AT24C16){IIC_Send_Byte(0XA0);写地址IIC_Wait_Ack();IIC_Send_Byte(" />
当前位置:文档之家› I2C主要程序

I2C主要程序

I2C主要程序
I2C主要程序

#include "24cxx.h"

#include "SysTick.h"

void AT24CXX_Init(void)

{

IIC_Init1();//IIc初始化

}

u8 AT24CXX_ReadOneByte(u16 ReadAddr)

{

u8 temp=0;

IIC_Start(); 开始信号

if(EE_TYPE>AT24C16)

{

IIC_Send_Byte(0XA0); 写地址

IIC_Wait_Ack();

IIC_Send_Byte(ReadAddr>>8); 发送高地址

}

else

{

IIC_Send_Byte(0XA0+((ReadAddr/256)<<1)); 发送地市}

IIC_Wait_Ack();

IIC_Send_Byte(ReadAddr%256); 发送低地址

IIC_Wait_Ack();

IIC_Start();

IIC_Send_Byte(0XA1); 发送读命令

IIC_Wait_Ack();

temp=IIC_Read_Byte(0);

IIC_Stop();

return temp;

}

void AT24CXX_WriteOneByte(u16 WriteAddr,u8 DataToWrite)

{

IIC_Start();

if(EE_TYPE>AT24C16)

{

IIC_Send_Byte(0XA0); 发送地址

IIC_Wait_Ack();

IIC_Send_Byte(WriteAddr>>8);

}

else

{

IIC_Send_Byte(0XB0+((WriteAddr/256)<<1));

}

IIC_Wait_Ack();

IIC_Send_Byte(WriteAddr%256);

IIC_Wait_Ack();

IIC_Send_Byte(DataToWrite);

IIC_Wait_Ack();

IIC_Stop();

delay_ms(10);

}

void AT24CXX_WriteLenByte(u16 WriteAddr,u32 DataToWrite,u8 Len)

{

u8 t;

for(t=0;t

{

AT24CXX_WriteOneByte(WriteAddr+t,(DataToWrite>>(8*t))&0xff);

}

}

u32 AT24CXX_ReadLenByte(u16 ReadAddr,u8 Len)

{

u8 t;

u32 temp=0;

for(t=0;t

{

temp<<=8;

temp+=AT24CXX_ReadOneByte(ReadAddr+Len-t-1);

}

return temp;

}

u8 AT24CXX_Check(void)

{

u8 temp;

temp=AT24CXX_ReadOneByte(255);

if(temp==0x36)return 0;

else

{

AT24CXX_WriteOneByte(255,0X36);

temp=AT24CXX_ReadOneByte(255);

if(temp==0X36)return 0;

}

return 1;

}

void AT24CXX_Read(u16 ReadAddr,u8 *pBuffer,u16 NumToRead) {

while(NumToRead)

{

*pBuffer++=AT24CXX_ReadOneByte(ReadAddr++);

NumToRead--;

}

}

void AT24CXX_Write(u16 WriteAddr,u8 *pBuffer,u16 NumToWrite) {

while(NumToWrite--)

{

AT24CXX_WriteOneByte(WriteAddr,*pBuffer);

WriteAddr++;

pBuffer++;

}

}

实验八 IIC通信协议

实验八I2C通信协议 一、实验目的: 1、培养学生阅读资料的能力; 2、加深学生对I2C总线通信协议的理解; 3、加强学生对模块化编程的理解; 二、实验环境: 1、硬件环境:PC机一台、单片机实验板一块、母头串口交叉线、USB电源线; 2、软件环境:keil uVision2集成开发环境; STC-ISP下载上位机软件; 三、实验原理: 要学会I2C通信协议的编程,关键是要看懂并掌握其时序图,理解对I2C通信协议相关子程序的实验编写。I2C通信协议的总线时序图如下所示: I2C总线时序图 I2C相关子程序的详细介绍 1、起始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。 2、结束信号:SCL为高电平时,SDA由低电平向高电平跳变,结束传送数据。 起始信号和结束信号的时序图如下所示: 起始信号和结束信号的时序图 起始信号的流程如下:

1、SCL和SDA拉高,保持时间约为0.6us-4us; 2、拉低SDA,保持时间为约为0.6us-4us; 3、拉低时钟线 结束信号的流程如下: 1、SCL置高电平,SDA置低电平,保持时间约为0.6us-4us 2、SDA拉高,保持时间约为1.2-4us; 应答信号:接收数据的IC在接收到8bit数据后,向发送数据的IC发出特定的低电平脉冲,表示已收到数据。CPU向受控单元发出一个信号后,等待受控单元发出一个应答信号,CPU接收到应答信号后,根据实际情况作出是否继续传递信号的判断。 若未收到应答信号,由判断为受控单元出现故障。应答信号的时序图如下所示: 应答时序图 发送时的应答信号 ;**********应答信号********** ACK: SETB SDA ;数据线置高 SETB SCL ;时钟线置高 ACALL DELAY JB SDA,$ ;等待数据线变低 ACALL DELAY CLR SCL ;时钟线置低 RET 注意:这里如果数据线一直为高将进入死循环,所以一般我们都会在这做一个容错的处理。具体的程序如下: ACK: MOV R4,#00H SETB SDA SETB SCL LOP0: JNB SDA,LOP DJNZ R4,LOP0 ;循环255次 LOP: ACALL DEL CLR SCL RET 接收时的应答信号

基于MSP430的I2C模拟总线程序讲解

程序和流程图: IIC.h void Init_IIC(void); void EEPROM_ByteWrite(unsigned char nAddr,unsigned char nVal); unsigned char EEPROM_RandomRead(unsigned char nAddr); unsigned char EEPROM_CurrentAddressRead(void); void EEPROM_AckPolling(void); void Init_CLK(void); void Init_IIC_Port(void); Main.C /******************************************* IIC for AT24c16 OR AT24CXXX 系列 只要控制好IICRM IICSTP IICSTT 其硬件会自动完成 SCL SDA的一系列时序只要注意各个发送与接收的控制标志位. ******************************************/ #include #include "IIC.h" volatile unsigned char Data[6]; void main(void) { //volatile unsigned char Data[6];

//停止看门狗 WDTCTL = WDTPW+WDTHOLD; //初始化端口 Init_IIC_Port(); //初始化时钟 Init_CLK(); //I2C初始化 Init_IIC(); //置传输方式及控制方式 //打开中断 _EINT(); //写入数据 EEPROM_ByteWrite(0x0000,0x12); //等待写操作完成 EEPROM_AckPolling(); //写入数据 EEPROM_ByteWrite(0x0001,0x34); //等待写操作完成 EEPROM_AckPolling(); //写入数据 EEPROM_ByteWrite(0x0002,0x56); //等待写操作完成

简单的I2C协议理解 i2c程序(调试通过)

简单的I2C协议理解 一. 技术性能: 工作速率有100K和400K两种; 支持多机通讯; 支持多主控模块,但同一时刻只允许有一个主控; 由数据线SDA和时钟SCL构成的串行总线; 每个电路和模块都有唯一的地址; 每个器件可以使用独立电源 二. 基本工作原理: 以启动信号START来掌管总线,以停止信号STOP来释放总线; 每次通讯以START开始,以STOP结束; 启动信号START后紧接着发送一个地址字节,其中7位为被控器件的地址码,一位为读/写控制位R/W,R /W位为0表示由主控向被控器件写数据,R/W为1表示由主控向被控器件读数据; 当被控器件检测到收到的地址与自己的地址相同时,在第9个时钟期间反馈应答信号; 每个数据字节在传送时都是高位(MSB)在前; 写通讯过程: 1. 主控在检测到总线空闲的状况下,首先发送一个START信号掌管总线; 2. 发送一个地址字节(包括7位地址码和一位R/W); 3. 当被控器件检测到主控发送的地址与自己的地址相同时发送一个应答信号(ACK); 4. 主控收到ACK后开始发送第一个数据字节; 5. 被控器收到数据字节后发送一个ACK表示继续传送数据,发送NACK表示传送数据结束; 6. 主控发送完全部数据后,发送一个停止位STOP,结束整个通讯并且释放总线; 读通讯过程: 1. 主控在检测到总线空闲的状况下,首先发送一个START信号掌管总线; 2. 发送一个地址字节(包括7位地址码和一位R/W); 3. 当被控器件检测到主控发送的地址与自己的地址相同时发送一个应答信

