当前位置:文档之家› 经济数学基础积分学之第2章定积分

经济数学基础积分学之第2章定积分

经济数学基础积分学之第2章定积分
经济数学基础积分学之第2章定积分

第一单元 定积分的定义

一、学习目标

通过本节课的学习,了解定积分的概念.

二、内容讲解

定积分的定义:

三、例题讲解

例题1计算定积分

?1

d x

x .

分析:利用定积分的定义,为计算方便,可将区间]1,0[等分.

解:将区间]1,0[n 等分,每个小区间的长度为n 1

,取i ξ

为每个小区间的右端点,得积分

∑=?n

i n

n i 1

1

计算积分和得∑∑===?n

i n

i i n

n n i 1

2

1112)1(12n

n n +=

(等差数列求和公式.)

n 21

21+

=

由此得

21)2121(lim 1lim 1=+=?∞→=∞→∑n n n i n n

i n 由定积分的定义可知

21

d 10

=

?

x x

第二单元 N-L 公式

一、学习目标

通过本节课的学习,理解并能熟练运用N-L 公式.

二、内容讲解

1.N-L 公式:

若)(x F 是)(x f 的一个原函数,则

b

a

b

a

x F a F b F x x f )()()(d )(简记为-=?

对于N-L 公式作几点说明:

①定积分是一个确定的数值,它不依赖于对原函数的选取, 即:若)(x F ,)(x G 均为)(x f 的原函数,则

b

a

b a b

a

x G x F x x f )()(d )(==?

②在公式

)

()(d )(a F b F x x f b

a

-=?

中如果把b 换成x ,就得到)

()(d )(a F x F x x f x

a

-=?

由此结果看出,定积分和变上限x 之间有确定的对应关系,这就是一个函数,即定积分

可以看作积分上限的函数.

在上式左端,积分上限x 与积分变量x 的含义是不同的.

再由等式右端可知?x a

x

x f d )(是被积函数)(x f 的一个原函数.

?b a

x

x f d )(与

?b a

t

t f d )(完全一样,因为

??

===b

a

b

a b a b

a

t

t f t F x F x x f d )()()(d )(

说明定积分与积分变量选取的字母无关.

④由N ——L 公式可得

??

-=a

b

b

a

t

t f x x f d )(d )(

d )(=?

a

a

x x f

三、例题讲解 例1计算

?

1

2d x

x .

解:因为2

)(x x f =,它的一个原函数为

3

31)(x

x F =

3131d 1

031

2

==?x x x 若将原函数换为231)(3

+=x x F ,同样得

31)231(d 1

0310

2

=+=?x x x 例2 计算

?-2

1

d e x

x .

解:因为x x f e )(=,它的一个原函数为x

x F e )(=,得

1

221

2

1

e e e

d e ----==?

x x

x

例3 计算

?--1

1

2d e x

x .

解:c x x x +-=---?21

12e 21d e

1

121

1

2e 2

1d e -----=?x x

x )e (e 21

22--=-

例4 计算

?

+2

32d 1x

x x .

解:

c

x x x x ++=+?23

332

)1(92

d 1

20

233

20

32)1(9

2d 1+=

+?

x x x x 952=

例5计算

?

2

1

d e x

x x .

解:c

x x x x

x

+-=?

e )1(d e

21

2

1

e )1(d e x

x x x x -=?

2e =

例6 计算

?e 1

d ln x

x .

解:c

x x x x +-=?

)1(ln d ln

e

1

e

1

)1(ln d ln -=?

x x x x 1=

四、课堂练习与作业

1.设

?

=x

t

t x F 0

2

d sin )(,求

)4(π

F '. 2.利用N-L 公式计算下列定积分:

(1)

?1

2

d x

x ;(2)

?2

1

2

d x

x ;(3)

?1

d e 2

x

x x ;(4)

?20

d cos π

x

x x .

第三单元 定积分的性质

一、学习目标

通过本节课的学习,不定积分的性质,熟悉定积分的直接积分法.

二、内容讲解

1.先回顾不定积分的性质 性质1.???

±=±x x g x x f x x g x f d )(d )(d )]()([

性质2. ??

