当前位置:文档之家› 液压过滤器选型指南及案例

液压过滤器选型指南及案例

液压过滤器选型指南及案例
液压过滤器选型指南及案例

液压过滤器选型设计指南

1 范围

本指南规定了液压过滤器的设计原则、注意事项、液压过滤器各项参数的选择,以及例举了液压过滤器选型设计的案例。

2 规范性引用文件

下列文件的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 20079 液压过滤器技术条件

Q/SY 012 015 液压过滤器选用规范

3 术语、符号及定义

GB/T 20079确定的术语、符号和定义适用于本文件。

3.1

过滤精度

指油液通过过滤器时,能够穿过滤芯的球形污染物的最大直径,以微米(μm)表示。

3.2

过滤器最大流量

由制造商所推荐的在规定运动粘度下通过被试过滤器的最大流量,以单位L/min表示。

3.3

纳污容量

指过滤器的压力降达到极限值时,滤芯所容纳的污染物重量,以单位kg表示。

3.4

过滤比

过滤器上游大于等于某一给定尺寸χ的颗粒污染物数量与下游大于等于同一给定尺寸的颗粒污染物数量之比,用βχ表示。

3.5

洁净过滤器总成压降△P总

被试元件为装有洁净滤芯的洁净过滤器,其测得的入口与出口压力之差。

3.6

壳体压降△P壳体

过滤器不装滤芯时的压降。

3.7

洁净滤芯压降△P滤芯

洁净滤芯所产生的压降,其值等于洁净过滤器总成压降减少壳体压降。

4 工作原理与结构型式

4.1 过滤器的工作原理与结构

过滤器的典型结构见图1。

图1 液压过滤器典型结构

油液从进油口进入过滤器,沿滤芯的径向由外向内通过滤芯,油液中颗粒被滤芯中的过滤层滤除,进入滤芯内部的油液即为洁净的油液。过滤后的油液从过滤器的出油口排出。

4.2 过滤器的分类

过滤器按其用途及安装部位,可分为如图2所示的5种不同类型。

图2 过滤器安装位置示意图

设计系统时采用哪种或哪几种过滤方式的组合应根据系统液压元件类型,工况,成本和整机布置综合考虑,可参考表1所示优缺点设计最优的系统过滤方案,其中,吸油过滤容易导致液压泵吸空,建议尽量不采用高精度吸油过滤方案。

表1 不同过滤方式的优缺点

5 主参数及设计要求

5.1 过滤精度

过滤器的精度等级应根据系统液压元件类型来确定。

表2 过滤器精度选择

5.2 公称压力

公称压力指过滤器工作中所允许的最大工作压力,与滤器的壳体及元件的耐压有关,过滤器的公称压力应大于等于实际应用压力。

5.3 过滤效率

为提高过滤效率,必须提高过滤器的过滤比,并保证其压降在允许范围内。

5.4 过滤能力

过滤能力指一定压力降下允许通过过滤器的最大流量,一般用过滤器的有效过滤面积(滤芯上能通过油液的总面积)来表示。过滤器的过滤能力还应根据过滤器在液压系统中的安装位置来考虑,如过滤器安装在吸油管路上时,其过滤能力应为泵流量的两倍以上。

5.5 使用寿命

过滤器滤芯应有较大的纳污容量,良好的抗腐蚀性能,并能在规定的温度持久地工作。

5.6 维护性能

滤芯要利于清洗和更换,便于拆装和维护。

6 过滤器选型步骤

1)明确设计要求:明确系统压力、流量、液压油牌号、工作温度、系统需求的油液精度NAS等级;

2)根据表1确定系统需要的过滤精度等级;

3)根据过滤器在液压回路中的安装位置(图2所示)和使用压力确定过滤器的类型;

4)确定规格大小:先根据经验或预选列线图(如图A.3)预选,然后计算核算其初始压降,若大于前述推荐值则需重新选择更大流量规格的过滤器;

5)确定过滤器的污染发讯方式、旁通等。

7 过滤器压降计算

洁净过滤器总成压降△P 总等于过滤器壳体压降△P 壳体与洁净滤芯压降△P 滤芯之和,即:

总P ?=壳P ?+滤芯P ?

△P 壳体与液压油密度成正比,附录A 给出了液压油密度为X kg/cm 3

(一般为860 kg/cm 3

或900 kg/cm 3

)的某型号过滤器壳体压降——流量曲线,从流量曲线中可查出过滤器实际使用流量下的压降值,△P

体计算方法:

所查值液压油实际密度

壳体??X

P

由于液压油密度变化不大,一般可以取△P 壳体=所查值

△P 滤芯与液压油粘度成正比,附录A 给出了液压油运动粘度为Y mm 2

/s(cSt)(一般为30mm 2

/s(cSt))的某型号过滤器滤芯压降——流量曲线,从流量曲线中可查出过滤器实际使用流量下的压降值,滤芯P ?计算方法:

所查值液压油实际运动粘度

滤芯??Y

P

洁净过滤器总成压降总P ?应满足以下要求: 压油过滤器:△P 总≤1bar ; 回油过滤器:△P 总≤0.5bar ;

吸油过滤器:△P 总≤0.05bar ;

吸回油过滤器的△P 总按回油过滤器进行计算,但吸回油过滤器具有约(0.40~0.45)bar 背压,总P ?=所查值-(0.40~0.45)bar 。 8 注意事项

8.1 过滤器不能反向通油,应制定可靠措施确保工人不会接错。

8.2 滤芯被污染后,流经过滤器的压差可能将旁通阀打开,导致油液未全流量过滤,甚至压溃滤网,因此,过滤器必须设置目视或电气报警,提供关于是否需要更换滤芯的准确而可靠的指示。对于安装位置不便于操作手观测的过滤器,优先采用电发讯报警方式。 8.3 推荐选用带冷起动阀的过滤器。

8.4 因滤芯属易损件,设计时应留出维修换件时的滤芯更换空间。

8.5 钢质滤芯能重复使用,但考虑到清洗后的滤芯清洁度难以达标,建议选用一次性的纸质滤芯。 8.6 对于采用单活塞杆液压缸的系统,计算时要注意活塞外伸和内缩时的回油流量的不同:内缩时无杆腔回油与外伸时有杆腔回油的流量之比,与两腔有效工作面积之比相等。

8.7 对于采用吸回油过滤器的系统,其回油流量应比吸油流量大20%,避免瞬时回油不足,系统直接从油箱吸油未经过滤。

附 录 A

(资料性附录) 液压过滤器设计选型案例

A.1 选型案例 A.1.1 设计要求

过滤方式:回油过滤

过滤器处最高工作压力:15bar 液压系统类型:伺服系统 泵输出流量p Q =27.5L/min

液压油:ISO VG 46 工作温度:40℃

液压缸两腔有效工作面积比A1/A2=2/1 A.1.2 确定过滤精度

由表1可知,伺服系统液压油精度等级为NAS7,确定滤芯绝对过滤精度为5μ。 A.1.3 初定过滤器类型

系统设计采用回油过滤方式,通过过滤器的实际流量55L/min 25.272/1=?=?=A A Q Q p ,系统最高工作压力15bar ,根据经验初选回油过滤器:RF BN/HC 110 G 005 C 1.X 。 A.1.4 计算初始压降

