当前位置:文档之家› 802.11无线传输协议手册

802.11无线传输协议手册

802.11无线传输协议手册

手册, 协议, 无线, 传输

IEEE最初制定的一个无线局域网标准,主要用于解决办公室局域网和校园网中,用户与用户终端的无线接入,业务主要限于数据存取,速率最高只能达到2Mbps。目前,3Com 等公司都有基于该标准的无线网卡。由于802.11在速率和传输距离上都不能满足人们的需要,因此,IEEE小组又相继推出了802.11b和802.11a两个新标准。三者之间技术上的主要差别在于MAC子层和物理层。

IEEE 802.11a

802.11a是802.11原始标准的一个修订标准,于1999年获得批准。802.11a标准采用了与原始标准相同的核心协议,工作频率为5GHz,使用52个正交频分多路复用副载波,最大原始数据传输率为54Mb/s,这达到了现实网络中等吞吐量(20Mb/s)的要求。如果需要的话,数据率可降为48,36,24,18,12,9或者6Mb/s。802.11a拥有12条不相互重叠的频道,8条用于室内,4条用于点对点传输。它不能与802.11b进行互操作,除非使用了对两种标准都采用的设备。

由于2.4GHz频带已经被到处使用,采用5GHz的频带让802.11a具有更少冲突的优点。然而,高载波频率也带来了负面效果。802.11a几乎被限制在直线范围内使用,这导致必须使用更多的接入点;同样还意味着802.11a不能传播得像802.11b那么远,因为它更容易被吸收。

尽管2003世界无线电通信会议让802.11a在全球的应用变得更容易,不同的国家还是有不同的规定支持。美国和日本已经出现了相关规定对802.11a进行了认可,但是在其他地区,如欧盟,管理机构却考虑使用欧洲的HIPERLAN标准,而且在2002年中期禁止在欧洲使用802.11a。在美国,2003年中期联邦通信委员会的决定可能会为802.11a提供更多的频谱。

在52个OFDM副载波中,48个用于传输数据,4个是引示副载波(pilot carrier),每一个带宽为0.3125MHz(20MHz/64),可以是二相移相键控(BPSK),四相移相键控(QPSK),16-QAM或者64-QAM。总带宽为20MHz,占用带宽为16.6MHz。符号时间为4毫秒,保护间隔0.8毫秒。实际产生和解码正交分量的过程都是在基带中由DSP完成,然后由发射器将频率提升到5GHz。每一个副载波都需要用复数来表示。时域信号通过逆向快速傅里叶变换产生。接收器将信号降频至20MHz,重新采样并通过快速傅里叶变换来重新获得原始系数。使用OFDM的好处包括减少接收时的多路效应,增加了频谱效率。

802.11a产品于2001年开始销售,比802.11b的产品还要晚,这是因为产品中5GHz的组件研制成功太慢。由于802.11b已经被广泛采用了,802.11a没有被广泛的采用。再加上802.11a的一些弱点,和一些地方的规定限制,使得它的使用范围更窄了。802.11a设备厂商为了应对这样的市场匮乏,对技术进行了改进(现在的802.11a技术已经与802.11b在很多特性上都很相近了),并开发了可以使用不止一种802.11标准的技术。现在已经有了可以同时支持802.11a和b,或者a,b,g都支持的双频,双模式或者三模式的的无线网卡,它们可以自动根据情况选择标准。同样,也出现了移动适配器和接入设备能同时支持所有的这些标准。

数据率

(Mbit/s) 调制方式编码率 Ndbps 1472字节传输时间

(µs)

6 BPSK 1/2 24 2012

9 BPSK 3/4 36 1344

12 4-QAM 1/2 48 1008

18 4-QAM 3/4 72 672

24 16-QAM 1/2 96 504

36 16-QAM 3/4 144 336

48 64-QAM 2/3 192 252

54 64-QAM 3/4 216 224

802.11

802.11是IEEE最初制定的一个无线局域网标准,主要用于解决办公室局域网和校园网中用户与用户终端的无线接入,业务主要限于数据存取,速率最高只能达到2Mbps。由于它

在速率和传输距离上都不能满足人们的需要,因此,IEEE小组又相继推出了802.11b和802.11a两个新标准,前者已经成为目前的主流标准,而后者也被很多厂商看好。

802.11a

802.11a(Wi-Fi5)标准是得到广泛应用的802.11b标准的后续标准。它工作在5GHzU-NII 频带,物理层速率可达54Mbps,传输层可达25Mbps。可提供25Mbps的无线ATM接口和10Mbps 的以太网无线帧结构接口,以及TDD/TDMA的空中接口;支持语音、数据、图像业务;一个扇区可接入多个用户,每个用户可带多个用户终端。

IEEE 802.11b

IEEE 802.11b是无线局域网的一个标准。其载波的频率为 2.4GHz,传送速度为11Mbit/s。IEEE 802.11b是所有无线局域网标准中最著名,也是普及最广的标准。它有时也被错误地标为Wi-Fi。实际上Wi-Fi是无线局域网联盟(WLANA)的一个商标,该商标仅保障使用该商标的商品互相之间可以合作,与标准本身实际上没有关系。在 2.4-GHz-ISM 频段共有14个频宽为22MHz的频道可供使用。IEEE 802.11b的后继标准是IEEE 802.11g,其传送速度为54Mbit/s。

802.11c

802.11c在媒体接入控制/链路连接控制(MAC/LLC)层面上进行扩展,旨在制订无线桥接运作标准,但后来将标准追加到既有的802.1中,成为802.1d。

801.11d

他和802.11c一样在媒体接入控制/链路连接控制(MAC/LLC)层面上进行扩展,对应802.11b标准,解决不能使用2.4GHz频段国家的使用问题。

802.11e

802.11e是IEEE为满足服务质量(Qos)方面的要求而制订的WLAN标准。在一些语音、视频等的传输中,Qos是非常重要的指标。在802.11MAC层,802.11e加入了Qos功能,它的分布式控制模式可提供稳定合理的服务质量,而集中控制模式可灵活支持多种服务质量策略,让影音传输能及时、定量、保证多媒体的顺畅应用,WIFI联盟将此称为WMM(wi-fi multimedia) 。

802.11f

802.11f追加了IAPP(inter-access point protocol)协定,确保用户端在不同接入点间的漫游,让用户端能平顺、无形地切换存取区域。 802.11f标准确定了在同一网络内接入点的登陆,以及用户从一个接入点切换到另一个接入点时的信息交换。

IEEE 802.11g

IEEE 802.11g2003年7月,通过了第三种调变标准。其载波的频率为2.4GHz(跟802.11b 相同),原始传送速度为54Mbit/s,净传输速度约为24.7Mbit/s(跟802.11a相同)。802.11g 的设备与802.11b兼容。802.11g是为了提高更高的传输速率而制定的标准,它采用2.4GHz 频段,使用CCK技术与802.11b(Wi-Fi)后向兼容,同时它又通过采用OFDM技术支持高达54Mbit/s的数据流,所提供的带宽是802.11a的1.5倍。从802.11b到802.11g,可发现WLAN标准不断发展的轨迹:802.11b是所有WLAN标准演进的基石,未来许多的系统大都需要与802.11b向后向兼容,802.11a是一个非全球性的标准,与802.11b后向不兼容,但采用OFDM技术,支持的数据流高达54Mbit/s,提供几倍于802.11b/g的高速信道,如802.11b/g 提供3个非重叠信道可达8-12个;可以看出,在802.11g和802.11a之间存在与Wi-Fi兼容性上的差距,为此出现了一种桥接此差距的双频技术——双模(dual band)802.11a+g(=b),它较好地融合了802.11a/g技术,工作在2.4GHz和5GHz两个频段,服从802.11b/g/a等标准,与802.11b后向兼容,使用户简单连接到现有或未来的802.11网络成为可能。

