当前位置:文档之家› 硅酸盐晶体结构

硅酸盐晶体结构

硅酸盐晶体结构
硅酸盐晶体结构

硅酸盐的结构特点及其应用简介内容摘要:硅酸盐晶体结构

硅酸盐是构成地壳的主要矿物,也是水泥、陶瓷、玻璃、耐火材料等硅酸盐的主要原料。

硅酸盐晶体结构共同特点:结构中具有硅氧四面体。

硅氧间的平均距离:键型:硅氧四面体的连接方式:

关键词:组成表征、结构特点、分类

一、硅酸盐晶体的组成表征、结构特点及分类

(一)组成表征:

硅酸盐晶体的化学组成甚为复杂。因此,在表征硅酸盐晶体的化学式时,通常有两种方法:一种是氧化物方法,另一种是无机络盐表示法(结构式)。氧化物方法:即把构成硅酸盐晶体的所有氧化物按一定的比例和顺序全部写出来,先是1价的碱金属氧化物,其次是2价、3价的金属氧化物,最后是SiO2。例如,钾长石的化学式写为K2O·Al2O3·6SiO2;无机络盐表示法:先写联结硅氧骨干的阳离子,按低价到高价的顺序,然后写硅氧骨干,并用[]括起来,最后写水,水可以是OH-形式的,也可以是H2O分子形式的。钾长石:K[AlSi3O8]高岭石:Al4[Si4O10](OH)8

(二)硅酸盐晶体结构的共同特点:

(1)构成硅酸盐晶体的基本结构单元[SiO4]四面体。Si-O-Si键是一条夹角不等的折线,一般在145o左右。

(2)[SiO4]四面体的每个顶点,即O2-离子最多只能为两个[SiO4]四面体所共用。

(3)两个相邻的[SiO4]四面体之间只能共顶而不能共棱或共面连接。(4)[SiO4]四面体中心的Si4+离子可部分地被Al3+所取代。

(三)硅酸盐晶体结构的分类:

按结构中硅氧四面体的连接方式,分为:岛状、组群状、链状、层状和架状五种方式。硅酸盐晶体也分为相应的五种类型,其对应的Si/O由1/4变化到1/2,结构变得越来越复杂,见表2-5。

表2-5硅酸盐晶体结构类型与Si/O比的关系结构类型[SiO4]4-共用O2-数形状络阴离子Si/O实例岛状0四面体[SiO4]4-1:4镁橄榄石Mg2[SiO4]1双四面体[Si2O7]6-2:7硅钙石Ca3[Si2O7]三节环[Si3O9]6-1:3蓝锥矿BaTi[Si3O9]四节环[Si4O12]8-1:3Ca2Al2(Fe,Mn)BO3[Si4O12](OH)组群状2六节环

[Si6O18]12-1:3绿宝石Be3Al2[Si6O18]2单链[Si2O6]4-1:3透辉石CaMg[Si2O6]链状2,3双链[Si4O11]6-4:11透闪石Ca2Mg5[Si4O11]2(OH)2层状3平面层[Si4O10]4-4:10滑石Mg3[Si4O10](OH)2[SiO2]0石英SiO2架状4骨架

[AlSi3O8]1-1:2钾长石K[AlSi3O8]

(1)岛状结构

结构特点:结构中的[SiO4]四面体以孤立状态存在,硅氧四面体之间没有共用的氧。硅氧四面体中的氧离子,除了与硅离子相连外,剩下的一价将与其它金属阳离子相连。结构中Si/O比为1:4。

岛状硅酸盐晶体主要有锆石英Zr[SiO4]、镁橄榄石Mg2[SiO4]、蓝晶石

Al2O3·SiO2、莫来石3Al2O3·2SiO2以及水泥熟料中的 γ-C2S、 β-C2S和C3S等。

镁橄榄石Mg2[SiO4]结构

属斜方晶系,空间群Pbnm;晶胞参数a=0.476nm,b=1.021nm,c=0.599nm;晶胞分子数Z=4。如下图所示。镁橄榄石结构中,O2-离子近似于六方最紧密堆积排列,Si4+离子填于四面体空隙的1/8;Mg2+离子填于八面体空隙的1/2。每个[SiO4]四面体被[MgO6]八面体所隔开,呈孤岛状分布。

图2-18镁橄榄石晶体理想结构

结构中的同晶取代:镁橄榄石中的Mg2+可以被Fe2+以任意比例取代,形成橄榄石(FexMg1-x)SiO4固溶体。

如果Mg2+部分被Ca2+取代,则形成钙橄榄石CaMgSiO4。

如果Mg2+全部被Ca2+取代,则形成 -Ca2SiO4,即 -C2S,其中Ca2+的配位数为6。

另一种岛状结构的水泥熟料矿物 -Ca2SiO4,即 -C2S属于单斜晶系,其中Ca2+有8和6两种配位。由于其配位不规则,化学性质活泼,能与水发生水化反应。而 -C2S由于配位规则,在水中几乎是惰性的。

结构与性质的关系:结构中每个O2-离子同时和1个[SiO4]和3个[MgO6]相连接,因此,O2-的电价是饱和的,晶体结构稳定。由于Mg-O键和Si-O键都比较强,所以,镁橄榄石表现出较高的硬度,熔点达到1890℃,是镁质耐火材料的主要矿物。同时,由于结构中各个方向上键力分布比较均匀,所以,橄榄石结构没有明显的解理,破碎后呈现粒状。

(2)组群状结构

组群状结构是2个、3个、4个或6个[SiO4]四面体通过共用氧相连接形成单独的硅氧络阴离子团,如所示。硅氧络阴离子团之间再通过其它金属离子连接起来,所以,组群状结构也称为孤立的有限硅氧四面体群。

有限四面体群中连接两个Si4+离子的氧称为桥氧,由于这种氧的电价已经饱和,一般不再与其它正离子再配位,故桥氧亦称为非活性氧。相对地只有一侧

与Si4+离子相连接的氧称为非桥氧或活性氧。

孤立的有限硅氧四面体群

组群状结构中Si/O比为2:7或1:3。其中硅钙石Ca3[Si2O7],铝方柱石Ca2Al[AlSiO7]和镁方柱石Ca2Mg[Si2O7]等具有双四面体结构。蓝锥矿

BaTi[Si3O9]具有三节环结构。绿宝石Be3Al2[Si6O18]具有六节环结构。

绿宝石Be3Al2[Si6O18]结构

绿宝石属于六方晶系,空间群P6/mcc,晶胞参数a=0.921nm,c=0.917nm,晶胞分子数Z=2,如下图2—19。绿宝石的基本结构单元是由6个[SiO4]四面体组成的六节环,六节环中的1个Si4+和2个O2-处在同一高度,环与环相叠起来。图中粗黑线的六节环在上面,标高为100,细黑线的六节环在下面,标高为50。上下两层环错开30°,投影方向并不重叠。环与环之间通过Be2+和Al3+离子连接。

结构与性质的关系:

绿宝石结构的六节环内没有其它离子存在,使晶体结构中存在大的环形空腔。当有电价低、半径小的离子(如Na+)存在时,在直流电场中,晶体会表现出显著的离子电导,在交流电场中会有较大的介电损耗;当晶体受热时,质点热振动的振幅增大,大的空腔使晶体不会有明显的膨胀,因而表现出较小的膨胀系数。结晶学方面,绿宝石的晶体常呈现六方或复六方柱晶形。

堇青石Mg2Al3[AlSi5O18]与绿宝石结构相同,但六节环中有一个Si4+被Al3+取代;同时,环外的正离子由(Be3Al2)变为(Mg2Al3),使电价得以平衡。此时,正离子在环形空腔迁移阻力增大,故堇青石的介电性质较绿宝石有所改善。堇青石陶瓷热学性能良好,但不宜作无线电陶瓷,因为其高频损耗大。

(3)链状结构

链的类型、重复单元与化学式:硅氧四面体通过共用的氧离子相连接,形成向一

维方向无限延伸的链。依照硅氧四面体共用顶点数目的不同,分为单链和双链两类。如果每个硅氧四面体通过共用两个顶点向一维方向无限延伸,则形成单链,见图2-20-a。单链结构以[Si2O6]4-为结构单元不断重复,结构单元的化学式为[Si2O6]。在单链结构中,按照重复出现与第一个硅氧四面体的空间取向完全一致的周期不等,单链分为1节链、2节链、3节链……7节链等7种类型。见图2-20-d,