由图A.1查得RF110过滤器壳体在55L/min 流量下的压降为0.18bar ,由图A.2查得RF110过滤器洁净滤

芯在55L/min 流量下的压降为0.7bar (粘度为30mm 2

/s 时)。过滤器总成初始压降:

总P ?=壳P ?+滤芯P ?=0.18+0.7×46/30=1.25bar

可见,若选用RF110过滤器其初始压降大于允许值0.5bar ,必须选用更大流量规格的过滤器。

图A.1 RF110过滤器滤壳初始压降曲线图A.2 RF110过滤器滤芯初始压降曲线

A.1.5 确定过滤器规格

根据前述计算结果将过滤器型号修正为:RF BN/HC 240 G 005 C 1.X,查该型号过滤器的对应曲线并重复A.2.4的计算过程(此处从略),得出其总成初始压降能满足设计要求。

为阐述选型过程和强调过滤器压降的校核,初选时本例故意选了一个小型号过滤器,事实上,根据图A.3给出的预选列线图可以确定满足前述设计要求的过滤器规格应为240。

A.1.6 根据预选列线图初选过滤器方法介绍

根据预选列线图确定过滤器规格,图A.3给出的是液压油粘度为30mm2/s时的曲线,此系统液压油粘度为46mm2/s,换算流量Q=55×46/30=84L/min。根据图A.3查得流量84L/min和过滤精度5μ时的过滤器规格为240。确定过滤器型号为:回油过滤器RF BN/HC 240 G 005 C 1.X。

图A.3 RF110过滤器预选列线图

A.1.7 其他附件

确定过滤器污染发讯方式,旁通等,此处从略。

A.1.8 备注

为在有限篇幅内强调油缸对回油流量的影响,本案例选用回油过滤器来阐述选型校核过程,事实上,对于高精度伺服系统,一般应选用压油过滤其在伺服阀进口过滤。

如何确定液压油缸规格型液压油缸选型参考

如何确定液压油缸规格型液压油缸选型参考 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

目录 程序 1:初选缸径/杆径 ★条件一 已知设备或装置液压系统控制回路供给液压缸的油压 P、流量 Q 及其工况需要液压缸对载输出力的作用方式(推、拉、既推又拉)和相应力(推力 F1、拉力 F2、推力 F1 和拉力F2)的大小(应考虑负载可能存在的额外阻力)。针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下:(1)输出力的作用方式为推力 F1 的工况: 初定缸径 D:由条件给定的系统油压 P(注意系统的流道压力损失),满足推力 F1 的要求对缸径 D 进行理论计算,参选标准缸径系列圆整后初定缸径 D; 初定杆径 d:由条件给定的输出力的作用方式为推力 F1 的工况,选择原则要求杆径在速1.46~2 (速比:液压缸活塞腔有效作用面积与活塞杆腔有效作用面积之比)之间,具体需合液压缸回油背压、活塞杆的受压稳定性等因素,参照相应的液压缸系列速比标准进行杆径的选择

(2)输出力的作用方式为拉力 F2 的工况: 假定缸径 D,由条件给定的系统油压 P(注意系统的沿程压力损失),满足拉力 F2 的要求对杆径 d 进行理论计算,参选标准杆径系列后初定杆径 d,再对初定杆径 d 进行相关强度校验后确定。(3)输出力的作用方式为推力 F1 和拉力 F2 的工况: 参照以上(1)、(2)两种方式对缸径 D 和杆径 d 进行比较计算,并参照液压缸缸径、杆径标准系列进行选择。 ★条件二 已知设备或装置需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力 F1、拉力 F2、推力 F1 和拉力 F2)大小(应考虑负载可能存在的额外阻力)。但其设备或装置液压系统控制回路供给液压缸的油压 P、流量 Q 等参数未知,针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下: (1)根据本设备或装置的行业规范或特点,确定液压系统的额定压力 P;专用设备或装置液压系统的额定压力由具体工况定,一般建议在中低压或中高压中进行选择。 (2)根据本设备或装置的作业特点,明确液压缸的工作速度 要求。(3)参照“条件一”缸径/杆径的初选方法进行选 择。 注:缸径 D、杆径 d 可根据已知的推(拉)力、压力等级等条件由下表进行初步查取。 不同压力等级下各种缸径/杆径对应理论推(拉)力表

液压泵液压缸液压马达的型号及参数以及

液压、气动 一、液压传动 1、理解:液压传动是以流体为工作介质进行能量传递的传动方式。 2、组成原件 1、把机械能变换为液体(主要是油)能量(主要是压力能)的液压泵 2 、调节、控制压力能的液压控制阀 3、把压力能转换为机械能的液压执行器(液压马达、液压缸、液压摆动马达) 4 、传递压力能和液体本身调整所必需的液压辅件 液压系统的形式 3、部分元件规格及参数 衡力,磨损严重,泄漏较大。 叶片泵:分为双作用叶片泵和单作用叶片泵。这种泵流量均匀、运转平稳、噪音小、作压力和容积效率比齿轮泵高、结构比齿轮泵复杂。 柱塞泵:容积效率高、泄漏小、可在高压下工作、大多用於大功率液压系统;但结构复杂,材料和加工精度要求高、价格贵、对油的清洁度要求高。 一般在齿轮泵和叶片泵不能满足要求时才用柱塞泵。还有一些其他形式的液压泵,如螺杆泵等,

但应用不如上述3种普遍。 适用工况和应用举例

【KCB/2CY型齿轮油泵】工作原理: 2CY、KCB齿轮式输油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵内的整个工作腔分两个独立的部分。A为入吸腔,B为排出腔。泵运转时主动齿轮带动被动齿轮旋转,当齿化从啮合到脱开时在吸入侧(A)就形成局部真空,液体被吸入。被吸入的液体充满齿轮的各个齿谷而带到排出侧(B),齿轮进入啮合时液体被挤出,形成高压液体并经泵的排出口排出泵外。 KCB/2Y型齿轮油泵型号参数和安装尺寸如下: 【KCB/2CY型齿轮油泵】性能参数:

【KCB/2CY型齿轮油泵】安装尺寸图:KCB18.3~83.3与2CY1.1~5安装尺寸图 电动机 KCB200~960与2CY8~150安装尺寸图

液压缸选型参考

【液压缸选定程序】 程序1:初选缸径/杆径(以单活塞杆双作用液压缸为例) ※ 条件一 已知设备或装置液压系统控制回路供给液压缸的油压P、流量Q及其工况需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)的大小(应考虑负载可能存在的额外阻力)。针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下: (1)输出力的作用方式为推力F1的工况: 初定缸径D:由条件给定的系统油压P(注意系统的流道压力损失),满足推力F1的要求对缸径D进行理论计算,参选标准缸径系列圆整后初定缸径D; 初定杆径d:由条件给定的输出力的作用方式为推力F1的工况,选择原则要求杆径在速比~2(速比:液压缸活塞腔有效作用面积与活塞杆腔有效作用面积之比)之间,具体需结合液压缸回油背压、活塞杆的受压稳定性等因素,参照相应的液压缸系列速比标准进行杆径d的选择。 (2)输出力的作用方式为拉力F2的工况: 假定缸径D,由条件给定的系统油压P(注意系统的沿程压力损失),满足拉力F2的要求对杆径d进行理论计算,参选标准杆径系列后初定杆径d,再对初定杆径d进行相关强度校验后确定。 (3)输出力的作用方式为推力F1和拉力F2的工况: 参照以上(1)、(2)两种方式对缸径D和杆径d进行比较计算,并参照液压缸缸径、杆径标准系列进行选择。 ※ 条件二 已知设备或装置需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)大小(应考虑负载可能存在的额外阻力)。但其设备或装置液压系统控制回路供给液压缸的油压P、流量Q等参数未知,针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下:(1)根据本设备或装置的行业规范或特点,确定液压系统的额定压力P;专用设备或装置液压系统的额定压力由具体工况定,一般建议在中低压或中高压中进行选择。 (2)根据本设备或装置的作业特点,明确液压缸的工作速度要求。 (3)参照“条件一”缸径/杆径的初选方法进行选择。 注:缸径D、杆径d可根据已知的推(拉)力、压力等级等条件由下表进行初步查取。 不同压力等级下各种缸径/杆径对应理论推(拉)力表

油缸(液压缸)设计指导书

液压缸设计指导书

一、设计目的 油缸是液压传动系统中实现往复运动和小于360°回摆运动的液压执行元件。具有结构简单,工作可靠,制造容易以及使用维护方便、低速稳定性好等优点。因此,广泛应用于工业生产各部门。其主要应用有:工程机械中挖掘机和装载机的铲装机构和提升机构,起重机械中汽车起重机的伸缩臂和支腿机构,矿山机械中的液压支架及采煤机的滚筒调高装置,建筑机械中的打桩机,冶金机械中的压力机,汽车工业中自卸式汽车和高空作业车,智能机械中的模拟驾驶舱、机器人、火箭的发射装置等。它们所用的都是直线往复运动油缸,即推力油缸。所以进一步研究和改进液压缸的设计制造,提高液压缸的工作寿命及其性能,对于更好的利用液压传动具有十分重要的意义。 通过学生自己独立地完成指定的课程设计任务,提高理论联系实际、分析问题和解决问题的能力,学会查阅参考书和工具书的方法,提高编写技术文件的能力,进一步加强设计计算和制图等基本技能的训练,为毕业后成为一名出色的机械工程师打好基础。 二、设计要求 1、每个参加课程设计的学生,都必须独立按期完成设计任务书所规定的设计任务。 2、设计说明书和设计计算书要层次清楚,文字通顺,书写工整,简明扼要,论据充分。计算公式不必进行推导,但应注明公式中多符号的意义,代入数据得出结果即可。 3、说明书要有插图,且插图要清晰、工整,并选取适当此例。说明书的最后要附上草图。 4、绘制工作图应遵守机械制图的有关规定,符合国家标准。 5、学生在完成说明书、图纸后,准备进行答辩,最后进行成绩评定。 三、设计任务 设计任务由指导教师根据学生实际情况及所收集资料情况确定。 四、设计依据和设计步骤 油缸是液压传动的执行元件,它与主机及主机的工作结构有着直接的联系。不同的机型和工作机构对油缸则有不同的工作要求。因此在设计油缸之前,首先应了解下列这些作为设计原始依据的主要内容。主机的用途和工作条件,工作机构的结构特点,负载值,速度,行程大小和动作要求,液压系统所选定的工作压力和流量等。 油缸的设计内容和步骤大致如下: 1、液压缸类型和多部分结构的选择。 2、确定基本参数。主要包括工作负载、工作速度(当有速度要求时)、工作行程、导向长度、缸筒内径及活塞杆直径等。 3、强度和稳定性计算。其中包括缸筒壁厚、外径和缸底厚度的强度计算,活塞杆强度和稳定性验算,以及各连接部分的强度计算(了解基本过程,但不在说明书要求之内)。 4、导向、密封、防尘、排气和缓冲等装置的设计。 5、绘制液压缸结构图,并完成相关的说明书。 应该指出,不同类型和结构的油缸,其设计内容量是不同的,而且各参数之间需要综合考虑反复验算才能得出比较满意的结果。因此设计步骤不可能是固定不变的。 五、结构型式的确定 1、结构初型: 根据设计原始依据和设计任务书,查阅有关参考资料设计或选择油缸的结构初型(画

液压缸全套图纸说明书范本

液压缸全套图纸说 明书

绪论——————————————第3页 第1章液压传动的基础知识————————第4页 1.1 液压传动系统的组成————————第4页 1.2 液压传动的优缺点—————————第4页 1.3 液压传动技术的发展及应用——————第6页 第2 章液压传动系统的执行元件 ——液压缸——————————第8页 2.1 液压缸的类型特点及结构形式——————第8页 2.2 液压缸的组成——————————第11页 第3章 D G型车辆用液压缸的设计——————第19页 3.1 简介—————————————第19页 3.2 DG型液压缸的设计----------- —————第20页 第4章液压缸常见故障分析与排除方法—————第27页总结——————————————第29 页

绪论 第一章液压传动的基础知识 1.1液压传动系统的组成 液压传动系统由以下四个部分组成: 〈1〉动力元件——液压泵其功能是将原动机输出的机械能转换成液体的压力能,为系统提供动力。 〈2〉执行元件——液压缸、液压马达。它们的功能是将液体的压力能转换成机械能,以带动负载进行直线运动或者旋转运动。 〈3〉控制元件——压力、流量和方向控制阀。它们的作用是控制和调节系统中液体的动力、流量和流动方向,以保证执行元件达到所要求的输出力(或力矩)、运动速度和运动方向。 〈4〉辅助元件——保证系统正常工作所需要的辅助装置。包括管道、管接头、油箱过滤器和指示仪表等。 〈5〉工作介质---工作介质即传动液体,一般称液压油。液压系统就是经过工作介质实现运动和动力传递的。 1.2液压传动的优缺点

液压缸选型流程参考样本

液压缸选型程序 程序1: 初选缸径/杆径( 以单活塞杆双作用液压缸为例) ※ 条件一 已知设备或装置液压系统控制回路供给液压缸的油压P、流量Q及其工况需要液压缸对负载输出力的作用方式( 推、拉、既推又拉) 和相应力( 推力F1、拉力F2、推力F1和拉力F2) 的大小( 应考虑负载可能存在的额外阻力) 。针对负载输出力的三种不同作用方式, 其缸径/杆径的初选方法如下: ( 1) 输出力的作用方式为推力F1的工况: 初定缸径D: 由条件给定的系统油压P( 注意系统的流道压力损失) , 满足推力F1的要求对缸径D进行理论计算, 参选标准缸径系列圆整后初定缸径D; 初定杆径d: 由条件给定的输出力的作用方式为推力F1的工况, 选择原则要求杆径在速比1.46~2( 速比: 液压缸活塞腔有效作用面积与活塞杆腔有效作用面积之比) 之间, 具体需结合液压缸回油背压、活塞杆的受压稳定性等因素, 参照相应的液压缸系列速比标准进行杆径d的选择。( 2) 输出力的作用方式为拉力F2的工况:

假定缸径D, 由条件给定的系统油压P( 注意系统的沿程压力损失) , 满足拉力F2的要求对杆径d进行理论计算, 参选标准杆径系列后初定杆径d, 再对初定杆径d进行相关强度校验后确定。 ( 3) 输出力的作用方式为推力F1和拉力F2的工况: 参照以上( 1) 、 ( 2) 两种方式对缸径D和杆径d进行比较计算, 并参照液压缸缸径、杆径标准系列进行选择。 ※ 条件二 已知设备或装置需要液压缸对负载输出力的作用方式( 推、拉、既推 又拉) 和相应力( 推力F1、拉力F2、推力F1和拉力F2) 大小( 应考虑负载可能存在的额外阻力) 。但其设备或装置液压系统控制回路供给 液压缸的油压P、流量Q等参数未知, 针对负载输出力的三种不同作用方式, 其缸径/杆径的初选方法如下: ( 1) 根据本设备或装置的行业规范或特点, 确定液压系统的额定压力P; 专用设备或装置液压系统的额定压力由具体工况定, 一般建议在中低压 或中高压中进行选择。 ( 2) 根据本设备或装置的作业特点, 明确液压缸的工作速度要求。 ( 3) 参照”条件一”缸径/杆径的初选方法进行选择。 注: 缸径D、杆径d可根据已知的推( 拉) 力、压力等级等条件由下表进行初步查取。

如何选择液压马达

如何选择液压马达 为设计新系统选择液压马达,或者为现有系统中的液压马达寻找替代产品事,除了要考虑功率(扭矩、转速)要求之外,还要考虑其它一些因素。在许多情况下,借鉴以往使用经验(即在类似使用条件下,选用哪些马达成功了,选择哪些马达失败了)事初选马达的一条捷径。当没有已往使用经验可借鉴时,必须考虑以下因素: 1、工作负载循环 2、油液类型 3、最小流量和最大流量 4、压力范围 5、系统类型:开式系统或闭式系统 6、环境温度、系统工作温度和冷却系统 7、油泵类型:齿轮泵、柱塞泵或叶片泵 8、过载保护:靠近液压马达的安全阀 9、速度超越载荷保护 10、径向载荷和轴向载荷 工作负载循环和速度超越载荷保护式常被忽视的两个重要因素。当发生速度超越载荷条件时,马达处于油泵工况,这时马达联动轴所承受的扭矩可能达到正常工作情况下的两倍。若忽视了上述情况,会导致马达损坏。 工作负载循环时系统匹配时要考虑的另一个非常重要因素。如果要求马达长时间满负荷工作,又要有令人满意的使用寿命,这时产品样本给出的扭矩和转速指标仅能达到使用要求还不够,必须选择性能指标高出一挡的系列产品。同样,如果马达工作频繁程度很低,可以选择样本给出性能指标偏低的那个系列产品。用液压马达驱动铰盘就是一个例证,绞盘制造厂选用White RS系列马达,尽管实际工作参数超出了样本给出的性能参数,单仍然能正常工作。由于马达使用频繁程度很低,而且每一次工作持续时间又很短,因此无论性能还是寿命均能令人满意。这样选出的马达明显减小购置费用。 当马达排量和扭矩出于两可的情况,工作载荷循环、压力和流量成为选择最适合给定工作条件的液压马达的决定因素。 怀特马达的最低转速是多少? 通常马达在10r/min或更低的转速下运行时,可能会出现爬行和运转不平稳现象。由于HB、DR和DT三个系列的马达在小流量时内部泄漏的变化非常小,因此对马达低速平稳性要求较高的场合,怀特公司推荐使用上述三个系列的马达。同事还推荐选用排量尽可能最大的马达,以便增加通过马达的流量。对马达低速性能有利的条件:1)载荷恒定2)马达出口节流或者施加0.25MPa的背压3)在工作温度下最小粘度达到160 SUS (34.5 cSt)。 为保证良好的低速工作性。建议用户在实际工作条件下对被选择的马达进行试验验证。

液压缸的设计说明书

设计内容: 1.液压传动方案的分析 2.液压原理图的拟定 3.主要液压元件的设计计算(例游缸)和液压元件,辅助装置的选择。 4.液压系统的验算。 5.绘制液压系统图(包括电磁铁动作顺序表,动作循环表,液压元件名称)A4一张;绘制集成块液压原理图A4一张;油箱结构图 A4一张;液压缸结构图A4一张。 6.编写设计计算说明书一分(3000-5000字左右)。 一、明确液压系统的设计要求 对油压机液压系统的基本要求是: 1)为完成一般的压制工艺,要求主缸驱动滑块实现“快速下降——压制——保压——快速回退——原位停止”的工作循环,具体要求可参看题目中的内容。 2)液压系统功率大,空行程和加压行程的速度差异大,因此要求功率利用合理。 3)油压机为高压大流量系统,对工作平稳性和安全性要求较高。 二、液压系统的设计计算 1. 进行工况分析,绘制出执行机构的负载图和速度图 液压缸的负载主要包括:外负载、惯性阻力、重力、密封力和背压阀阻力 (1) 外负载:

压制时外负载:=50000 N 快速回程时外负载:=8000 N (2) 移动部件自重为: N (3) 惯性阻力: 式中:g——重力加速度。单位为。 G——移动部件自重力。单位为。 ——在t时间内速度变化值。单位为。 ——启动加速段或减速制动段时间。单位为。 (4) 密封阻力: 一般按经验取(F为总负载) 在在未完成液压系统设计之前,不知道密封装置的系数,无法计算。一般用液压缸的机械效率加以考虑,。 (5) 背压阻力:

这是液压缸回油路上的阻力,初算时,其数值待系数确定后才能定下来。根据以上分析,可计算出液压缸各动作阶段中负载,见表1: 工况计算公式液压缸的负载(N)启动、加速阶段 稳定下降阶段F = 压制、保压阶段 快退阶段 表1 (6) 根据上表数据,绘制出液压缸的负载图和速度图

力士乐液压缸样本解读

1/44 Hydraulic cylinder Mill type Series CDH2 / CGH2 Component series 1X Nominal pressure 250 bar (25 MPa RE 17334/09.05Replaces: 02.05 Overview of contents Contents Page T echnical data 2Diameter, weights 2Areas, forces, flows 3T olerances 3 IHC-Designer: Engineering software 4Mounting style overview 4Ordering details 4Plain clevis at base MP3 6Self-aligning clevis at base MP5 8 Round flange at head MF3 10Round flange at base MF4 12Trunnions MT4 14Foot mounting MS2