802.11h

是为了与欧洲的HiperLAN2相协调的修订标准,美国和欧洲在5GHz频段上的规划、应用上存在差异,这一标准的制订目的,是为了减少对同处于5GHz频段的雷达的干扰。类似的还有802.16(WIMAX),其中802.16B即是为了与Wireless HUMAN协调所制订。 802.11h 涉及两种技术,一种是动态频率选择(DFS),即接入点不停地扫描信道上的雷达,接入点和相关的基站随时改变频率,最大限度地减少干扰,均匀分配WLAN流量;另一种技术是传输功率控制(TPC),总的传输功率或干扰将减少3dB。

IEEE 802.11i

IEEE 802.11i是IEEE为了弥补802.11脆弱的安全加密功能(WEP, Wired Equivalent Privacy)而制定的修正案,于2004年7月完成。其中定义了基于AES的全新加密协议CCMP

(CTR with CBC-MAC Protocol),以及向前兼容RC4的加密协议TKIP(Temporal Key Integrity Protocol)。

无线网络中的安全问题从暴露到最终解决经历了相当的时间,而各大厂通信芯片商显然无法接受在这期间什么都不出售,所以迫不及待的Wi-Fi厂商采用802.11i的草案3为蓝图设计了一系列通信设备,随后称之为支持WPA(Wi-Fi Protected Access)的;之后称将支持802.11i最终版协议的通信设备称为支持WPA2(Wi-Fi Protected Access 2)的。

802.11j

它是为适应日本在5GHz以上应用不同而定制的标准,日本从4.9GHz开始运用,同时,他们的功率也各不相同,例如同为5.15-5.25GHz的频段,欧洲允许200MW功率,日本仅允许160MW。

802.11k

802.11k为无线局域网应该如何进行信道选择、漫游服务和传输功率控制提供了标准。他提供无线资源管理,让频段(BAND)、通道(CHANNEL)、载波(CARRIER)等更灵活动态地调整、调度,使有限的频段在整体运用效益上获得提升。在一个无线局域网内,每个设备通常连接到提供最强信号的接入点。这种管理有时可能导致对一个接入点过度需求并且会使其他接入点利用率降低,从而导致整个网络的性能降低,这主要是由接入用户的数目及地理位置决定的。在一个遵守802.11k规范的网络中,如果具有最强信号的接入点以其最大容量加载,而一个无线设备连接到一个利用率较低的接入点,在这种情况下,即使其信号可能比较弱,但是总体吞吐量还是比较大的,这是因为这时网络资源得到了更加有效的利用。

802.11l

由于(11L)字样与安全规范的(11i)容易混淆,并且很像(111),因此被放弃编列使用。

802.11m

802.11m主要是对802.11家族规范进行维护、修正、改进,以及为其提供解释文件。802.11m中的m 表示Maintenance。

IEEE 802.11n

IEEE 802.11n,2004年1月IEEE宣布组成一个新的单位来发展新的802.11标准。资料传输速度估计将达540Mbit/s(需要在物理层产生更高速度的传输率),此项新标准应该要比802.11b快上50倍,而比802.11g快上10倍左右。802.11n也将会比目前的无线网络传送到更远的距离。

目前在802.11n有两个提议在互相竞争中:

WWiSE (World-Wide Spectrum Efficiency) 以Broadcom为首的一些厂商支持。

TGn Sync 由Intel与Philips所支持。

802.11n增加了对于MIMO (multiple-input multiple-output)的标准. MIMO 使用多个发射和接收天线来允许更高的资料传输率。MIMO并使用了Alamouti coding coding schemes 来增加传输范围。

802.11o

针对VOWLAN(Voice over WLAN)而制订,更快速的无限跨区切换,以及读取语音(voice)比数据(Data)有更高的传输优先权。

80211p

80211p是针对汽车通信的特殊环境而出炉的标准。最初的设订是在300M距离内能有6MBPS的传输速度。它工作于5.9GHz的频段,并拥有1000英尺的传输距离和6Mbps的数据速率。802.11p将能用于收费站交费、汽车安全业务、通过汽车的电子商务等很多方面。从技术上来看,802.11p对802.11进行了多项针对汽车这样的特殊环境的改进,如热点间切换更先进、更支持移动环境、增强了安全性、加强了身份认证等等。

802.11Q

制订支援VLAN (virtual LAN,虚拟区域网路)的机制。

802.11R

802.11r标准,着眼于减少漫游时认证所需的时间,这将有助于支持语音等实时应用。使用无线电话技术的移动用户必须能够从一个接入点迅速断开连接,并重新连接到另一个接入点。这个切换过程中的延迟时间不应该超过50毫秒,因为这是人耳能够感觉到的时间间隔。但是目前802.11网络在漫游时的平均延迟是几百毫秒,这直接导致传输过程中的断续,造成连接丢失和语音质量下降。所以对广泛使用的基于802.11的无线语音通讯来说,更快的切换是非常关键的。802.11r改善了移动的客户端设备在接入点之间运动时的切换过程。协议允许一个无线客户机在实现切换之前,就建立起与新接入点之间安全且具备QoS 的状态,这会将连接损失和通话中断减到最小。

802.11s

制订与实现目前最先进的MESH网路,提供自主性组态(self-configuring),自主性修复(self-healing)等能力。无线网状网可以把多个无线局域网连在一起从而能覆盖一个大学校园或整个城市。当一个新接入点加入进来时,它可以自动完成安全和服务质量方面的设置。整个网状网的数据包会自动避开繁忙的接入点,找到最好的路由线。目前关于该标准共有15个提案。IEEE可能在2008年正式认可该标准。

802.11t

提供提高无线电广播链路特征评估和衡量标准的一致性方法标准,衡量无线网络性能。

802.11u

与其他网络的交互性。以后更多的产品将兼具Wi-Fi与其他无线协议,例如GXXXXXX、Edge、EV-DO等。该工作组正在开发在不同网络之间传送信息的方法,以简化网络的交换与漫游。

802.11v

无线网络管理。V工作组是最新成立的小组,其任务将基于802.11k所取得的成果。802.11v主要面对的是运营商,致力于增强由Wi-Fi网络提供的服务。

802.11全家族:

* IEEE 802.11 ,1997年,原始标准(2Mbit/s,工作在2.4GHz)。

* IEEE 802.11a,1999年,物理层补充(54Mbit/s,工作在5GHz)。

* IEEE 802.11b,1999年,物理层补充(11Mbit/s工作在2.4GHz)。

* IEEE 802.11c,符合802.1D的媒体接入控制层桥接(MAC Layer Bridging)。

* IEEE 802.11d,根据各国无线电规定做的调整。

* IEEE 802.11e,对服务等级(Quality of Service, QoS)的支持。

* IEEE 802.11f,基站的互连性(IAPP, Inter-Access Point Protocol),2006年2月被IEEE批准撤销。

* IEEE 802.11g,2003年,物理层补充(54Mbit/s,工作在2.4GHz)。

* IEEE 802.11h,2004年,无线覆盖半径的调整,室内(indoor)和室外(outdoor)信道(5GHz频段)。

* IEEE 802.11i,2004年,无线网络的安全方面的补充。

* IEEE 802.11j,2004年,根据日本规定做的升级。

* IEEE 802.11l,预留及准备不使用。

* IEEE 802.11m,维护标准;互斥及极限。

* IEEE 802.11n,2008年上半年通过正式标准,WLAN的传输速率由目前802.11a及802.11g提供的54Mbps、108Mbps,提供到300Mbps甚至高达600Mbps。

