当前位置:文档之家› Matlab中插值函数汇总和使用说明

Matlab中插值函数汇总和使用说明

Matlab中插值函数汇总和使用说明
Matlab中插值函数汇总和使用说明

Matlab中插值函数汇总和使用说明

命令1 interp1

功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。

x:原始数据点

Y:原始数据点

xi:插值点

Yi:插值点

格式

(1)yi = interp1(x,Y,xi)

返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。参量x 指定数据Y 的点。

若Y 为一矩阵,则按Y 的每列计算。yi 是阶数为

length(xi)*size(Y,2)的输出矩阵。

(2)yi = interp1(Y,xi)

假定x=1:N,其中N 为向量Y 的长度,或者为矩阵Y 的行数。

(3)yi = interp1(x,Y,xi,method)

用指定的算法计算插值:

’nearest’:最近邻点插值,直接完成计算;

’linear’:线性插值(缺省方式),直接完成计算;

’spline’:三次样条函数插值。对于该方法,命令interp1 调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函数。命令spline 用它们执行三次样条函数插值;

’pchip’:分段三次Hermite 插值。对于该方法,命令interp1 调用函数pchip,用于对向量x 与y 执行分段三次内插值。该方法保留单调性与数据的外形;

’cubic’:与’pchip’操作相同;

’v5cubic’:在MATLAB 5.0 中的三次插值。

对于超出x 范围的xi 的分量,使用方

法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1 将对超出的分量执行外插值算法。

(4)yi = interp1(x,Y,xi,method,'extrap')

对于超出x 范围的xi 中的分量将执行特殊的外插值法extrap。

(5)yi = interp1(x,Y,xi,method,extrapval)

确定超出x 范围的xi 中的分量的外插值extrapval,其值通常取NaN 或0。

例1

>>x = 0:10; y = x.*sin(x);

>>xx = 0:.25:10; yy = interp1(x,y,xx);

>>plot(x,y,'kd',xx,yy)

复制代码

例2

>> year = 1900:10:2010;

>> product = [75.995 91.972 105.711 123.203 131.669 150.697 179.323 203.212 226.505

249.633 256.344 267.893 ];

>>p1995 = interp1(year,product,1995)

>>x = 1900:1:2010;

>>y = interp1(year,product,x,'pchip');

>>plot(year,product,'o',x,y)

复制代码

插值结果为:

p1995 =

252.9885

复制代码

命令2 interp2

功能二维数据内插值(表格查找)

格式

(1)ZI = interp2(X,Y,Z,XI,YI)

返回矩阵ZI,其元素包含对应于参量XI 与YI(可以是向量、

或同型矩阵)的元素,即Zi(i,j) ←[Xi(i,j),yi(i,j)]。用户可以输入行向量和列向量Xi 与Yi,此时,输出向量Zi 与矩阵meshgrid(xi,yi)是同型的。同时取决于由输入矩阵X、Y 与Z 确定的二维函数Z=f(X,Y)。参量X 与Y 必须是单调的,且相同的划分格式,就像由命令meshgrid 生成的一样。若Xi 与Yi 中有在X 与Y范围之外的点,则相应地返回nan(Not

a Number)。

(2)ZI = interp2(Z,XI,YI)

缺省地,X=1:n、Y=1:m,其中[m,n]=size(Z)。再按第一种情形进行计算。

(3)ZI = interp2(Z,n)

作n 次递归计算,在Z 的每两个元素之间插入它们的二维插值,这样,Z 的阶数将不断增加。interp2(Z)等价于interp2(z,1)。

(4)ZI = interp2(X,Y,Z,XI,YI,method)

用指定的算法method 计算二维插值:

’linear’:双线性插值算法(缺省算法);

’nearest’:最临近插值;

’spline’:三次样条插值;

’cubic’:双三次插值。

例3:

>>[X,Y] = meshgrid(-3:.25:3);

>>Z = peaks(X,Y);

>>[XI,YI] = meshgrid(-3:.125:3);

>>ZZ = interp2(X,Y,Z,XI,YI);

>>surfl(X,Y,Z);hold on;

>>surfl(XI,YI,ZZ+15)