号(ACK); 4. 主控收到ACK后释放数据总线,开始接收第一个数据字节; 5. 主控收到数据后发送ACK表示继续传送数据,发送NACK表示传送数据结束; 6. 主控发送完全部数据后,发送一个停止位STOP,结束整个通讯并且释放总线; 四. 总线信号时序分析 1. 总线空闲状态 SDA和SCL两条信号线都处于高电平,即总线上所有的器件都释放总线,两条信号线各自的上拉电阻把电平拉高; 2. 启动信号START 时钟信号SCL保持高电平,数据信号SDA的电平被拉低(即负跳变)。启动信号必须是跳变信号,而且在建立该信号前必修保证总线处于空闲状态; 3. 停止信号STOP 时钟信号SCL保持高电平,数据线被释放,使得SDA返回高电平(即正跳变),停止信号也必须是跳变信号。 4. 数据传送 SCL线呈现高电平期间,SDA线上的电平必须保持稳定,低电平表示0(此时的线电压为地电压),高电平表示1(此时的电压由元器件的VDD决定)。只有在SCL线为低电平期间,SDA上的电平允许变化。 5. 应答信号ACK I2C总线的数据都是以字节(8位)的方式传送的,发送器件每发送一个字节之后,在时钟的第9个脉冲期间释放数据总线,由接收器发送一个ACK(把数据总线的电平拉低)来表示数据成功接收。 6. 无应答信号NACK 在时钟的第9个脉冲期间发送器释放数据总线,接收器不拉低数据总线表示一个NACK,NACK有两种用途: a. 一般表示接收器未成功接收数据字节; b. 当接收器是主控器时,它收到最后一个字节后,应发送一个NACK信号,以通知被控发送器结束数据发送,并释放总线,以便主控接收器发送一个停止信号STOP。 五. 寻址约定

I2C总线协议规范 v2.1

THE I2C-BUS SPECIFICATION VERSION 2.1 JANUARY 2000

CONTENTS 1PREFACE. . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.1Version 1.0 - 1992. . . . . . . . . . . . . . . . . . . . 3 1.2Version 2.0 - 198. . . . . . . . . . . . . . . . . . . . . 3 1.3Version 2.1 - 1999. . . . . . . . . . . . . . . . . . . . 3 1.4Purchase of Philips I2C-bus components . . 3 2THE I2C-BUS BENEFITS DESIGNERS AND MANUFACTURERS. . . . . . . . . . . . . . .4 2.1Designer benefits . . . . . . . . . . . . . . . . . . . . 4 2.2Manufacturer benefits. . . . . . . . . . . . . . . . . 6 3INTRODUCTION TO THE I2C-BUS SPECIFICATION . . . . . . . . . . . . . . . . . . . . .6 4THE I2C-BUS CONCEPT . . . . . . . . . . . . . . .6 5GENERAL CHARACTERISTICS . . . . . . . . .8 6BIT TRANSFER . . . . . . . . . . . . . . . . . . . . . .8 6.1Data validity . . . . . . . . . . . . . . . . . . . . . . . . 8 6.2START and STOP conditions. . . . . . . . . . . 9 7TRANSFERRING DATA. . . . . . . . . . . . . . .10 7.1Byte format . . . . . . . . . . . . . . . . . . . . . . . . 10 7.2Acknowledge. . . . . . . . . . . . . . . . . . . . . . . 10 8ARBITRATION AND CLOCK GENERATION . . . . . . . . . . . . . . . . . . . . . .11 8.1Synchronization . . . . . . . . . . . . . . . . . . . . 11 8.2Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . 12 8.3Use of the clock synchronizing mechanism as a handshake. . . . . . . . . . . 13 9FORMATS WITH 7-BIT ADDRESSES. . . .13 107-BIT ADDRESSING . . . . . . . . . . . . . . . . .15 10.1Definition of bits in the first byte . . . . . . . . 15 10.1.1General call address. . . . . . . . . . . . . . . . . 16 10.1.2START byte . . . . . . . . . . . . . . . . . . . . . . . 17 10.1.3CBUS compatibility. . . . . . . . . . . . . . . . . . 18 11EXTENSIONS TO THE STANDARD- MODE I2C-BUS SPECIFICATION . . . . . . .19 12FAST-MODE. . . . . . . . . . . . . . . . . . . . . . . .19 13Hs-MODE . . . . . . . . . . . . . . . . . . . . . . . . . .20 13.1High speed transfer. . . . . . . . . . . . . . . . . . 20 13.2Serial data transfer format in Hs-mode. . . 21 13.3Switching from F/S- to Hs-mode and back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2313.4Hs-mode devices at lower speed modes. . 24 13.5Mixed speed modes on one serial bus system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 13.5.1F/S-mode transfer in a mixed-speed bus system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 13.5.2Hs-mode transfer in a mixed-speed bus system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 13.5.3Timing requirements for the bridge in a mixed-speed bus system. . . . . . . . . . . . . . 27 1410-BIT ADDRESSING. . . . . . . . . . . . . . . . 27 14.1Definition of bits in the first two bytes. . . . . 27 14.2Formats with 10-bit addresses. . . . . . . . . . 27 14.3General call address and start byte with 10-bit addressing. . . . . . . . . . . . . . . . . . . . 30 15ELECTRICAL SPECIFICATIONS AND TIMING FOR I/O STAGES AND BUS LINES. . . . . . . . . . . . . . . . . . . . 30 15.1Standard- and Fast-mode devices. . . . . . . 30 15.2Hs-mode devices. . . . . . . . . . . . . . . . . . . . 34 16ELECTRICAL CONNECTIONS OF I2C-BUS DEVICES TO THE BUS LINES . 37 16.1Maximum and minimum values of resistors R p and R s for Standard-mode I2C-bus devices . . . . . . . . . . . . . . . . . . . . . 39 17APPLICATION INFORMATION. . . . . . . . . 41 17.1Slope-controlled output stages of Fast-mode I2C-bus devices. . . . . . . . . . . . 41 17.2Switched pull-up circuit for Fast-mode I2C-bus devices . . . . . . . . . . . . . . . . . . . . . 41 17.3Wiring pattern of the bus lines. . . . . . . . . . 42 17.4Maximum and minimum values of resistors R p and R s for Fast-mode I2C-bus devices . . . . . . . . . . . . . . . . . . . . . 42 17.5Maximum and minimum values of resistors R p and R s for Hs-mode I2C-bus devices . . . . . . . . . . . . . . . . . . . . . 42 18BI-DIRECTIONAL LEVEL SHIFTER FOR F/S-MODE I2C-BUS SYSTEMS . . . . 42 18.1Connecting devices with different logic levels. . . . . . . . . . . . . . . . . . . . . . . . . 43 18.1.1Operation of the level shifter . . . . . . . . . . . 44 19DEVELOPMENT TOOLS AVAILABLE FROM PHILIPS. . . . . . . . . . . . . . . . . . . . . 45 20SUPPORT LITERATURE . . . . . . . . . . . . . 46

