当前位置:文档之家› 运筹学_饲料配比问题论文正稿

运筹学_饲料配比问题论文正稿

运筹学_饲料配比问题论文正稿
运筹学_饲料配比问题论文正稿

课程设计报告

课程名称:运筹学

项目名称:饲料配比问题

学院:

专业:

/学号:

班级:

实验时间:

成绩:

指导教师:

运筹学课程设计利润分配问题

摘要

此设计报告是用来解决如何使营养成分在规定的标准下用最少的成本合理配比饲料的决策问题,主要应用了线性规划的有关知识。线性规划是运筹学中研究较早、发展较快、方法较成熟的一个重要分支,它帮助人们解决了很多的日常的数学问题。我们需要通过对题目的了解,建立最佳的配比方案同时建立一般线性规划模型。之后再结合模型的特点,将其转化为一个线形规划的数学模型,再运用我们所学过的运筹学的知识和理论以及运筹学计算软件Lingo求解模型最优解。最后再根据结论给出建议和对策。

关键词:线性规划,Lingo,饲料配比

目录

第一章绪论 (3)

1.1研究的背景 (4)

1.2研究的主要容与目的 (4)

1.3研究的意义 (5)

1.4研究的主要方法与思路 (4)

第二章理论方法的选择 (5)

2.1所研究的问题的特点 (5)

2.2拟采用的运筹学理论方法的特点 (5)

2.3理论方法的适用性及有效性论证 (6)

第三章模型的建立 (6)

3.1基础数据的确定 (6)

3.2变量的设定 (6)

3.3目标函数的建立 (6)

3.4限制条件的确定 (7)

3.5模型的建立 (7)

第四章模型的求解及解的分析 (8)

4.1模型的求解 (9)

第五章结论与建议 (10)

5.1 研究结论 (11)

5.2 建议与对策 (12)

第六章结论与建议 (12)

参考文献 (12)

个人题目 (12)

一.绪论

1.1研究的背景:

饲料配方的实质是一个资源最优配置的运筹学问题,它可以用适当的线性或非线性决策模型来定量的描述,对这些模型的求解可实现资源的最优配置,即得到配方的最低成本或配方的最大收益。线性决策模型包括线性规划模型(LP,Linear Programming)以及在此基础上发展起来的多目标线性规划模型(MGP,Multiple Goals Programming),线性规划模型随着其它应用数学分支的发展和实际配方设计的需要又派生出随机非线性规划模型(SP,Stochastic Nonlinear Programming)、模糊线性规划模型(FP,Fuzzy Linear Programming)和灰色线性规划模型(GP,Grey Linear Programming)等。非线性决策模型对应非线性规划模型,但由于其比线性规划模型复杂的多,只是近年随着计算机技术以及动物营养科学的发展才逐步应用。

1.2 研究的主要容与目的

本次研究的主要是:饲料配比问题

为了发展家禽饲养业,某养猪场所用饲料由6种饲料混合而成,各种饲料每单位所含营养成分如表2所示。

表2 各种饲料每单位所含养分及价格

40%,纤维不少于5%但不得大于25%,脂肪不少于3.4%但不得大于10%,铁不少于1%但不得大于1.05%,钙不少于0.45%但不得大于0.6%,怎样配比饲料成本最低?

1.3研究的意义

通过本次研究,寻找一种最优的饲料配比方案。并在相同问题上运用相同的方法,即可解决很多问题。

1.4 研究的主要方法和思路

本次研究将采用运筹学中线性规划的有关思想方法,从而取得问题的最优解决方案。

先根据研究问题的要求,确定目标函数。再根据所配饲料每单位的营养标准定出约束条件。以单纯形法为主进行综合分析与评价,单纯形法是一种在凸集的顶点上搜索最优解的方法,由一个初始基可行解对应的顶点出发,沿着凸集边缘逐个计算与判定所遇到的顶点,直至好到最优解所对应的顶点为止。最后,求解最优解,进行灵敏度分析,结合实际情况分析研究这些解在实际当中体现的具体意义,发现其中存在的不足和缺陷,通过一定的方法进行改进,最终得出最优的饲料配比问题。

主要思路是:从题目的要求和条件入手,分析已知数据,建立恰当的数学模型,用Lingo软件在计算机上求解。

二、理论方法的选择

2.1所研究的问题及其特点

在此问题的特点是显而易见的:可供选择的饲料种类是有限的,并且各种饲料每单位所含养分不同,配比出来的饲料成本不同,同时又要求所含养分在一定围,使配比饲料成本最低。

2.2 拟采用的运筹学理论方法的特点

本文将采用线性规划的思想方法对此题求解。线性规划是运筹学中发展最完善,并且应用最广泛的一个分支,其研究的主要对象有:一类是给定了人力、物力资源,研究如何用这些资源完成任务,另一类是研究如何统筹安排,尽量以最少的人力、物力资源完成该项任务。

2.3线性规划理论方法的适用性及有效性论证

线性规划所解决的问题主要分为两类:这次报告主要研究在资源(人力、物力、财力……)一定的情况下,如何利用这些有限的资源来完成最多的任务。这属于线性规划所解决的问题的畴,再通过对该问题的特点和拟采用的方法的特点的比较,可以确定此方法适用于该问题,能够得到问题的最优方案。所以该理论方法具有适用性和有效性。

三、模型的建立

3.1 基础数据的确定

根据表2,6种饲料苜蓿、玉米、大麦、鱼粉、燕麦、黄豆的5种养分蛋白质、纤维、脂肪、铁、钙的每单位的百分比含量分别为

0.19 0.17 0. 0.016 0.0007

0.082 0. 0.036 0.0006 0.0022

0.11 0.076 0.017 0.0057 0.0012

0. 0.09

0.072 0. 0.027 0.115 0.119 0.038 0.0009 0.0011

0.48 0. 0.005 0.0019 0.0019

6种饲料每单位的价格是0.24、0.19、0.25、0.41、0.21、0.35元

3.2 变量的设定

从题目的要求和实际情况来看, 假设6种饲料每单位所含量分别为x1~x6称为决策变量。a 是配比饲料中各种饲料的含量数,b 是配比饲料中每单位饲料的价格,c 是配比饲料中每单位所含养分的最低值,d 是配比饲料中每单位所含养分的最高值。p 是配比饲料每单位营养成分的百分比含量。