16 H4652_d Features – Standards: DIN 24333, ISO 6022 and VW 39 D 921– 6 mounting styles – Piston ?: 40 to 320 mm – Piston rod ?: 25 to 220 mm – Stroke length up to 6 m Contents Page Flange connections 18Position measuring system 20Proximity switch 24Screwed coupling 26Self-aligning clevis 27Fork clevis 28Mounting block 29Buckling 31 End position cushioning 34Spare parts 37Tightening torques 39Seal kits 40 Engineering software: IHC-Designer from Rexroth Online https://www.doczj.com/doc/fc444750.html,/Rexroth-IHD Download https://www.doczj.com/doc/fc444750.html,/ business_units/bri/de/downloads/ihc Technical data (for applications outside these parameters, please consult us! Standards :

液压计算(原件选择)

液压元件的选择 一、液压泵的确定与所需功率的计算 1.液压泵的确定 (1)确定液压泵的最大工作压力。液压泵所需工作压力的确定,主要根据液压缸在工作循环各阶段所需最大压力p1,再加上油泵的出油口到缸进油口处总的压力损失ΣΔp,即 p B =p 1 +ΣΔp (9-15) ΣΔp包括油液流经流量阀和其他元件的局部压力损失、管路沿程损失等,在系统管路未设计之前,可根据同类系统经验估计,一般管路简单的节流阀调速系统ΣΔp为(2~5)×105Pa,用调速阀及管路复杂的系统ΣΔp为(5~15)×105Pa,ΣΔp也可只考虑流经各控制阀的压力损失,而将管路系统的沿程损失忽略不计,各阀的额定压力损失可从液压元件手册或产品样本中查找,也可参照表9-4选取。 阀名Δp n(×105Pa) 阀名Δp n(×105Pa)阀名Δp n(×105Pa)阀名Δp n(×105Pa)单向阀0.3~0.5 背压阀3~8 行程阀 1.5~2 转阀 1.5~2 换向阀 1.5~3 节流阀2~3 顺序阀 1.5~3 调速阀3~5 B B max 的泄漏确定。 ①多液压缸同时动作时,液压泵的流量要大于同时动作的几个液压缸(或马达)所需的最大流量,并应考虑系统的泄漏和液压泵磨损后容积效率的下降,即 q B≥K(Σq)max(m3/s) (9-16) 式中:K为系统泄漏系数,一般取1.1~1.3,大流量取小值,小流量取大值;(Σq)max为同时动作的液压缸(或马达)的最大总流量(m3/s)。 ②采用差动液压缸回路时,液压泵所需流量为: q B≥K(A1-A2)v max(m3/s) (9-17) 式中:A 1,A 2为分别为液压缸无杆腔与有杆腔的有效面积(m2);v max为活塞的最大移动速度(m/s)。 ③当系统使用蓄能器时,液压泵流量按系统在一个循环周期中的平均流量选取,即 q B=∑ = Z 1 i V i K/T i (9-18) 式中:V i为液压缸在工作周期中的总耗油量(m3);T i为机器的工作周期(s);Z为液压缸的个数。 (3)选择液压泵的规格:根据上面所计算的最大压力p B和流量q B,查液压元件产品样本,选择与P B和q B相当的液压泵的规格型号。 上面所计算的最大压力p B是系统静态压力,系统工作过程中存在着过渡过程的动态压力,而动态压力往往比静态压力高得多,所以泵的额定压力p B应比系统最高压力大25%~60%,使液压泵有一定的压力储备。若系统属于高压范围,压力储备取小值;若系统属于中低压范围,压力储备取大值。 (4)确定驱动液压泵的功率。 ①当液压泵的压力和流量比较衡定时,所需功率为: p=p B q B/103ηB (kW) (9-19) 式中:p B为液压泵的最大工作压力(N/m2);q B为液压泵的流量(m3/s);ηB为液压泵的总效率,各种形式液压泵的总效率可参考表9-5估取,液压泵规格大,取大值,反之取小值,定量泵取大值,变量泵取小值。 液压泵类型齿轮泵螺杆泵叶片泵柱塞泵 总效率0.6~0.7 0.65~0.80 0.60~0.75 0.80~0.85 ②在工作循环中,泵的压力和流量有显著变化时,可分别计算出工作循环中各个阶段所

NHM系列液压马达选型要点

NHM系列液压马达选型要点 产品的主要特点 1、采用偏心轴及较低激振频率的五活塞结构,具有低噪音的特点; 2、启动扭矩大,低速稳定性好,能在很低的速度下平稳运转; 3、专利技术的平面补偿配油盘,可靠性好,泄漏少;活塞与柱塞套采用密封环密封,因而具有很高的容积效率; 4、曲轴与连杆间由滚柱支承,因而具有很高的机械效率; 5、旋转方向可逆,输出轴允许承受一定的径向和轴向外力; 6、具有较高的功率质量比,体积重量相对较小。 产品应用范围 产品可广泛应用于矿山建筑、工程机械、起重运输设备、重 型冶金机械、石油煤矿机械、船舶甲板机械、机床、塑料机械、 地质钻探设备、等各种机械的液压传动系统中。特别适用于注塑 机的螺杆驱动、提升绞盘、卷筒的驱动、各种回转机构的驱动、 履带和轮子行走机构的驱动等传动机械中。 结构原理 通压力油的柱塞缸受液压力的作用,在柱塞体上产生推力 P 。该推力通过连杆作用在曲轴中心,使输出轴旋转,同时配油 盘随着一起转动,当柱塞体所在位置到达下死点时,柱塞缸便由 配油盘接通回油口,柱塞便被曲轴往上推。此时,做功后的液压 油通过配油盘返回油箱。各柱塞体依次接通高低压力油,各柱塞 体对输出轴中心所产生的驱动力矩同向相加,使马达输出轴获得 连续而平稳的回转扭矩。当改变油流方向时,便可改变马达的旋 转方向。如将配油盘转 180 °装配也可以实现马达的反转。 设计中用到的几个计算公式 1、液压马达的实际输出扭矩: M=0.159(P1-P2)q·ηm( N.m ) 式中:P1、P2 ---------分别为液压马达的入口和出口压力( MPa ) q -------------- 液压马达的排量( ml/r ) ηm ------------ 液压马达机械效率 2 .液压马达输出功率 式中:n----------------- 液压马达转速( r/min ) Q------------------ 输入液压马达的流量( ml/min ) ηv -------------- 液压马达容积效率 3 .液压马达的转速:

液压缸选型

液压缸选型(你做设计的时候,遇见液压缸的问题不用愁了) 液压缸的结构基本上可以分为缸筒和缸盖、活塞和活塞杆、密封装置、缓冲装置和排气装置五个部分. 1.液压缸的设计内容和步骤 (1)选择液压缸的类型和各部分结构形式。 (2)确定液压缸的工作参数和结构尺寸。 (3)结构强度、刚度的计算和校核。 (4)导向、密封、防尘、排气和缓冲等装置的设计。 (5)绘制装配图、零件图、编写设计说明书。 下面只着重介绍几项设计工作。 2.计算液压缸的结构尺寸 液压缸的结构尺寸主要有三个:缸筒内径D、活塞杆外径d和缸筒长度L。 (1)缸筒内径D。液压缸的缸筒内径D是根据负载的大小来选定工作压力或往返运动速度比,求得液压缸的有效工作面积,从而得到缸筒内径D,再从GB2348—80标准中选取最近的标准值作为所设计的缸筒内径。根据负载和工作压力的大小确定D: ①以无杆腔作工作腔时 (4-32) ②以有杆腔作工作腔时 (4-33)式中:pI为缸工作腔的工作压力,可根据机床类型或负载的大小来确定;Fmax为最大作用负载。 (2)活塞杆外径d。活塞杆外径d通常先从满足速度或速度比的要求来选择,然后再校核其结构强度和稳定性。若速度比为λv,则该处应有一个带根号的式子: (4-34)也可根据活塞杆受力状况来确定,一般为受拉力作用时,d=0.3~0.5D。受压力作用时:pI<5MPa时,d=0.5~0.55D 5MPa<pI<7MPa时,d=0.6~0.7D pI>7MPa时,d=0.7D (3)缸筒长度L。缸筒长度L由最大工作行程长度加上各种结构需要来确定,即: L=l+B+A+M+C式中:l为活塞的最大工作行程;B为活塞宽度,一般为(0.6-1)D;A为活塞杆导向长度,取(0.6-1.5)D;M为活塞杆密封长度,由密封方式定;C为其他长度。一般缸筒的长度最好不超过内径的20倍。 (4)最小导向长度的确定。当活塞杆全部外伸时,从活塞支承面中点到导向套滑动面中点的距离称为最小导向长度H(如图4-19所示)。如果导向长度过小,将使液压缸的初始挠度(间隙引起的挠度)增大,影响液压缸的稳定性,因此设计时必须保证有一最小导向长度。图4-19油缸的导向长度 K—隔套对于一般的液压缸,其最小导向长度应满足下式:H≥L/20+D/2 (4-35)式中:L为液压缸最大工作行程(m);D为缸筒内径(m)。一般导向套滑动面的长度A,在D<80mm时取A=(0.6-1.0)D,在D>80mm时取A=(0.6-1.0)d;活塞的宽度B则取B= (0.6-1.0)D。为保证最小导向长度,过分增大A和B都是不适宜的,最好在导向套与活塞之间装一隔套K,隔套宽度C由所需的最小导向长度决定,即: C=H- (4-36)采用隔套不仅能保证最小导向长度,还可以改善导向套及活塞的通用性。 3.强度校核? 对液压缸的缸筒壁厚δ、活塞杆直径d和缸盖固定螺栓的直径,在高压系统中必须进行强度校核。 (1)缸筒壁厚校核。缸筒壁厚校核时分薄壁和厚壁两种情况,当D/δ≥10时为薄壁,壁厚按下式进行校核:δ>=ptD/2[σ] (4-37)式中:D为缸筒内径;pt为缸筒试验压力,当缸的额定压力pn≤16MPa时,取pt=1.5pn,pn为缸生产时的试验压力;当pn>16MPa时,取 pv=1.25 pn;[σ]为缸筒材料的许用应力,[σ]=σb/n,σb为材料的抗拉强度,n为安全系数,一般取n=5。当D/σ<10时为厚壁,壁厚按下式进行校核:δ≥ (4-38)在使用式

液压缸设计分析

第一章液压系统设计 1.1液压系统分析 1.1.1 液压缸动作过程 3150KN热压成型机液压系统属于中高压液压系统,涉及快慢速切换、多级调压、保压补压等多个典型的液压回路。工作过程为电机启动滑块快速下行滑块慢速下行保压预卸滑块慢速回程滑块快速回程推拉缸推出推拉缸拉回循环结束。按液压机床类型初选液压缸的工作压力为28Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。1.1.2液压系统设计参数 (1)合模力; (2)最大液压压28Mp; (3)主缸行程700㎜; (4)主缸速度υ 快=38㎜/s、 υ 慢=4.85㎜/s。 1.1.2分析负载 (一)外负载压制过程中产生的最大压力,即合模力。 (二)惯性负载 设活塞杆的总质量m=100Kg,取△t=0.25s (三)阻力负载 活塞杆竖直方向的自重 活塞杆质量m≈1000Kg,同时设活塞杆所受的径向力等于重力。 静摩擦阻力 动摩擦阻力 由此得出液压缸在各个工作阶段的负载如表****所示。

表*** 液压缸在各个工作阶段的负载F 工况负载组成负载值F工况负载组成负载值F 启动981保压3150×103加速537补压3150×103快速491快退+G10301按上表绘制负载图如图***所示。 F/N v/mm·s-1 537 491 981 38 4.85 0 l/mm 0 l/mm -491 -981 -38 由已知速度υ 快=38㎜/s、 υ 慢=4.85㎜/s和液压缸行程s=700mm,绘制简略速度图,如 图***所示。 1.2确定执行元件主要参数 1.2.1 液压缸的计算 (一)液压缸承受的合模力为3150KN,最大压力p1=28Mp。 鉴于整个工作过程要完成快进、快退以及慢进、慢退,因此液压缸选用单活塞杆式的。在液压缸活塞往复运动速度有要求的情况下,活塞杆直径d根据液压缸工作压力选取。 由合模力和负载计算液压缸的面积。 将这些直径按GB/T 2348—2001以及液压缸标准圆整成就近标准值,得:

液压马达参数计算

(1)液压马达参数计算 ①液压马达理论输出扭矩T : 12m D F T η??= 式中:1m η为传动机械效率,取95.01=m η 则:m N T ·76.26695.0052.05400=??= ②液压马达理论每转排油量q : m p T q ηπ?= 2 式中:p 为液压马达工作压力,Mpa p 8= m η为液压马达机械效率,取9.0=m η 则 r ml p T q m /2339 .0815976 .2662=??=?= ηπ 故液压马达实际输出转矩为:m N pq T m ·7.2669.02338159.02s =???== π η ③液压马达转速n : 摩擦轮处转速:n 1min /7.36104 .014.3602.0r d v =??== π 由于马达转速较高,因此选择减速器作为中间减速装置,选取减速器传动比6.5=i ,传动效率为90%。 则液压马达转速:n i n ?=1min /5.2057.366.5r =?= ④液压马达所需流量Q : v n q Q η1 ? ?= 式中:v η为容积效率,取9.0=v η 则m in /2.539 .01 5.205102331 3l n q Q v =? ??=? ?=-η ⑤液压马达输出功率P : 2.612.61m v c q p q p P ηηηη????=??= 式中:c η为减速器传动效率,9.0=c η

v η为液压马达容积效率,9.0=v η m η为液压马达机械效率,9.0=m η 则Kw q p q p P m v c 1.52 .619 .09.09.02.5382.612.61=????=????=??= ηηηη P >min P ,因此液压马达可使设备进行传动。 (2)液压马达型号的选择 在对液压马达进行选型时需要考虑转速范围、工作压力、运行扭矩、总效率、容积效率、滑差率以及安装等因素和条件。首先根据使用条件和要求确定马达的种类,并根据系统所需的转速和扭矩以及马达的持性曲线确定压力压力降、流量和总效率。然后确定其他管路配件和附件。 选取液压马达时还要注意以下问题: ①在系统转速和负载一定的前提下。选用小排量液压马达可使系统造价降低,但系统压力高,使用寿命短;选用大排量液压马达则使系统造价升高.但系统压力低,使用寿命长。至于使用大排量还是小排量液压马达需要综合考虑。 ②由于受液压马达承载能力的限制,不得同时采用最高压力和最高转速,同时还耍考虑液压马达输出轴承受径向负载和轴向负载的能力。 ③马达的起动力矩应大于负载力矩,一般起动力矩Mo=0.95M 。 综合以上分析,选用内啮合摆线式齿轮液压马达,其功率P=5Kw ,转矩T ≥266.7m N ?,工作转速min /206r n ≤,则液压马达型号为BM2-250,具体参数如表4-1。 表4-1