* IEEE 802.11k,该协议规范规定了无线局域网络频谱测量规范。该规范的制订体现了无线局域网络对频谱资源智能化使用的需求。

* IEEE 802.11s, 2007年9月.拓扑发现、路径选择与转发、信道定位、安全、流量管理和网络管理。网状网络带来一些新的术语。

除了上面的IEEE标准,另外有一个被称为IEEE 802.11b+的技术,通过PBCC技术(Packet

Binary Convolutional Code)在IEEE 802.11b(2.4GHz频段) 基础上提供22Mbit/s的数据传输速率。但这事实上并不是一个IEEE的公开标准,而是一项产权私有的技术,产权属于美国德州仪器公司。

常用无线通信协议

常用无线通信协议 目前使用较广泛的近距无线通信技术有蓝牙(Bluetooth),无线局域网802.11(Wi-Fi)和红外线数据传输(IrDA).此外,还有一些具有发展潜力的近距无线技术标准,分别是ZigBee,超宽频,短距通信,WiMedia,GPS,DECT,无线1394和专用无线系统等。 蓝牙(Bluetooth)技术 蓝牙是一种支持设备短距离通信的无线电技术。它是一种无线数据与语音通信的开放性全球规范,它以低成本的短距离无线连接为基础,可为固定的或移动的终端设备提供廉价的接入服务。蓝牙技术的实质内容是为固定设备或移动设备之间的通信环境建立通用的近距无线接口,将通信技术与计算机技术进一步结合起来,使各种设备在没有电线或电缆相互连接的情况下,能在近距离范围内实现相互通信或操作。其传输频段为全球公众通用的2.4GHzISM频段,提供1Mbps的传输速率和10m 的传输距离。 优势:⑴全性高。蓝牙设备在通信时,工作的频率是不停地同步变化的,也就是跳频通信。双方的信息很难被抓获,防止被破解或恶意插入欺骗信息。⑵于使用。蓝牙技术是一项即时技术,不要求固定的基础设施,且易于安装和设置。 不足:⑴通信速度不高。蓝牙设备的通信速度较慢,有很多的应用需求不能得到满足。⑵传输距离短。蓝牙规范最初为近距离通信而设计,所以他的通信距离比较短,一般不超过10m。 Wi-Fi(无线高保真)技术 无线宽带是Wi-Fi的俗称。所谓Wi-Fi就是IEEE 802.11b的别称,它是一种短程无线传输技术,能够在数百英尺范围内支持互联网接入的无线电信号。Wi-Fi速率最高可达11Mb/s,电波的覆盖范围可达200m左右。 优势:⑴覆盖广。其无线电波的覆盖范围广,穿透力强。可以方便地为整栋大楼提供无线的宽带互联网的接入。⑵速度高。Wi-Fi技术的传输速度非常快,通信速度可达300Mb/s,能满足用户接入互联网,浏览和下载各类信息的要求。 不足:安全性不好。由于Wi-Fi设备在通信中没有使用跳频等技术,虽然使用了加密协议,但还是存在被破解的隐患。 IrDA(红外线数据协会)技术 IrDA是一种利用红外线进行点对点通信的技术,是第一个实现无线个人局域网(PAN)的技术。 IrDA 的主要优点是无需申请频率的使用权,因而红外通信成本低廉。并且还具有移动通信所需的体积小、功耗低、连接方便、简单易用的特点。此外,红外线发射角度较小,传输上安全性高。IrDA的不足在于它是一种视距传输,两个相互通信的设备之间必须对准,中间不能被其它物体阻隔,因而该技术只能用于 2 台(非多台)设备之间的连接。 优势:⑴无需申请频率的使用权,因此红外线通信成本低廉。⑵移动通信所需的体积小、功耗低、连接方便、简单易用。⑶外线发射角度较小,传输上安全性高。 不足:IrDA是一种视距传输,两个相互通信的设备之间必须对准,中间不能被其它物体阻隔,因而只用于两台设备之间连接。ZigBee(紫蜂)技术 ZigBee使用2.4 GHz 波段,采用跳频技术。它的基本速率是250kb/s,当降低到28kb/s 时,传输范围可扩大到134m,并获得更高的可靠性。另外,它可与254个节点联网。 优势:⑴功耗低。在低耗电待机模式下,两节普通5号干电池可使用6个月以上。⑵成本低。因ZigBee数据传输速率低,协议简单,所以成本很低。⑶网络容量大。每个ZigBee网络最多可支持255个设备。⑷作频段灵活。使用的频段分别为2.4GHz、868MHz(欧)及915MHz(美),均为免执照频段。 不足:⑴数据传输速率低。只有10kb/s~250kb/s,专注于低传输应用。⑵有效范围小。有效覆盖范围为10~75m之间,具体依据实际发射功率的大小和各种不同的应用模式而定,基本上能够覆盖普通的家庭或办公室环境。 UWB(超宽带)技术 UWB(Ultra Wideband)是一种无线载波通信技术,利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。UWB 有可能在10 m 范围内,支持高达110 Mb/s的数据传输率,不需要压缩数据,可以快速、简单、经济地完成视频数据处理。 特点:⑴系统复杂度低,发射信号功率谱密度低,对信道衰落不敏感,载货能力低。⑵定位精度高,相容性好,速度高。⑶成本低,功耗低,可穿透障碍物。近距离无线传输 NFC(近距离无线传输)技术 NFC采用了双向的识别和连接。在20cm 距离内工作于13.56MHz 频率范围。NFC现已发展成无线连接技术。它能快速自动地建立无线网络,为蜂窝设备、蓝牙设备、Wi-Fi 设备提供一个“虚拟连接”,使电子设备可以在短距离范围进行通讯。 特点:NFC的短距离交互大大简化了整个认证识别过程,使电子设备间互相访问更直接、更安全和更清楚,不用再听到各种电子杂音。NFC 通过在单一设备上组合所有的身份识别应用和服务,帮助解决记忆多个密码的麻烦,同时也保证了数据的安全保护。此外NFC 还可以将其它类型无线通讯(如Wi-Fi 和蓝牙)“加速”,实现更快和更远距离的数据传输。

无线通讯模块介绍

cc1100/RF1100SE、NRF905、NRF903、nRF24L01无线收发模块开发指南简介 cc1100/RF1100SE微功率无线数传模块 基本特点: (1) 工作电压:~,推荐接近,但是不超过(推荐) (2) 315、433、868、915MHz的ISM 和SRD频段 (3) 最高工作速率500Kbps,支持2-FSK、GFSK和MSK调制方式 (4) 可软件修改波特率参数,更好地满足客户在不同条件下的使用要求高波特率:更快的数据传输速率 低波特率:更强的抗干扰性和穿透能力,更远的传输距离 (5) 高灵敏度(下-110dBm,1%数据包误码率) (6) 内置硬件CRC 检错和点对多点通信地址控制 (7) 较低的电流消耗(RX中,,,433MHz) (8) 可编程控制的输出功率,对所有的支持频率可达+10dBm (9) 无线唤醒功能,支持低功率电磁波激活功能,无线唤醒低功耗睡眠状态的设备 (10) 支持传输前自动清理信道访问(CCA),即载波侦听系统 (11) 快速频率变动合成器带来的合适的频率跳跃系统 (12) 模块可软件设地址,软件编程非常方便 (13) 标准DIP间距接口,便于嵌入式应用 (14) 单独的64字节RX和TX数据FIFO (15) 传输距离:开阔地传输300~500米(视具体环境和通信波特率设定情况等而定) (16) 模块尺寸:29mm *12mm( 上述尺寸不含天线,标配4.5CM长柱状天线) cc1100/RF1100SE微功率无线数传模块应用领域:极低功率UHF无线收发器,315/433/868/915MHz的ISM/SRD波段系统, AMR-自动仪表读数,电子消费产品,远程遥控控制,低功率遥感勘测,住宅和建筑自动控制,无线警报和安全系统, 工业监测和控制,无线传感器网络,无线唤醒功能,低功耗手持终端产品等 详细的cc1100/RF1100SE模块开发文档可到下载 NRF905无线收发模块 基本特点: (1) 433Mhz 开放 ISM 频段免许可证使用 (2) 接收发送功能合一,收发完成中断标志 (3) 170个频道,可满足多点通讯和跳频通讯需求,实现组网通讯,TDMA-CDMA-FDMA (4) 内置硬件8/16位CRC校验,开发更简单,数据传输可靠稳定 (5) 工作电压,低功耗,待机模式仅 (6) 接收灵敏度达-100dBm (7) 收发模式切换时间 < 650us