=x

x f k x x kf d )(d )(

定积分与原函数有着密切的关系,显然定积分也有类似的性质. 2.定积分的性质:

性质1.

???±=±b

a

b a

b

a x

x g x x f x x g x f d )(d )(d )]()([

性质2.

??=b

a

b a

x

x f k x x kf d )(d )(

性质3.

???

+=b c

c

a

b

a

x

x f x x f x x f d )(d )(d )(

证:设)(x F 是)(x f 的一个原函数,由N ——L 公式

)()(d )(a F b F x x f b

a -=? )()(d )(a F c F x x f c

a -=?

)

()(d )(c F b F x x f b

c

-=?

)]()([)]()([d )(d )(c F b F a F c F x x f x x f b

c

c

a

-+-=+??

?=-=b a

x

x f a F b F d )()()(

这个性质对计算定积分是非常重要的.性质中的c 可以在区间],[b a 内,也可以在区间

],[b a 外.

三、例题讲解

例1计算

?+π

2d )cos 2(x

x x .

解:

???

+=+π

π

π

20

2d cos 2d d )cos 2(x

x x x x x x

??+=π

π0

02d cos 2d x x x x π

π

00

3sin 231x x

+=3

31π=

例2

?-2

d 1x

x .

解:

??

?<-≥-=-1,11,11x x x x x ???

-+-=-2

1

10

2

d 1d 1d 1x

x x x x x

??-+-=2

1

10d )1(d )1(x x x x 2

1

2

1

2

2

)1(2)1(-+

--=x x 12121=+=

四、课堂练习与作业

1.计算下列定积分 (1)

?

--21

d 1x

x ;(2)

?

+1

2d )2(x

x x .

2.设函数????

?≤≤<≤-=10,301,)(2

x x x x x f ,求?-11

)d (x x f .

第四单元 定积分的换元积分法

一、学习目标

通过本节课的学习,掌握定积分的换元积分法.

二、内容讲解

定积分换元积分法

若??'=b

a

b

a

x

x u x u f x x f d )())((d )(1

且当a x =时,α=u ;当b x =时,β=u .则

??

α

u

u f x x f b

a

d )(d )(1

三、例题讲解

例1计算

?

-2

1

d 131

x x .

解:

?

-2

1

d 131x x ?'--=21d )13(131

31x

x x

?--=21)13(d 13131x x ?=-52d 13113u

u u x 5

2ln 31u =)2ln 5(ln 31-= 例2计算

?

-1

32d 34x

x x .

解:令u x =-334,

x x u d 9d 2-= ?

-1

3

2

d 34x x x

?-?=1

4

)d 91(u u ?-=14

d 91u u 27

1432911

4

23=

?-=u

例3计算

)

0(d 0

22>-?

a x x a a

分析:设法去掉被积函数的根号,将根号下的表达式用变量替换变成完全平方.用三角公式替换.

解:令t a x sin =,t t a x d cos d =,且当0=x 时,0=t ;当a x =时,

=

t .

?

-a

x x a 0

2

2

d ??-=202

2

2

d cos sin πt t a t a a ?

=20

22

d cos π

t

t a

?

+=20

2d )2cos 1(2

π

t

t a (三角公式

22cos 1cos 2θ

θ+=

4)2sin 21

(2220

2

a t t a ππ

=+?= 四、课堂练习

计算下列不定积分:

(1)

?

e

1

2d ln x x x ;(2)?-202

d 4x x x .

五、课后作业

计算下列定积分:

(1)

?--2

2

2

7

d e

x

x ;(2)

?