QJM型液压马达特点及适用范围

QJM型液压马达特点及适用范围 ?采用高科技复合材料,并通过工艺改进解决了该型马达球塞与球体配合精度低等问题,改进后马达压力比原先提高 1.5倍,摩擦系数降低1倍,寿命则延长3倍左右。 ?马达动密封采用了特殊(专制)技术,关键塞封件采用进口件,从而保证良好塞封,杜绝渗落。 ?室子内曲线、活塞孔等关键部件采用先进的特殊加工方法,大大提高曲面精度与表面粗糙度,马达的机械效率同比提高约15%。 ?QJM型液压马达可与各种油泵、阀及液压附件配套组成液压传动装置,由于它在设计上采取了各种措施,故可适应各种机器的工况。该型马达具有重量轻、体积小、调速范围大,可有级变量、机械制动器可自动启闭、低速稳定性好、工作可靠、耐冲击、效率高、寿命长等一系列优点。目前已广泛应用于建筑工程、起重运输、冶金重型、石油、煤矿、船舶、机床、轻工注塑、地质勘探等部门。可直接驱动履带行走、轨道轮子驱动、各种回转提升机构、勘探钻孔、带式输送、物料搅拌、路面切割、船舶推进、塑料预塑等机构。 QJM型液压马达工作原理 QJM系列马达工作时,高压油由马达油口进入,再经配流器进入缸体、缸孔推动球塞组件沿着定子滚道貌岸然环的曲线轨道,在0o C 至30o C上作升程运动。球塞组件对曲线轨道产生作用力,而曲线轨道对球塞组件产生反作用力,该反作用力的切向分力作用到缸体上,由此驱动缸体产生转矩,通过传动轴输出。球塞组件在升程工作至30o C时时油结束。当进入30o C至60o C时,缸体、缸孔通过配流器与回油孔(低压腔)接通,作回程运动,至60o C时,组件回程工作结束,至此该组组件的一次工作(升、回程)全部结束。接着又进入下一次升、回程工作。其余组件工作同样类推。回流路线,低压油经配流器的回油孔、马达出油口流回油箱。

液压油缸型号大全

液压油缸型号大全: PY497——油缸型号 100——缸径 70——杆径 1801——行程 液压油缸: 液压缸是将液压能转变为机械能的、做直线往复运动(或摆动运动)的液压执行元件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。液压缸输出力和活塞有效面积及其两边的压差成正比;液压缸基本上由缸筒和缸盖、活塞和活塞杆、密封装置、缓冲装置与排气装置组成。缓冲装置与排气装置视具体应用场合而定,其他装置则必不可少。 液压缸是液压传动系统中的执行元件,它是把液压能转换成机械能的能量转换装置。液压马达实现的是连续回转运动,而液压缸实现的则是往复运动。液压缸的结构型式有活塞缸、柱塞缸、摆动缸三大类,活塞缸和柱塞缸实现往复直线运动,输出速度和推力,摆动缸实现往复摆动,输出角速度(转速)和转矩。液压缸除了单个地使用外,还可以两个或多个地组合起来或和其他机构组合起来使用。以完成特殊的功用。液压缸结构简单,工作可靠,在机床的液压系统中得到了广泛的应用。 液压缸的结构形式多种多样,其分类方法也有多种:按运动方式

可分为直线往复运动式和回转摆动式;按受液压力作用情况可分为单作用式、双作用式;按结构形式可分为活塞式、柱塞式、多级伸缩套筒式,齿轮齿条式等;按安装形式可分为拉杆、耳环、底脚、铰轴等;按压力等级可分为16Mpa、25Mpa、31.5Mpa等。 活塞式 单活塞杆液压缸只有一端有活塞杆。如图所示是一种单活塞液压缸。其两端进出口油口A和B都可通压力油或回油,以实现双向运动,故称为双作用缸。 活塞仅能单向运动,其反方向运动需由外力来完成。但其行程一般较活塞式液压缸大。 活塞式液压缸可分为单杆式和双杆式两种结构,其固定方式由缸体固定和活塞杆固定两种,按液压力的作用情况有单作用式和双作用式。在单作用式液压缸中,压力油只供液压缸的一腔,靠液压力使缸实现单方向运动,反方向运动则靠外力(如弹簧力、自重或外部载荷等)来实现;而双作用液压缸活塞两个方向的运动则通过两腔交替进油,靠液压力的作用来完成。 如图所示为单杆双作用活塞式液压缸示意图。它只在活塞的一侧设有活塞杆,因而两腔的有效作用面积不同。在供油量相同时,不同腔进油,活塞的运动速度不同;在需克服的负载力相同时,不同腔进油,所需要的供油压力不同,或者说在系统压力调定后,环卫垃圾车液压缸两个方向运动所能克服的负载力不同。

(完整版)力士乐A10VSO型号的柱塞泵(wjg)

力士乐柱塞泵的使用与维修 工作单位:潍柴铸锻公司老厂区三车间 姓名:王建光 指导老师: 日期:2012年9月13日

力士乐柱塞泵的使用与维修 摘要: 本文主要介绍了力士乐A10VSO型号的柱塞泵在意大利FA造型线液压系统中的使用,以及在日常维护中出现的相关问题,并对问题进行解决。 关键词:柱塞泵压力控制流量控制开式回路 FA气冲造型线是由意大利FA公司制造,具有国际先进水平的铸造生产线,该线自动化水平高,运行平稳,其液压系统主要采用德国BOSCH-REXROTH公司的产品,系统工作压力为12MPA,主机辅助压实压力为17MPA,由于生产线不少动作是由变频减速机通过齿轮齿条传动来取代液压缸和液压马达,液压控制部分较少,故全线采用4台力士乐AV10系列高压柱塞泵集中供油,以保证生产线的工作压力。 力士乐A10VSO柱塞泵外形图1-0 压力与流量调节阀 出油口 泄露油口 图1-0 力士乐轴向柱塞泵内部结构复杂,因其活塞或柱塞的往复运动方向与缸体中心轴平行,所以称为轴向柱塞泵。轴向柱塞泵是利用与传动轴平行的柱塞在柱塞孔内往复运动所产生的