关于IIC的通信协议程序

#define uchar unsigned char #define uint unsigned int #define ulong unsigned long #define _BV(bit) (1 << (bit)) #ifndef cbi #define cbi(reg,bit) reg &= ~_BV(bit) #endif #ifndef sbi #define sbi(reg,bit) reg |= _BV(bit) #endif extern uchar dog; /* void delay_1ms(uchar xtal) { uchar i; for(i=0;i<(uint)(143*xtal-2);i++) {;} } //2 延时nms void delay_ms(uchar m, uchar fosc) { uchar i; i=0; while(i

AT24C02数据存储I2C协议-串口通讯

/****************************************** 绿盾电子 X-13 多传感器开发板 功能:实现读写AT24C02型号的EEPROM存储。该类型存储器具有掉电数据保护功能,是单片 机项目开发中常用的芯片。AT24C02使用 I2C总线与的单片机通信,只需两根线即 可完成读写功能。 串口输出数据,串口是单片机程序调试种 最常用最重要的工具。在使用前需要主要 开发板当前晶振频率是否为11.0592MHz,如 不是,请更换晶振,或者自行计算定时器 数值。 时间:2011-8-23 ******************************************/ //头文件 #include "reg51.h" #include //宏定义 #define uchar unsigned char #define uint unsigned int

//引脚定义 sbit Scl= P3^6; //AT24C0x串行时钟sbit Sda= P3^7; //AT24C0x串行数据 //全局变量 uchar EEPROM_WriteBuffer[] = {"https://www.doczj.com/doc/f017805446.html,"}; uchar EEPROM_ReadBuffer[20]; //函数声明 /******************************************/ //延时子函时, //参数 d_time 控制延时的时间 //作用,灯亮和熄灭必须持续一定时间,人眼才能看到 void delay(unsigned int time); /******************************************/ //延时子函数 //参数范围 0-65536 void delay(unsigned int time) //参数 time 大小 { //决定延时时间长短 while(time--); }