3.3 目标函数的建立

在此问题中,饲料配比的“最优化”要有一定的标准或评判方法,目标函数就是这个标准的数字描述。在此问题中的目标是要求该养猪场配比饲料成本Z 最低。根据该问题的具体条件可得目标函数:

65432135.021.041.025.019.024.0m in x x x x x x Z +++++=

3.4 限制条件的确定

在目标实现的基础上,必须满足产品各种资源的消耗量。

满足蛋白质的营养标准

40480115004801100820190210654321.x .+x .+x .+x .+x .x ..≤+≤

满足纤维的营养标准

2500280119009007600220170050654321.x .+x .+x .+x .+x .+x ..≤≤

满足脂肪的营养标准

100050038007200170036002300340654321.x .+x .+x .+x .+x .+x ..≤≤

关于运筹学论文范例整理分享(共5篇)

关于运筹学论文范例整理分享(共5篇) 运筹学是一门应用性很强的学科,在培养学生分析和解决问题的能力,提高学生应用和创新能力方面发挥着重大的作用.本文针对运筹学教学的特点和现今存在的问题,提出了一系列改革建议及方案,构建了理论与实践相结合的教学体系,该体系能够使学生学以致用,增强学生的实践能力,为培养应用创新型人才创造良好条件. 第1篇:新业态下民航类专业运筹学教学模式改革研究 从网络售票到微信值机,从单一的“售舱位”到运用大数据“提供综合服务”,互联网在深刻改变整个社会的同时,也在冲击传统的航空运输业,航空公司开始关注乘客的兴趣爱好、企业的运输需求,重新定义飞行。 在移动互联网时代,随着消费者对服务要求的不断提高,从关注服务本身,向客户体验和价值链两端不断延伸,服务提供方需要把标准化的服务产品或项目细化拆分,让客户选择自由结合。航空运输业要想取得竞争优势,也必须不断创新服务理念,发展新业态。

新业态是指基于不同产业间的组合、企业内部价值链和外部产业链环节的分化、融合、行业跨界整合以及嫁接信息及互联网技术所形成的新型企业、商业乃至产业的组织形态。信息技术革命、产业升级、消费者需求倒逼不断推动新业态产生和发展,也要求高校教育与人才培养模式必须进行与之相适应的变革。 运筹学是民航类专业的一门专业基础课,它是民航运营活动有关数量方面的理论,运用科学的方法来决定如何最佳地运营和设计各种系统的一门学科,对系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。通常以最优、最佳等作为决策目标,避开最劣的方案[1]。 近年来,郑州航院运筹学课程组秉承“航空为本管工结合”的办学理念,针对民航类专业的特点进行了一系列教育教学改革,达到了预期效果。本文旨在介绍《运筹学》课程的教学改革过程,研究总结成功经验,并提出未来改革发展的思路。

运筹学大作业 哈工大

课程名称:对偶单纯形法 一、教学目标 在对偶单纯形法的学习过程中,理解和掌握对偶问题;综合运用线性规划和对偶原理知识对对偶单纯形法与单纯形法进行对比分析,了解单纯形法和对偶单纯形法的相同点和不同点,总结出各自的适用范围;掌握对偶单纯形法的求解过程;并能运用对偶单纯形法独立解决一些运筹学问题。 二、教学内容 1) 对偶单纯形法的思想来源(5min) 2) 对偶单纯形法原理(5min) 3) 总结对偶单纯形法的优点及适用情况(5min) 4) 对偶单纯形法的求解过程(10min) 5) 对偶单纯形法例题(15min) 6) 对比分析单纯形法和对偶单纯形法(10min) 三、教学进程: 1)讲述对偶单纯形法思想的来源: 1954年美国数学家C.莱姆基提出对偶单纯形法(Dual Simplex Method )。单纯形法是从原始问题的一个可行解通过迭代转到另一个可行解,直到检验数满足最优性条件为止。对偶单纯形法则是从满足对偶可行性条件出发通过迭代逐步搜索原始问题的最优解。在迭代过程中始终保持基解的对偶可行性,而使不可行性逐步消失。因此在保持对偶可行性的前提下,一当基解成为可行解时,便也就是最优解。 2)讲述对偶单纯形法的原理 A.对偶问题的基本性质 依照书第58页,我们先介绍一下对偶问题的六个基本性质: 性质一:弱对偶性 性质二:最优性。如果 x j (j=1...n)原问题的可行解,y j 是其对偶问题可 行解,且有 ∑=n j j j x c 1 =∑=m i i i y b 1 ,则x j 是原问题的最优解,y j 是其对偶问题的最

优解。 性质三:无界性。如果原问题(对偶问题)具有无界解,则其对偶问题(原问题)无可行解。 性质四:强对偶性。如果原问题有最优解,则其对偶问题也一定有最优解。 性质五:互补松弛型。在线性规划问题的最优解中,如果对应某一约束条件的对偶变量值为零,则该约束条件取严格等式;反之如果约束条件取严格不等式,则其对应的对偶变量一定为零。 性质六:线性规划的原问题及其对偶问题之间存在一对互补的基解,其中原问题的松弛变量对应对偶问题的变量,对偶问题的剩余变量对应原问题的变量;这些互相对应的变量如果在一个问题的解中是基变量,则在另一问题的解中是非基变量;将这对互补的基解分别代入原问题和对偶问题的目标函数有z=w. B.对偶单纯形法(参考书p64页) 设某标准形式的线性规划问题,对偶单纯形表中必须有c j -z j ≤0(j=1...n),但b i (i=1...m)的值不一定为正,当对i=1...m ,都有b i ≥0时,表中原问题和对偶问题均为最优解,否则通过变换一个基变量,找出原问题的一个目标函数值较小的相邻的基解。 3)为什么要引入对偶单纯形法 从理论上说原始单纯形法可以解决一切线性规划问题,然而实际问题中,由于考虑问题的角度不同,变量设置的不同,便产生了原问题及其对偶问题,对偶问题是原问题从另外一个角度考虑的结果。用对偶单纯形法求解线性规划问题时,当约束条件为“≥”时,不必引入人工变量,使计算简化。 例如,有一线性规划问题: min ω =12 y 1 +16y 2 +15 y 3 约束条件 ?? ?? ???≥=≥+≥+0)3,2,1(3522 423121 i y y y y y i

