容等元件组成,并且需要封装在一个金属屏蔽盒里,因而电路比较复杂,体积却很小,还不及一个7805体积大! SFH506-38与RPM-638是一种特殊的红外接收电路,它将红外接收管与放大电路集成在一体,体积小(大小与一只中功率三极管相当),密封性好,灵敏度高,并且价格低廉,市场售价只有几元钱。它仅有三条管脚,分别是电源正极、电源负极以及信号输出端,其工作电压在5V左右.只要给它接上电源即是一个完整的红外接收放大器,使用十分方便。 它的主要功能包括放大,选频,解调几大部分,要求输入信号需是已经被调制的信号。经过它的接收放大和解调会在输出端直接输出原始的信号。从而使电路达到最简化!灵敏度和抗干扰性都非常好,可以说是一个接收红外信号的理想装置。 一体化红外接收头,如图5所示外形及管脚:型号区别:

型号:SH0038 一体化红外接收头,如图5所示: 图5 红外接收头 红外接收头的种类很多,引脚定义也不相同,一般都有三个引脚,包括供电脚,接地和信号输 出脚。根据发射端调制 一. 红外遥控一体化接收头型号:SH0038 应用电路集 1. 用红外接收头、CD4069 制作的遥控灯原理图

食品添加剂 L-苹果酸标准文本(食品安全国家标准)

食品安全国家标准 食品添加剂L-苹果酸1 范围 本标准适用于以酶工程法、发酵法制得的食品添加剂L-苹果酸。 2 化学名称、分子式、结构式和相对分子质量 2.1 化学名称 L-羟基丁二酸 2.2 分子式 C4H6O5 2.3 结构式 2.4 相对分子质量 134.09(按2007年国际相对原子质量) 3 技术要求 3.1 感官要求 感官要求应符合表1的规定。 表1 感官要求 3.2 理化指标 理化指标应符合表2的规定。

表2 理化指标

附录A 检验方法 A.1 警示 试验方法规定的一些试验过程可能导致危险情况。操作者应采取适当的安全和健康措施。 A.2 一般规定 本标准所用试剂和水在没有注明其他要求时,均指分析纯试剂和GB/T 6682规定的三级水。试验中所用标准滴定溶液、杂质测定用标准溶液、制剂及制品,在没有注明其他要求时,均按GB/T 601、GB/T 602和GB/T 603的规定制备。试验中所用溶液在未注明用何种溶剂配制时,均指水溶液。 A.3 鉴别试验 A.3.1 试剂和材料 A.3.1.1 氨水溶液:2+3。 A.3.1.2 对氨基苯磺酸溶液:10 g/L。 A.3.1.3 亚硝酸钠溶液:200 g/L。 A.3.1.4 氢氧化钠溶液:40 g/L。 A.3.2 鉴别方法 A.3.2.1 苹果酸氨盐呈色试验 称取0.5 g试样,精确至0.01 g,置于50 mL试管中,加入10 mL水溶解。用氨水溶液中和至中性,加入1 mL对氨基苯磺酸溶液,在沸水浴中加热5 min。加入5 mL亚硝酸钠溶液,再置于水浴加热3 min 后,加入5 mL氢氧化钠溶液,试验溶液应立即呈红色。 A.3.2.2 旋光特性试验 试验方法同A.5,试样水溶液应呈左旋特性。 A.4 L-苹果酸(C4H6O5)含量的测定 A.4.1 方法提要 以酚酞为指示剂,用氢氧化钠标准滴定溶液滴定试样水溶液,根据氢氧化钠标准滴定溶液的用量,计算以C4H6O5计的总酸含量为L-苹果酸含量。 A.4.2 试剂和材料 A.4.2.1 无二氧化碳的水。 A.4.2.2 氢氧化钠标准滴定溶液:c(NaOH)=1.0 mol/L。 A.4.2.3 酚酞指示液:10 g/L。 A.4.3 分析步骤 A.4.3.1 称取2.0 g试样,精确至0.000 2 g,加20 mL无二氧化碳的水溶解,加2 滴酚酞指示液,用氢氧化钠标准溶液滴定至微红色,保持30 s不褪色为终点。 A.4.3.2 在测定的同时,按与测定相同的步骤,对不加试样而使用相同数量的试剂溶液做空白试验。 A.4.4 结果计算