-

2

1

21

d e x x x

;(3)?-1

02

d 1x x x ;

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

定积分在经济学中的应用

定积分在经济学中的应用 摘要:定积分是微积分中重要内容,它是解决许多实际问题的重要工具,在经济学中有着广泛的应用,而且内容十分丰富。文中通过具体事例研究了定积分在经济学中的应用,如求总量生产函数、投资决策、消费者剩余和生产者剩余等方面的应用。 关键词:定积分;原函数;边际函数;最大值最小值;总量生产函数;投资;剩余 引言 积分学是微分学和积分学的总称。由于函数概念的产生和应用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的。可以说是继欧氏几何后,全部数学中最大的一个创造。微积分是与应用联系着并发展起来的。定积分推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。并在这些学科中有越来越广泛的应用,微积分是一门历史悠久而又不断发展进步的学科,历史上许多著名的数学家把毕生的心血投入到微积分的研究中,从生产实际的角度上看,应用又是重中之重,随着数学的不断前进,微积分的应用也呈现前所未有的发展。本文将重点介绍定积分在经济学中的应用。

1 利用定积分求原经济函数问题 在经济管理中, 由边际函数求总函数( 即原函数) , 一般采用不定积分来解决,或求一个变上限的定积分。可以求总需求函数,总成本函数, 总收入函数以及总利润函数。 设经济应用函数u( x ) 的边际函数为)(x u ' ,则有 dx x u u x u x )()0()(0?'+= 例1 生产某产品的边际成本函数为100143)(2+-='x x x c , 固定成本 C (0) =10000, 求出生产x 个产品的总成本函数。 解 总成本函数 dx x c c x c x ?'+='0)()0()( =dx x x x )100143(1000002+-+? =x x x x 02_3|]1007[10000++ =x x x 10071000023+-+ 2 利用定积分由变化率求总量问题 如果求总函数在某个范围的改变量, 则直接采用定积分来解决。 例2 已知某产品总产量的变化率为t t Q 1240)(+=' ( 件/天) , 求从第5 天到第10 天产品的总产量。 解 所求的总产量为 dt t Q Q ?'=0 5)( 650)150200()600400(|)640()1220(10 5210 5=+-+=+=+=?t t dt t (件) 3 利用定积分求经济函数的最大值和最小值 例3 设生产x 个产品的边际成本C = 100+ 2x , 其固定成本为

(完整版)定积分在经济中的应用

定积分在经济中的应用 一、由经济函数的边际,求经济函数在区间上的增量 根据边际成本,边际收入,边际利润以及产量x 的变动区间[,]a b 上的改变量(增量)就等于它们各自边际在区间[,]a b 上的定积分: ()()()b a R b R a R x dx '-=? (1) ()()()b a C b C a C x dx '-=? (2) ()()()b a L b L a L x dx '-=? (3) 例1 已知某商品边际收入为0.0825x -+(万元/t ),边际成本为5(万元/t ),求产量x 从250t 增加到300t 时销售收入()R x ,总成本C ()x ,利润 ()I x 的改变量(增量) 。 解 首先求边际利润 ()()()0.082550.0820L x R x C x x x '''=-=-+-=-+ 所以根据式(1)、式(2)、式(3),依次求出: 300 250 (300)(250)()R R R x dx '-=?300250(0.0825)x dx =-+?=150万元 300300250250(300)(250)()C C C x dx dx '-==? ?=250万元 300 300250250(300)(250)()(0.0820)L L L x dx x dx '-==-+??=-100万元 二、由经济函数的变化率,求经济函数在区间上的平均变化率 设某经济函数的变化率为()f t ,则称 2 121 ()t t f t dt t t -? 为该经济函数在时间间隔21[,]t t 内的平均变化率。 例2 某银行的利息连续计算,利息率是时间t (单位:年)的函数:

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

定积分在生活中的应用

PINGDINGSHAN UNIVERSITY 院系 : 经济与管理学院 题目 : 定积分在生活中的应用 年级专业: 11级市场营销班 学生姓名 : 孙天鹏

定积分在生活中的应用 定积分作为大学里很重要的一部分,在生活有广泛的应用。微积分是与应用联系发展起来的,最初牛顿应用微积分是为了从万有引力导出行星三定律,此后,微积分极大的推动了数学的发展,同时也极大的推动了天文学、物理学、化学、工程学、经济学等自然科学的发展,而且随着人类知识的不断发展,微积分正指引着人类走向认知的殿堂。 一、定积分的概述 1、定积分的定义: 设函数()f x 在区间[],a b 上有界. ①在[],a b 中任意插入若干个分点011n n a x x x x b -=<< <<=,把区间[],a b 分成 n 个小区间[][][]01121,,,, ,,,n n x x x x x x -且各个小区间的长度依次为110x x x ?=-, 221x x x ?=-,…,1n n n x x x -?=-。 ②在每个小区间[]1,i i x x -上任取一点i ξ,作函数()i f ξ与小区间长度i x ?的乘积 ()i i f x ξ?(1,2, ,i n =) , ③作出和 ()1 n i i i S f x ξ==?∑。记{}12max ,,,n P x x x =???作极限()0 1 lim n i i P i f x ξ→=?∑ 如果不论对[],a b 怎样分法,也不论在小区间[]1,i i x x -上点i ξ怎样取法,只要当 0P →时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数()f x 在 区间[],a b 上的定积分(简称积分),记作()b a f x dx ?,即 ()b a f x dx ?=I =()0 1 lim n i i P i f x ξ→=?∑, 其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,],a b ??叫做积分区间。

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

定积分知识点总结

定积分知识点总结 航空航天大学 权州 一、定积分定义与基本性质 1.定积分定义 设有一函数f(x)给定在某一区间[a,b]上. 我们在a 与b 之间插入一些分点b x x x x a n =<<<<=...210. 而将该区间任意分为若干段. 以||||π表示差数 )1,...,1,0(1-=-=?+n i x x x i i i 中最大者. 在每个分区间],[1+i i x x 中各取一个任意的点i x ξ=. )1,...,1,0(1-=≤≤+n i x x i i i ξ 而做成总和 ∑-=?=1 0)(n i i i x f ξσ 然后建立这个总和的极限概念: σπ0 ||||lim →=I 另用""δε-语言进行定义: 0>?ε,0>?δ,在||||πδ<时,恒有 εσ<-||I 则称该总和σ在0→λ时有极限I . 总和σ在0→λ时的极限即f(x)在区间a 到b 上的定积分,符号表示为 ?=b a dx x f I )( 2.性质 设f(x),g(x)在[a,b]上可积,则有下列性质 (1) 积分的保序性

如果任意)(),(],,[x g x f b a x ∈,则??≥b a b a dx x g dx x f ,)()( 特别地,如果任意,0)(],,[≥∈x f b a x 则?≥b a dx x f 0)( (2) 积分的线性性质 ???±=±b a b a b a dx x g dx x f dx x g x f )()())()((βαβα 特别地,有??=b a b a x f c dx x cf )()(. 设f(x)在[a,b]上可积,且连续, (1)设c 为[a,b]区间中的一个常数,则满足 ???+=b c c a b a dx x f dx x f dx x f )()()( 实际上,将a,b,c 三点互换位置,等式仍然成立. (4)存在],[b a ∈θ,使得 )()()(θf a b dx x f b a -=? 二、达布定理 1.达布和 分别以i m 和i M 表示函数f(x)在区间],[1+i i x x 里的下确界及上确界并且做总和 ∑∑=+=+-=-=n i i i i n i i i i x x m f S x x M f S 1 11 1)(),(,)(),(ππ ),(f S π称为f(x)相应于分割π的达布上和,),(f S π称为f(x)相应于分割π的达布下和 特别地,当f(x)连续时,这些和就直接是相应于任意分割法的积分和的最小者和最大者,因为在这种情形下f(x)在没一个区间上都可以达到其上下确界. 回到一般情况,有上下界定义知道

定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限, 设()0()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

定积分知识点总结.doc

定积分知识点总结 北京航空航天大学 李权州 一、定积分定义与基本性质 1.定积分定义 设有一函数f(x)给定在某一区间[a,b]上. 我们在a 与b 之间插入一些分点b x x x x a n =<<<<=...210. 而将该区间任意分为若干段. 以||||π表示差数 )1,...,1,0(1-=-=?+n i x x x i i i 中最大者. 在每个分区间],[1+i i x x 中各取一个任意的点i x ξ=. )1,...,1,0(1-=≤≤+n i x x i i i ξ 而做成总和 ∑-=?=1 0)(n i i i x f ξσ 然后建立这个总和的极限概念: σπ0 ||||lim →=I 另用""δε-语言进行定义: 0>?ε,0>?δ,在||||πδ<时,恒有 εσ<-||I 则称该总和σ在0→λ时有极限I . 总和σ在0→λ时的极限即f(x)在区间a 到b 上的定积分,符号表示为 ?=b a dx x f I )( 2.性质 设f(x),g(x)在[a,b]上可积,则有下列性质 (1) 积分的保序性 如果任意)(),(],,[x g x f b a x ∈,则??≥b a b a dx x g dx x f ,)()(