运筹学典型考试试题及答案

二、计算题(60分) 1、已知线性规划(20分) MaxZ=3X1+4X2 X1+X2≤5 2X1+4X2≤12 3X1+2X2≤8 X1,X2≥0 其最优解为: 基变量X1X2X3X4X5 X33/2 0 0 1 -1/8 -1/4 X25/2 0 1 0 3/8 -1/4 X1 1 1 0 0 -1/4 1/2 σj 0 0 0 -3/4 -1/2 1)写出该线性规划的对偶问题。 2)若C2从4变成5,最优解是否会发生改变,为什么? 3)若b2的量从12上升到15,最优解是否会发生变化,为什么? 4)如果增加一种产品X6,其P6=(2,3,1)T,C6=4该产品是否应该投产?为什么?解: 1)对偶问题为 Minw=5y1+12y2+8y3 y1+2y2+3y3≥3 y1+4y2+2y3≥4 y1,y2≥0 2)当C2从4变成5时, σ4=-9/8 σ5=-1/4 由于非基变量的检验数仍然都是小于0的,所以最优解不变。 3)当若b2的量从12上升到15 X=9/8 29/8 1/4 由于基变量的值仍然都是大于0的,所以最优解的基变量不会发生变化。 4)如果增加一种新的产品,则 P6’=(11/8,7/8,-1/4)T σ6=3/8>0 所以对最优解有影响,该种产品应该生产 2、已知运输问题的调运和运价表如下,求最优调运方案和最小总费用。(共15分)。 B1B2B3产量销地 产地 A1 5 9 2 15 A2 3 1 7 11 A3 6 2 8 20 销量18 12 16 解:初始解为

计算检验数 由于存在非基变量的检验数小于0,所以不是最优解,需调整 调整为: 重新计算检验数 所有的检验数都大于等于0,所以得到最优解 3、某公司要把4个有关能源工程项目承包给4个互不相关的外商投标者,规定每个承包商只能且必须承包一个项目,试在总费用最小的条件下确定各个项目的承包者,总费用为多少?各承包商对工程的报价如表2所示: (15分) 项目 投标者 A B C D 甲 15 18 21 24 乙 19 23 22 18 丙 26 17 16 19 丁 19 21 23 17 答最优解为: X= 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 总费用为50 4. 考虑如下线性规划问题(24分) B 1 B 2 B 3 产量/t A 1 15 15 A 2 11 11 A 3 18 1 1 20 销量/t 18 12 16 B 1 B 2 B 3 产量/t A 1 5 13 0 15 A 2 -2 0 0 11 A 3 0 0 20 销量/t 18 12 16 B 1 B 2 B 3 产量/t A 1 15 15 A 2 11 11 A 3 7 12 1 20 销量/t 18 12 16 B 1 B 2 B 3 产量/t A 1 5 13 0 15 A 2 0 2 2 11 A 3 0 0 0 20 销量/t 18 12 16

管理运筹学结业论文11

运筹学论文 运筹学(operational research,缩写O.R.)的“运筹”就是运算、筹划的意思。实际上,现实生活中几乎在每个人的头脑中都自然地存在着一种朴素的“选优”和“求好”的思想。例如,当准备去完成一项任务或去做一件事情时,人们脑子里自然地会产生一个想法,就是在条件允许的范围内,尽可能地找出一个“最好”的办法,去把需要做的事情做好。实际上这就是运筹学的基本思想。 运筹学作为一门科学最早出现在第二次世界大战前夕,英国面临如何抵御德国飞机轰炸的问题。当时英国的鲍德西雷达站负责人A.P.罗威建议马上展开对雷达系统运用方面的研究。为区分于技术方面的研究,他提出了“operational research”这个术语,原意为“作战研究”。当时所研究和解决的问题都是短期和战术性的问题,第二次世界大战结束以后,在英美两国的军队中相继成立了正式的运筹学研究组织。并以RAND公司为首的一些部门开始着重研究战略性问题。例如,未来的武器系统的设计和其合理运用的方法,各种轰炸机系统的评价,未来的武器系统和未来战争的战略部署,以及苏联的军事能力和未来的发展预测等问题。进入了20世纪60年代,运筹学的研究转入了战略力量的构成和数量问题的研究,同时除了军事领域的应用研究以外,相继在工业、农业、经济和社会问题等各领域都有了应用。与此同时,运筹学的研究进入了快速发展阶段,并形成了运筹学的许多新的应用分支。 O.R.传入中国后,曾一度被译为“作业研究”或“运用研究”。1956年,中国学术界通过钱学森、许国志等科学家的介绍,在了解了这门学科后,有关专家就译名问题达成共识,即译为“运筹学”。其译意恰当的反映了运

运筹学大作业(线性规划问题)