两条相同的单链通过尚未共用的氧组成带状,形成双链。双链以[Si4O11]6-为结构单元向一维方向无限伸展,化学式为[Si4O11]。

辉石类硅酸盐结构中含有[Si2O6]单链,如透辉石、顽火辉石等。链间通过金属正离子连接,最常见的是Mg2+和Ca2+。角闪石类硅酸盐含有双链[Si4O11],如斜方角闪石(Mg,Fe)7[Si4O11]2(OH)2和透闪石Ca2Mg5[Si4O11]2(OH)2等。

透辉石CaMg[Si2O6]结构

透辉石属单斜晶系,空间群C2/c,晶胞参数a=0.971nm,b=0.889nm,

c=0.524nm, =105o37,。晶胞分子数Z=4。如图2-21所示,硅氧单链[Si2O6]平行于c轴方向伸展,图中两个重叠的硅氧链分别以粗黑线和细黑线表示。单链之间依靠Ca2+、Mg2+连接。Ca2+的配位数为8,Mg2+为6。Ca2+负责[SiO4]底面间的连接,Mg2+负责顶点间的连接。

若透辉石结构中的Ca2+全部被Mg2+取代,则形成斜方晶系的顽火辉石Mg2[Si2O6]。

(4)层状结构

层状结构的基本单元、化学式与类型:层状结构是每个硅氧四面体通过3个桥氧连接,构成向二维方向伸展的六节环状的硅氧层(无限四面体群),见图2-22。在六节环状的层中,可取出一个矩形单元[Si4O10]4-,于是硅氧层的化学式可写为[Si4O10]。

在层状硅酸盐晶体结构中,硅氧四面体层与水铝氧或水镁氧八面体层的连接方式有两种:一种是由一层四面体层和一层水铝(镁)氧八面体层构成,称为1:1型或两层型结构。另一种是由两层四面体层中间夹一层水铝(镁)氧八面体层,称为2:1型或三层型结构,见图2-24-a、图2-24-b示。

水铝(镁)氧层分为三八面体型和二八面体型。

高岭石的结构

化学式:Al4[Si4O10](OH)8)或Al2O3·2SiO2·2H2O高岭石是一种主要的粘

土矿物,属三斜晶系,空间群C1;晶胞参数a=0.514nm,b=0.893nm,c=0.737nm, =91o36,, =104o48,, =89o54,;晶胞分子数Z=1。结构如图2-25,高岭石的基本结构单元是一层硅氧四面体层和一层水铝氧八面体层构成的两层型结构,两层型结构单位在ab平面内无限延展,在c轴方向叠放形成高岭石结构。Al3+配位数为6,其中2个是O2-,4个是OH-,形成[AlO2(OH)4]八面体,正是这两个O2-把水铝氧层和硅氧层连接起来。水铝氧层中,Al3+占据八面体空隙的2/3。

结构与性质的关系:根据电价规则计算出层中O2-的电价是平衡的,即理论上层内是电中性的,所以,高岭石的层间只能靠物理键来结合,这就决定了高岭石也容易解理成片状的小晶体。但层之间在平行叠放时是水铝氧层的OH-与硅氧层的O2-相接触,故层间靠氢键来结合。由于氢键结合比分子间力强,所以,水分子不易进入层内,晶体不会因为水含量增加而膨胀。

蒙脱石(微晶高岭石)的结构

蒙脱石是一种粘土类矿物,属单斜晶系,空间群C2/ma;理论化学式为

Al2[Si4O10](OH)2·nH2O;

晶胞参数a=0.515nm,b=0.894nm,c=1.520nm, =90o;单位晶胞中Z=2。

实际化学式为

(Mx·nH2O)(Al2-xMgx)[Si4O10](OH)2,式中x=0.33,晶胞参数a 0.532nm,b 0.906nm,c的数值随含水量而变化,无水时c≈0.960nm。

蒙脱石结构,由两层硅氧四面体层和夹在中间的水铝氧八面体层所组成,如图2-26所示。理论上层内呈电中性,层间靠分子间力结合。实际上,由于结构中Al3+可被Mg2+取代,使层内并不呈电中性,带有少量负电荷(一般为-0.33e,也可有很大变化);因而层之间有斥力,使略带正电性的水化正离子易于进入层间;与此同时,水分子也易渗透进入层间,使晶胞c轴膨胀,随含水量变化,由

0.960nm变化至2.140nm,因此,蒙脱石又称为膨润土。

结构中的离子置换现象:

由于晶格中可发生多种离子置换,使蒙脱石的组成常与理论化学式有出入。其中硅氧四面体层内的Si4+可以被Al3+或P5+等取代,这种取代量是有限的;八面体层(即水铝氧层)中的Al3+可被Mg2+、Ca2+、Fe2+、Zn2+或Li+等所取代,取代量可以从极少量到全部被取代。

结构与性质关系:蒙脱石晶胞c轴长度随含水量而变化,甚至空气湿度的波动也能导致c轴参数的变化,所以,晶体易于膨胀或压缩。加水膨胀,加热脱水并产生较大收缩,一直干燥到脱去结构水之前,其晶格结构不会被破坏。随层间水进入的正离子使层内电价平衡,它们易于被交换,使矿物具有很高的阳离子交换能力。

滑石Mg3[Si4O10](OH)2的结构

滑石属单斜晶系,空间群C2/c,晶胞参数a=0.525nm,b=0.910nm,c=1.881nm, =100o;结构属于复网层结构,如图2-27所示。(a)所示OH-位于六节环中心,Mg2+位于Si4+与OH-形成的三角形的中心,但高度不同。(b)所示,两个硅氧层的活性氧指向相反,中间通过镁氢氧层连接,水镁氧层中Mg2+的配位数为6,形成[MgO4(OH)2]八面体。其中全部八面体空隙被Mg2+所填充,因此,滑石结构属于三八面体型结构。

结构与性质的关系:层中每个活性氧同时与3个Mg2+相连接,从Mg2+处获得的静电键强度为3×2/6=1,从Si4+处也获得1价,故活性氧的电价饱和。同理,OH-中的氧的电价也是饱和的,所以,层内是电中性的。这样,层与层之间只能依靠较弱的分子间力来结合,致使层间易相对滑动,所有滑石晶体具有良好的片状解理特性,并具有滑腻感。

离子取代现象:用2个Al3+取代滑石中的3个Mg2+,则形成二八面体型结构(Al3+占据2/3的八面体空隙)的叶蜡石Al2[Si4O10](OH)2结构。同样,叶蜡石也具有良好的片状解理和滑腻感。

晶体加热时结构的变化:滑石和叶蜡石中都含有OH-,加热时会产生脱水效应。滑石脱水后变成斜顽火辉石 -Mg2[Si2O6],叶蜡石脱水后变成莫来石

3Al2O3·2SiO2。它们都是玻璃和陶瓷工业的重要原料,滑石可以用于生成绝缘、介电性能良好的滑石瓷和堇青石瓷,叶蜡石常用作硼硅质玻璃中引入Al2O3的原料。

白云母KAl2[AlSi3O10](OH)2的结构

属单斜晶系,空间群C2/c;晶胞参数a=0.519nm,b=0.900nm,c=2.004nm, =95o11,;Z=2。其结构如图2-28所示,图中重叠的O2-已稍行移开。

白云母属于三层型结构,由两层硅氧层中间夹一层水铝氧八面体层所构成。连接两个硅氧层的水铝氧层中的Al3+的配位数为6,形成[AlO4(OH)2]八面体。由图2-28(a)可以看出,两相邻层之间呈现对称状态,因此相邻两硅氧六节环处形成一个巨大的空隙。

结构与性质关系:白云母结构与蒙脱石相似,但因其硅氧层中有1/4的Si4+被Al3+取代,层内不呈电中性,所以,层间有K+进入以平衡其负电荷。K+的配位数为12,呈统计地分布于层的六节环的空隙间,与硅氧层的结合力较层内化学键弱得多,故云母易沿层间发生解理,可剥离成片状。

结构中的离子取代:1)2个Al3+被3个Mg2+取代,形成金云母

KMg3[AlSi3O10](OH)2;用F-取代OH-,得到人工合成的氟金云母

KMg3[AlSi3O10]F2,作绝缘材料使用时耐高温达1000℃,而天然的仅600℃。2)用(Mg2+,Fe2+)代替Al3+,形成黑云母K(Mg,Fe)3[AlSi3O10](OH)2;3)用(Li+,Fe2+)取代1个Al3+,得锂铁云母KLiFe2+Al[AlSi3O10](OH)2;4)若2个Li+取代1个Al3+,同时[AlSi3O10]中的Al3+被Si4+取代,则形成锂云母Kli2Al[Si4O10](OH)2。5)如果K+被Na+取代,形成钠云母;若K+被Ca2+取代,同时硅氧层内有1/2的Si4+被Al3+取代,则成为珍珠云母CaAl2[Al2Si2O1