表面活性剂含量测定方法

表面活性剂含量测定方法 1.阴离子表面活性剂含量测定(两相滴定) 1.1主要试剂 (1)十六烷基三甲基溴化铵(CTAB),分析纯; (2)十二烷基磺酸钠,分析纯; (3)二氯甲烷(CH2Cl2)、硫酸钠、浓硫酸,百里酚蓝(T.B.)、次甲基蓝(M.B.)分析纯; (4)百里酚蓝(T.B.)贮藏液:称取0.05g百里酚蓝,溶于50ml20%乙醇中,待溶解后过滤,滤液用水稀释至500ml; (5)次甲基蓝(M.B.)贮藏液:称取0.036g次甲基蓝,用蒸馏水溶解合并,转入1L容量瓶中,加水稀释至刻度; (6)混合指示剂:混合225ml百里酚蓝(T.B.)贮藏液和30ml次甲基蓝(M.B.)贮藏液,用水稀释至500ml; (7)酸性硫酸钠溶液:称取100g硫酸钠和12.6ml浓硫酸,用蒸馏水溶解合并,转入1L容量瓶中,加水稀释至刻度; (8)十二烷基磺酸钠标准溶液:称取1.06~1.12g十二烷基磺酸钠(准确至0.0001g),用蒸馏水溶解,转入1L容量瓶中,加水稀释至刻度, 其浓度为C1=取样质量*样品纯度/272.38,单位mol/L; (9)C TAB阳离子表面活性剂标准溶液:称取CTAB0.36~0.37g(准确至 0.0001g),用蒸馏水溶解,转入1L容量瓶中,加水稀释至刻度,其 准确浓度C2可用十二烷基磺酸钠标准溶液标定; 1.2实验原理 阴离子型表面活性剂的测量,其原理是亚甲基蓝无机酸盐属于阳离子染料,溶于水而不溶于氯仿,但阴离子活性物与亚甲基蓝反应生成的络合物溶于氯仿。用CTAB阳离子表面活性剂标准溶液滴定溶液中的阴离子活性物,当接近终点时,

阳离子表面活性剂与络合物发生复分解反应,释放出亚甲基蓝,蓝色逐渐从氯仿层转移到水层,当氯仿层与水层为同一蓝色时为滴定终点。 1.3 实验步骤 取10ml阴离子表面活性剂溶液于100ml具塞量筒中(或碘量瓶、分液漏斗),加入混合指示剂及酸性硫酸钠各5ml,加水使水相保持在30ml,加入15ml二氯甲烷,摇匀后静置,用浓度为C2的CTAB标准溶液滴定,下相由浅紫灰色变为明亮的黄绿色即为终点,临近终点时上相逐渐变为无色,有助于避免滴定过量。 测定样品的浓度C=CTAB标准溶液体积*C2/10 注意:二氯甲烷具有弱毒性,且易于挥发,滴定过程应在通风橱中进行,操作人员需戴手套。 2.两性离子表面活性剂含量测定 2.1 所需试剂 (1)磷钨酸、盐酸、硝酸、硫酸、硝基苯均为分析纯; (2)乙醇95%; (3)海明1622、二硫化蓝VN-150; (4)十二烷基硫酸钠,分析纯; (5)溴化底米迪鎓; (6)刚果红指示剂; (7)苯并红紫4B指示剂(溶解0.1g苯并红紫4B(特级试剂)于纯水中,稀释至100mL)。 2.2.方法原理 在酸性条件下甜菜碱类两性活性剂和苯并红紫4B络合成盐。这种络盐溶在过量的两性表面活性剂中,即使酸性,在苯并红紫4B的变色范围也不呈酸性色。两性表面活性剂在等电点以下的pH溶液中呈阳离子性,所以同样能与磷钨酸定量反应,并生成络盐沉淀,而使色素不显酸性色。