无线通信协议编写

单片机无线通信模块开发与应用(五)好久没发贴了,这场病病得不轻啊,不过病早好了,这次延误是因为在北京接了个项目,而且正好是关于这套系统的应用,所以干脆就拖了一段时间. 说正题了.前面那么多贴子只是一些外围的制作和设计,但没有外围的建设怎么能做出好东西呢?呵呵,这次给大家发点正经东西,相信这就是大伙儿最关心的部分---通信协议,其实也不能称其为协议,只能叫做射频编码,为了便于理解起见才叫它通信协议的,大家心里清楚这点就行了,免得说我混淆视听.通信协议分成硬件层和软件层,硬件层,即数据的电信号表示方法,而软件层,指的是数据包的处理.由于软件层定义很广,且跟应用场合相关,不同的应用可能使用完全不同的协议,所以这里就只说说如何传输数据包吧.相信大家都有这能力进行下一步的扩展.我也会在今后的贴子里给出一些应用的实例,以供参考. 我看到论坛上有些朋友之前也做过无线模块的应用,却不成功,例如明浩提过他做的232无线模块,干扰很大,通信不能进行.为什么会这样呢?要解释这问题,先要说说无线模块的结构和特性: 发射:无线模块使用一个三级管进行射频发射,从说明书上可看到,当连续发送时间高于5毫秒时,发射效率会降低. 接收:超再生电路.超再生电路有一个特性,即在没有信号时会收到大量的白噪声,接收模块已经对该噪声进行了处理,白噪声被大幅度削

弱了,但是,这并不是说噪声就完全消除了,事实上,当信号源停止发射后几毫秒,噪声会再次出现,也就是所谓的"零电平干扰",根据说明书的提示,这段时间大约为5毫秒. 别外,说明书上也指出,信号发射的宽度不应小于0.08毫秒,占空比也不能太大,否则很容易受到干扰. 从上面的资料,我们可以很轻易地分析出干扰来源. 根据资料,我们可以得出一个大概的设计原则: 1.占空比有限制,我们人为限制到1:4之内. 2.发射时间小于3毫秒. 3.两次发射的间隔小于3毫秒. 4.正式发射信号前要使用前导信号,以消除"零电平干扰". 根据上面几点,我参考红外信号算法,写出了发送一字节的算法: 1.高低信号电平交替使用,与实际被发送数据的电平值无关,而发送宽度及两次发送的间隔宽度,与被发送数据的电平值相关,对应关系在后面作出描述. 2.以宽度为0.6毫秒的宽度表示位低电平.

常用网络通信协议简介

常用网络通信协议简介 常用网络通信协议 物理层: DTE(Data Terminal Equipment):数据终端设备 DCE(Data Communications Equipment):数据电路端接设备 #窄宽接入: PSTN ( Public Switched Telephone Network )公共交换电话网络 ISDN(Integrated Services Digital Network)ISDN综合业务数字网 ISDN有6种信道: A信道 4khz模拟信道 B信道 64kbps用于语音数据、调整数据、数字传真 C信道 8kbps/16kbps的数字信道,用于传输低速数据 D信道 16kbps数字信道,用于传输用户接入信令 E信道 64kbps数字信道,用于传输内部信令 H信道 384kbps高速数据传输数字信道,用于图像、视频会议、快速传真等. B代表承载, D代表Delta. ISDN有3种标准化接入速率: 基本速率接口(BRI)由2个B信道,每个带宽64kbps和一个带宽16kbps的D信道组成。三个信道设计成2B+D。 主速率接口(PRI) - 由很多的B信道和一个带宽64Kbps的D信道组成,B信道的数量取决于不同的国家: 北美和日本: 23B+1D, 总位速率1.544 Mbit/s (T1) 欧洲,澳大利亚:30B+2D,总位速率2.048 Mbit/s (E1) FR(Frame Relay)帧中继

X.25 X.25网络是第一个面向连接的网络,也是第一个公共数据网络. #宽带接入: ADSL:(Asymmetric Digital Subscriber Line)非对称数字用户环路 HFC(Hybrid Fiber,Coaxial)光纤和同轴电缆相结合的混合网络 PLC:电力线通信技术 #传输网: SDH:(Synchronous Digital Hierarchy)同步数字体系 DWDM:密集型光波复用(DWDM:Dense Wavelength Division Multiplexing)是能组合一组光波长用一根光纤进行传送。这是一项用来在现有的光纤骨干网上提高带宽的激光技术。更确切地说,该技术是在一根指定的光纤中,多路复用单个光纤载波的紧密光谱间距,以便利用可以达到的传输性能(例如,达到最小程度的色散或者衰减)。 #无线/卫星: LMDS:(Local Multipoint Distribution Services)作区域多点传输服务。这是一种微波的宽带业务,工作在28GHz附近频段,在较近的距离双向传输话音、数据和图像等信息。 GPRS:(General Packet Radio Service)通用分组无线服务技术。 3G:(3rd-generation,3G)第三代移动通信技术 DBS:(Direct Broadcasting Satellite Service)直播卫星业务 VAST: 协议:RS-232、RS-449、X.21、V.35、ISDN、FDDI、IEEE802.3、IEEE802.4、IEEE802.5等。 RS-232:是个人计算机上的通讯接口之一,由电子工业协会(Electronic Industries

无线、射频收发模块大全

无线收发模块大全 本文中着重通过几种实用的无线收发模块的剖析为你逐步揭开无线收发的原理,应用和结构,希望对你有所裨益! 无线数据传输广泛地运用在车辆监控、遥控、遥测、小型无线网络、无线抄表、门禁系统、小区传呼、工业数据采集系统、无线标签、身份识别、非接触RF智能卡、小型无线数据终端、安全防火系统、无线遥控系统、生物信号采集、水文气象监控、机器人控制、无线232 数据通信、无线485/422数据通信、数字音频、数字图像传输等领域中。

这是DF发射模块,体积:19x19x8毫米,右边是等效的电路原理图 主要技术指标: 1。通讯方式:调幅AM 2。工作频率:315MHZ (可以提供433MHZ,购货时请特别注明) 3。频率稳定度:±75KHZ 4。发射功率:≤500MW 5。静态电流:≤0.1UA 6。发射电流:3~50MA 7。工作电压:DC 3~12V DF数据发射模块的工作频率为315M,采用声表谐振器SAW稳频,频率稳定度极高,当环境温度在-25~+85度之间变化时,频飘仅为3ppm/度。特别适合多发一收无线遥控及数据传输系统。声表谐振器的频率稳定度仅次于晶体,而一般的LC振荡器频率稳定度及一致性较差,即使采用高品质微调电容,温差变化及振动也很难保证已调好的频