容积变化来进行工作的。由于柱塞和柱塞孔都是圆形零件,加工时可以达到很高的精度配合,因此容积效率高,运转平稳,流量均匀性好,噪声低,工作压力高等优点,但对液压油的污染较敏感,结构较复杂,造价较高。 力士乐A10VSO柱塞泵如图1-1所示: 图1-1 此型号柱塞泵主要由主轴,壳体,配流盘,转子,斜盘,柱塞以及变量机构组成,该泵的主要特点是:用于开式液压回路,流量正比与驱动转速和排量,并能通过调节斜盘倾角实现无级变量,具有优良的吸油特性,低噪音,高寿命。 在日常的设备维修过程中,通过拆卸分解轴向柱塞泵,可检查泵的下列方面: ●配流盘是否磨损、拉槽。柱塞与缸孔之间的间隙是否过大。这些磨损与压力、流量下 降,泄漏油管内泄漏增大等症状有关。 ●中心弹簧是否疲软或折断,它与压力、流量下降有关。 ●柱塞阻尼孔是否阻塞,它与滑靴干摩擦时泵在运行中发出尖叫声有关。 ●滑靴与柱塞头是否松动,它与噪声增大有关。 ●滑靴与斜盘之间的磨损情况,它与泵效率下降、发热、噪声增大有关。 ●内部元件是否因气蚀出现表面损坏;泵内是否沉积磨屑与污物。

液压缸的选择方法

液压缸的选择方法 1、确定系统参数:①需要移动的重量和所需要的力;②公称工作压力和范围;③需要行进此距离的时间;④油液介质 2、安装方式:为具体的应用场合选择适当的方式 3、缸内径和工作压力:确定缸内径和提供必要的力所需要的系统压力 4、活塞杆:确定承受纵弯力所需要的最小活塞杆直径,选择适当的活塞杆端和活塞杆端螺纹 5、活塞:密封件类型是否适应应用场合 6、缓冲:酌情选择缓冲要求 7、油口:窜则合适的油口①它们有能力实现所需速度吗②标准位置可以接受吗 8、活塞杆密封件:选择密封件以适应所选的油液介质 9、附件:需要活塞杆端附件吗 10、专用特征:安装、材料、环境和油液。 安装方式选择一般导则 全益液压缸标准安装方式可以适应大多数应用场合,需要非标准安装方式以适应具体的应用场合的情况下,我们的工程师将乐于帮助。 法兰安装的缸 这种缸适用于传递直线力的应用场合。选择具体的法兰安装方式取决于对负载所施加的主要力,在活塞杆上究竟造成压缩应力(推力)还是拉伸应力(拉力)。对于压缩型用途,缸头端安装方式最合适;主要负载是活塞杆受拉伸的场合,应指定活塞杆端安装方式。 耳环安装的缸 吸收再起中心线上的力的带铰支安装的缸应该用于机器构件将沿曲线经运动的场合。他们可以用于拉伸(拉力)或压缩(推力)用途。如果活塞杆进行的曲线路径在单一平面之内,则可以使用固定耳环安装,对于其中活塞杆将沿实际运动平面的每侧的路径进的用途,推荐关节轴承安装。 中间铰轴安装的缸 这种缸被设计成吸收在其中心线上的力。他们适用于拉伸(拉力)或压缩(推力)用途,并可用于机器构件将沿单一平面内的曲线路径运动的场合。铰轴销仅针对剪切载荷设计应承受最小的弯曲应力。 脚架安装的缸 这种缸不吸收再中心线上的力,缸所施加的力产生一个倾翻力矩,试图使缸绕着它的安装螺栓翻转。因此,重要的是应把刚牢固的固定于他所安装的机器构件,并有效的引导负载,以免侧向载荷施加于活塞杆密封装置和活塞导向环上。 缸径和活塞杆径的确定 假定一直系统的负载和工作压力,并假定已经考虑活塞杆究竟是受拉伸(拉力)还是收压缩(推力),则可以选择缸径和活塞杆径。 活塞杆受压,则使用下面的推力表:找出最接近需要的工作压力:在同一栏里,找出移动该负载所需的力;在同一行里,找出所需的缸径。 活塞杆受拉,则使用拉力减小表:按上述用于推用途的程序;使用下面的拉力减小表,根据所选的活塞杆径和压力确定所指示的力;从原来的推力中扣出此力,所得到的数值为可用来移动负载的净力。

HSG工程用液压缸选型

HSG工程用液压油缸(双耳环链接)HSG工程用液压油缸(绞轴链接) HSG工程用液压油缸(端部法兰链接)HSG工程用液压油缸(解剖图) HSG系列工程用液压缸是液压系统作往复运动的执行机构。主要用于工程机械、起重运输机械及其工程车辆的液压传动。

1、型号标记 表1 缸头、缸筒连接方式表 编号连接方式备注 1缸头耳环带衬套 2缸头耳环装关节轴承 3铰铀 4端部法兰 用于缸径D≥Φ80 5中部法兰 表2 活塞杆端连接方式表 编号连接方式备注 1杆端外螺纹 2杆端内螺纹用于缸径D≥Φ63 3杆端外螺纹杆头耳环带衬套 4杆端内螺纹杆头耳环带衬套用于缸径D≥Φ63 5杆端外螺纹杆头耳环装关节轴承

6杆端内螺纹杆头耳环装关节轴承用于缸径D≥Φ63 7整体式活塞杆耳环带衬套 仅用于Φ40、Φ50两种缸径8整体式活塞杆耳环装关节轴承 技术规格 型号缸 径 mm 工作压力16MPa 最大行 程mm 速比1.33速比1.46速比2 HSG※ 01-40/d※ E 402020.1015.072220.1014.012520.1012.27500 HSG※ 01-50/d※ E 502531.4023.552831.4018.563231.4015.01600 HSG※ 01-63/d※ E 633249.8737.013549.8734.4874549.8724.43800 HSG※ 01-80/d※E 804080.4260.324580.4254.985580.4242.41 (1000) 4000 HSG※ 01-90/d※E 9045101.7976.3450101.7970.3663101.7951.90 (1100) 4000 HSG※ 01-100/d ※E 10050125.6694.2455125.6687.6570125.6664.06 (1350) 4000 HSG※ 01-110/d ※E 11055152.05114.0463152.05102.1880152.0571.60 (1600) 4000 HSG※ 01-125/d ※E 12563196.35146.4870196.35134.7790196.3594.50 (2000) 4000 HSG※ 01-140/d ※E 14070246.30184.7380246.30165.88100246.30120.60 (2000) 4000 HSG※ 01-150/d ※E 15075282.74212.0685282.74193.21105282.74144.28 (2000) 4000 HSG※ 01-160/d ※E 16080321.70241.2790321.70219.91110321.70169.60 (2000) 4000 HSG※18090407.45305.37100407.15281.50125407.15210.80(2000)

相关主题
文本预览
相关文档 最新文档