云母类矿物的用途:合成云母作为一种新型材料,在现代工业和科技领域用途很广。云母陶瓷具有良好的抗腐蚀性、耐热冲击性、机械强度和高温介电性能,可作为新型的电绝缘材料。云母型微晶玻璃具有高强度、耐热冲击、可切削等特性,广泛应用于国防和现代工业中。

(5)架状结构

架状结构中硅氧四面体的每个顶点均为桥氧,硅氧四面体之间以共顶方式连接,形成三维“骨架”结构。结构的重复单元为[SiO2],作为骨架的硅氧结构单元的化学式为[SiO2]2。其中Si/O为1:2。当硅氧骨架中的Si被Al取代时,结构单元的化学式可以写成[AlSiO4]或[AlSi3O8],其中(Al+Si):O仍为1:2。此时,

由于结构中有剩余负电荷,一些电价低、半径大的正离子(如K+、Na+、Ca2+、Ba2+等)会进入结构中。典型的架状结构有石英族晶体,化学式为SiO2,以及一些铝硅酸盐矿物,如霞石Na[AlSiO4]、长石(Na,K)[AlSi3O8]、方沸石

Na[AlSi2O6]·H2O等沸石型矿物等。

石英晶体的结构

SiO2晶体具有多种变体,常压下可分为三个系列:石英、鳞石英和方石英。它们的转变关系如下:

在上述各变体中,同一系列(即纵向)之间的转变不涉及晶体结构中键的破裂和重建,仅是键长、键角的调整,转变迅速且可逆,对应的是位移性转变。不同系列(即横向)之间的转变,如α-石英和α-鳞石英、α-鳞石英和α-方石英之间的转变都涉及键的破裂和重建,转变速度缓慢,属于重建性转变。

石英的三个主要变体: α-石英、α-鳞石英和α-方石英结构上的主要差别在于硅氧四面体之间的连接方式不同(见图2-30)。在α-方石英中,两个共顶连接的硅氧四面体以共用O2-为中心处于中心对称状态。在α-鳞石英中,两个共顶的硅氧四面体之间相当于有一对称面。在α-石英中,相当于在α-方石英结构基础上,使Si-O-Si键由180o转变为150o。由于这三种石英中硅氧四面体的连接方式不同,因此,它们之间的转变属于重建性转变。

(1)α-石英的结构

α-石英属六方晶系,空间群P6422或P6222;晶胞参数a=0.496nm,c=0.545nm;晶胞分子数Z=3。α-石英在(0001)面上的投影如图2-31所示。结构中每个Si4+周围有4个O2-,空间取向是2个在Si4+上方、2个在其下方。各四面体中的离子,排列于高度不同的三层面上。α-石英结构中存在6次螺旋轴,围绕螺旋轴

的Si4+离子,在(0001)面上的投影可连接成正六边形,如图2-32(a)所示。根据螺旋轴的旋转方向不同, -石英有左形和右形之分,其空间群分别为P6422和P6222。α-石英中Si-O-Si键角为150o。

β-石英属三方晶系,空间群P3221或P3121;晶胞参数a=0.491nm,c=0.540nm;晶胞分子数Z=3。 β-石英是α-石英的低温变体,两者之间通过位移性转变实

现结构的相互转换。两结构中的Si4+在(0001)面上的投影示于图2-32。在β-

石英结构中,Si-O-Si键角由α-石英中的150o变为137o,这一键角变化,使对称要素从α-石英中的6次螺旋轴转变为β-石英中的3次螺旋轴。围绕3次螺旋轴的Si4+在(0001)面上的投影已不再是正六边形,而是复三角形,见图2-32(b)。β-石英也有左、右形之分。

结构于性质的关系:

SiO2结构中Si-O键的强度很高,键力分别在三维空间比较均匀,因此SiO2

晶体的熔点高、硬度大、化学稳定性好,无明显解理。

关于β-石英的压电效应:

正压电效应:某些晶体在机械力作用下发生变形,使晶体内正负电荷中心相对位移而极化,致使晶体两端表面出现符号相反的束缚电荷,其电荷密度与应力成比例。这种由“压力”产生“电”的现象称为正压电效应(directpiezoelectriceffect)。

逆压电效应:

如果具有压电效应的晶体置于外电场中,电场使晶体内部正负电荷中心位移,导致晶体产生形变。这种由“电”产生“机械形变”的现象称为逆压电效应(conversepiezoelectriceffect)。

正压电效应和逆压电效应统称为压电效应。

根据转动对称性,晶体分为32个点群,在无对称中心的21个点群中,除

O-432点群外,有20种点群具有压电效应。晶体的压电性质与自发极化性质都

是由晶体的对称性决定的。

产生压电效应的条件是:晶体结构中无对称中心,否则,晶体受外力时,正负电荷中心不会分离,因而没有压电性。

由于晶体的各向异性,压电效应产生的方向、电荷的正负等都随晶体切片的方位而变化。如图1-50(a)显示无外力作用时,晶体中正负电荷中心是重合的,整个晶体中总电矩为零;图(b)表明,在垂直方向对晶体施加压力时,晶体发生变形,使正电荷中心相对下移,负电荷中心相对上移,导致正负电荷中心分离,使晶体在垂直于外力方向的表面上产生电荷(上负、下正)。图(c)显示出晶体水平方向受压时,在平行于外力的表面上产生电荷的过程,此时,电荷为上正下负。

由此可见,压电效应是由于晶体在外力作用下发生变形,正负电荷中心产生相对位移,使晶体总电矩发生变化造成的。因此,在使用压电晶体时,为了获得良好的压电性,须根据实际要求,切割出相应方位的晶片。

无外力作用时,晶体中正负电荷中心是重合的,整个晶体中总电矩为零

垂直方向对晶体施加压力时,晶体发生变形,使正电荷中心相对下移,负电荷中心相对上移,导致正负电荷中心分离,使晶体在垂直于外力方向的表面上产生电荷(上负、下正)。

晶体水平方向受压时,在平行于外力的表面上产生电荷的过程,此时,电荷为上正下负。

压电晶体的应用:压电材料在宇航、电子、激光、计算机、微波、能源等领域得到广泛应用。目前主要用作压电振子和压电换能器。前者主要利用振子本身的谐振特性,要求压电、介电、弹性等性能的温度变化、经时变化稳定,机械品质因数高。后者主要将一种形式的能量转换成另一种形式的能量,要求换能效益(即机电耦合系数和品质因数)高。

(2)α-鳞石英的结构

α-鳞石英属六方晶系,空间群P63/mmc;晶胞参数a=0.504nm,c=0.825nm;晶胞分子数Z=4。其结构如图2-33所示。结构由交替指向相反方向的硅氧四面体

组成的六节环状的硅氧层平行于(0001)面叠放而形成架状结构。平行叠放时,硅氧层中的四面体共顶连接,Si-O-Si键角是180o,对于 -鳞石英,有的认为属于斜方晶系,晶胞参数a=0.874nm,b=0.504nm,c=0.824nm。而有的认为属于单斜晶系,参数为a=1.845nm,b=0.499nm,c=2.383nm, =105o39,。

下图即为α-方石英、α-鳞石英中硅氧四面体的不同连接方式对比:

存在对称中心存在对称面

(3)α-方石英结构

α-方石英属立方晶系,空间群Fd3m;晶胞参数a=0.713nm;晶胞分子数Z=8。

结构如图2-34所示。其中Si4+位于晶胞顶点及面心,晶胞内部还有4个Si4+,其位置相当于金刚石中C原子的位置。它是由交替地指向相反方向的硅氧四面体组成六节环状的硅氧层(不同于层状结构中的硅氧层,该硅氧层内四面体取向的一致的),以3层为一个重复周期在平行于(111)面的方向上平行叠放而形成的架状结构。叠放时,两平行的硅氧层中的四面体相互错开60o,并以共顶方式对接,共顶的O2-形成对称中心,如图2-35所示。 -方石英冷却到268℃会转变为四方晶系的 -方石英,其晶胞参数a=0.497nm,c=0.692nm。

长石的结构

长石类硅酸盐分为正长石系和斜长石系两大类。其中有代表性的为:

第三章晶体结构与性质全章教案

第三章晶体结构与性质 第一节晶体常识 第一课时 教学目标: 1、通过实验探究理解晶体与非晶体的差异。 2、学会分析、理解、归纳和总结的逻辑思维方法,提高发现问题、分析问题和解决问题的能力。 3、了解区别晶体与非晶体的方法,认识化学的实用价值,增强学习化学的兴趣。 教学重难点: 1、晶体与非晶体的区别 2、晶体的特征 教学方法建议:探究法 教学过程设计: [新课引入]:前面我们讨论过原子结构、分子结构,对于化学键的形成也有了初步的了解,同时也知道组成千万种物质的质点可以是离子、原子或分子。又根据物质在不同温度和压强 下,物质主要分为三态:气态、液态和固态,下面我们观察一些固态物质的图片。 [投影]:1、蜡状白磷;2、黄色的硫磺;3、紫黑色的碘;4、高锰酸钾 [讲述]:像上面这一类固体,有着自己有序的排列,我们把它们称为晶体;而像玻璃这一类 固体,本身原子排列杂乱无章,称它为非晶体,今天我们的课题就是一起来探究晶体与非晶体的有关知识。[板书]:—、晶体与非晶体 [板书]:1、晶体与非晶体的本质差异 [提问]:在初中化学中,大家已学过晶体与非晶体,你知道它们之间有没有差异? [回答]:学生:晶体有固定熔点,而非晶体无固定熔点。 [讲解]:晶体有固定熔点,而非晶体无固定熔点,这只是晶体与非晶体的表观现象,那么他 们在本质上有哪些差异呢? [投影]晶体与非晶体的本质差异 [板书]:自范性:晶体能自发性地呈现多面体外形的性质。 [解释]:所谓自范性即“自发”进行,但这里得注意,“自发”过程的实现仍需一定的条件。例如:水能自发地从高处流向低处,但不打开拦截水流的闸门,水库里的水不能下泻。 [板书]:注意:自范性需要一定的条件,其中最重要的条件是晶体的生长速率适当。 [投影]:通过影片播放出,同样是熔融态的二氧化硅,快速的冷却得到玛瑙,而缓慢冷却得到水晶过程。[设问]:那么得到晶体的途径,除了用上述的冷却的方法,还有没有其它途径呢?你能列举 哪些? [板书]:2、晶体形成的一段途径: (1)熔融态物质凝固; (2)气态物质冷却不经液态直接凝固(凝华); (3)溶质从溶液中析出。

选修3第三章《晶体结构与性质》单元测试题

黄石二中2011年化学选修3第三章《晶体结构与性质》单元测试题 时间:110分钟满分:120分2011.2.25 命题人:高存勇 选择题(每小题只有一个正确答案。每小题3分,共45分) 1.下列有关金属晶体嘚判断正确嘚是 A.简单立方、配位数6、空间利用率68% B.钾型、配位数6、空间利用率68% C.镁型、配位数8、空间利用率74% D.铜型、配位数12、空间利用率74% 2.有关晶格能嘚叙述正确嘚是 A.晶格能是气态离子形成1摩离子晶体释放嘚能量 B.晶格能通常取正值,但是有时也取负值 C.晶格能越大,形成嘚离子晶体越不稳定 D.晶格能越大,物质嘚硬度反而越小 3.下列排列方式是镁型堆积方式嘚是 A.ABCABCABC B.ABABABABAB C.ABBAABBA D.ABCCBAABCCBA 4.下列关于粒子结构嘚描述不正确嘚是 A.H2S和NH3均是价电子总数为8嘚极性分子 B.HS-和HCl均是含一个极性键嘚18电子粒子 C.CH2Cl2和CCl4均是四面体构型嘚非极性分子 D.1 mol D162O中含中子、质子、电子各10 N A(N A代表阿伏 加德罗常数) 5.现代无机化学对硫-氮化合物嘚研究是最为活跃嘚领域之一。 其 中如图所示是已经合成嘚最著名嘚硫-氮化合物嘚分子结构。 下列说法正确嘚是 A.该物质嘚分子式为SN B.该物质嘚分子中既有极性键又有非极性键 C.该物质具有很高嘚熔沸点 D.该物质与化合物S2N2互为同素异形体 6.某物质嘚实验式为PtCl4·2NH3,其水溶液不导电,加入AgNO3溶液反应也不产生沉淀,以强碱处理并没有NH3放出,则关于此化合物嘚说法中正确嘚是 A.配合物中中心原子嘚电荷数和配位数均为6 B.该配合物可能是平面正方形结构 C.Cl—和NH3分子均与Pt4+配位

第三章晶体结构与性质

第三章晶体结构与性质 第二节分子晶体与原子晶体(第1课时) 【学习目标】 1.说出分子晶体的定义、构成微粒、粒子间的作用力及哪些物质是典型的分 子晶体。 2.以冰和干冰为典型例子描述分子晶体的结构与性质的关系,解释氢键对冰晶 体结构和和物理性质的影响。 【预学能掌握的内容】 【自主学习】 一.分子晶体 1.定义:________________________________ 2.构成微粒________________ 3.粒子间的作用力:____________________ 4. 较典型的分子晶体有:①②_______ 单质 ③氧化物④⑤ 此外,还有少数盐是分子晶体,如 5.分子晶体的物理性质:熔沸点较____、易升华、硬度____。固态和熔融状态 下都。 6.分子间作用力对物质的性质有怎么样的影响? 一般说来,对与组成和结构相似的物质,相对分子量越大,分子间作用力越 ____,物质的熔沸点也越____。但是有些氢化物的熔点和沸点的递变却与此不 完全符合,如:NH 3 ,H 2 O和HF的沸点就出现反常,因 为这些分子间存在____键。 7.分子晶体的结构特征: (1)只有范德华力,无分子间氢键-分子晶体的结构特征 为。如:C60、干冰、I2、O2。 如右图所示,每个CO2分子周围有个紧邻的 CO2分子。 (2)有分子间氢键-不具有分子密堆积特征。如:冰 中每个水分子周围只有个紧邻的水分子,这一 排列使冰晶体中水分子的空间利用率不高,留有相当大 的空隙。 【预学中的疑难问题】 【合作探究】 1.大多数分子晶体的结构特征 (1)大多数分子晶体采用堆积 (2)若用一个小黑点代表一个分子,试画出大多数分子晶体的晶胞图 (3)干冰晶体 ①二氧化碳分子在晶胞中处于什么位置? ②一个干冰晶胞中含有几个分子? ③每个CO2分子周围有几个距它最近的分子? ④干冰晶体中CO 2 分子的排列方向有几种 ④干冰和冰,那种晶体密度大?试从晶体结构特征解释。

第三章《晶体结构与性质》《晶体的常识》教学设计

第三章《晶体结构与性质》《晶体的常识》教学设计 一、教学目标 1、知识与技能 (1)知道获得晶体的几种途径 (2)理解晶体的特点和性质及晶体与非晶体的本质区别 (3)初步学会确定一个晶胞中平均所含粒子数的方法 2、过程与方法 (1)收集生活素材,结合已有知识和生活经验对晶体与非晶体进行分类 (2)学生通过观察、实验等方法获取信息 (3)学会运用比较、分类、归纳、概括等方法对获取的信息进行加工 3、情感态度与价值观 (1)培养学生科学探究的方法 (2)培养学生的动手能力、观察能力、自主学习的能力,保持对生活中化学的好奇心和探知欲,增强学生学习化学的兴趣。 二、教学重点 1、晶体的特点和性质及晶体与非晶体的本质区别 2、确定一个晶胞中平均所含粒子数的方法 三、教学难点 1、确定一个晶胞中平均所含粒子数的方法 四、教学用品 课前学生收集的各种固体物质、玛瑙耳坠和水晶项链、蜂巢、晶胞实物模型、乒乓球、铁架台、酒精灯、蒸发皿、圆底烧瓶、碘、水、多媒体等 五、教学过程 1.新课导入: [教师]上课前,我已经请同学们收集了一些身边的固体物质,大家都带来了吗?(学生:带来了)你们都带来了哪些固体呢?(学生七嘴八舌,并展示各自的固体)[教师]同学们带来的固体物质可真是琳琅满目啊!但是,我们每个人可能只带了几样,想知道别人收集了哪些固体物质吗?(学生:想)下面我们请前后四个同学组成一个小组,然后互相交流一下收集的各种固体物质,并讨论如何将这些固体物质进行分类呢? [分组讨论]互相交流各自所带的物品,并分类(教师进行巡视) [教师]:请这组同学将你们带来的固体和交流的结果汇报一下。 [学生汇报]:(我们讨论后觉得将粗盐、明矾、樟脑丸分为一类;塑料、玻璃片、橡胶分为另一类。教师追问:你们为什么会这样分呢?生:根据这些有规则的几何外形,而另一些没有。) [教师总结]这组同学收集的物品很丰富,并通过组内讨论确定了分类依据,然后进行了恰当的分类。其实,同学们也许没有留心观察,我们身边还有许多美丽的固体,当然也有的可能是我们日常生活中不易接触到的。下面,我们就一起欣赏一下这些美丽的固体。 [视频投影]雪花放大后的形状、烟水晶、石膏、毒砂、绿柱石、云母等晶体实物(并配以相应的解说,给学生了解到这些固态物质都有规则的几何外形。) [教师讲述]我们就将这些有规则几何外形的固体称之为晶体,而另一些没有规则几何外形的固体称之为非晶体。 [板书]一、晶体与非晶体 设计意图:课前请同学收集身边的固态物质,然后在课堂上展示,并分组交流讨论,最后进行分类,并在课堂上汇报。这样从学生身边的固体入手,直观、简洁地引入课题,潜移默化