点不会发生偏移。 DF发射模块未设编码集成电路,而增加了一只数据调制三极管Q1,这种结构使得它可以方便地和其它固定编码电路、滚动码电路及单片机接口,而不必考虑编码电路的工作电压和输出幅度信号值的大小。比如用PT2262等编码集成电路配接时,直接将它们的数据输出端第17脚接至DF数据模块的输入端即可。 DF数据模块具有较宽的工作电压范围3~12V,当电压变化时发射频率基本不变,和发射模块配套的接收模块无需任何调整就能稳定地接收。当发射电压为3V时,空旷地传输距离约20~50米,发射功率较小,当电压5V时约100~200米,当电压9V时约300~500米,当发射电压为12V时,为最佳工作电压,具有较好的发射效果,发射电流约60毫安,空旷地传输距离700~800米,发射功率约500毫瓦。当电压大于l2V时功耗增大,有效发射功率不再明显提高。这套模块的特点是发射功率比较大,传输距离比较远,比较适合恶劣条件下进行通讯。天线最好选用25厘米长的导线,远距离传输时最好能够竖立起来,因为无线电信号传输时收很多因素的影响,所以一般实用距离只有标称距离的20%甚至更少,这点需要在开发时注意考虑。 DF数据模块采用ASK方式调制,以降低功耗,当数据信号停止时发射电流降为零,数据信号与DF发射模块输入端可以用电阻或者直接连接而不能用电容耦合,否则DF发射模块将不能正常工作。数据电平

无线通信电台的通信协议研究

无线通信电台的通信协议研究 摘要:通信协议是通信系统在通信链路上实现复杂任务的软件构架及程序编写规则,任何通信系统之所以能正常工作离不开通信协议的支持。本文以研制一种通信电台为例,提出了一种适合无线通信电台的通信协议,实验结果证明此协议具有很好的性能。 关键词:通信电台;通信协议;DSP;FPGA 一、引言 任何通信系统均有一定的通信协议支持来完成通信的任务,一般通信系统至少包括物理层通信协议和链路层通信协议。物理层通信协议用于在数据链路的实体之间为位传输所需要的物理连接的建立、保持和拆断提供电气的、机械的、功能性的特性。链路层协议是在通信系统的物理层正常工作的基础上进一步管理和控制,主要完成建立链路、拆除链路、流量控制、同步控制和差错控制的功能。本文提出的通信协议主要包括物理层协议和链路层协议,经过通信电台的试验证明它是一种可靠的高效的通信协议,具有较高的理论意义和工程应用价值。 二、通信协议的原理 本文提出的一种通信协议用在一种无线通信电台上,此协议能很好地满足此通信电台间歇式工作的要求,其原理如图1所示。 当无线通信电台的天线接收到信息时,上变频模块把射频端的数据送给现场可编程门阵列器件(FPGA)进行解码,FPGA解码后的数据放在FPGA的发送数据缓冲区,此缓冲区大小设置为1024 byte大小,当此缓冲区满时产生一中断信号触发数字信号处理器(DSP),DSP内开辟一个大小为1 024 byte的缓冲区txqueue,txqueue通过数据总线方式接收FPGA发来的数据,当txqueue满时,再通过DSP的定时器中断方式把txqueue内的1 024 byte的数据发往接口器件(MAX3111E)内的发送数据Buffer,此Buffer内的数据最终发往个人计算机(PC),PC机对这些数据进行分析和处理。 当PC机有数据和命令要发送时,首先把PC内的数据或命令以9 600 bps的速度通过MAX3111E的接收数据FIFO发送到DSP中1 024 byte大小的数据缓冲区rxqueue,当rxqueue的数据满时,查询FPGA的接收数据缓冲有没有空,如果FPGA的接收缓冲区空时,则把rxqueue的数据发往FPGA的接收数据缓冲区,FPGA对接收缓冲区的数据进行编码处理后送上变频模块。PC机发送的帧包括命令帧和数据帧,帧结构如表1和表2所示。 命令帧用于向DSP发送开机、关机、复位等命令用来监控电台的工作,数据帧用于定义PC和DSP进行数据交换的格式。命令帧共5 byte,即5×8 bit,其中帧头为70 H、70 H表示一帧开始传输,data1表示所要发送的命令(包括开机、关机、复位等),校验字用于检验所发命令是否正确,帧尾7EH表示帧传输结束。数据帧共128 byte,即128×8 bit,其中帧头为7EH、7EH表示一帧开始传输,Point1、Point0用于计算已传输出帧的个数,Point1表示计数器的高位数值,Point0表示计数器的低位数值,data0~data121表示所要发送的数据,校验字CRC1、CRC0用于检验所发命令是否正确,此类帧采用循环校验码CRC的16位校验方式,此帧不设结束标志,校验结束即表示数据帧传输结束。 三、通信协议的实现 1.通信协议的硬件实现 通信协议的硬件实现是在通信电台基带信号处理的硬件平台上实现的,通信

各种无线传输方式以及通信协议

目前随着通信技术的发展,无线通信技术的使用已经渗透到社会的各个角落。要实现全球对无人驾驶智能车的监控,无线通信自然不能少。在我们实际生活中,可以接触到的无线通信技术有:红外线、蓝牙、UWB、以及我们早期使用的Zigbee、无线数传电台、WIFI、GPRS、3G等等。下面针对这些技术做一些简单的介绍。 1. 常见的短距离无线通信技术 红外数据传输(IrDA):IrDA是一种利用红外线进行点对点通信的技术,是由红外线数据标准协会(InfraredDataAssociation)制定的一种无线协议,其硬件及相应软件技术都已比较成熟。IrDA是第一个实现无线个人局域网(PAN)的技术。起初,采用IrDA标准的无线设备仅能在1m范围内以115.2kb/s速率传输数据,很快发展到4Mb/s(FIR技术)以及16 Mb/s(VFIR技术)的速率。在小型移动设备,如PDA、手机上广泛使用。事实上当今出厂的PDA以及许多手机、笔记本电脑、打印机等产品都支持IrDA,多用于室内短距离传输,目前很多应用场合逐渐被蓝牙所取代。 其优点:IrDA无需申请频率使用权,因而红外线通信成本低。并且具有移动通信所需要的体积小,功耗低,连接方便,简单易用的特点。此外,红外线发射角娇小传输上安全性高。 其缺点:IrDA是一种视距传输,两个相互通信的设备之间必须对准,中间不能有其他的物体阻隔,也就是穿透能力差。其点对点的传输连接,也导致无法灵活地组成网络。 蓝牙(Bluetooth):蓝牙是我们生活随处可见的传输技术,蓝牙的数据速率为1Mbps,传输距离约10米左右。支持点对点及点对多点通信,工作在全球通用的2.4GHz ISM(即工业、科学、医学)频段。蓝牙较多用于手机,游戏机,PC外设,表,体育健身,医疗保健,汽车,家用电子等。 其优点:使得各种设备在没有电线或电缆相互连接的情况下,能在近距离范围内实现相互通信,也就是一点可以对多点,在10m范围内可以实现1Mb/s的高传输速率。 其缺点:芯片大小和价格难以下调、抗干扰能力不强、传输距离太短、信息安全问题等等。 WIFI(WirelessFidelity,无线高保真技术):Wi-Fi与蓝牙一样,同属于短距离无线技术。wifi的频段很多,2.4G,也有用5G的,一般的传输功率要在1毫瓦到100毫瓦之间。根据使用的标准不同,WIFI的速度也有所不同。最高传输速率为54Mbps(Netgear SUPER g技术可以将速度提升到108Mbps)。虽然在数据安全性方面,该技术比蓝牙技术要差一些,但是在电波的覆盖范围方面则要略胜一筹,WiFi的覆盖范围则可达300英尺左右(约合90米),广泛的应用于机场、酒店、以及办公室等公共场合。 其优点:可以大大减少企业成本,提供WLAN接入,是目前WLAN的主要技术标准,不受墙壁等干扰物的阻隔。