I2C总线读写程序通用

//==========================头文件加载=============================== #include //加载52系列单片机头文件 //===========================端口声明================================ sbit CLK=P3^6; //74hc574时钟信号线 sbit G=P2^4; //74hc574使能 sbit IIC_SDA=P2^6; //声明IIC总线的数据线接在单片机的P2.5端口。 sbit IIC_SCL=P2^5; //声明IIC总线的时钟线接在单片机的P2.7端口。 unsigned char tabl[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x0BF,0x8C}; //0,1,2,3,4,5,6,7,8,9,-,P //===========================函数声明================================ void display(unsigned char aa); void delay(unsigned int t); void delay_IIC(void); void IIC_Init(void); void IIC_start(void); void IIC_stop(void); bit IIC_Tack(void); void IIC_single_byte_write(unsigned char Daddr,unsigned char Waddr,unsigned char Data); unsigned char IIC_single_byte_read(unsigned char Daddr,unsigned char Waddr); void IIC_write_byte(unsigned char Data); unsigned char IIC_read_byte(void); //============================主函数================================= void main() //主函数 { unsigned char Data=2,addr=0x01; //---------------------------系统初始化-------------------------- IIC_Init();//初始化IIC总线。 //P1=0x7f;//LED8先亮。 while(1) //死循环 { IIC_single_byte_write(0xa0,0x02,Data);//保存LED的状态 delay(50000);//延时约0.5S Data=IIC_single_byte_read(0xa0,0x02);//读出LED的状态 if(Data<10) Data++; else

i2c通讯协议及程序

I2C通信协议简介 (2013-01-17 10:48:03) 转载▼ 分类:通讯协议 标签: 杂谈 ACK是acknowledge的意思,确认. 摒弃复杂的情况,这里只对I2C做简单的介绍。 一、I2C 总线的一些特征: ? 只要求两条总线线路一条串行数据线SDA一条串行时钟线SCL ? 每个连接到总线的器件都可以通过唯一的地址和一直存在的简单的主机从机关系软件设定地址主机可以作为主机发送器或主机接收器? 它是一个真正的多主机总线如果两个或更多主机同时初始化数据传输可以通过冲突检测和仲裁防止数据被破坏 ? 串行的8 位双向数据传输位速率在标准模式下可达100kbit/s 快速模式下可达400kbit/s 高速模式下可达3.4Mbit/s ? 片上的滤波器可以滤去总线数据线上的毛刺波保证数据完整 ? 连接到相同总线的IC 数量只受到总线的最大电容400pF 限制 二、I2C总线在传送数据过程中共有三种类型信号:开始信号、结束信号和应答信号。 开始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。 结束信号:SCL为高电平时,SDA由低电平向高电平跳变,结束传送数据。 应答信号:接收数据的IC在接收到8bit数据后,向发送数据的IC发出特定的低电平脉冲,表示已收到数据 起始和结束:

bool I2C_Start(void) { SDA_H; SCL_H; I2C_delay(); if(!SDA_read)return FALSE; // SDA线为低电平则总线忙,退出 SDA_L; // 拉低SDA线(当SCL为高电平时,SDA由高电平向低电平跳变表示开始信号) I2C_delay(); if(SDA_read) return FALSE; // SDA线为高电平则总线出错,退出 SDA_L; //数据为准备好时,拉低SCL线 I2C_delay(); return TRUE; } 发出开始信号之后,设备在数据未准备好时,拉低SCL线,这样主设备可知从设备未发送数据,从设备在数据准备好,可以发送的时候,停止拉低SCL线,这时候才开始真正的数据传输 void I2C_Stop(void) { SCL_L; I2C_delay(); SDA_L; I2C_delay(); SCL_H; // SCL为高电平时,SDA由低电平向高电平跳变,结束传送数据 I2C_delay(); SDA_H; I2C_delay(); }

I2C总线协议程序

C程序代码]I2C总线协议程序 程序代码 2009-10-11 14:05 阅读48 评论0 /**************************************************************** I2C总线协议程序 ****************************************************************/ #define NOP {_nop_();_nop_();_nop_();_nop_();} sbit SDA=P1^2; /*模拟I2C数据传送位*/ sbit SCL=P1^3; /*模拟I2C时钟控制位*/ bit ack; /*应答标志位*/ void Start_I2c() { SDA=1; NOP; SCL=1; NOP; SDA=0; NOP; SCL=0; NOP; } void Stop_I2c() { SDA=0; NOP;