运筹学 结课大作业 姓名:苏同锁 学号:1068132104 学院:数理与生物工程学院 班级:数学2010

实例:有三家物流企业将一批货物分别运送到四个城市。物流公司A,B,C所运送货物量分别为110吨、70吨、100吨四个城市I, Il,III,Ⅳ,需求量分别为60吨、70吨、50吨、70吨。物流公司A往城市I,II,III,Ⅳ每吨的运价分别为l0元、15元、20元、25元;物流公司 B到城市I,II,III,Ⅳ每吨的运价分别为2O元、10元、l5元、15元:物流公司 C 到城市I,II,III,Ⅳ每吨的运价分别为25元、30元、20元、25元。 运输费用数据表 如何确定调运方案,才能使运输总费用最小。 首先,设运输总费用为f,我们要求运输总费用最小,故目标函数为:Minf=10x11+15x12+20x13+25x14+20x21+10x22+15x23+15x24+25x31+ 30x32+20x33+25x34 其中Xij表示从物流公司i调运到城市j物资的数量,minf表示运输费用最少。 考虑约束条件如上表所述的量和销地的需求量要满足运输平衡条件,以及各变量取非负数,于是可得如下约束条件:

x11+x12+x13+x14<=110 x21+x22+x23+x24<=70 x31+x32+x33+x34<=100 x11+x21+x31>=60 x12+x22+x32>=70 x13+x23+x33>=50 x14+x24+x34>=70 Xij≥0(i=1,2,3;j=1,2,3,4) 最后,我们将目标函数和约束条件写在一起,就得到了物资调运问题的数学模型,即线性规划问题: minf=10x11+15x12+20x13+25x14+20x21+10x22+15x23+15x24+25x31+ 30x32+20x33+25x34 x11+x12+x13+x14<=110 x21+x22+x23+x24<=70 x31+x32+x33+x34<=100 x11+x21+x31>=60 x12+x22+x32>=70 x13+x23+x33>=50 x14+x24+x34>=70 Xij≥0(i=1,2,3;j=1,2,3,4)

运筹学论文及案例

运筹学课程论文与案例分析 专业: 姓名: 学号: 指导老师:

运筹学课程论文与案例分析 摘要:运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。运筹学思想贯穿了企业管理的始终,它在企业战略管理、生产计划、市场营销、运输问题、库存管理、人事管理、财务会计等各个方面都具有重要的作用。本文主要通过对运筹学的分析,结合企业管理,浅谈了运筹学对企业管理的影响。掌握运筹学的基本概念、基本原理、基本方法和解题技巧,对于一些简单的问题可以根据实际问题建立运筹学模型及求解模型。 关键词:管理运筹学线性规划 正文: 现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法解决。运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。从最直观、明了的角度将运筹学定义为:“通过构建、求解数学模型规划、优化有限资源的合理利用,为科学决策提供量化一句的系统知识体系。” 运筹学的具体内容包括:规划论,包括线性规划、非线性规划、整数规划和动态规划、库存论、图论、决策论、对策论、排队论、可靠性理论等。而《应用运筹学》作为运筹学的一部分,则重点介绍了管理运筹的思想与建模方法。具体包括了线性规划及扩展问题模型、图与网络分析模型、项目管理技术、决策分析技术、库存模型和排队模型等运筹学的重要分支。其主要特点是注重运筹学原理及方法在解决实际管理问题时应用,突出了管理问题的分析和运筹模型的构建过程,淡化了模型的理论推导和数学计算。借助于十分普及的Excel软件来求解模型,使得运筹学模型的应用更加简明直观。 线性规划是运筹学的一个重要分支。线性规划解决的是,在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。其数学模型有目标函数和约束条件组成。解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。简单的设计2个变量的线性规划问题可以直接运用图解法得到。但是往往在现实生活中,线性规划问题涉及到的变量很多,很难用作图法实现,但是运用单纯形法记比较方便。单纯形法的发展很成熟应用也很广泛,

排队论习题及答案

《运筹学》第六章排队论习题 1. 思考题 (1)排队论主要研究的问题是什么; (2)试述排队模型的种类及各部分的特征; (3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义; (4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分 布的主要性质; (6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系 与区别。 2.判断下列说法是否正确 (1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间 服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分 顾客合起来的顾客流仍为普阿松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序, 则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大 量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后, 系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的 平均等待时间少于允许队长无限的系统; (9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有 关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人 看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负 指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间; (7)一个顾客在店内逗留时间超过15分钟的概率。 4.设有一个医院门诊,只有一个值班医生。病人的到达过程为Poisson 流,平均到达时间间隔为20分钟,诊断时间服从负指数分布,平均需12分钟,求: (1)病人到来不用等待的概率; (2)门诊部内顾客的平均数; (3)病人在门诊部的平均逗留时间; (4)若病人在门诊部内的平均逗留时间超过1小时,则医院方将考虑增加值班医生。问 病人平均到达率为多少时,医院才会增加医生? 5.某排队系统只有1名服务员,平均每小时有4名顾客到达,到达过程为Poisson 流,,服务时间服从负指数分布,平均需6分钟,由于场地限制,系统内最多不超过3名顾客,求: (1)系统内没有顾客的概率; (2)系统内顾客的平均数;

管理运筹学论文

管理运筹学 期末论文 光明市是一个人口不到15万人的小城市,根据该市的蔬菜种植情况,分别在花市(A)、城乡路口(B)和下塘街设三个集散点,清晨5点以前菜农将蔬菜送至各集散点,再由各集散点分送到全市的8个菜市场。该市道路情况、各路段距离(单位:公里)及各集散点、菜市场的具体位置见图8.1所示。按统计资料,A、B、C三个集散点每天收购量分别为200、170和160(单位:100公斤),各菜市场的每天需求量及发生供应短缺时带来的损失(元/100公斤)如表1所示。设从集散点至各菜市场蔬菜调运费用为1元/(100公斤.公里) 学号:1111111111 姓名:~@~ 学院:信息工程学院 班级:计算机---班 2010-11-24