通信协议

常用通信协议汇总 一、有线连接 1.1RS-232 优点:RS-232是为点对点(即只用一对收、发设备)通讯而设计的,其驱动器负载为3kΩ~7kΩ。所以RS-232适合本地设备之间的通信。 缺点:(1)接口的信号电平值较高,易损坏接口电路的芯片,又因为与TTL 电平不兼容故需使用电平转换电路方能与TTL电路连接。 (2)传输速率较低,在异步传输时,最高速率为20Kbps。 (3)接口使用一根信号线和一根信号返回线而构成共地的传输形式,而发送电平与接收 电平的差仅为2V至3V左右,所以其共模抑制能力差,再加上双绞线上的分布电容,其传送距离最大为约15米。 1.2RS-485 RS485有两线制和四线制两种接线,四线制只能实现点对点的通信方式,现很少采用,现在多采用的是两线制接线方式,这种接线方式为总线式拓朴结构,传输距离一般在1~2km以下为最佳,如果超过距离加"中继"可以保证信号不丢失,而且结点数有限制,结点越多调试起来稍复杂,是目前使用最多的一种抄表方式,后期维护比较简单。常见用于串行方式,经济实用。 1.3CAN 最高速度可达1Mbps,在传输速率50Kbps时,传输距离可以达到1公里。在10Kbps速率时,传输距离可以达到5公里。一般常用在汽车总线上,可靠性高。 1.4TCP/IP 它可以用在各种各样的信道和底层协议(例如T1和X.25、以太网以及RS-232串行接口)之上。IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是按顺序发送的或者没有被破坏。IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)。 1.5ADSL 基于TCP/IP 或UDP协议,将抄表数据发送到固定ip,利用电信/网通现有的布线方式,速度快,性能比较可以,缺点是不适合在野外,设备费用投入较大,对仪表通讯要求高。 1.6FSK 可靠通信速率为1200波特,可以连接树状总线;对线路性能要求低,通信距离远,一般可达30公里,线路绝缘电阻大于30欧姆,串联电阻高达数百欧姆都可以工作,适合用于大型矿井监控系统。主要缺点是:系统造价略高,通信线路要求使用屏蔽电缆;抗干扰性能一般,误码率略高于基带。 1.7光纤方式 传输速率高,可达百兆以上;通信可靠无干扰;抗雷击性能好,缺点:系统造价高;光纤断线后熔接受井下防爆环境制约,不宜直达分站,一般只用于通信干线。 1.8电力载波 1.9利用现有电力线,通过载波方式将模拟或数字信号进行高速传输的技术。由于使用坚固可靠的电力线作 为载波信号的传输媒介,因此具有信息传输稳定可靠,路由合理、可同时复用远动信号等特点,不需要线路投资的有线通信方式,但是开发费用高,调试难度大,易受用电环境影响,通讯状况用户的用电质量关系紧密。 二、无线连接 2.1Bluetooth 蓝牙是一种支持设备短距离通信的无线电技术。它是一种无线数据与语音通信的开放性全球规范,它以低

基于WIFI 模块的无线数据传输报告

计算机科学与技术学院 课程设计报告(2014—2015学年第2 学期) 课程名称:基于WIFI 模块的无线测温传输系统 班级:电子1204班 学号: P1402120404,P1402120430 姓名:陈磊周艳奎 指导教师: 武晓光胡方强包亚萍袁建华毛钱萍 2015年07月

1.系统总体设计 本章主要内容是论述基于51单片机的温度采集系统的总体设计以及方案论证。本系统由单片机、温度信号采集与A/D转换、人机交互、电源系统单元、通信单元五部分组成,功能模块具体实现的器件的不同,将直接影响整个系统的性能及成本,为了达到高效、实用的目的,在系统设计之前的方案论证是十分重要的。 2.本系统工作流程 单片机:该部分的功能不仅包括向温度传感器写入各种控制命令、读取温度数据、数据处理。单片机是整个系统的控制核心及数据处理核心。

数字温度传感器DS18B20:本部分的主要作用是用传感器检测模拟环境中的温度信号, 温度传感器上电流将随环境温度值线性变化。再把电流信号转换成电压信号,使用A/D转换器将模拟电压信号转换成单片机能够进行数据处理的数字电压信号,本设计采用的是数字温度传感器,以上过程都在温度传感器内部完成。 电源系统单元:本单元的主要功能是为单片机提供适当的工作电源,同时也为其他模块提供电源。在本设计当中,电源系统输出+5 V 的电源。 3.单片机主控单元 本部分主要介绍单片机最小系统的设计。单片机系统的扩展,一般是以基本最小系统为基础的。所谓最小系统,是指一个真正可用的单片机最小配置系统,对于片内带有程序存储器的单片机,只要在芯片外接时钟电路和复位电路就是一个小系统了。小系统是嵌入式系统开发的基石。本电路的小系统主要由三部分组成,一块AT89S51芯片、复位电路及时钟电路。 AT89S51单片机:AT89S51是美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,器件采用ATMEL公司的高密度,非易失性存储技术生产,兼容标准8051指令系统及引脚。4K字节可系统编程的Flash程序存储器,128字节内部RAM,32个I/O口线,看门狗(WDT),两个数据指针,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89S51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式,空闲方式停止CPU的工作,但允许RAM、定时/计数器、串行通信口及中断系统继续工作。掉电方式保存RAM中的内容,但振荡器停止工作,并禁止其它所有部件工作,直到下一个硬件复位。 P0是一个8 位双向I/O 端口,端口置1时作高阻抗输入端,作为输出口时能驱动8 个TTL电平。对内部Flash 程序存储器编程时,接收指令字节;校验程序时输出指令字节,需要接上拉电阻。在访问外部程序和外部数据存储器时,P0口是分时转换的地址(低8 位)/数据总线,访问期间内部的上拉电阻起作用。 P1是一个带有内部上拉电阻的8 位准双向I/0 端口。输出时可驱动4 个TTL电平。端口置1 时,内部上拉电阻将端口拉到高电平作输入用。对内部Flash 程序存储器编程时,接收低8 位地址信息。 P2是一个带有内部上拉电阻的8 位准双向I/0 端口。输出时可驱动4 个TTL电平。端口置1 时,内部上拉电阻将端口拉到高电平作输入用。对内部Flash 程序存储器编程时,接收高8 位地址和控制信息。在访问外部程序和16 位外部数据存储器时,P2口送出高8 位地址。而在访问8位地址的外部数据存储器时其引脚上的内容在此期间不会改变。 P3是一个带有内部上拉电阻的8 位准双向I/0 端口。输出时可驱动4 个TTL电平。端口置1 时,内部上拉电阻将端口拉到高电平作输入用。对内部Flash 程序存储器编程时,

QGDW主站与采集终端通信协议无线扩展

Q/GDW 376.1《主站与采集终端通信协议》 _20100830无线扩展 本协议是针对微功率无线通信的特殊要求,对《Q/GDW 376.1-2009电力用户用电信息采集系统通信协议:主站与采集终端通信协议》的补充说明,该协议中对微功率无线通信的要求同样适用于载波通信通信,未述及部分参照该Q/GDW 376.1执行。 1 参数设置和查询(AFN=04H、AFN=0AH) 设置参数Fn定义 1.1 F33 终端抄表运行参数设置 终端抄表运行参数设置数据单元格式