柠檬酸综述

柠檬酸测定综述 摘要:柠檬酸作为一大有机酸,广泛应用于有关行业,为此对于其量的测定至关重要。例如在食品中,柠檬酸作为添加剂,其含量是检测食品质量的一项重要指标。本综述简述了柠檬酸测定的方法,如高效液相色谱法、反相高效液相色谱法、离子色谱法、气相色谱法、毛细管电泳法等。 关键词:柠檬酸;测定方法;高效液相色谱法;反相高效液相色谱法;离子色谱法;气相色谱法 1.前言 柠檬酸是一种广泛存在于动植物组织和各种水果、蔬菜中的有机酸,与人类的健康密切相关,可增强人体的正常代谢[1]。由于其物理性能、化学性能、衍生物的性能,被广泛应用于一些食品加工领域。如用于各种饮料、汽水、葡萄酒、糖果、饼干、罐头果汁、乳制品等食品的制造 [2]。在食品上,柠檬酸的含量对其味道的影响很大,并且在某些食品的品质指标测定的一大指标。但是柠檬酸的使用范围是受到严格限制的[2],不能无限制的添加。为此,如何定性和定量的测定柠檬酸的含量有重要的意义。 目前,测定柠檬酸的方法有高效液相色谱法[3]、反相高效液相色谱法[4]、离子色谱法[5]、气相色谱法[6]、微分电位溶出法[7]、毛细管电泳法[8]、动力学法[9]、酶法[10]等。现将各种测定方法在柠檬酸测定中的使用逐一介绍。 2.分析方法 2.1 高效液相色谱法(HPLC) 高效液相色谱法是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成. 与经典液相色谱相比有以下优点:速度快、分辨率高、灵敏度高、色谱柱可反复使用、样品量少且易回收等。 利用高效液相色谱法测定柠檬酸有以下优点:能够直接进行检测,避免杂质等的影响;测定方法简便,时间短,结果准确。特别是对于芳香族有机酸和多元酸,已被广泛用于各种食品和天然物中有机酸的测定[2]。王永军等[3]在利用HPLC 检测方法时,建立了一种准确对发酵液中柠檬酸含量测定的仪器方法,在检测范围6~16mg/ mL 之间呈线性, R = 0. 999 7 , RSD 为±0. 8 %~1. 2 %( n = 6) ,最低检测浓度为0. 02mg/mL。这种方法简单、灵敏、重现性好,避免了由于化学转化所引起的测定误差,以及发酵液中色素的影响。 对于采用HPLC法测定柠檬酸的方法,在文献中有很多。刘加兰等[11]用Atlantis C18(5μm,4.6×150mm)色谱柱,以0.05 mol/L Na2HPO4(pH 2.8)溶液做流动相,流速0.8mL/min,紫外检测波长210 nm,一次性分离柠檬酸发酵液中的草酸、苹果酸、a一酮戊二酸、柠檬酸、富马酸、乌头酸、柠康酸。建

红外遥控开关接收电路

目录 1、引言 (1) 2、总体设计方案 (1) 2.1 设计思路 (1) 2.2 总体设计图 (2) 2.3、电源电路 (2) 2.4、红外发光二极管 (2) 2.5、光敏三极管 (3) 3、电路原理 (3) 3.1红外发射电路 (3) 3.2、红外接收电路 (4) 4、总结与体会 (4) 参考文献 (6) 附录:红外遥控开关仿真图 (6)

红外遥控开关设计 机电系电气工程及其自动化094 张亚勇 2009190425 摘要:红外线开关具有灵敏度高、抗干扰性能好等特点,其遥控距离为8m以上,可用于控制照明灯、电风扇等家用电器。本例红外遥控开关利用常用的彩色遥控器去控制一种或多种家用电器。该红外线遥控开关由电源部分、红外接收部分、解码与控制部分、执行电路组成。由彩色遥控器发出红外信号,一体化接收头接收到遥控编码信号后送到解码与控制集成电路,由解码控制集成电路内部分析处理后输出信号送给执行电路去控制电器的开、关。 关键词:电源红外接收器执行电路 1、引言 红外遥控是当前使用最为广泛的通信和控制手段之一,由于其结构简单、体积小、功耗低、抗干扰能力强、可靠性高及成本低等优点而广泛应用于家电产品、工业控制和智能仪器系统中。然而市场上的绝大部分遥控器都是针对各自特定的遥控对象设计的,不能直接应用于通用的智能仪器研发及其更一般的控制场合。通常情况下,一般家庭所使用的电视机、空调、VCD/DVD等家用电器都使用了红外遥控器,而这些红外遥控器都是针对各自产品所设计的,从而导致了一般家庭中拥有数个遥控器,那么,能否将这些遥控器的功能进行复用,进而减少遥控器的数量,使遥控器的功能更加强大,就显得十分必要了。 2、总体设计方案 2.1 设计思路 一个完整的红外遥控开关包括红外发射和装臵和红外接收装臵,每一部分的设计思路不同。 对于红外发射装臵,应该包括控制电路、方波振荡器和红外发射装臵。有开关控制产生的信号经过方波振荡器整形后控制三极管的基极控制三极管的导通与否而控制在其集电极的红外发光二极管的接通与断开,实现红外光脉冲的发射。 而对于接收装臵接受的信号弱,所以红外遥控接收装臵必须有一个红外接头所接受的信号在这个电路里放大、限幅、选频、检波及整形处理,然后字啊送入解调器电路中。用锁相环对设计的电路进行加密,只有符合一定频率的信号才能被电路接收,锁相环接收到信号后输出的是一个低电平信号,经过双稳态D触发器后接到控制执行电路中,实现对设备的遥控。

相关主题
文本预览
相关文档 最新文档