>>axis([-3 3 -3 3 -5 20]);shading flat

>>hold off

复制代码

例4

>>years = 1950:10:1990;

>>service = 10:10:30;

>>wage = [150.697 199.592 187.625 179.323 195.072 250.287

203.212 179.092 322.767

226.505 153.706 426.730

249.633 120.281 598.243];

>>w = interp2(service,years,wage,15,1975) 复制代码

插值结果为:

w =

190.6288

复制代码

命令3 interp3

功能三维数据插值(查表)

格式

(1)VI = interp3(X,Y,Z,V,XI,YI,ZI)

找出由参量X,Y,Z决定的三元函数V=V(X,Y,Z)在点(XI,YI,ZI)的值。参量XI,YI,ZI 是同型阵列或向量。若向量参量XI,YI,ZI 是不同长度,不同方向(行或列)的向量,这时输出参量VI 与Y1,Y2,Y3 为同型矩阵。其中Y1,Y2,Y3 为用命令meshgrid(XI,YI,ZI)生成的同型阵列。若插值点(XI,YI,ZI)中有位于点(X,Y,Z)之外的点,则相应地返回特殊变量值NaN。(2)VI = interp3(V,XI,YI,ZI)

缺省地,X=1:N ,Y=1:M,Z=1:P ,其中,[M,N,P]=size(V),再按上面的情形计算。

(3)VI = interp3(V,n)

作n 次递归计算,在V 的每两个元素之间插入它们的三维

插值。这样,V 的阶数将不断增加。interp3(V)等价于

interp3(V,1)。

(4)VI = interp3(......,method) %用指定的算法method 作插

值计算:

‘linear’:线性插值(缺省算法);

‘cubic’:三次插值;

‘spline’:三次样条插值;

‘nearest’:最邻近插值。

说明在所有的算法中,都要求X,Y,Z 是单调且有相同的格点形式。当X,Y,Z 是等距且单调时,用算

法’*linear’,’*cubic’,’*nearest’,可得到快速插值。

例5

>>[x,y,z,v] = flow(20);

>>[xx,yy,zz] = meshgrid(.1:.25:10, -3:.25:3, -3:.25:3);

>>vv = interp3(x,y,z,v,xx,yy,zz);

>>slice(xx,yy,zz,vv,[6 9.5],[1 2],[-2 .2]); shading

interp;colormap cool

复制代码

命令4 interpft

功能用快速Fourier 算法作一维插值

格式

(1)y = interpft(x,n)

返回包含周期函数x 在重采样的n 个等距的点的插值y。若length(x)=m,且x 有采样间隔dx,则新的y 的采样间隔dy=dx*m/n。注意的是必须n≥m。若x 为一矩阵,则按x 的列进行计算。返回的矩阵y 有与x 相同的列数,但有n 行。

(2)y = interpft(x,n,dim)

沿着指定的方向dim 进行计算

命令5 griddata

功能数据格点

格式

(1)ZI = griddata(x,y,z,XI,YI)

用二元函数z=f(x,y)的曲面拟合有不规则的数据向量x,y,z。griddata 将返回曲面z 在点(XI,YI)处的插值。曲面总是经过这些数据点(x,y,z)的。输入参量(XI,YI)通常是规则的格点(像用命令meshgrid 生成的一样)。XI 可以是一行向量,这时XI 指定一有常数列向量的矩阵。类似地,YI 可以是一列向量,它指定一有常数行向量的矩阵。

(2)[XI,YI,ZI] = griddata(x,y,z,xi,yi)

返回的矩阵ZI 含义同上,同时,返回的矩阵XI,YI 是由行向量xi 与列向量yi 用命令meshgrid 生成的。

(3)[XI,YI,ZI] = griddata(.......,method)

用指定的算法method 计算:

‘linear’:基于三角形的线性插值(缺省算法);

‘cubic’:基于三角形的三次插值;

‘nearest’:最邻近插值法;

‘v4’:MATLAB 4 中的griddata 算法。

命令6 spline

功能三次样条数据插值

格式

(1)yy = spline(x,y,xx)

对于给定的离散的测量数据x,y(称为断点),要寻找一个三项多项式y = p(x) ,以逼近每对数据(x,y)点间的曲线。过两点(xi, yi) 和(xi+1, yi+1) 只能确定一条直线,而通过一点的