——台区集中抄表运行控制字: ● D15~D13:抄表间隔,0~5分别表示1、2、4 、8、12、24小时; ● D12~D11:自动启动一次抄所有表,最长持续时间。0~2分别表示1、2、3、4 小时; ● D10~D8:重抄轮次,0表示不重抄,1~7分别表示重抄1~7轮; ● D7: 是否抄购电信息标志,“1”表示抄购电信息,“0”表示不抄购电信息; ● D6: “1”表示集中器每次启动抄表前发送“数据区初始化(节点侦听信息)”命令,master收到后将路由清除。“0”表示正常抄表; ● D5置“1”要求终端抄读“电表状态字”,置“0”不要求; ● D4置“1”要求终端搜寻新增或更换的电表,置“0”不要求; ● D3置“1”要求终端定时对电表广播校时,置“0”不要求; ● D2置“1”要求终端采用广播冻结抄表,置“0”不要求; ● D1置“1”要求终端只抄重点表,置“0”要求终端抄所有表; ● D0置“1”不允许自动抄表,置“0” 要求终端根据抄表时段自动抄表。 ——抄表日包括日期和时间,其中“日期”由4字节的D0~D30按顺序对位表示每月1日~31日,置“1”为有效,置“0”为无效;“时间”不能与“允许抄表时段”冲突,即应落在允许抄表时段内。

常见的无线传输协议有哪些

常见的无线传感器传输协议有哪些? 无线传感器,是一种集数据采集、数据管理、数据通讯等功能的无线数据通讯采集器。是一种无线数据采集传输通讯终端,具有低功耗运行,无线数据传输,无需布线,即插即用,安装调试灵活、智能手机现场调试配置等特点。 下面就来看看物联网中常见的无线传输协议类型: RFID RFID(Radio Frequency Identification),即射频识别,俗称电子标签。它是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关数据。 RFID由标签(Tag)、解读器(Reader)和天线(Antenna)三个基本要素组成。RFID技术的基本工作原理并不复杂,标签进入磁场后,接收解读器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息(Passive Tag ,无源标签

或被动标签),或者主动发送某一频率的信号(Active Tag,有源标签或主动标签),解读器读取信息并解码后,送至中央信息系统进行有关数据处理。 RFID可被广泛应用于安全防伪、工商业自动化、财产保护、物流业、车辆跟踪、停车场和高速公路的不停车收费系统等。从行业上讲,RFID将渗透到包括汽车、医药、食品、交通运输、能源、军工、动物管理以及人事管理等各个领域。 红外 红外技术也是无线通信技术的一种,可以进行无线数据的传输。红外有明显的特点:点对点的传输方式,无线,不能离得太远,要对准方向,不能穿墙与障碍物,几乎无法控制信息传输的进度。802.11物理层标准中,除了使用2.4GHz频率的射频外,还包括了红外的有关标准。IrDA1.0支持最高115.2kbps的通信速率,IrDA1.1支持到4Mbps。该技术基本上已被淘汰,被蓝牙和更新的技术代替。 ZigBee ZigBee,也称紫峰,是一项新型的无线通信技术,一种低速短距离传输的无线网络协议,底层是采用IEEE 802.15.4标准规范的媒体访问层与物理层。主要特色有低速、

无线通信设备安装合同协议书范本

甲方: 乙方: 鉴于 1、乙方为改善移动通信网络服务需要,使甲方所在地区域的无线通信得到最大的满足,需要在甲方的配合下安装无线无线通信设备。 2、甲方同意按照本协议的条款和条件向乙方提供有关的配合和帮助。 双方经友好协商,达成协议如下: 第一条使用范围和用途 1.1 甲方同意在其所有或合法占有的位于的物业范围内向乙方提供场地和安装配件及帮助,乙方同意依照本协议的条款和条件提供无线通信所需的主要设备。 1.2 甲方同意长期无偿提供场所供乙方在其场所内设置无线通信设备。 1.3甲方同意乙方在其场所内(例如电梯等)张贴简单的提示标志。 第二条双方的承诺和保证 2.1甲方在此向乙方承诺和保证如下: 2.11甲方保证本协议的无线通信设备为乙方合法拥有,未经乙方同意,甲方不得随意拆除、挪用、毁坏或为第三方所干扰。 2.12乙方无线通信设备的安装位置必须经甲方同意,施工时不能损坏甲方建筑主体结构和装修。乙方在安装设备过程中对甲方设备及线路造成损害的,乙方应予以修复。 2.13在协议规定期内,如甲方场地所有权转给第三方,应提前一个月告知乙方,该第三方自然成为本协议的甲方,享用原甲方一切权利和义务。如由于权属的转让导致乙方不能继续使用该场地,甲方应该协助解决。 2.2乙方在此向甲方承诺和保证如下:

2.21乙方保证本协议的无线通信设备工作正常,以有效地改善甲方物业特定范围内数据通信信号覆盖效果。 2.22乙方为甲方提供的产品、服务及在甲方范围内进行的生产、服务活动须符合甲方在环保及职业健康安全的管理规定,避免对环境及职业健康安全造成影响。 第三条通信设备的装修改造、维修、保养责任 3.1 甲方同意乙方在其物业范围内安装无线通信设备。乙方承诺,不改变房屋的结构,不得危害楼宇的安全。否则,乙方有义务承担由此产生的法律责任。 3.2 本无线通信设备的改造、维修、保管、保养责任由乙方负责。 第四条违约责任 4.1 任何一方不履行或不完全履行本协议下的任一条款应视为违约,违约方应在收到守约方发出的具体说明违约情况的通知后二十日内纠正该违约行为。如二十日内违约方没有纠正,则守约方有权选择终止本协议,并且追究违约方的违约责任,赔损任何限于守约方因此而造成的直接损失。 第五条赔偿保障 5.1与意外损害有关的赔偿保障: (1)对于本无线通信设备的相关财产,受到人为损坏或灭失,甲方应积极协助乙方进行调查。(2)对于本无线通信设备的相关财产,因受到自然灾害而造成的损坏或灭失,甲、乙双方都不用负责任。 第六条争议解决办法 6.1凡因执行本协议所发生的一切争议,双方应通过友好协商的办法协商解决,协商不能解决的,任何一方有权向乙方住所地有管辖权的人民法院提起诉讼。 第七条协议的生效及其它 7.1协议生效:本协议由签订之日起生效。

常用几种通讯协议

常用几种通讯协议 Modbus Modbus技术已成为一种工业标准。它是由Modicon公司制定并开发的。其通讯主要采用RS232,RS485等其他通讯媒介。它为用户提供了一种开放、灵活和标准的通讯技术,降低了开发和维护成本。 Modbus通讯协议由主设备先建立消息格式,格式包括设备地址、功能代码、数据地址和出错校验。从设备必需用Modbus协议建立答复消息,其格式包含确认的功能代码,返回数据和出错校验。如果接收到的数据出错,或者从设备不能执行所要求的命令,从设备将返回出错信息。 Modbus通讯协议拥有自己的消息结构。不管采用何种网络进行通讯,该消息结构均可以被系统采用和识别。利用此通信协议,既可以询问网络上的其他设备,也能答复其他设备的询问,又可以检测并报告出错信息。 在Modbus网络上通讯期间,通讯协议能识别出设备地址,消息,命令,以及包含在消息中的数据和其他信息,如果协议要求从设备予以答复,那么从设备将组建一个消息,并利用Modbus发送出去。 BACnet BACnet是楼宇自动控制系统的数据通讯协议,它由一系列与软件及硬件相关的通讯协议组成,规定了计算机控制器之间所有对话方式。协议包括:(1)所选通讯介质使用的电子信号特性,如何识别计算机网址,判断计算机何时使用网络及如何使用。(2)误码检验,数据压缩和编码以及各计算机专门的信息格式。显然,由于有多种方法可以解决上述问题,但两种不同的通讯模式选择同一种协议的可能性极少,因此,就需要一种标准。即由ISO(国际标准化协会〉于80年代着手解决,制定了《开放式系统互联(OSI〉基本参考模式(Open System Interconnection/Basic Reference Model简称OSI/RM)IS0- 7498》。 OSI/RM是ISO/OSI标准中最重要的一个,它为其它0SI标准的相容性提供了共同的参考,为研究、设计、实现和改造信息处理系统提供了功能上和概念上的框架。它是一个具有总体性的指导性标准,也是理解其它0SI标准的基础和前提。 0SI/RM按分层原则分为七层,即物理层、数据链路层、网络层、运输层、会话层、表示层、应用层。 BACnet既然是一种开放性的计算机网络,就必须参考OSIAM。但BACnet没有从网络的最低层重新定义自己的层次,而是选用已成熟的局域网技术,简化0SI/RM,形成包容许多局 域网的简单而实用的四级体系结构。 四级结构包括物理层、数据链路层、网络层和应用层。