光明市的菜蓝子工程问题 **** ********* 计算机科学与技术*班信息工程学院临班0053 一、分析报告 问题的提出:光明市是一个人口不到15万人的小城市,根据该市的蔬菜种植情况,分别在花市(A)、城乡路口(B)和下塘街设三个集散点,清晨5点以前菜农将蔬菜送至各集散点,再由各集散点分送到全市的8个菜市场。该市道路情况、各路段距离(单位:公里)及各集散点、菜市场的具体位置见图8.1所示。按统计资料,A、B、C三个集散点每天收购量分别为200、170和160(单位:100公斤),各菜市场的每天需求量及发生供应短缺时带来的损失(元/100公斤)如表1所示。设从集散点至各菜市场蔬菜调运费用为1元/(100公斤.公里)。 分别建立数学模型并求解: 1)为该市设计一个从各集散点至各菜市场的定点供应方案,使用于蔬菜调运及预期的短缺损失为最小; 2)若规定各菜市场短缺量一律不得超过需求量的20%,重新设计定点供应方案; 3)为满足城市居民的蔬菜供应,光明市的领导规划增加蔬菜种植面积,试问增产的蔬菜每天应分别向A、B、C三个集散点各供应多少最经济合理。 1.问题的提出: ④ ⑧ 图1

第七章 运筹学 运输问题案例

第七章运输问题 一个农民承包了6块耕地共300亩,准备播种小麦、玉米、水果和蔬菜四种农产品, 问如何安排种植计划,可得到最大的总收益。 解: 这是一个产销平衡的运输问题。可以建立下列的运输模型: 代入产销平衡的运输模板可得如下结果: 得种植计划方案如下表:

# 某客车制造厂根据合同要求从当年开始起连续四年年末交付40辆规格型号相同的大型客车。该厂在这四年内生产大型客车的能力及每辆客车的成本情况如下表: 根据该厂的情况,若制造出来的客车产品当年未能交货,每辆车每积压一年的存储和维护费用为4万元。在签订合同时,该厂已储存了20辆客车,同时又要求四年期未完成合同后还需要储存25辆车备用。问该厂如何安排每年的客车生产量,使得在满足上述各项要求的情况下,总的生产费用加储存维护费用为最少 ^ 解:得运价表(产大于销的运输模型)如下: | 得生产安排的方案:

第一季度正常上班生产20台,加班27台,拿出正常生产18台和加班2台,加上年前储存的20台,满足本季度的40台; 第二季度正常生产38台,不安排加班。加上第一季度储存的2台,满足本季度的40台; 第三季度正常生产15台,不安排加班。加上第一季度储存的25台,满足本季度的40台; 第四季度正常生产42台。加班生产23台。拿出正常生产的17台的加班生产的23台满足本季度的40台。剩余25台以后务用。 如下表表示: 某企业生产有甲、乙、丙、丁四个分厂生产同一种产品,这四个分厂的产量分别为:200吨、300吨、400吨和100吨,这些产品供应给A、B、C、D、E、F六个地区,六个地区的需求量分别为:200吨、150吨、350吨、100吨、120吨、120吨。由于工艺、技术的差别,各分厂运往各销售地区的单位运价(万元/吨)、各厂单位产品成本(万元/吨)和各销地的销售价格(万元/吨)如下表: (万元/吨)

(完整word版)《运筹学》_第六章排队论习题及_答案

《运筹学》第六章排队论习题 转载请注明 1. 思考题 (1)排队论主要研究的问题是什么; (2)试述排队模型的种类及各部分的特征; (3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义; (4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分 布的主要性质; (6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系 与区别。 2.判断下列说法是否正确 (1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间 服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分 顾客合起来的顾客流仍为普阿松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序, 则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大 量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后, 系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的 平均等待时间少于允许队长无限的系统; (9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有 关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人 看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负 指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间; (7)一个顾客在店内逗留时间超过15分钟的概率。 4.设有一个医院门诊,只有一个值班医生。病人的到达过程为Poisson 流,平均到达时间间隔为20分钟,诊断时间服从负指数分布,平均需12分钟,求: (1)病人到来不用等待的概率; (2)门诊部内顾客的平均数; (3)病人在门诊部的平均逗留时间; (4)若病人在门诊部内的平均逗留时间超过1小时,则医院方将考虑增加值班医生。问 病人平均到达率为多少时,医院才会增加医生? 5.某排队系统只有1名服务员,平均每小时有4名顾客到达,到达过程为Poisson 流,,服务时间服从负指数分布,平均需6分钟,由于场地限制,系统内最多不超过3名顾客,求:

运筹学 第3章 运输问题

第三章运输问题 在生产实际中,经常需要将某种物资从一些产地运往一些销地,因而存在如何调运使总的运费最小的问题。这类问题一般可用线性规划模型来描述,当然可以用单纯形法求解。但由于其模型结构特殊,学者们提供了更为简便和直观的解法——表上作业法。此外,有些线性规划问题从实际意义上看,并非运输问题,但其模型结构类似运输问题,也可以化作运输问题进行求解。 第一节运输问题及其数学模型 首先来分析下面的问题。 例3.1农产品经销公司有三个棉花收购站,向三个纺织厂供应棉花。三个收购站A 1、A2、A3的供应量分别为50kt、45kt和65kt,三个纺织厂B1、B2、B3的需求量分别为20kt、70kt和70kt。已知各收购站到各纺织厂的单位运价如表3—1所示(单位:千元/kt),问如何安排运输方案,使得经销公司的总运费最少? 设x ij表示从A i运往B j的棉花数量,则其运输量表如下表所示。 表3—2 由于总供应量等于总需求量,因此,一方面从某收购站运往各纺织厂的总棉花数量等该收购站的供应量,即 x11+x12+x13 = 50 x21+x22+x23 = 45 x31+x32+x33 = 65