人教版高中化学选修知识点总结第三章晶体结构与性质

第三章晶体结构与性质 课标要求 1. 了解化学键和分子间作用力的区别。 2. 理解离子键的形成,能根据离子化合物的结构特征解释其物理性质。 3. 了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。 4. 理解金属键的含义,能用金属键理论解释金属的一些物理性质。 5. 了解分子晶体与原子晶体、离子晶体、金属晶体的结构微粒、微粒间作用力的区别。 要点精讲 一.晶体常识 1. 晶体与非晶体比较 2. 获得晶体的三条途径 ①熔融态物质凝固。 ②气态物质冷却不经液态直接凝固(凝华)。 ③溶质从溶液中析出。 3. 晶胞晶胞是描述晶体结构的基本单元。晶胞在晶体中的排列呈“无隙并置” 。 4. 晶胞中微粒数的计算方法——均摊法 如某个粒子为n 个晶胞所共有,则该粒子有1/n 属于这个晶胞。中学中常见的晶胞为立方晶胞 立方晶胞中微粒数的计算方法如下: 注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状 二.四种晶体的比较

2.晶体熔、沸点高低的比较方法 (1)不同类型晶体的熔、沸点高低一般规律:原子晶体〉离子晶体>分子晶体。 金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。 (2)原子晶体 由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高.如熔点:金刚石〉碳化硅〉硅 (3)离子晶体 一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强, 相应的晶格能大,其晶体的熔、沸点就越高。

(4)分子晶体 ①分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常的高。 ②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高。 ③组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点越高。 ④同分异构体,支链越多,熔、沸点越低。 (5)金属晶体 金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高。 三?几种典型的晶体模型

纯金属与合金的晶体结构

淮安信息职业技术学院教案首页 一、章节:第二章纯金属与合金的晶体结构 第一节纯金属的晶体结构第二节纯金属的实际晶体结构第三节合金的晶体结构 二、教学目的:使学生了解纯金属与合金的晶体结构,晶胞、晶格、合金的基本概念,了解固溶体与金属化合物。 三、教学方法: 讲授法。 四、教学重点: 晶胞、晶格、合金的基本概念,了解固溶体与金属化合物。 五、教学难点: 晶胞、晶格、合金的基本概念,了解固溶体与金属化合物。 六、使用教具: 挂图。 七、课后作业: P17:1、2、6。 八、课后小结:

第二章纯金属与合金的晶体结构 第一节纯金属的晶体结构 一、晶体结构的基本知识 1.晶体与非晶体 晶体内部的原子按一定几何形状作有规则地重复排列,如金钢石、石墨及固态金属与合金。而非晶体内部的原子无规律地规律地堆积在一起,如沥青、玻璃、松香等。 晶体具有固定的熔点和各向异性的特征,而非晶体没有固定的熔点,且各向同性。 2.晶体管格与晶胞 为便于分析晶体中原子排列规律,可将原子近似地看成一个点,并用假想的线条将各原子中心连接起来,便形成一个空间格子。 晶格——抽象的、用于描述原子在晶体中的规则排列方式的空间几何图形。结点——晶格中直线的交点。 晶胞——晶格是由一些最基本的几何单元周期重复排列而成的,这种最基本的几何单元称为晶胞。

晶胞大小和形状可用晶胞的三条棱长a、b、c(单位,1A=108cm)和棱边夹角来描述,其中a、b、c称为晶格常数。 各种晶体由于其晶格类型和晶格常数不同,故呈现出不同的物理、化学及力学性能。 二、常见的晶格类型 1.体心立方晶格 体心立方晶格的晶胞为一立方体,立方体的八个顶角各排列着一个原子,立方体的中心有一个原子。其晶格常数a=b=c。属于这种晶格类型的金属有α铁、铬、钨、钼、钒等。 2.面心立方晶格 面心立方晶格的晶胞也是一个立方体,立方体的八个顶角和六个面的中心各排列一个原子。属于这种晶格类型的金属有γ铁、铝、铜墙铁壁、镍、金、银等。 3.密排六方晶格 密排六方晶格的晶胞是一个六方柱体,柱体的十二个顶角和上、下中心各排列着一个原子,在上、下面之间还有三个原子。属于这种晶格类型的金属有镁、锌、铍等、α-Ti。 晶格类型不同,原子排列的致密度也不同。体心立方晶格的致

(完整word版)高中化学选修3第三章晶体结构与性质讲义及习题

高中化学选修三第三章晶体结构与性质 一、晶体常识 1、晶体与非晶体比较 2、获得晶体的三条途径 ①熔融态物质凝固。 ②气态物质冷却不经液态直接凝固(凝华)。 ③溶质从溶液中析出。 3、晶胞 晶胞是描述晶体结构的基本单元。晶胞在晶体中的排列呈“无隙并置”。 4、晶胞中微粒数的计算方法——均摊法 某粒子为n个晶胞所共有,则该粒子有1/n属于这个晶胞。中学常见的晶胞为立方晶胞。 立方晶胞中微粒数的计算方法如下: ①晶胞顶角粒子为8个晶胞共用,每个晶胞占1/8 ②晶胞棱上粒子为4个晶胞共用,每个晶胞占1/4 ③晶胞面上粒子为2个晶胞共用,每个晶胞占1/2 ④晶胞内部粒子为1个晶胞独自占有,即为1 注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状。 二、构成物质的四种晶体 1、四种晶体的比较

晶体类型分子晶体原子晶体金属晶体离子晶体熔沸点很低很高一般较高,少部分低较高 溶解性相似相溶难溶于任何溶剂难溶于常见溶剂(Na等 与水反应) 大多易溶于水等 极性溶剂 导电传热性一般不导电,溶于水 后有的导电 一般不具有导电 性(除硅) 电和热的良导体 晶体不导电,水溶 液或熔融态导电 延展性无无良好无 物质类别及实例气态氢化物、酸(如 HCl、H2SO4)、大多数 非金属单质(如P4、 Cl2)、非金属氧化物 (如SO2、CO2,SiO2 除外)、绝大多数有机 物(有机盐除外) 一部分非金属单 质(如金刚石、硅、 晶体硼),一部分 非金属化合物(如 SiC、SiO2) 金属单质与合金(Na、 Mg、Al、青铜等) 金属氧化物(如 Na2O),强碱(如 NaOH),绝大部分 盐(如NaCl、CaCO3 等) (1)不同类型晶体的熔、沸点高低一般规律:原子晶体>离子晶体>分子晶体。 金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。 (2)原子晶体 由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高。如熔点:金刚石>碳化硅>硅 (3)离子晶体 一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,相应的晶格能大,其晶体的熔、沸点就越高。 (4)分子晶体 ①分子间作用力越大,物质熔、沸点越高;具有氢键的分子晶体熔、沸点反常的高。 ②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高。 ③组成和结构不相似的物质(相对分子质量接近),分子的极性越大,熔、沸点越高。 ④同分异构体,支链越多,熔、沸点越低。 (5)金属晶体 金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高。 三、几种典型的晶体模型 晶体晶体结构示意图晶体中粒子分布详解 CsCl 晶体每8个Cs+、8个Cl-各自构成立方体,在每个立方体的中心有一个异种粒子(Cs+或Cl-)。在每个Cs+周围最近的等距离(设为a/2)的Cl-有8个,在每个Cs+周围最近的等距离(必为a)的Cs+有6个(上下左右前后),在每个Cl-周围最近的等距离的Cl-也有6个