SCL=1; NOP; SDA=1; NOP; } void Senduchar(uchar c) { uchar i; for(i=0;i<8;i++) { c<<=1; SDA=CY; NOP; SCL=1; NOP; SCL=0; NOP; } SDA=1; NOP; SCL=1; NOP; if(SDA==1) ack=0; else ack=1; SCL=0; NOP; } uchar Rcvuchar() {

uchar i,x=0; SDA=1; for(i=0;i<8;i++) { SCL=0; NOP; SCL=1; NOP; x=x<<1; if(SDA) x=x+1; NOP; } SCL=0; NOP; return(x); } void Ack_I2c(bit a) { SDA=a; NOP; SCL=1; NOP; SCL=0; NOP; } bit ISendStr(uchar sla,uchar suba,uchar *s,uchar no) { uchar i;

DSP28335 I2C接口应用

DSP I2C 应用说明 1.示例程序中几种状态 第一次看i2c_eeprom示例程序,对程序中的MsgStatus信息状态切换非常懵懂,为什么要有这几个状态?状态切换顺序如何安排?一大堆的状态,让人有些摸不着头脑。先把程 序中的头文件涉及的7种状态分析一下。 // I2C Message Commands for I2CMSG struct #define I2C_MSGSTAT_INACTIVE 0x0000//未激活状态:一般成功发送数据或者//接受数据后可以设置信息状态为此状态,告诉用户可进行下一次的写数据或读数据。 #define I2C_MSGSTAT_SEND_WITHSTOP 0x0010 //发送带停止位数据:这是为写数据而设///的状态,写入地址和数据之后发个停止位告诉存储器数据写入完毕。 #define I2C_MSGSTAT_WRITE_BUSY 0x0011 //写数据忙状态:在将待写的数据放入//缓存后,就可以使能IIC传输数据了,然后把信息状态设为该状态,意在告诉用户:数据//已经在传送过程中。当然是否传送完毕,还需要通过查询SCD位来判断。 #define I2C_MSGSTAT_SEND_NOSTOP 0x0020//发送无停止位数据:这个状态是为了读//取数据而设的,有查阅过AT24C1024EEPROM存储器使用手册的读者知道,在读数据之前//要发送数据的地址,发完地址不能产生停止位,这是存储器硬件设计决定的。设为这个状//态意在告诉读者,可以发送要读取的数据的地址了。 #define I2C_MSGSTAT_SEND_NOSTOP_BUSY 0x0021//发送无停止位数据忙状态:这个状态是//为了读取数据而设的,似于I2C_MSGSTAT_WRITE_BUSY,说明地址数据已经在传送过程中。//传送是否成功,还要看ARDY的状态。 #define I2C_MSGSTAT_RESTART 0x0022//重发开始位状态:这个状态也是为读取////数据而设。我们知道,读取存储器数据主要分两个步骤:第一,发送START位+设备地址//+数据地址+无停止位。第二,再发START位+设备地址,紧接着存储器发送数据到IIC接收//缓存器(I2CDRR),接收到设定好的数据数量(I2CCNT值)时输出停止位STOP. //值得注意的是:理论上写完数据就能马上读取数据,但事实上EEPROM存储器仍需要一////定延时来存储数据,约有2ms左右。通过示波器可以观察到,写完数据后,并不能马上//成功读取数据,也就是说读数据的第一步骤要重复好几次(总线为50K时,大约要重复//8次)才能成功。 #define I2C_MSGSTAT_READ_BUSY 0x0023//读取数据忙状态:这个状态是为读取数//据而设。在读数据的第二步骤中,发完START位+设备地址后,就设为这一状态。意在说//明IIC开始等待接收固定数量(I2CCNT值)的数据。可以通过查询ARDY位判断。 //头文件中的其他定义应该没什么大问题了! 2.AT24C1024 EEPROM读写数据格式 1 0 1 0 0 A1 P0 R/W