三次多项式曲线有无穷多条。为使通过中间断点的三次多项式曲线具有唯一性,要增加两个条件(因为三次多项式有4 个系数):

a.三次多项式在点(xi, yi) 处有:p¢i(xi) = p¢i(xi) ;b.三次多项式在点(xi+1, yi+1) 处有:p¢i(xi+1) =

pi¢(xi+1) ;

c.p(x)在点(xi, yi) 处的斜率是连续的(为了使三次多项式具有良好的解析性,加上的条件);

d.p(x)在点(xi, yi) 处的曲率是连续的;

对于第一个和最后一个多项式,人为地规定如下条件:

①.p¢1¢(x) = p¢2¢(x)

②.p¢n¢(x) = p¢n¢-1(x)

上述两个条件称为非结点(not-a-knot)条件。综合上述内容,可知对数据拟合的三次样条函数p(x)是一个分段的三次多项式:

ï ïî

ï ïí

ì

£ £

£ £

£ £

=

n n n+1

2 2 3

1 1 2

p (x) x x x

p (x) x x x

p (x) x x x

p(x)

L L L L

其中每段pi(x) 都是三次多项式。

该命令用三次样条插值计算出由向量x 与y 确定的一元函数y=f(x)在点xx 处的值。若参量y 是一矩阵,则以y 的每一列和x 配对,再分别计算由它们确定的函数在点xx 处的值。则yy 是一阶数为length(xx)*size(y,2)的矩阵。

(2)pp = spline(x,y)

返回由向量x 与y 确定的分段样条多项式的系数矩阵pp,它可用于命令ppval、unmkpp 的计算。

例6

对离散地分布在y=exp(x)sin(x)函数曲线上的数据点进行样条插值计算:

>>x = [0 2 4 5 8 12 12.8 17.2 19.9 20]; y = exp(x).*sin(x); >>xx = 0:.25:20;

>>yy = spline(x,y,xx);

>>plot(x,y,'o',xx,yy)

复制代码

命令7 interpn

功能n 维数据插值(查表)

格式

(1)VI = interpn(X1,X2,,,Xn,V,Y1,Y2,?,Yn) %返回由参量

X1,X2,…,Xn,V 确定的n 元函数V=V(X1,X2,…,Xn)在点(Y1,Y2,…,Yn)处的插值。参量Y1,Y2,…,Yn 是同型的矩阵或向量。若Y1,Y2,…,Yn 是向量,则可以

是不同长度,不同方向(行或列)的向量。它们将通过命令ndgrid生成同型的矩阵,再作计算。若点(Y1,Y2,…,Yn) 中有位于点(X1,X2,…,Xn)之外的点,则相应地返回特殊变量NaN。

VI = interpn(V,Y1,Y2,?,Yn) %缺省地,X1=1:size(V,1),

X2=1:size(V,2),… ,

Xn=1:size(V,n),再按上面的情形计算。

VI = interpn(V,ntimes) %作ntimes 次递归计算,在V 的每两个元素之间插入它们的n 维插值。这样,V 的阶数将不断增加。interpn(V)

等价于interpn(V, 1)。

VI = interpn(?,method) %用指定的算法method 计算:

‘linear’:线性插值(缺省算法);

‘cubic’:三次插值;

‘spline’:三次样条插值法;

‘nearest’:最邻近插值算法。

命令8 meshgrid

功能生成用于画三维图形的矩阵数据。

格式[X,Y] = meshgrid(x,y) 将由向量x,y(可以是不同方向的)指定的区域[min(x),max(x) ,min(y) ,max(y)] 用直线x=x(i),y=y(j) (i=1,2,…,length(x) ,j=1,2,…,length(y))进行划分。这样,得到了length(x)*length(y)个点,

这些点的横坐标用矩阵X 表示,X 的每个行向量与向量x 相同;这些点的纵坐标用矩阵Y 表示,Y 的每个列向量与向量y 相同。其中X,Y可用于计算二元函数z=f(x,y)与三维图形中xy 平面矩形定义域的划分或