另一方面从各收购站运往某纺织厂的总棉花数量等该纺织厂的需要量,即 x 11+x 21+x 31 = 20 x 12+x 22+x 32 = 70 x 13+x 23+x 33 = 70 因此有该问题的数学模型为 min f= 4x 11+8x 12+5x 13+6x 21+3x 22+6x 23+2x 31+5x 32+7x 33 x 11+x 12+x 13 = 50 x 21+x 22+x 23 = 45 x 31+x 32+x 33 = 65 x 11+x 21+x 31 = 20 x 12+x 22+x 32 = 70 x 13+x 23+x 33 = 70 x ij ≥0,i=1,2,3;j=1,2,3 生产实际中的一般的运输问题可用以下数学语言描述。 已知有m 个生产地点A i ,i=1,…,m ,可供应某种物资,其供应量(产量)为a i ,i=1,…,m ;有n 个销售地点B j ,j=1,…,n , 需要该种物资,其需要量(销量)为b j ,j=1,…,n ; 从A i 到B j 运输单位物资的运价(单价)为c ij ; 设Σa i =Σb j ,这些数据可汇总于如下产销平衡表,现要制定一个使总运费最小的调运方案。 若用x ij 表示从A i 到B j 的运量,在产销平衡的条件下,要求得总运费最小的调运方案,其数学模型如下(模型Y ) ????? ??????==≥=====∑∑∑∑====n j m i x n j b x m i a x x c f ij m i j ij n j i ij m i n j ij ij ,,1;,,1,0,1,,1min 1 111

运筹学论文

课程设计任务书 2012—2013学年第二学期 专业班级:10普本信息与计算科学学号:xxxxxxxx 姓名:xxxxxxxx 课程设计名称:运筹学 设计题目:线性规划的问题及其应用 完成期限:自2013 年06月10 日至2013年06 月16日共7天 设计依据、要求及主要内容: 一、设计目的 熟练掌握求解线性规划的方法以及关于这些方法的分析和综合应用,能够较熟练地应用LINGO软件编写求解线性规划的程序。 二、设计内容 (1)认真挑选有代表性的线性规划问题.(2)根据线性规划的解的概念和基本理论,运用单纯形法来求解线性规划问题。(3)列出目标函数,编程序用LINGO 软件来求解。 三、设计要求 1.掌握线性规划的求解方法和一些基本理论。 2.先分析题中的数据,列出目标函数。 3.然后使用所用的方法编写LINGO程序求解。 计划答辩时间:2013年06 月16 日 工作任务与工作量要求: 查阅文献资料不少于3篇,课程设计报告1篇不少于3000字. 指导教师(签字):教研室主任(签字): 批准日期:2013 年6月9日

线性规划的问题及其应用 摘要 本文考虑的是快餐店如何获得最高利润问题。影响快餐店利润的因素主要有顾客对等待时间的态度;当宣布“服务慢了将免费供餐”以后,承诺的时间与顾客的增多之间的关系等。我们在模型中主要从以上二个因素来考虑对快餐店能获利润进行预测。根据此模型得到了顾客平均到达率,快餐店平均服务率来分析此问题。 我们运用运筹学中排队论模型对快餐店排队系统进行优化,在常规优化方案的基础上提出进一步的优化方案。通过优化不仅提高了服务效率,而且增强了顾客满意度,增加了经济效益。 关键词:快餐店,排队论,数学模型,运筹学,优化

《管理运筹学》论文

《管理运筹学》课程论文 ——焦作印刷公司应如何合理使用技术培训费 学生姓名 学号 学院 专业班级 指导老师 1

摘要 通过对焦作印刷公司技术培训费合理使用和调配,使之适应现代科学技术的发展,提高工人的技术水平。这样掌握了分析案例并建立数学模型,进行数据分析,提出问题和解决的方案,从而使公司的必要投入换取最大的经济效益。 本学科保证高等学校管理科学与工程类本科专业人才的培养,对一些管理问题进行深入研究,要求学习《管理运筹学》进一步掌握了解相关知识,更好的研究案例等实际问题。 2

1 选择的案例 焦作印刷公司应如何合理使用技术培训费。 1.1焦作印刷公司概况 为适应现代科学技术的发展,提高工人的技术水平,必须下工夫搞好职工技术培训,拨出专款进行智力投资,通过提高技术工人的水平,提高产品的质量,能获取长期的经济效益。但是,智力投资的目的是以最小的必要投入换取最大的经济效益,因此要对可利用的有限资金进行合理的分配和利用,这就需要对智利投资的资金进行规划。 1.2 相关公司生产概况 焦作印刷需要的技工分为初级、中级、高级三个层次。统计资料显示:培养出来的每个初级工每年可为公司增加产值1万元,每个中级工每年可为公司增加产值4万元,每个高级工每年可为公司增加产值5.5万元。 公司计划在今后三年拨出150万元作为职工的培训费,第一年投资55万元,第二年投资45万元,第三年投资50万元。 通过公司过去培养初级工、中级工、高级工的经历并经过咨询,预计培养一名初级工,在高中毕业后需要一年,费用为1000元;培养一名中级工,高中毕业后需要三年的时间,第一年和第二年的费用为3000元,第三年的费用为1000元;培养一名高级工,高中毕业后也需要三年的时间,其中第一年的费用为3000元,第二年的费用为2000元,第三年的费用为4000元。 目前公司共有初级工226人,中级工560人,高级工496人。若通过提高目前技术工人的水平来增加中级工和高级工的人数,其培养时间和培养的费用分别是:由初级工培养为中级工需要1年时间,费用为2800元;由初级工直接培养为高级工需要两年,第一年费用为2000元,第二年费用为3200元;由中级工培养为高级工需要1年,费用为3600元。 由于公司目前的师资力量不足,教学环境有限,每年可培训的职工人数受到一定的限制,根据目前情况,每年在培养的初级工不超过90人,中级工不超过80人,高级工不超过80人。 1.3 满足公司相关情况而要求完成的任务 为了利用有限的职工培训资源培养更多的技术人员,并未公司创造更大的经济效益,要确定直接由高中毕业生中培养初、中、高级技术工人个多少,通过提高目前技术工人的水平来增加中级工和高级工的初级工和中级工分别是多少,才 3

运筹学论文

运筹学论文 金融13-2 彭金煜 40(2013026643)