特别地,如果任意,0)(],,[≥∈x f b a x 则?≥b a dx x f 0)( (2) 积分的线性性质 ???±=±b a b a b a dx x g dx x f dx x g x f )()())()((βαβα 特别地,有??=b a b a x f c dx x cf )()(. 设f(x)在[a,b]上可积,且连续, (1)设c 为[a,b]区间中的一个常数,则满足 ???+=b c c a b a dx x f dx x f dx x f )()()( 实际上,将a,b,c 三点互换位置,等式仍然成立. (4)存在],[b a ∈θ,使得 )()()(θf a b dx x f b a -=? 二、达布定理 1.达布和 分别以i m 和i M 表示函数f(x)在区间],[1+i i x x 里的下确界及上确界并且做总和 ∑∑=+=+-=-=n i i i i n i i i i x x m f S x x M f S 1 11 1)(),(,)(),(ππ ),(f S π称为f(x)相应于分割π的达布上和,),(f S π称为f(x)相应于分割π的达布下 和 特别地,当f(x)连续时,这些和就直接是相应于任意分割法的积分和的最小者和最大者,因为在这种情形下f(x)在没一个区间上都可以达到其上下确界. 回到一般情况,有上下界定义知道 i i i M f m ≤≤)(ξ 将这些不等式逐项各乘以i x ?(i x ?是正数)并依i 求其总和,可以得到

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

不定积分总结

不定积分

一、原函数 定义1 如果对任一I x ∈,都有 )()(x f x F =' 或 dx x f x dF )()(= 则称)(x F 为)(x f 在区间I 上的原函数。 例如:x x cos )(sin =',即x sin 是x cos 的原函数。 2 211)1ln([x x x +='++,即)1ln(2x x ++是 2 11x +的原函数。 原函数存在定理:如果函数)(x f 在区间I 上连续,则)(x f 在区间I 上一定有原函数,即存在区间I 上的可导函数)(x F ,使得对任一I x ∈,有)()(x f x F ='。 注1:如果)(x f 有一个原函数,则)(x f 就有无穷多个原函数。 设)(x F 是)(x f 的原函数,则)(])([x f C x F ='+,即C x F +)(也为)(x f 的原函数,其中C 为任意常数。 注2:如果)(x F 与)(x G 都为)(x f 在区间I 上的原函数,则)(x F 与)(x G 之差为常数,即C x G x F =-)()((C 为常数) 注3:如果)(x F 为)(x f 在区间I 上的一个原函数,则C x F +)((C 为任意常数)可表达)(x f 的任意一个原函数。 二、不定积分 定义2 在区间I 上,)(x f 的带有任意常数项的原函数,成为)(x f 在区间I 上的不定积分,记为?dx x f )(。 如果)(x F 为)(x f 的一个原函数,则 C x F dx x f +=?)()(,(C 为任意常数)

x y o )(x F y = C x F y +=)( 三、不定积分的几何意义 不定积分的几何意义如图5—1所示: 图 5—1 设)(x F 是)(x f 的一个原函数,则)(x F y =在平面上表示一条曲线,称它为 )(x f 的一条积分曲线.于是)(x f 的不定积分表示一族积分曲线,它们是由) (x f 的某一条积分曲线沿着y 轴方向作任意平行移动而产生的所有积分曲线组成的.显然,族中的每一条积分曲线在具有同一横坐标x 的点处有互相平行的切线,其斜率都等于)(x f . 在求原函数的具体问题中,往往先求出原函数的一般表达式C x F y +=)(,再从中确定一个满足条件 00)(y x y = (称为初始条件)的原函数)(x y y =.从几何上讲,就是从积分曲线族中找出一条通过点),(00y x 的积分曲线. 四、不定积分的性质(线性性质) [()()]()()f x g x dx f x dx g x dx ±=±??? ()() kf x dx k f x dx =??k ( 为非零常数)