曲面作图。

[X,Y] = meshgrid(x) %等价于[X,Y]=meshgrid(x,x)。

[X,Y,Z] = meshgrid(x,y,z) %生成三维阵列X,Y,Z,用于计算三元函数v=f(x,y,z)或三维容积图。

例7

[

X,Y] = meshgrid(1:3,10:14)

复制代码

计算结果为:

X =

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

Y =

10 10 10

11 11 11

12 12 12

13 13 13

14 14 14

复制代码

命令9 ndgrid

功能生成用于多维函数计算或多维插值用的阵列

格式[X1,X2,…,Xn] = ndgrid(x1,x2,…,xn) %把通过向量

x1,x2,x3…,xn 指定的区域转换为数组x1,x2,x3,…,xn 。这样,得到了length(x1)*length(x2)*…*length(xn)个点,这些点的第一维坐标用矩阵X1 表

示,X1 的每个第一维向量与向量x1 相同;这些点的第二维坐标用矩阵X2 表示,X2 的每个第二维向量与向量x2 相同;如此等等。

其中X1,X2,…,Xn 可用于计算多元函数y=f(x1,x2,…,xn)以及多维插值命令用到的阵列。

[X1,X2,…,Xn] = ndgrid(x) %等价于[X1,X2,…,Xn] =

ndgrid(x,x, (x)

命令10 table1

功能一维查表

格式Y = table1(TAB,X0) %返回用表格矩阵TAB 中的行线性插值元素,对X0(TAB的第一列查找X0)进行线性插值得到的结果Y。矩阵TAB 是第一列包含

关键值,而其他列包含数据的矩阵。X0 中的每一元素将相应地返回一线性插值行向量。矩阵TAB 的第一列必须是单调的。

例8

>>tab = [(1:4)' hilb(4)]

>>y = table1(tab,[1 2.3 3.6 4])

复制代码

查表结果为:

tab =

1.0000 1.0000 0.5000 0.3333 0.2500

2.0000 0.5000 0.3333 0.2500 0.2000

3.0000 0.3333 0.2500 0.2000 0.1667

4.0000 0.2500 0.2000 0.1667 0.1429

Warning: TABLE1 is obsolete and will be removed in future versions. Use INTERP1 or INTERP1Q

复制代码

本文来自CSDN博客,转载请标明出处:

https://www.doczj.com/doc/fd1874817.html,/lydx9876/archive/2010/08/18/5819243 .aspx

三次样条插值---matlab实现

计算方法实验—三次样条插值 机电学院075094-19 苏建加 20091002764 题目:求压紧三次样条曲线,经过点(-3,2),(-2,0),(1,3),(4,1),而且一阶导 数边界条件S'(-3)=-1;S'(4)=1。 解:首先计算下面的值: 记 1--=j j j x x h ; 1++=j j j j h h h u ;1=+j j u λ ; ?? ????????---+=-++++-j j j j j j j j j j j h y y h y y h h x x x f 1111 111],,[ ;M j =)(''j x s ;],,[611+-=j j j j x x x f d ; h1=-2-(-3)=1;h2=1-(-2)=3;h3=4-1=3; u1=1/4;u2=3/6; d1=6/4*(3/3-(-2)/1)=4.5;d2=6/6*(-2/3-3/3)=-5/3; 由于边界条件S'(-3)=-1;S'(4)=1,得到如下 式子: d0=6/1*(-2/1-(-1))=-6; d3=6/3*(1-(-2)/3)=10/3; 所以得到4个含参数m0~m3 的线性代数方程组为: 2.0000 1.0000 0 0 m0 0.2500 2.0000 0.7500 0 m1 0 0.5000 2.0000 0.5000 m2 0 0 1.0000 2.0000 m3 利用matlab 求解方程得: m = -4.9032 3.8065 -2.5161 2.9247 所以 S1(x)=-0.8172*(-2-x)^3+ 0.6344*(x+3)^3+2.8172*(-2-x)-0.6344*(x+3) x ∈[-3,-2] S2(x)=0.2115*(1-x)^3 -0.1398*(x+2)^3- 1.9032*(1-x)+ 2.2581*(x+2) x ∈[-2,1] S3(x)=-0.1398*(4-x)^3+0.1625(x-1)^3+ 2.2581*(4-x)-1.1290*(x-1) x ∈[1,4] 化简后得:S1(x)=1.4516*x^3 + 10.6128*x^2 + 23.4836*x + 16.1288 x ∈[-3,-2] S2(x)=-0.3513x^3-0.2043x^2+1.8492x+1.7061 x ∈[-2,1] S3(x)=0.3023x^3-2.1651x^2+3.8108x+1.0517 x ∈[1,4] 画图验证:

MATLAB三次样条插值之三弯矩法

MATLAB三次样条插值之三弯矩法 首先说这个程序并不完善,为了实现通用(1,2,…,n)格式解题,以及为调用追赶法程序,没有针对节点数在三个以下的情况进行分类讨论。希望能有朋友给出更好的方法。 首先,通过函数 sanwanj得到方程的系数矩阵,即追赶法方程的四个向量参数,接下来调用 追赶法(在intersanwj函数中),得到三次样条分段函数系数因子,然后进行多项式合并得 到分段函数的解析式,程序最后部分通过判断输入值的区间自动选择对应的分段函数并计算改 点的值。附:追赶法程序 chase %%%%%%%%%%%%%% function [newv,w,newu,newd]=sanwj(x,y,x0,y0,y1a,y1b) % 三弯矩样条插值 % 将插值点分两次输入,x0 y0 单独输入 % 边值条件a的二阶导数 y1a 和b的二阶导数 y1b,这里建议将y1a和y1b换成y2a和 y2b,以便于和三转角代码相区别 n=length(x);m=length(y); if m~=n error('x or y 输入有误,再来'); end v=ones(n-1,1);u=ones(n-1,1);d=zeros(n-1,1); w=2*ones(n+1); h0=x(1)-x0; h=zeros(n-1,1); for k=1:n-1 h(k)=x(k+1)-x(k); end v(1)=h0/(h0+h(1)); u(1)=1-v(1); d(1)=6*((y(2)-y(1))/h(1)-(y(1)-y0)/h0)/(h0+h(1)); % for k=2:n-1 v(k)=h(k-1)/(h(k-1)+h(k)); u(k)=1-v(k); d(k)=6*((y(k+1)-y(k))/h(k)-(y(k)-y(k-1))/h(k-1))/(h(k-1)+h(k)); end newv=[v;1]; newu=[1;u]; d0=6*((y(1)-y0)/h0-y1a)/h0;

三次样条插值的Matlab实现(自然边界和第一边界条件)

(第一边界条件)源代码:function y=yt1(x0,y0,f_0,f_n,x)_____________(1) %第一类边界条件下三次样条插值; %xi所求点; %yi所求点函数值; %x已知插值点; %y已知插值点函数值; %f_0左端点一次导数值; %f_n右端点一次导数值; n = length(x0); z = length(y0); h = zeros(n-1,1); k=zeros(n-2,1); l=zeros(n-2,1); S=2*eye(n); fori=1:n-1 h(i)= x0(i+1)-x0(i); end fori=1:n-2 k(i)= h(i+1)/(h(i+1)+h(i)); l(i)= 1-k(i);

end %对于第一种边界条件: k = [1;k];_______________________(2) l = [l;1];_______________________(3) %构建系数矩阵S: fori = 1:n-1 S(i,i+1) = k(i); S(i+1,i) = l(i); end %建立均差表: F=zeros(n-1,2); fori = 1:n-1 F(i,1) = (y0(i+1)-y0(i))/(x0(i+1)-x0(i)); end D = zeros(n-2,1); fori = 1:n-2 F(i,2) = (F(i+1,1)-F(i,1))/(x0(i+2)-x0(i)); D(i,1) = 6 * F(i,2); end %构建函数D: d0 = 6*(F(1,2)-f_0)/h(1);___________(4)

三次样条插值的MATLAB实现

MATLAB 程序设计期中考查 在许多问题中,通常根据实验、观测或经验得到的函数表或离散点上的信息,去研究分析函数的有关特性。其中插值法是一种最基本的方法,以下给出最基本的插值问题——三次样条插值的基本提法: 对插值区间[]b a ,进行划分:b x x x a n ≤