高中化学选修3第三章《晶体结构与性质》章教学设计

选修3第三章《晶体结构与性质》章教学设计 东莞市第一中学刘国强 一、本章教材体现的课标内容 1、主题:第一节晶体的常识 了解晶胞的概念,会计算晶胞中原子占有个数,并由此推导出晶体的化学式。 2、主题:第二节分子晶体与原子晶体 知道分子晶体与原子晶体的结构微粒、微粒间作用力的区别。 了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。 3、主题:第三节金属晶体 知道金属键的涵义,能用金属键理论解释金属的一些物理性质。 能列举金属晶体的基本堆积模型。 知道金属晶体的结构微粒、微粒间作用力与分子晶体、原子晶体的区别。 4、主题:第四节离子晶体 能说明离子键的形成,能根据离子化合物的结构特征解释其物理性质。 知道离子晶体的结构微粒、微粒间作用力与分子晶体。原子晶体、金属晶体的区别。 了解晶格能的应用,知道晶格能的大小可以衡量离子晶体中离子键的强弱。 二、本章教材整体分析 (一)教材地位 本单元知识是在原子结构和元素周期律以及化学键等知识的基础上介绍的,是原子结构和化学键知识的延伸和提高;本单元知识围绕晶体作了详尽的介绍,晶体与玻璃体的不同,分子晶体、原子晶体、金属晶体、离子晶体,从构成晶体的微粒、晶胞、微粒间的作用力,熔沸点比较等物理性质做了比较,结合许多彩图及详尽的事例,对四大晶体做了阐述;同时,本单元结合数学立体几何知识,充分认识和挖掘典型晶胞的结构,去形象、直观地认识四种晶体,在学习本单元知识时,应多联系生活中的晶体化学,去感受生活中的晶体美,去感受环境生命科学、材料中的晶体知识。 “本章比较全面而系统地介绍了晶体结构和性质,作为本书的结尾章,与前两章一起构成“原子结构与性质、分子结构与性质、晶体结构与性质”三位一体的“物质结构与性质”模块的基本内容。” “通过本章的学习,结合前两章已学过的有关物质结构知识,学生能够比较全面地认识物质的结构及结构对物质性质的影响,提高分析问题和解决问题的能力。” (二)内容体系 本单元知识内容分为两大部分,第一节简单介绍晶体的常识,区别晶体与非晶体,认识什么是晶胞:第二部分分为三节内容,第二节“分子晶体和原子晶体”分别介绍了分子晶体和原子晶体的结构特征及晶体特性,在陈述分子晶体的结构特征时,以干冰为例,介绍了如果分子晶体中分子问作用力只是范德华力时,分子晶体具有分子密堆积特征;同时,教科书以冰为例,介绍了冰晶体里由于存在氢键而使冰晶体的结构具有其特殊性。在第三节“金属晶体”中,首先从“电子气理论”介绍了金属键及金属晶体的特性,然后以图文并茂的方式描述了金属晶体的四种基本堆积模式。在第四节“离子晶体”中,由于学生已学过离子键的概念,教科书直接给出了NaCl和CsCl两种典型离子晶体的晶胞,然后通过“科学探究”讨论了NaCl和CsCl两种晶体的结构;教科书还通过例子重点讨论了影响离子晶体结构的几何因素和电荷因素,而对键性因素不作要求。晶格能是反映离子晶体中离子键强弱的重要数据,教科书通过表格形式列举了某些离子晶体的晶格能,以及晶格能的大小与离子晶体的性质的关系。

高中化学选修三选修3物质结构与性质第三章第3章常见晶体结构晶胞分析归纳整理总结

1.金刚石晶体结构(硅单质相同) 1mol金刚石中含有_______ IC—C键, 最小环是______ 元环,(是、否)______ 共平面。 每个C-C键被—个六元环共有,每个C被________ 个六元环共有。每个六元环实际拥有的碳原子数为 个。C-C键夹角:_____ 。C原子的杂化方式是 sq晶体中,每个Si原子与个O原子以共价键相结合, 每个。原子与_____ Si原子以共价键相结合,晶体中Si原子与 O原子个数比为__________ o晶体中Si原子与Si—O键数目之比 为___ O最小环由______ 个原子构成,即有_______ 个O, ____________ 个 si,含有________ 亍Si?o键,每个Si原子被个十二元环,每 个。被_______ 十二元环共有,每个Si-O键被—个十二元环共 有;所以每个十二元环实际拥有的Si原子数为—个,O原子数为—个,Si-0键为个。硅原子的杂化方式是—,氧原子的杂化方式是___________ +等距离且最近的C「有___________ 个, 2 ? 在NaCI晶体中,与每个Na 这些CI -围成的几何构型是;与每个也等距离且最近的+有个。由均摊法可知该晶胞中实际拥有的Na+数为—个Na ? ?数为__ 个,则次晶胞中含有______ 个NaCI结构单元。 2+和__ 个F 3. CaF?型晶胞中,含:—个Go -------------- 2+的配位数: F ?的配位数: Ca 2+周围有_____ 个距离最近且相等的Ca Ca CaH?品 周围有_____ 个距离最近且相等的F

4 .如图为干冰晶胞(面心立方堆积),CO?分子在晶胞中的位置 为_________________ ;每个晶胞含二氧化碳分子的个数为 ;与每个二氧化碳分子等距离且最近的二氧化碳分子有个。 5 ?如图为石墨晶体结构不意图, 每层内C原子以 __________________ 与周围的_____________ 个 C原子结合,层间作用力为_______________ ;层内最小环有___________ -个C 原子组成;每个C原子被 _________ 最小环所共用;每个 最小环含有_____ 个C原子,_______ 个c—C键;所以C 原子数和C?c键数之比是 ________ o C原子的杂化方式 6. 冰晶体结构示意如图,冰晶体中位于中心的一个水分子 周围有___ 个位于四面体顶角方向的水分子,每个水分子通 过 —条氢键与四面体顶点上的水分子相连。每个氢键被— 个 水分子共有,所以平均每个水分子有_______ 条氢键。 7. ______________________________________________________ 金属的简单立方堆积 是_____________________________________ 层通过 _________ 对 ______ 堆积方式形成的,晶胞如图所示:每个金属阳离子的 配位数是—,代表物质是_______________________ o &金属的体心立方堆积是__________________ 层通过 ______ 对 ____ 堆积方式形成的,晶胞如图: 每个阳离子的配位数是______________ ?代表物质是

第三章晶体结构习题与解答

第三章晶体结构习题与解答 3-1 名词解释 (a)萤石型和反萤石型 (b)类质同晶和同质多晶 (c)二八面体型与三八面体型 (d)同晶取代与阳离子交换 (e)尖晶石与反尖晶石 答:(a)萤石型:CaF2型结构中,Ca2+按面心立方紧密排列,F-占据晶胞中全部四面体空隙。 反萤石型:阳离子和阴离子的位置与CaF2型结构完全相反,即碱金属离子占据F-的位置,O2-占据Ca2+的位置。 (b)类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 (c)二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构 三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d)同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e)正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布 在四面体空隙、而B3+分布于八面体空隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面 体空隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 3-2 (a)在氧离子面心立方密堆积的晶胞中,画出适合氧离 子位置的间隙类型及位置,八面体间隙位置数与氧离子数之比为若 干四面体间隙位置数与氧离子数之比又为若干 (b)在氧离子面心立方密堆积结构中,对于获得稳定结构各 需何种价离子,其中: (1)所有八面体间隙位置均填满; (2)所有四面体间隙位置均填满; (3)填满一半八面体间隙位置; (4)填满一半四面体间隙位置。 并对每一种堆积方式举一晶体实例说明之。 解:(a)参见2-5题解答。 (b)对于氧离子紧密堆积的晶体,获得稳定的结构所需电价 离子及实例如下: (1)填满所有的八面体空隙,2价阳离子,MgO; (2)填满所有的四面体空隙,1价阳离子,Li2O; (3)填满一半的八面体空隙,4价阳离子,TiO2; (4)填满一半的四面体空隙,2价阳离子,ZnO。 3-3 MgO晶体结构,Mg2+半径为,O2-半径为,计算MgO晶体中离子堆积系数(球状离子所占据晶胞的体积分数);计算MgO的密度。 解:参见2-9题。

高中化学第三章晶体结构与性质晶体的常识

第三章晶体结构与性质第一节晶体的常识 知识归纳 一、晶体与非晶体 1.晶体与非晶体的本质差异: 2.获得晶体的三条途径 (1)______物质凝固; (2)______物质冷却不经液态直接凝固(______); (3)______从溶液中析出。 3.晶体的特点 (1)自范性 ①定义:在适宜的条件下,晶体能够自发地呈现规则的______,这称为晶体的______。非晶体物质没有这个特性。 ②形成条件:晶体______适当。 ③本质原因:晶体中粒子在______里呈现______的______排列。 (2)晶体在不同的方向上表现出不同的物理特质即______。 (3)晶体的______较固定。 (4)区分晶体和非晶体的最可靠的科学方法是对固体进行______实验。 二、晶胞 1.概念 晶胞是晶体中最小的______。 2.结构 晶胞一般都是______,晶体是由无数晶胞“______”而成。 (1)无隙:相邻晶胞之间无任何______。 (2)并置:所有晶胞都是______排列的,取向______。 (3)所有晶胞的______及内部的原子______及几何排列是完全相同的。