线性规划在经济中的应用 随着经济全球化的不断发展,企业面临更加激烈的市场竞争。企业必须不断提高盈利水平,增强其获利能力,在生产、销售、新产品研发等一系列过程中提高企业效率、降低成本、形成企业的核心竞争力,才能在激烈的竞争中立于不败之地。只有解决了这一系列的问题,企业才能更好地进行生产决策。基于对建立线性规划数学模型分析对企业成本投入、资本分配和生产决策问题进行研究和探讨,应用分析、量化的方法,对经济管理系统中的人、财、物等有限资源进行统筹安排,从而为企业管理决策者提供科学的定量依据,并通过实例以及运用WinQSB2.0软件包进行计算机模拟仿真计算,说明该问题研究的科学性、可靠性及其应用价值。 一、引言 在生活、生产、管理等各类经济活动中,我们经常遇到这样的问题:什么是最好的决策、最佳的方案。例如消费者在总收入一定的情况下,如何购买商品使得消费者的效用最大;企业在生产条件不变的前提下,如何通过统筹安排,改进生产组织或计划,合理安排人力、物力资源,使得成本最低;工厂在各原材料固定的情况下,如何最佳地使用原材料使得利润最大等。这些生产的最优化决策问题都可以通过建立相应的线性规划模型,即转化为线性规划问题通过数学运算进行解决。 线性规划作为数学规划与运筹学的一个分支,是运筹学中最常用的一种方法。线性规划所处理的问题是怎样以最佳的方式在各项经济活动中分配有限的资源,以便最充分地发挥资源的效能去获取最佳经济效益。线性规划就是拟定活动计划以便达到一个最优结果,即在所有可行的备选方案中如何选取最佳方案以达到规定目标。 由于在企业的生产过程中,一般都规定了一些约束量,如投入资本、产量限制、产品的成分等。本文将应用线性规划模型,帮助企业做出在现有生产条件下的最优生产决策方案,达到企业利润最大化的目的。因此,本文对于企业在特定情况下进行资本分配和生产决策问题提供一种实用的计算方法。对企业来说,生产决策的主要目标是:在现有条件下,如何最有效地利用人力、物力、财力等各种资源,以取得最大的经济效益。而利用线性代数建立数学模型则正好可以帮助我们解决这一类问题,得到有依据的最佳方案。 二、研究现状 随着经济管理理论知识和线性规划方法的更紧密结合,关于线性规划的研究越来越深

《运筹学参考综合习题》

《运筹学参考综合习题》 (我站搜集信息自编,非南邮综合练习题,仅供参考) 资料加工、整理人——杨峰(函授总站高级讲师) 可能出现的考试方式(题型) 第一部分填空题(考试中可能有5个小题,每小题2分,共10分) ——考查知识点:几个基本、重要的概念 第二部分分步设问题(即是我们平常说的“大题”,共90分) ——参考范围: 1、考两变量线性规划问题的图解法(目标函数为max z和min z的各1题) 2、考线性规划问题的单纯形解法(可能2个题目:①给出问题,要求建立线性规划模型,再用单纯形迭代表求解;②考查对偶问题,要求写出原问题的线性规划模型之后写出其对偶问题的线性规划模型,然后用大M法求解其对偶问题,从而也得到原问题的最优解) 3、必考任务分配(即工作指派)问题,用匈牙利法求解。 4、考最短路问题(如果是“动态规划”的类型,则用图上标号法;如果是网络分析的类型,用TP标号法,注意不要混淆) 5、考寻求网络最大流(用寻求网络最大流的标号法) 6、考存储论中的“报童问题”(用概率论算法模型解决) ——未知是否必考的范围: 1、运输规划问题(用表上作业法,包括先求初始方案的最小元素法和将初始方案调整至最优的表上闭回路法); 2、求某图的最小生成树(用破圈法,非常简单) ※考试提示:可带计算器,另外建议带上铅笔、直尺、橡皮,方便绘图或分析。

第一部分 填空题复习参考 一、线性规划部分: ㈠基本概念:定义:满足所有约束条件的解为可行解;可行解的全体称为可行(解)域。 定义:达到目标的可行解为最优解。 由图解法得到的三个结论:①线性规划模型的可行解域是凸集; ②如果线性规划模型有唯一的最优解的话,则最优解一定是凸集(可行解域)的角顶; ③任何一个凸集,其角顶个数是有限的。 ㈡有关运输规划问题的概念:设有m 个产地A i (i=1,2,…,m ),n 个销地B j (j=1,2,…,n ), A i 产量(供应量)S i ,B j 销量(需求量)d i ,若产、销平衡,则:∑∑===n j j m i i d s 1 1 二、网络分析中的一些常用名词: 定义:无方向的边称为边;有方向的边称为弧。 定义:赋“权”图称为网络。 定义:有向图中,若链中每一条弧的走向一致,如此的链称为路。闭链称为圈。闭回路又称为回路。 定义:在图G 中任两点间均可找到一条链,则称此图为连通图。无重复边与自环的图称为连通图。 定义:树是无圈的连通图。 树的基本性质:①树的任两点之间有且只有一条链; ②若图的任两点之间有且只有一条链,则此图必为树;

运筹学课程论文

运筹学案例建模、算法与分析 作者; 日期: 2012年02月29日 摘要: 先是对一个学期的课程学习的总结,然后是分别对“人力资源分配问题”和“最优投资策略问题”的两个案例的分析与建模,并得出其最优方案,以及对案例职场规划的方案设计。 关键词: 运筹学;数学模型;目标函数;人力资源分配;职场规划;最优投资策略。 正文: 记得当初怀着好奇和对数学的兴趣旋律这堂课,转眼一个学期结束了,时间见证了我当初的选择是正确的。在这儿,她让我学到了新的数学解题方法和思维方式;使我对数学的兴趣更加浓厚;当然,她还让我学到了很多有关运筹学方面的很多知识。 在“运筹帷幄-为解决问题提供最佳决策”这堂课上,老师通过“1.资环争夺——运筹学的摇篮;2.追求完美——运筹优化无处不在;3.制胜法宝——运筹学成功应用范例;4.寓理于算——运筹学问题数学模型;5.追求极致——最优决策的特征;6.好谋善断——优化方法设计;7.步步为营——迭代算法特征;8.神机妙算——计算机实现;9.追求效率——提高计算效率;10.永无止境——改善与发展”这十个话题,给我们讲解了运筹学的起源、特点、分支、研究方法、涉及重点领域,对运筹学应用案例的数学模型建立于分析,以及解决运筹学问题的方法和对待运筹学问题的大概思维方式等有关运筹学的各方面知识。总之,在这堂课上我收获许许多多有形或无形的财富,让我受益匪浅。 通过一个学期在老师生动详细的讲解,以及阅读一些有关运筹学的书籍等方式的学习下,我已经掌握了一些对问题进行分析、建模等处理方法。下面是对三个案例的简单分析及处理。