三次样条插值的Matlab实现(自然边界和第一边界条件)(精)

(第一边界条件源代码: function y=yt1(x0,y0,f_0,f_n,x _____________(1 %第一类边界条件下三次样条插值; %xi 所求点; %yi所求点函数值; %x 已知插值点; %y 已知插值点函数值; %f_0左端点一次导数值; %f_n右端点一次导数值; n = length(x0; z = length(y0; h = zeros(n-1,1; k=zeros(n-2,1; l=zeros(n-2,1; S=2*eye(n; fori=1:n-1 h(i= x0(i+1-x0(i; end fori=1:n-2

k(i= h(i+1/(h(i+1+h(i; l(i= 1-k(i; end %对于第一种边界条件: k = [1;k]; _______________________(2 l = [l;1]; _______________________(3 %构建系数矩阵 S : fori = 1:n-1 S(i,i+1 = k(i; S(i+1,i = l(i; end %建立均差表: F=zeros(n-1,2; fori = 1:n-1 F(i,1 = (y0(i+1-y0(i/(x0(i+1-x0(i; end D = zeros(n-2,1; fori = 1:n-2 F(i,2 = (F(i+1,1-F(i,1/(x0(i+2-x0(i; D(i,1 = 6 * F(i,2;

end %构建函数 D : d0 = 6*(F(1,2-f_0/h(1; ___________(4 dn = 6*(f_n-F(n-1,2/h(n-1; ___________(5 D = [d0;D;dn]; ______________(6 m= S\D; %寻找 x 所在位置,并求出对应插值: fori = 1:length(x for j = 1:n-1 if (x(i<=x0(j+1&(x(i>=x0(j y(i =( m(j*(x0(j+1-x(i^3/(6*h(j+... (m(j+1*(x(i-x0(j^3/(6*h(j+... (y0(j-(m(j*h(j^2/6*(x0(j+1-x(i/h(j+... (y0(j+1-(m(j+1*h(j^2/6*(x(i-x0(j/h(j ; break; else continue; end end end (2 (自然边界条件源代码: 仅仅需要对上面部分标注的位置做如下修改 :

matlab 牛顿插值法 三次样条插值法

(){} 21 ()(11),5,10,20: 1252 1()1,(0,1,2,,)()2,(0,1,2,,)() ()2 35,20:1100 (i i i i n n k k k Newton f x x n x f x x i i n f x n x y i n Newton N x S x n x k y f x =-≤≤=+=-+====-+ = 题目:插值多项式和三次样条插值多项式。 已知对作、计算函数在点处的值;、求插值数据点 的插值多项式和三次样条插值多项式;、对计算和相应的函数值),()() (1,2,,99)4:()max ()()max ()n k n k n k n k n k n k k k N x S x k E N y N x E S y S x ==-=- 和; 、计算,; 解释你所得到的结果。 算法组织: 本题在算法上需要解决的问题主要是:求出第二问中的Newton 插值多项式 )(x N n 和三次样条插值多项式()n S x 。如此,则第三、四问则迎刃而解。计算两种插值多项式的算法如下: 一、求Newton 插值多项式)(x N n ,算法组织如下: Newton 插值多项式的表达式如下: )())(()()(110010--???--+???+-+=n n n x x x x x x c x x c c x N 其中每一项的系数c i 的表达式如下: 1102110) ,,,(),,,(),,,(x x x x x f x x x f x x x f c i i i i i -???-???= ???=- 根据i c 以上公式,计算的步骤如下: ?? ??? ?? ?????+??????? ???????????----) ,,,,(1) ,,,(),,,,(),(,),,(2)(,),(),(11101111011010n n n n n n n n x x x x f n x x x f x x x f n x x f x x f x f x f x f 、计算、计算、计算、计算 二、求三次样条插值多项式)(x S n ,算法组织如下:

MATLAB实现拉格朗日插值精编版

数值分析上机报告 题目:插值法 学号:201014924 姓名:靳会有

一、调用MATLAB内带函数插值 1、MATLAB内带插值函数列举如下: 2、取其中的一维数据内插函数()为例,程序如下:其调用格式为: yi=interp1(x, y, xi) yi=interp1(x, y, xi, method) 举例如下: x=0:10:100 y=[40 44 46 52 65 76 80 82 88 92 110]; xi=0:1:100 yi=interp1(x,y,xi,'spline') 3、其他内带函数调用格式为: Interpft函数: y=interpft(x,n) y=interpft(x,n,dim) interp2函数: ZI=interp2(X, Y, Z, XI, YI),ZI=imerp2(Z, ntimes)

ZI=interp2(Z, XI, YI) ,ZI=interp2(X, Y, Z, XI, YI, method) interp3函数: VI=interp3(X,Y,Z,V,XI,YI,ZI) VI=interp3(V, ntimes) VI=interp3(V,XI,YI,ZI) VI=interp3(…, method) Interpn函数: VI=interpn(X1, X2, X3, …, V, Y1, Y2, Y3, …) VI=interpn(V, ntimes) VI=interpn(V, Yl, Y2, Y3, …) VI=interpn(…, method) Spline函数: yi=spline(x,y,xi) pp=spline(x,y) meshgrid函数: [X,Y]=meshgrid(x,y) [X,Y]=meshgrid(x) [X,Y,Z]=meshgrid(x,y,z) Ndgrid函数: [X1, X2, X3, …]=ndgrid(x1, x2, x3, …) [X1, X2, X3, …]=ndgrid(x) Griddata函数: ZI=griddata(x, y, z, XI, YI) [XI, YI, ZI]=griddata(x, y, z, xi, yi) […]=griddata(… method) 二、自编函数插值 1、拉格朗日插值法: 建立M 文件: function f = Language(x,y,x0) syms t l; if(length(x) == length(y)) n = length(x); else disp('x和y的维数不相等!'); return; %检错

三次样条插值多项式matlab

三次样条插值多项式 ——计算物理实验作业四 陈万物理学2013级 主程序: clear,clc; format rat x = [1,4,9,16,25,36,49,64]; y = [1,2,3,4,5,6,7,8]; f1 = ; fn = 1/16; [a,b,c,d,M,S] = spline(x,y,f1,fn); 子程序1: function [a,b,c,d,M,S]=spline(x,y,f1,fn) % 三次样条插值函数 % x是插值节点的横坐标 % y是插值节点的纵坐标 % u是插值点的横坐标 % f1是左端点的一阶导数 % fn是右端点的一阶导数 % a是三对角矩阵对角线下边一行 % b是三对角矩阵对角线 % c是三对角矩阵对角线上边一行 % S是插值点的纵坐标

n = length(x); h = zeros(1,n-1); deltay = zeros(1,n); miu = zeros(1,n-1); lamda = zeros(1,n-1); d = zeros(1,n-1); for j = 1:n-1 h(j) = x(j+1)-x(j); deltay(j) = y(j+1)-y(j); end % 得到h矩阵 for j = 2:n-1 sumh = h(j-1) + h(j); miu(j) = h(j-1) / sumh; lamda(j) = h(j) / sumh; d(j) = 6*( deltay(j)/h(j)-(deltay(j-1)/h(j-1)))/sumh; end % 根据第一类边界条件,作如下规定 lamda(1) = 1; d(1) = 6*(deltay(1)/h(1)-f1)/h(1); miu(1) = 1; d(n) = 6*(fn-deltay(n-1)/h(n-1))/h(n-1);

完整word版试验四用MATLAB实现拉格朗日插值分段线性插值

实验四用MATLAB实现拉格朗日插值、分段线性插值 一、实验目的: 1)学会使用MATLAB软件; 2)会使用MATLAB软件进行拉格朗日插值算法和分段线性差值算法; 二、实验内容: 1用MATLAB实现y = 1./(x.^2+1);(-1<=x<=1)的拉格朗日插值、分段线性 2.选择以下函数,在n个节点上分别用分段线性和三次样条插值的方法,计算m个插值点的函数值,通过数值和图形的输出,将插值结果与精确值进行比较,适当增加n,再作比较,由此作初步分析: (1).y=sinx;( 0≤x≤2π) (2).y=(1-x^2)(-1≤x≤1) 三、实验方法与步骤: 问题一用拉格朗日插值法 1)定义函数:y = 1./(x.^2+1);将其保存在f.m 文件中,程序如下: function y = f1(x) y = 1./(x.^2+1); 2)定义拉格朗日插值函数:将其保存在lagrange.m 文件中,具体实现程序编程如下:function y = lagrange(x0,y0,x) m = length(x); /区间长度/ n = length(x0); for i = 1:n l(i) = 1; end for i = 1:m for j = 1:n for k = 1:n if j == k continue; end l(j) = ( x(i) -x0(k))/( x0(j) - x0(k) )*l(j); end end end y = 0; for i = 1:n y = y0(i) * l(i) + y; end 3)建立测试程序,保存在text.m文件中,实现画图:

Matlab程序三次样条插值函数

已知一组数据点,编写一程序求解三次样条插值函数满足 并针对下面一组具体实验数据 求解,其中边界条件为. 解:Matlab计算程序为: clear clc x=[0.25 0.3 0.39 0.45 0.53] y=[0.5000 0.5477 0.6245 0.6708 0.7280] n=length(x); for i=1:n-1 h(i)=x(i+1)-x(i); end for i=1:n-2 k(i)=h(i+1)/(h(i)+h(i+1)); u(i)=h(i)/(h(i)+h(i+1)); end for i=1:n-2 gl(i)=3*(u(i)*(y(i+2)-y(i+1))/h(i+1)+k(i)*(y(i+1)-y(i))/h(i)); end g0=3*(y(2)-y(1))/h(1); g00=3*(y(n)-y(n-1))/h(n-1); g=[g0 gl g00]; g=transpose(g) k1=[k 1]; u1=[1 u]; Q=2*eye(5)+diag(u1,1)+diag(k1,-1) m=transpose(Q\g) syms X; for i=1:n-1 p1(i)=(1+2*(X-x(i))/h(i))*((X-x(i+1))/h(i))^2*y(i); p2(i)=(1-2*(X-x(i+1))/h(i))*((X-x(i))/h(i))^2*y(i+1); p3(i)=(X-x(i))*((X-x(i+1))/h(i))^2*m(i); p4(i)=(X-x(i+1))*((X-x(i))/h(i))^2*m(i+1);

三次样条插值函数的Matlab代码

并针对下面一组具体实验数据 求解,其中边界条件为. 解:Matlab计算程序为: clear clc x=[0.25 0.3 0.39 0.45 0.53] y=[0.5000 0.5477 0.6245 0.6708 0.7280] n=length(x); for i=1:n-1 h(i)=x(i+1)-x(i); end for i=1:n-2 k(i)=h(i+1)/(h(i)+h(i+1)); u(i)=h(i)/(h(i)+h(i+1)); end for i=1:n-2 gl(i)=3*(u(i)*(y(i+2)-y(i+1))/h(i+1)+k(i)*(y(i+1)-y(i))/h(i)); end g0=3*(y(2)-y(1))/h(1); g00=3*(y(n)-y(n-1))/h(n-1); g=[g0 gl g00]; g=transpose(g) k1=[k 1]; u1=[1 u]; Q=2*eye(5)+diag(u1,1)+diag(k1,-1) m=transpose(Q\g) syms X; for i=1:n-1 p1(i)=(1+2*(X-x(i))/h(i))*((X-x(i+1))/h(i))^2*y(i); p2(i)=(1-2*(X-x(i+1))/h(i))*((X-x(i))/h(i))^2*y(i+1); p3(i)=(X-x(i))*((X-x(i+1))/h(i))^2*m(i); p4(i)=(X-x(i+1))*((X-x(i))/h(i))^2*m(i+1); p(i)=p1(i)+p2(i)+p3(i)+p4(i); p(i)=simple(p(i)); end s1=p(1) s2=p(2) s3=p(3) s4=p(4) for k=1:4

三次样条插值的MATLAB实现

在许多问题中,通常根据实验、观测或经验得到的函数表或离散点上的信息,去研究分析函数的有关特性。其中插值法是一种最基本的方法,以下给出最基本的插值问题——三次样条插值的基本提法: 对插值区间[]b a ,进行划分:b x x x a n ≤

相关主题
文本预览
相关文档 最新文档