【答案】一、1.有周期性没有相对无序 2.(1)熔融态(2)气态凝华(3)溶质 3.(1)多面体外形性质自范性生长的速率三维空间周期性有序 (2)各向异性(3)熔点(4)X-射线衍射 二、1.结构重复单元 2.平行六面体无隙并置(1)间隙(2)平行相同(3)形状种类 知识重点 与晶体有关的计算 晶体结构的计算常常涉及如下数据:晶体密度、N A、M、晶体体积、微粒间距离、微粒半径、夹角等,密度的表达式往往是列等式的依据。解答这类题时,一要掌握晶体“均摊法”的原理,二要有扎实的立体几何知识,三要熟悉常见晶体的结构特征,并能融会贯通,举一反三。 1.“均摊法”原理 晶胞中任意位置上的一个原子如果被n个晶胞所共有,则每个晶胞对这个原子分得的份额 就是1 n 。 非平行六面体形晶胞中粒子数目的计算同样可用“均摊法”,其关键仍然是确定一个粒子为几个晶胞所共有。例如,石墨晶胞每一层内碳原子排成六边形,其顶点(1个碳原子) 对六边形的贡献为1 3 ,那么一个六边形实际有6× 1 3 =2个碳原子。又如,在六棱柱晶胞(如 下图所示的MgB 2 晶胞)中,顶点上的原子为6个晶胞(同层3个,上层或下层3个)共有, 面上的原子为2个晶胞共有,因此镁原子个数为12×1 6 +2× 1 2 =3,硼原子个数为6。 2.晶体微粒与M、ρ之间的关系 若1个晶胞中含有x个微粒,则1 mol该晶胞中含有x mol微粒,其质量为xM g(M为微粒的相对“分子”质量);又1个晶胞的质量为ρa3 g(a3为晶胞的体积),则1 mol晶胞的质量为ρa3N A g,因此有xM=ρa3N A。 已知氟化钙晶体的晶胞如图所示。则1个晶胞中含有___个Ca2+、___个F?。若晶体的密度为a g·cm?3,则晶胞的体积是_______(只要求列出计算式)。 【解析】计算1个晶胞的质量,依据晶体的密度与晶胞的密度相同,可由ρ=m V 来计算晶胞的体积。

第三章晶体结构习题与解答

第三章 晶体结构习题与解答 3-1 名词解释 (a )萤石型和反萤石型 (b )类质同晶和同质多晶 (c )二八面体型与三八面体型 (d )同晶取代与阳离子交换 (e )尖晶石与反尖晶石 答:(a )萤石型:CaF2型结构中,Ca2+按面心立方紧密排列,F-占据晶胞中全部四面体空隙。 反萤石型:阳离子和阴离子的位置与CaF2型结构完全相反,即碱金属离子占据F-的位置,O2-占据Ca2+的位置。 (b )类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 (c )二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构 三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d )同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e )正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四 面体空隙、而B3+分布于八面体空隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空 隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 3-2 (a )在氧离子面心立方密堆积的晶胞中,画出适合氧离子位置 的间隙类型及位置,八面体间隙位置数与氧离子数之比为若干?四 面体间隙位置数与氧离子数之比又为若干? (b )在氧离子面心立方密堆积结构中,对于获得稳定结构各需何 种价离子,其中: (1)所有八面体间隙位置均填满; (2)所有四面体间隙位置均填满; (3)填满一半八面体间隙位置; (4)填满一半四面体间隙位置。 并对每一种堆积方式举一晶体实例说明之。 解:(a )参见2-5题解答。 (b )对于氧离子紧密堆积的晶体,获得稳定的结构所需电价离子 及实例如下: (1)填满所有的八面体空隙,2价阳离子,MgO ; (2)填满所有的四面体空隙,1价阳离子,Li2O ; (3)填满一半的八面体空隙,4价阳离子,TiO2; (4)填满一半的四面体空隙,2价阳离子,ZnO 。 3-3 MgO 晶体结构,Mg2+半径为0.072nm ,O2-半径为0.140nm ,计算MgO 晶体中离子堆积系数(球状离子所占据晶胞的体积分数);计算MgO 的密度。 解:参见2-9题。 3-4 Li2O 晶体,Li+的半径为0.074nm ,O2-的半径为0.140nm ,其密度为1.646g/cm3,求晶胞常数a0;晶

第三章 晶体结构

第三章晶体结构 1. 极化能力最强的离子应具有的特性是………………………………………………() (A) 离子电荷高、离子半径大(B) 离子电荷高、离子半径小 (C) 离子电荷低、离子半径小(D) 离子电荷低、离子半径大 答:(B) 2. 按顺序(用符号>或<)排列下列各组物质的性质: (1)BaO,CaO,NaI,MgO,NaBr的晶格能大小:______________________________; (2)K,As,Cl,Cs,Ni的电离能大小:________________________________________。答:(1) MgO > CaO > BaO > NaBr > NaI (2) Cs < K < Ni < As < Cl 3. CO2是非极性分子,SO2是_________分子,BF3是__________分子,NF3是_________分子,PF5是_________分子。 答:SO2极性分子BF3非极性分子NF3极性分子PF5非极性分子 4. 根据电负性的概念,判断下列化合物:AlCl3、Al2O3、Al2S3、AlF3中,键的极性大小顺序是______________________________________。 答:AlF3> Al2O3> AlCl3> Al2S3 5. 下列分子中属极性分子的是…………………………………………………………() (A) SiCl4(g) (B) SnCl2(g) (C) CO2(D) BF3 答:(B) 6. 氯苯的偶极矩是1.73D,预计对二氯苯的偶极矩应当是……………………………() (A) 4.36 D (B) 1.73 D (C) 0 (D) 1.00 D 答:(C) 7. 下列化合物中,极性最大的是…………………………………………………………() (A) CS2(B) H2S (C) SO3(D) SnCl4 答:(B) 8. BF3分子的偶极矩数值( D )为…………………………………………………………() (A) 2 (B) 1 (C) 0.5 (D) 0

第3讲纯金属的晶体结构

第三讲纯金属的晶体结构 1.典型金属的晶体结构 考点再现:这一部分08年09年10年都有所涉及,10年考了晶胞致密度的概念,这部分以名词解释,填空为主,需要在理解的基础上记忆,但是总体上说难度不大,但是却很重点。考试要求:记忆,特别是理解基础上的记忆,对于一些内容需要会一定的推导。 知识点: 晶胞中的原子数:完全属于该晶胞的原子数。★★★ 配位数:晶体结构中任一原子周围最近邻且等距离的原子数(CN)。★★★★ 致密度:晶体结构中的原子体积占总体积的百分比(k)。★★★★ 八面体间隙:位于6个原子所组成的8面体中间的间隙。★★★ 四面体间隙:位于4个原子所组成的4面体中间的间隙。★★★ 典型金属晶体结构有(面心立方fcc),(体心立方bcc),(密排六方hcp)★★★★★

fcc bcc hcp 面心立方结构n = 8×1/8 + 6×1/2 = 4 体心立方结构n = 8×1/8 + 1 =2 密排六方结构n = 12×1/6 +2×1/2 +3 = 6 三种典型金属晶体结构特征 晶体类型原子密排面原子密排方 向晶胞中的原 子数 配位数CN 致密度K A1(fcc){111} <110> 4 12 0.74 A2(bcc){110} <111> 2 8,(8+6)0.68 A3(hcp){0001} <11-20> 6 12 0.74 对于金属晶体结构的这一部分的主要内容都集中在这个表上,在这些方面里,我们更加侧重密排面和密排方向以及致密度的掌握,这是本讲内容的一个重点。 而对于本讲的另一个重点就是关于间隙问题的讨论。 我们知道位于6个原子所组成的8面体中间的间隙。位于4个原子所组成的4面体中间的间隙。单8面体间隙和四面体间隙时如何排布的呢,我们由图可以清楚的了解。

人教版化学选修三第三章晶体结构与性质知识点

《晶体结构与性质》总结 一、分子晶体: 1.间以(,)相结合的晶体叫分子晶体 (1)构成分子晶体的粒子是。 (2)粒子间的相互作用是。 (3)分子间作用力(范德华力<氢键)远化学键的作用; (4)分子晶体熔化破坏的是。 2.典型的分子晶体: (1)非金属氢化物:例 (2)酸:例 (3)部分非金属单质::例 (4)部分非金属氧化物: 例 (5)大多数有机物:例 3.分子晶体结构: (1)只有范德华力,无分子间氢键的——分子密集堆积,如:C60、干冰、O2每个分子周围有个紧邻的分子,面心立方构型 (2)有分子间氢键的——不具有分子密集堆积特征,如:HF 、冰、NH3 冰中1个水分子周围有个水分子,1mol冰周围有mol氢键。 4.分子晶体熔沸点判断: 的物质,越大,分子间作用力越大;分子量相等或相近,性分子的范德华力大,物质熔化和汽化时需要的能量就越多,物质的熔、沸点就越。含有分子间氢键的,熔沸点较。在烷烃的同分异构体中,一般来说,支链数越多,熔沸点越。 二、原子晶体: 1.所有的相邻间都以相结合而形成空间立体网状结构的晶体。 (1)构成原子晶体的粒子是, (2)原子间以较强的相结合。