I2C协议代码

此模块包括发送数据及接收数据,应答位发送,并提供了几个直接面对器件的操作函数,能很 方便的与用户程序进行连接并扩展。 需要注意的是,函数是采用延时方法产生SCL 脉冲,对高晶振频率要做一定的修改!! 说明: 1us机器周期,晶振频率要小于12MHz 返回1 则操作成功,返回0 则操作失败。 sla 为器件从地址,suba 为器件子地址。 ************************************************************************* ************/ #include "AT89X52.h" #include #define _Nop() _nop_() //定义空指令 sbit SDA = P1^3; //模拟I2C数据传输位 sbit SCL = P1^2; //模拟I2C时钟控制位 bit bdata I2C_Ack; //应答标志位 /************************************ I2C_Start ************************************ 函数名:void I2C_Start() 入口: 出口: 功能描述:启动I2C总线,即发送I2C初始条件 调用函数: 全局变量: 创建者:陈曦日期:2005-6-15 修改者:日期: ************************************************************************* *********/

void I2C_Start() { SDA = 1; //发送起始条件的数据信号 _Nop(); SCL = 1; _Nop(); //起始条件建立时间大于4.7us,延时 _Nop(); _Nop(); _Nop(); _Nop(); SDA = 0; //发送起始信号 _Nop(); //起始条件建立时间大于4us,延时 _Nop(); _Nop(); _Nop(); _Nop(); SCL = 0; //钳住I2C总线准备发送或接收数据 _Nop(); _Nop(); } /************************************ I2C_Stop ************************************ 函数名:void I2C_Stop() 入口: 出口: 功能描述:结束I2C总线,即发送I2C结束条件 调用函数: 全局变量: 创建者:陈曦日期:2005-6-15 修改者:日期: ************************************************************************* *********/

I2C模拟程序

2.1 虚拟I2C总线汇编程序软件包 2.1.1 概述 为了非常方便地对I2C从器件进行快速的、正确的读写操作,我们为此而设计出虚拟I2C总线操作平台软件包。本软件包是主方式下的虚拟I2C总线软件包,只要用户给子程序提供几个主要的参数,即可轻松地完成任何I2C总线外围器件的应用程序设计。 2.1.2I2C串行总线 I2C总线是PHILIPS公司推出的芯片间串行数据传输总线,2根线(SDA、SCL)即可实现完善的全双工同步数据传送,能够十分方便地地构成多机系统和外围器件扩展系统。I2C器件是把I2C的协议植入器件的I/O接口,使用时器件直接挂到I2C总线上,这一特点给用户在设计应用系统带来了极大的便利。I2C器件无须片选信号,是否选中是由主器件发出的I2C从地址决定的,而I2C器件的从地址是由I2C总线委员会实行统一发配。我们推出的I2C总线的操作平台软件包,只要你给出器件从地址[,子地址(注:PCF8574无子地址)],即可进行字节读,字节写,多字节读,多字节写,能够非常方便地使用I2C器件,无须你介入底层的I2C操作协议。 2.1.3汇编软件包说明 此软件包是用在单主I2C总线上,硬件接口是SDA,SCL,使用MCU的I/O口来模拟SDA/SCL总线。设计有/无子地址的子程序是根据I2C器件的特点,目的在于将地址和数据彻底分开。软件包的接口界面为:IRDBYTE (无子地址)读单字节数据(现行地址读) IWRBYTE (无子地址)写单字节数据(现行地址写) IRDNBYTE (有子地址)读N字节数据 IWRNBYTE (有子地址)写N字节数据 说明:现行地址读/写即专指无子地址的器件,不给定子地址的读/写操作。 ;平台占用内部资源:R0,R1,R2,R3,ACC,Cy。 ;使用前须定义变量:SLA 器件从地址,SUBA器件子地址,NUMBYTE读/写的字节数,位变量ACK ;使用前须定义常量:SDA 、SCL 总线位,MTD 发送数据缓冲区首址,MRD 接收数据缓冲区首址;(※子程序出口参数ACK为0时表示从器件无应答) 2.1.4软件包清单 ;-------------------------------------------------------------------------------------------------------- ;VI2C_ASM.ASM ;I2C 软件包的底层子程序,使用前要定义好SCL和SDA。在标准80C51模式 ;(12 Clock)下,对主频要求是不高于12MHz(1个机器周期1us);若Fosc>12MHz ;则要增加相应的NOP指令数。在使用本软件包时,请在你的程序的未尾加入 ;$INCLUDE (VI2C_ASM.ASM)即可。 ;-------------------------------------------------------------------------------------------------------- ;启动I2C总线子程序 START: SETB SDA