案例1: 人力资源分配问题 “好又美”超市是个建在大学城边上的大型百货商场,每周对收银人员的需求,统计如下表 为了保证收银人员充分休息,收银人员每周工作5天,休息2天。问应如何安排收银人员的工作时间,使得所配收银人员的总费用最小? 解:为了让员工们休息更愉快、方便,可将每位员工的休息时间安排在连续的两天;则可设 i x (i=1,2,3,…,7)表示星期一至日开始休息的人数,依题 意我们可建立如下数学模型: 目标函数:Min Z = 1234567x x x x x x x ++++++ 约束条件: 1234x x x x x ++++≥6 23456 x x x x x ++++≥5 34567 x x x x x ++++≥8 45671x x x x x ++++≥7 56712x x x x x ++++≥10 67123x x x x x ++++≥18 71234 x x x x x ++++≥15 (1,2,3,4,5,6,7) i x N i ∈= 于以上数学模型,通过计算可得: 当:1x = 9;2x = 1;3x = 0;4x = 5;5x = 0;6x = 0;7x =3; 时,Z 取最小值18。 即安排18位收银人员即可供应百货商场收银员需求。 具体人员安排如下: 假设有18位收银人员编号分别为1、2、3、4、…、18,星期六18为收银

运筹学单项选择题

单项选择题 一、线性规划 1.线性规划具有无界解是指"C" A.可行解集合无界 B.有相同的最小比值 C.存在某个检验数 D.最优表中所有非基变量的检验数非零 2.线性规划具有唯一最优解是指 "A" A.最优表中非基变量检验数全部非零 B.不加入人工变量就可进行单纯形法计算 C.最优表中存在非基变量的检验数为零 D.可行解集合有界 3.线性规划具有多重最优解是指"B" A.目标函数系数与某约束系数对应成比例 B.最优表中存在非基变量的检验数为零 C.可行解集合无界 D.基变量全部大于零 4.使函数减少得最快的方向是"B" A.(-1,1,2) B.(1,-1,-2) C. (1,1,2) D.(-1,-1,-2) 5.当线性规划的可行解集合非空时一定 "D" A.包含点X=(0,0,···,0) B.有界 C.无界 D.是凸集 6.线性规划的退化基可行解是指 "B" A.基可行解中存在为零的非基变量 B.基可行解中存在为零的基变量 C.非基变量的检验数为零 D.所有基变量不等于零 7.线性规划无可行解是指 "C" A.第一阶段最优目标函数值等于零 B.进基列系数非正 C.用大M法求解时,最优解中还有非零的人工变量 D.有两个相同的最小比值 8.若线性规划不加入人工变量就可以进行单纯形法计算 "B" A.一定有最优解 B.一定有可行解 C.可能无可行解 D.全部约束是小于等于的形式 9.设线性规划的约束条件为 "D" 则非退化基本可行解是 A.(2,0,0,0) B.(0,2,0,0) C.(1,1,0,0) D.(0,0,2,4) 10.设线性规划的约束条件为 "C" 则非可行解是 A.(2,0,0,0) B.(0,1,1,2) C.(1,0,1,0) D.(1,1,0,0)

兰州大学运筹学——运输问题 课后习题题解

第七章运输问题 7.1 一个农民承包了6块耕地共300亩,准备播种小麦、玉米、水果和蔬菜四种农产品, 问如何安排种植计划,可得到最大的总收益。 解: 本问题地块总面积:42+56+44+39+60+59=300亩 计划播种总面积:6+88+96+40=300亩 因此这是一个产销平衡的运输问题。可以建立下列的运输模型: 代入产销平衡的运输模板可得如下结果:

种植计划方案 7.2 某客车制造厂根据合同要求从当年开始起连续四年年末交付40辆规格型号相同的 根据该厂的情况,若制造出来的客车产品当年未能交货,每辆车每积压一年的存储和维护费用为4万元。在签订合同时,该厂已储存了20辆客车,同时又要求四年期未完成合同后还需要储存25辆车备用。问该厂如何安排每年的客车生产量,使得在满足上述各项要求的情况下,总的生产费用加储存维护费用为最少? 解:这是一个生产储存问题,可以化为运输问题来做。根据已知条件,我们可以做以下

分析,建立运输模型。 1、由于上年末库存20辆车,这些产品在这四年中只计仓储费不计生产费用,所以我们记为0年,第一行; 2、在建立的运输表中,相应单元格内填入当年交付产品的所有成本(包括生产和存储成本); 3、年份从1到4表示当年的正常生产,而1’到4’表示当年加班生产的情况; 4、由于期末(4年底)要有25辆车的库存,即4年末的需求量是40+25=65辆; 5、在表中没有具体成本的单元格中,表示没有生产也没有交货,为了保证这个真实情况的描述,在这些格中填M,使安排的生产量为0。 6、在计算成本时,当年生产当年交货不加存储成本,但对未交付的产品,第二年要付一个年的存储费4万元,依此类推。 根据上面的分析,可得运价表如下。 这是一个产大于销的运输模型,代入求解模型可得: 即:生产安排的方案:

相关主题
文本预览
相关文档 最新文档