(3)整块晶体是一个三维的共价键网状结构, (4)原子晶体熔化破坏的是。 2.常见的原子晶体 (1)某些非金属单质:硼(B) (2)某些非金属化合物:碳化硅(SiC)氮化硼(BN) (3)某些氧化物:Al2O3晶体 3.原子晶体结构: 金刚石晶体中:每个碳原子以与周围个碳原子结合,成为正四面体结构,碳以杂化轨道形成键。向空间发展,彼此联结的立体网状结构,其中形成的最小环 中含个碳原子。每个碳原子被12个环共用。1mol金刚石中含有的C-C共价键数mol。 在SiO2晶体中:①每个Si原子以个共价键结合个O原子;同时,每个O原子结合个Si原子。SiO2晶体是由Si原子和O原子按的比例所组成的立体网状的 晶体。②最小的环是由个Si原子和个O原子组成的元环。③1mol SiO2中含mol Si—O键。 4.原子晶体熔沸点判断: 结构相似的原子晶体,越小,键长越,键能越,晶体熔点越 例:金刚石碳化硅晶体硅 三、金属晶体: 1.和通过键结合形成的晶体。 (1)组成粒子:和 金属键(电子气理论):金属离子和自由电子之间的强烈的相互作用,没有方向性,也没有 饱和性,成键电子可以在金属中自由流动, (2)微粒间作用力:键 2.常见的金属晶体:单质和都属于金属晶体 3.金属晶体结构: 金属晶体的四种堆积模型对比 堆积方式晶胞类型:六面体空间利用率配位数实例

纯金属的晶体结构

纯金属的晶体结构

1.三种常见的金属晶体结构 固态物质按其原子的聚集状态可分为两大类:晶体和非晶体,晶体指的是材料的原子(离子、分子)在三维空间呈规则的周期性排列的物体,如金刚石、水晶、金属等。非晶体指的是材料的原子(离子、分子)在三维空间无规则排列的物体,如松香、石蜡、玻璃等。在一定的条件下晶体和非晶体可以互相转化(I2-1)。 晶体结构是晶体中原子(离子或分子)规则排列的方式。晶格是假设通过原子结点的中心划出许多空间直线所形成的空间格架。能反映晶格特征的最小组成单元称为晶胞(I2-2)。晶格常数指的是晶胞的三个棱边的长度a,b,c。 常见的金属晶体结构有 ⑴体心立方晶格(BCC—Body-Centered Cube),典型代表为钼(Mo)、钨、钒、铬、铌、α-Fe等,八个原子处于立方体的角上,一个原子处于立方体的中心,如图2所示。 ⑵面心立方晶格(FCC—Face-Centered Cube),典型代表为铝、铜、镍、金、银、γ-Fe等,原子分布在立方体的八个角上和六个面的中心,如图1所示。 ⑶密排六方晶格(HCP—Hexagonal Close-Packed)典型代表为镁、镉(Cd)、锌、铍(Be)等。12个原子分布在六方体的12个角上,上下底面中心各分布一个原子,上下底面之间均匀分布3个原子,如图3所示。 图1面心立方晶格图2体心立方晶格图3密排六方晶格 原子半径指的是晶胞中相距最近的两个原子之间距离的一半,致密度指的是晶胞中所包含的原子所占有的体积与该晶胞体积之比。 体心立方模型与晶胞示意图(I2-3),在体心立方晶格中如图4: 图 4 晶格常数:a=b=c;a=b=g=90° 晶胞原子数:2 原子半径: 致密度:0.68 面心立方模型与晶胞示意图(I2-4),在面心立方晶格中如图5: 图 5 晶格常数:a=b=c;a=b=g=90° 晶胞原子数:4 原子半径:

硅酸盐晶体结构

硅酸盐的结构特点及其应用简介内容摘要:硅酸盐晶体结构 硅酸盐是构成地壳的主要矿物,也是水泥、陶瓷、玻璃、耐火材料等硅酸盐的主要原料。 硅酸盐晶体结构共同特点:结构中具有硅氧四面体。 硅氧间的平均距离:键型:硅氧四面体的连接方式: 关键词:组成表征、结构特点、分类 一、硅酸盐晶体的组成表征、结构特点及分类 (一)组成表征: 硅酸盐晶体的化学组成甚为复杂。因此,在表征硅酸盐晶体的化学式时,通常有两种方法:一种是氧化物方法,另一种是无机络盐表示法(结构式)。氧化物方法:即把构成硅酸盐晶体的所有氧化物按一定的比例和顺序全部写出来,先是1价的碱金属氧化物,其次是2价、3价的金属氧化物,最后是SiO2。例如,钾长石的化学式写为K2O·Al2O3·6SiO2;无机络盐表示法:先写联结硅氧骨干的阳离子,按低价到高价的顺序,然后写硅氧骨干,并用[]括起来,最后写水,水可以是OH-形式的,也可以是H2O分子形式的。钾长石:K[AlSi3O8]高岭石:Al4[Si4O10](OH)8 (二)硅酸盐晶体结构的共同特点: (1)构成硅酸盐晶体的基本结构单元[SiO4]四面体。Si-O-Si键是一条夹角不等的折线,一般在145o左右。 (2)[SiO4]四面体的每个顶点,即O2-离子最多只能为两个[SiO4]四面体所共用。 (3)两个相邻的[SiO4]四面体之间只能共顶而不能共棱或共面连接。(4)[SiO4]四面体中心的Si4+离子可部分地被Al3+所取代。

(三)硅酸盐晶体结构的分类: 按结构中硅氧四面体的连接方式,分为:岛状、组群状、链状、层状和架状五种方式。硅酸盐晶体也分为相应的五种类型,其对应的Si/O由1/4变化到1/2,结构变得越来越复杂,见表2-5。 表2-5硅酸盐晶体结构类型与Si/O比的关系结构类型[SiO4]4-共用O2-数形状络阴离子Si/O实例岛状0四面体[SiO4]4-1:4镁橄榄石Mg2[SiO4]1双四面体[Si2O7]6-2:7硅钙石Ca3[Si2O7]三节环[Si3O9]6-1:3蓝锥矿BaTi[Si3O9]四节环[Si4O12]8-1:3Ca2Al2(Fe,Mn)BO3[Si4O12](OH)组群状2六节环 [Si6O18]12-1:3绿宝石Be3Al2[Si6O18]2单链[Si2O6]4-1:3透辉石CaMg[Si2O6]链状2,3双链[Si4O11]6-4:11透闪石Ca2Mg5[Si4O11]2(OH)2层状3平面层[Si4O10]4-4:10滑石Mg3[Si4O10](OH)2[SiO2]0石英SiO2架状4骨架 [AlSi3O8]1-1:2钾长石K[AlSi3O8] (1)岛状结构 结构特点:结构中的[SiO4]四面体以孤立状态存在,硅氧四面体之间没有共用的氧。硅氧四面体中的氧离子,除了与硅离子相连外,剩下的一价将与其它金属阳离子相连。结构中Si/O比为1:4。 岛状硅酸盐晶体主要有锆石英Zr[SiO4]、镁橄榄石Mg2[SiO4]、蓝晶石 Al2O3·SiO2、莫来石3Al2O3·2SiO2以及水泥熟料中的 γ-C2S、 β-C2S和C3S等。

常见的金属晶体结构

第二章作业2-1 常见的金属晶体结构有哪几种?它们的原子排列和晶格常数有什么特点?V、Mg、Zn 各属何种结构?答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好?试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂7~15 天,然后再精加工。试解释这样做的目的及其原因?答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)?答:W、Sn 的最低再结晶温度分别为: TR(W) =(0.4~0.5)×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(0.4~0.5)×(232+273)-273 =(-71~-20)(℃) <25℃所以W 在1000℃时为冷加工,Sn 在室温下为热加工4-9 用下列三种方法制造齿轮,哪一种比较理想?为什么?(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法1、2 都可以,用方法3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因?答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因?答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同?答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共

相关主题
文本预览
相关文档 最新文档