大学微积分1方法总结

第一章 函数、极限、连续 注 “★”表示方法常用重要. 一、求函数极限的方法 ★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等. ★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法 运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。 三、无穷小量阶的比较的方法 利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开 四、函数的连续与间断点的讨论的方法 如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。如果)(x f 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。

五、求数列极限的方法 ★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理; 4. )()(lim )()(lim ∞=?∞=∞ →+∞→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若∑∞ =1n n a 收敛,则0lim =∞→n n a ;8. 无穷小量乘以有界量 仍是无穷小量;9.等价量替换等. 【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算, 2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理 3.对数列极限的未定式不能用洛比达法则。因为数列作为函数不连续,更不可导,故对数列极限不能用洛比达法则. 4.由数列{}n a 中的通项是n 的表达式,即).(n f a n =而)(lim )(lim x f n f x n ∞ →∞→与是特殊与一般的关系,由归结原则知 ★5. 有lim 1011()()n n i i f f x dx n n →∞ ==?∑或1lim 1001()()n n i i f f x dx n n -→∞==?∑ 第二章 一元函数微分学 ★一、求一点导数或给处在一点可导推导某个结论的方法: 利用导数定义,经常用第三种形式 二、研究导函数的连续性的方法:

不定积分知识点总结

不定积分知识点总结 不定积分知识点总结 不定积分 1、原函数存在定理 定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F'(x)=f(x);简单的说连续函数一定有原函数。 分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2 )变速直线运动的路程 2、函数可积的充分条件 定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积

3、定积分的若干重要性质 性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx 推论|∫abf(x)dx|≤∫ab|f(x)|dx 性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m (b-a )≤∫abf(x)≤dx≤M (b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)(b-a )。 4、关于广义积分 设函数f(x)在区刚[a,b]上除点c (a

定积分的应用本科毕业论文开题报告

一、选题的性质 二、选题的目的和意义 选题目的:定积分作为函数的一种特定总和式的极限,是数学知识的重要基础。通过典型问 题,从不同角度,对定积分的特点进行整体把握,探讨定积分在几何学、物理学、以及经济学中 的应用,加强对定积分思想的认识,提供用定积分分析解决实际问题的方法 。 选题意义:定积分是与应用联系发展起来的,是微积分中的一个重要基本概念,是从实际问 题中抽象出来的数学概念,是解决许多实际问题的工具。 在数学方面如求解复杂图形,求数列极限,证明不等式等;而在物理方面,正是由于定积分 的产生与发展,才使得物理学中的精确计算成为可能,从而使物理学得到长足的发展,如:气象、弹道的计算,人造卫星轨迹的计算,运动状态的分析等,都要用的到积分;把定积分应用到经济 管理学中,可以使一些经济现象更明确,使管理更科学化。 三、与本课题相关的国内外研究现状,预计可能有所创新的方面 研究现状:牛顿,莱布尼茨以无穷思想为据,从不同的角度运用了定积分的思想方法创立了 微积分,在这新的领域上定积分的思想和方法展现出了勃勃生机,为定积分思想的进一步完善奠 定了坚实的基础。定积分理论的建立,使数学摆脱了许多与无穷有关的悖论和困扰,对于培养人 的思维方法,提高分析、解决问题方面有极好的促进作用。定积分作为微积分的重要组成部分, 在几何、物理、经济等方面有着广泛的应用,目前,探究定积分应用的文章非常之多,研究范围 也是相当广泛的。在几何学方面,可以用来计算平面图形面积,立体、旋转体的体积,弧长等; 在物理学方面,压力、引力,变力做工,运动轨迹的计算,运动状态分析等也都用到定积分知识; 在经济学方面可以用来解决消费过剩,收入流等实际问题。也正是因为这些应用,推动着积分学 的不断发展和完善。 预计创新方面:通过典型例题,从定积分的公式、性质及定积分中值定理出发,来介绍定积 分在几何、物理、经济等领域的应用,在前人的基础上对定积分的典型应用进行研究讨论,寻找 简单的用定积分解决实际问题的方法。 四、课题研究的可行性分析 定积分是函数的一种特定总和式的极限,是数学知识的基础,对定积分的一些公式、性质、 定积分中值定理已有深刻的理解,通过常见的定积分例题,从不同角度分析、研究定积分的特点,更容易把握和理解。再看近几年的几何、物理,经济等方面的研究,尤其是几何学,定积分在这 些研究中扮演着相当重要的角色,而事实也证明定积分的思想确实给相关研究带来很大的方便。 所以研究好定积分不单是数学界的问题,更是整个学术界共同的任务。而对其分析研究的结果也 必将给以后各方面的课题研究带来意想不到的便捷之处。