各种近距离无线传输对比

蓝牙(Bluetooth)、ZigBee、Wi—Fi、WiMAX、无线USB、UWB 性能对比 蓝牙: 蓝牙是一种支持设备短距离通信(一般是10m之内)的无线电技术。能在包括移动电话、PDA、无线耳机、笔记本电脑、相关外设等众多设备之间进行无线信息交换。蓝牙的标准是IEEE802.15,工作在2.4GHz 频带,带宽为1Mb/s。 “蓝牙”(Bluetooth)原是一位在10世纪统一丹麦的国王,他将当时的瑞典、芬兰与丹麦统一起来。用他的名字来命名这种新的技术标准,含有将四分五裂的局面统一起来的意思。蓝牙技术使用高速跳频(FH,Frequency Hopping)和时分多址(TDMA,Time DivesionMuli—access)等先进技术,在近距离内最廉价地将几台数字化设备(各种移动设备、固定通信设备、计算机及其终端设备、各种数字数据系统,如数字照相机、数字摄像机等,甚至各种家用电器、自动化设备)呈网状链接起来。蓝牙技术将是网络中各种外围设备接口的统一桥梁,它消除了设备之间的连线,取而代之以无线连接。 蓝牙是一种短距的无线通讯技术,电子装置彼此可以透过蓝牙而连接起来,省去了传统的电线。透过芯片上的无线接收器,配有蓝牙技术的电子产品能够在十公尺的距离内彼此相通,传输速度可以达到每秒钟1兆字节。以往红外线接口的传输技术需要电子装置在视线之内的距离,而现在有了蓝牙技术,这样的麻烦也可以免除了 蓝牙技术的系统结构分为三大部分:底层硬件模块、中间协议层和高层应用。底层硬件部分包括无线跳频(RF)、基带(BB)和链路管理(LM)。无线跳频层通过2.4GHz无需授权的ISM频段的微波,实现数据位流的过滤和传输,本层协议主要定义了蓝牙收发器在此频带正常工作所需要满足的条件。基带负责跳频以及蓝牙数据和信息帧的传输。链路管理负责连接、建立和拆除链路并进行安全控制。 蓝牙技术结合了电路交换与分组交换的特点,可以进行异步数据通信,可以支持多达3个同时进行的同步话音信道,还可以使用一个信道同时传送异步数据和同步话音。每个话音信道支持64kb/秒的同步话音链路。异步信道可以支持一端最大速率为721kb/秒、另一端速率为57.6kb/秒的不对称连接,也可以支持43.2kb/秒的对称连接。 中间协议层包括逻辑链路控制和适应协议、服务发现协议、串口仿真协议和电话通信协议。逻辑链路控制和适应协议具有完成数据拆装、控制服务质量和复用协议的功能,该层协议是其它各层协议实现的基础。服务发现协议层为上层应用程序提供一种机制来发现网络中可用的服务及其特性。串口仿真协议层具有仿真9针RS232串口的功能。电话通信协议层则提供蓝牙设备间话音和数据的呼叫控制指令。 主机控制接口层(HCI)是蓝牙协议中软硬件之间的接口,它提供了一个调用基带、链路管理、状态和控制寄存器等硬件的统一命令接口。蓝牙设备之间进行通信时,HCI以上的协议软件实体在主机上运行,而HCI以下的功能由蓝牙设备来完成,二者之间通过一个对两端透明的传输层进行交互。

无线收发模块大全

无线数据传输广泛地运用在车辆监控、遥控、遥测、小型无线网络、无线抄表、门禁系统、小区传呼、工业数据采集系统、无线标签、身份识别、非接触RF智能卡、小型无线数据终端、安全防火系统、无线遥控系统、生物信号采集、水文气象监控、机器人控制、无线232数据通信、无线485/422数据通信、数字音频、数字图像传输等领域中。

这是DF发射模块,体积:25x32x8毫米,发射距离500M,9元/只(左图);50-100米发射头,上图5元/只;中间是等效电路图;下图为小型 发射头30-100米5元/块 尺寸:10*18*6MM。该发射模块体积小,工作电压范围极宽(3V-12V),发射功率大,功耗低,广泛应用在简易数据无线传输,无线遥控,防盗报警等场合。 主要技术指标: 1。通讯方式:调幅AM 2。工作频率:315MHZ/433MHZ (433需定制) 3。频率稳定度:±75KHZ 4。发射功率:≤500MW 5。静态电流:≤0.1UA

6。发射电流:3~50MA 7。工作电压:DC 3~12V ** LC-FS04 /20-100米带编码的4路发射板,3-12V;10元/块 使用时只需将发射的电源经一个开关或单片机的控制的三极管,送到D0/D1/D2/D3的接口即可,GND端和单片机共地,如电源大于5V请在去D0/D1/D2/D3数据端上串接一个30-100欧的电阻去耦。发射距离视电压高低和使用的环境。。。。。 ** LC-FS08 /20-100米带编码的8路发射板,可以直接交流6-9V供电方便工业使用15元/块

本板提供电源,使用时只需在VCC脚接一个51欧的电阻引出到开关的一端,开关的另一端接板上的1---8路的输入控制端即可,按下相应的开关就可以发射相应的路数的控制信号。。。。。

zigbee协议无线通信的实现

Zigbee无线网络通信的软件实现 ZigBee是一种新兴的短距离、低功耗、低数据速率、低成本无线网络技术。ZigBee 采取了IEEE 802.15.4强有力的无线物理层所规定的全部优点:省电、简单、成本又低的规格;在此基础上,ZigBee增加了网络层和应用层。它的主要应用领域包括工业控制、消费性电子设备、精准农业,汽车自动化、家庭和楼宇自动化、医用设备控制等。 ZIGBEE的组网方式有三种:星型网,树状网,网状网。星型网络的各节点只能通过协调器相互通信。树状网把各个通信节点串成了一条线路,各节点只能延着这条线路,以传递的方式进行通信。前两种通信方式只能进行一些简单的应用,这里不加讨论。网状网具有强大的功能,网络各节点之间可灵活的进行相互通信,网络可以通过“多级跳”的方式来通信;该拓扑结构还可以组成极为复杂的网络;网络还具备自组织、自愈功能。充分发挥了无线网络通信的优势。下面以ZIGBEE协议建立网状网络的工作流程来说明其通信的具体实现。 ZIGBEE协议栈较复杂,但ZIBEE联盟为我们的具体应用封装了一些编程接口。如APS层,ZDO层,AF层,OSAL操作系统层。我们的具体应用大部分功能都可以通过这些高层接口来实现,它们封装了网络层及物理层的实现细节。这些复杂的工作对程序开发变得透明和方便。 ZIGBEE2006协议栈为应用开发提供了程序框架,就象使用VC++一样,我们只须关心应用的建立。先让我们认识一下ZIGBEE2006协议栈,打开协议栈,在工程文件的左边Workspace 中可以看到整个协议栈的构架,如图所示: APP:应用层目录,这是用户创建各种不同工程的区域,在这个目录中包含了应用层的内容和这个项目的主要内容,在协议栈里面一般是以操作系统的任务实现的。

相关主题
文本预览
相关文档 最新文档