DSP2808中i2c实例分析

注意:本例分析基于DSP2808中的i2c_eeprom示例程序和AT24C1024 EEPROM存储器。当然,在学IIC之前要了解一下IIC工作流程,知道AT24C1024存储芯片的使用方法。 现在按以下4部分来介绍这个示例。 1.示例程序中几种状态说明 第一次看i2c_eeprom示例程序,对程序中的MsgStatus信息状态切换非常懵懂,为什么要有这几个状态?状态切换顺序如何安排?一大堆的状态,让人有些摸不着头脑。先把程 序中的头文件涉及的7种状态分析一下。 // I2C Message Commands for I2CMSG struct #define I2C_MSGSTAT_INACTIVE 0x0000 //未激活状态:一般成功发送数据或者//接受数据后可以设置信息状态为此状态,告诉用户可进行下一次的写数据或读数据。 #define I2C_MSGSTAT_SEND_WITHSTOP 0x0010 //发送带停止位数据:这是为写数据而设///的状态,写入地址和数据之后发个停止位告诉存储器数据写入完毕。 #define I2C_MSGSTAT_WRITE_BUSY 0x0011 //写数据忙状态:在将待写的数据放入//缓存后,就可以使能IIC传输数据了,然后把信息状态设为该状态,意在告诉用户:数据//已经在传送过程中。当然是否传送完毕,还需要通过查询SCD位来判断。 #define I2C_MSGSTAT_SEND_NOSTOP 0x0020//发送无停止位数据:这个状态是为了读//取数据而设的,有查阅过AT24C1024EEPROM存储器使用手册的读者知道,在读数据之前//要发送数据的地址,发完地址不能产生停止位,这是存储器硬件设计决定的。设为这个状//态意在告诉读者,可以发送要读取的数据的地址了。 #define I2C_MSGSTAT_SEND_NOSTOP_BUSY 0x0021//发送无停止位数据忙状态:这个状态是//为了读取数据而设的,似于I2C_MSGSTAT_WRITE_BUSY,说明地址数据已经在传送过程中。//传送是否成功,还要看ARDY的状态。 #define I2C_MSGSTAT_RESTART 0x0022//重发开始位状态:这个状态也是为读取////数据而设。我们知道,读取存储器数据主要分两个步骤:第一,发送START位+设备地址//+数据地址+无停止位。第二,再发START位+设备地址,紧接着存储器发送数据到IIC接收//缓存器(I2CDRR),接收到设定好的数据数量(I2CCNT值)时输出停止位STOP. //值得注意的是:理论上写完数据就能马上读取数据,但事实上EEPROM存储器仍需要一////定延时来存储数据,约有2ms左右。通过示波器可以观察到,写完数据后,并不能马上//成功读取数据,也就是说读数据的第一步骤要重复好几次(总线为50K时,大约要重复//8次)才能成功。 #define I2C_MSGSTAT_READ_BUSY 0x0023//读取数据忙状态:这个状态是为读取数//据而设。在读数据的第二步骤中,发完START位+设备地址后,就设为这一状态。意在说//明IIC开始等待接收固定数量(I2CCNT值)的数据。可以通过查询ARDY位判断。 //头文件中的其他定义应该没什么大问题了! 2.AT24C1024 EEPROM读写数据格式

51单片机i2c协议示例程序

#include #include #define uint unsigned int #define uchar unsigned char sbit sda=P3^5; sbit scl=P3^4; void start_bit(); void stop_bit(); void slave_ack(); void no_ack(); void write_byte(uchar dat); uchar read_byte(); void write_date(uchar addr,uchar date); uchar read_date(uchar addr); void delay(uint x); void main() { uchar num; write_date(0x01,0xaa); delay(2); num=read_date(0x01); P0=num; while(1); } void start_bit() //开始位 { scl=1; _nop_(); sda=1; _nop_(); sda=0; _nop_(); scl=0; } void stop_bit() //停止位

{ sda=0; _nop_(); scl=1; _nop_(); sda=1; } void slave_ack() //应答信号 { _nop_(); _nop_(); scl=0; _nop_();; sda=1; _nop_(); _nop_(); scl=1; _nop_(); _nop_(); while(sda); //P0=0xfe; scl=0; } void no_ack() //无应答 { sda=1; _nop_(); scl=1; _nop_(); scl=0; } void write_byte(uchar dat) //写一个字节{ uchar i; scl=0; for(i=0;i<8;i++) { if(dat&0x80) sda=1; else sda=0;

相关主题
文本预览
相关文档 最新文档