不定积分解题方法及技巧总结剖析

? 不定积分解题方法总结 摘要:在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1 111)'ln )1(ln(+- =-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2 )ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 )ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式 ??=dt t t f dx f )(')]([x)(??

高等数学第五章定积分总结

第五章 定积分 内容:定积分的概念和性质、微积分基本公式、换元积分法、分部积分法、广义积分。 要求:理解定积分的概念和性质。掌握牛顿-莱布尼兹公式、定积分的换元法和分部积分法,理解变上限的定积分作为其上限的函数及其求导定理,理解广义积分的概念和计算方法。 重点:定积分的概念和性质;微积分基本公式;换元积分法、分部积分法。 难点:定积分的概念;变上限积分函数及其导数;换元积分法、分部积分法。 §1.定积分的概念 一、实例分析 1.曲边梯形的面积 设函数)(x f y =∈C[a , b ], 且)(x f y =>0. 由曲线0,,),(====y b x a x x f y 围成的图形称为曲边梯形. 如何定义曲边梯形的面积 (1) 矩形面积=底高. (2) 预备一张细长条的纸, 其面积底高. (3) 预备一张呈曲边梯形状的纸, 将其撕成许多细长条. (4) 启示: 将曲边梯形分割为许多细长条, 分割得越细, 误差越小. 第i 个细长条面积)],,[()(11---=?∈??≈?i i i i i i i i i x x x x x x f S ξξ 曲边梯形面积: ∑=?≈ n i i i x f S 1 )(ξ 定积分概念示意图.ppt 定义: ),,2,1,max {()(lim 1 n i x x f S i n i i i Λ=?=?=∑=→λξλ y =f (x ) x =a x =b y =f (x ) a=x 0 x 1 x i-1 x i x n =b

抛开上述过程的几何意义,将其数学过程定义为定积分. 二、定积分的定义 1. 定义 设)(x f y =在[a , b ]有定义, 且有界. (1) 分割: 用分点b x x x a n =<<<=Λ10把[a , b ]分割成n 个小区间: } ,,2,1,max{,,,2,1],,[11n i x x x x n i x x i i i i i i ΛΛ=?=-=?=--λ记 (2) 取点: 在每个小区间],[1i i x x -上任取一点i , 做乘积: i i x f ?)(ξ. (3) 求和: ∑=?n i i i x f 1 )(ξ (4) 取极限: ∑=→?n i i i x f 1 )(lim ξλ 若极限存在, 则其为)(x f 在[a , b ]上的定积分, 记作: ? b a dx x f )(. 即: ∑? =→?=n i i i b a x f dx x f 1 )(lim )(ξλ [a , b ]: 积分区间;a :积分下限;b :积分上限; ∑=?n i i i x f 1 )(ξ积分和式. 问题: 定积分是极限值, 在求极限的过程中, 谁是常量, 谁是变量 注: (1) ∑ =?n i i i x f 1 )(ξ与区间的分割法x i 和取点法 i 有关; 而 ? b a dx x f )(与x i 和 i 无 关. (2) ? b a dx x f )(与a 、b 、f 有关,与x 无关,即: [][]???? ===b a b a b a b a d f du u f dt t f dx x f )()()()( 2.定积分存在定理 定理 若)(x f 在[a , b ]上有界且只有有限个间断点,则)(x f 在[a , b ]上可积. 推论 若)(x f 在[a , b ]上连续,则)(x f 在[a , b ]上可积. 例1. 求 ?1 xdx

相关主题
文本预览